[llvm] r295688 - ScheduleDAG: Cleanup; NFC

Matthias Braun via llvm-commits llvm-commits at lists.llvm.org
Mon Feb 20 17:27:33 PST 2017


Author: matze
Date: Mon Feb 20 19:27:33 2017
New Revision: 295688

URL: http://llvm.org/viewvc/llvm-project?rev=295688&view=rev
Log:
ScheduleDAG: Cleanup; NFC

- Fix doxygen comments (do not repeat documented name, remove definition
    comment if there is already one at the declaration, add \p, ...)
- Add some const modifiers
- Use range based for

Modified:
    llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h
    llvm/trunk/lib/CodeGen/ScheduleDAG.cpp

Modified: llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h?rev=295688&r1=295687&r2=295688&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h (original)
+++ llvm/trunk/include/llvm/CodeGen/ScheduleDAG.h Mon Feb 20 19:27:33 2017
@@ -7,9 +7,9 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This file implements the ScheduleDAG class, which is used as the common
-// base class for instruction schedulers. This encapsulates the scheduling DAG,
-// which is shared between SelectionDAG and MachineInstr scheduling.
+/// \file Implements the ScheduleDAG class, which is used as the common base
+/// class for instruction schedulers. This encapsulates the scheduling DAG,
+/// which is shared between SelectionDAG and MachineInstr scheduling.
 //
 //===----------------------------------------------------------------------===//
 
@@ -40,11 +40,11 @@ namespace llvm {
   class TargetRegisterClass;
   template<class Graph> class GraphWriter;
 
-  /// SDep - Scheduling dependency. This represents one direction of an
-  /// edge in the scheduling DAG.
+  /// Scheduling dependency. This represents one direction of an edge in the
+  /// scheduling DAG.
   class SDep {
   public:
-    /// Kind - These are the different kinds of scheduling dependencies.
+    /// These are the different kinds of scheduling dependencies.
     enum Kind {
       Data,        ///< Regular data dependence (aka true-dependence).
       Anti,        ///< A register anti-dependedence (aka WAR).
@@ -71,33 +71,32 @@ namespace llvm {
     };
 
   private:
-    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
+    /// \brief A pointer to the depending/depended-on SUnit, and an enum
     /// indicating the kind of the dependency.
     PointerIntPair<SUnit *, 2, Kind> Dep;
 
-    /// Contents - A union discriminated by the dependence kind.
+    /// A union discriminated by the dependence kind.
     union {
-      /// Reg - For Data, Anti, and Output dependencies, the associated
-      /// register. For Data dependencies that don't currently have a register
-      /// assigned, this is set to zero.
+      /// For Data, Anti, and Output dependencies, the associated register. For
+      /// Data dependencies that don't currently have a register/ assigned, this
+      /// is set to zero.
       unsigned Reg;
 
-      /// Order - Additional information about Order dependencies.
+      /// Additional information about Order dependencies.
       unsigned OrdKind; // enum OrderKind
     } Contents;
 
-    /// Latency - The time associated with this edge. Often this is just
-    /// the value of the Latency field of the predecessor, however advanced
-    /// models may provide additional information about specific edges.
+    /// The time associated with this edge. Often this is just the value of the
+    /// Latency field of the predecessor, however advanced models may provide
+    /// additional information about specific edges.
     unsigned Latency;
 
   public:
-    /// SDep - Construct a null SDep. This is only for use by container
-    /// classes which require default constructors. SUnits may not
-    /// have null SDep edges.
+    /// Constructs a null SDep. This is only for use by container classes which
+    /// require default constructors. SUnits may not/ have null SDep edges.
     SDep() : Dep(nullptr, Data) {}
 
-    /// SDep - Construct an SDep with the specified values.
+    /// Constructs an SDep with the specified values.
     SDep(SUnit *S, Kind kind, unsigned Reg)
       : Dep(S, kind), Contents() {
       switch (kind) {
@@ -121,7 +120,7 @@ namespace llvm {
       Contents.OrdKind = kind;
     }
 
-    /// Return true if the specified SDep is equivalent except for latency.
+    /// Returns true if the specified SDep is equivalent except for latency.
     bool overlaps(const SDep &Other) const;
 
     bool operator==(const SDep &Other) const {
@@ -132,100 +131,95 @@ namespace llvm {
       return !operator==(Other);
     }
 
-    /// getLatency - Return the latency value for this edge, which roughly
-    /// means the minimum number of cycles that must elapse between the
-    /// predecessor and the successor, given that they have this edge
-    /// between them.
+    /// \brief Returns the latency value for this edge, which roughly means the
+    /// minimum number of cycles that must elapse between the predecessor and
+    /// the successor, given that they have this edge between them.
     unsigned getLatency() const {
       return Latency;
     }
 
-    /// setLatency - Set the latency for this edge.
+    /// Sets the latency for this edge.
     void setLatency(unsigned Lat) {
       Latency = Lat;
     }
 
-    //// getSUnit - Return the SUnit to which this edge points.
+    //// Returns the SUnit to which this edge points.
     SUnit *getSUnit() const;
 
-    //// setSUnit - Assign the SUnit to which this edge points.
+    //// Assigns the SUnit to which this edge points.
     void setSUnit(SUnit *SU);
 
-    /// getKind - Return an enum value representing the kind of the dependence.
+    /// Returns an enum value representing the kind of the dependence.
     Kind getKind() const;
 
-    /// isCtrl - Shorthand for getKind() != SDep::Data.
+    /// Shorthand for getKind() != SDep::Data.
     bool isCtrl() const {
       return getKind() != Data;
     }
 
-    /// isNormalMemory - Test if this is an Order dependence between two
-    /// memory accesses where both sides of the dependence access memory
-    /// in non-volatile and fully modeled ways.
+    /// \brief Tests if this is an Order dependence between two memory accesses
+    /// where both sides of the dependence access memory in non-volatile and
+    /// fully modeled ways.
     bool isNormalMemory() const {
       return getKind() == Order && (Contents.OrdKind == MayAliasMem
                                     || Contents.OrdKind == MustAliasMem);
     }
 
-    /// isBarrier - Test if this is an Order dependence that is marked
-    /// as a barrier.
+    /// Tests if this is an Order dependence that is marked as a barrier.
     bool isBarrier() const {
       return getKind() == Order && Contents.OrdKind == Barrier;
     }
 
-    /// isNormalMemoryOrBarrier - Test if this is could be any kind of memory
-    /// dependence.
+    /// Tests if this is could be any kind of memory dependence.
     bool isNormalMemoryOrBarrier() const {
       return (isNormalMemory() || isBarrier());
     }
 
-    /// isMustAlias - Test if this is an Order dependence that is marked
-    /// as "must alias", meaning that the SUnits at either end of the edge
-    /// have a memory dependence on a known memory location.
+    /// \brief Tests if this is an Order dependence that is marked as
+    /// "must alias", meaning that the SUnits at either end of the edge have a
+    /// memory dependence on a known memory location.
     bool isMustAlias() const {
       return getKind() == Order && Contents.OrdKind == MustAliasMem;
     }
 
-    /// isWeak - Test if this a weak dependence. Weak dependencies are
-    /// considered DAG edges for height computation and other heuristics, but do
-    /// not force ordering. Breaking a weak edge may require the scheduler to
-    /// compensate, for example by inserting a copy.
+    /// Tests if this a weak dependence. Weak dependencies are considered DAG
+    /// edges for height computation and other heuristics, but do not force
+    /// ordering. Breaking a weak edge may require the scheduler to compensate,
+    /// for example by inserting a copy.
     bool isWeak() const {
       return getKind() == Order && Contents.OrdKind >= Weak;
     }
 
-    /// isArtificial - Test if this is an Order dependence that is marked
-    /// as "artificial", meaning it isn't necessary for correctness.
+    /// \brief Tests if this is an Order dependence that is marked as
+    /// "artificial", meaning it isn't necessary for correctness.
     bool isArtificial() const {
       return getKind() == Order && Contents.OrdKind == Artificial;
     }
 
-    /// isCluster - Test if this is an Order dependence that is marked
-    /// as "cluster", meaning it is artificial and wants to be adjacent.
+    /// \brief Tests if this is an Order dependence that is marked as "cluster",
+    /// meaning it is artificial and wants to be adjacent.
     bool isCluster() const {
       return getKind() == Order && Contents.OrdKind == Cluster;
     }
 
-    /// isAssignedRegDep - Test if this is a Data dependence that is
-    /// associated with a register.
+    /// Tests if this is a Data dependence that is associated with a register.
     bool isAssignedRegDep() const {
       return getKind() == Data && Contents.Reg != 0;
     }
 
-    /// getReg - Return the register associated with this edge. This is
-    /// only valid on Data, Anti, and Output edges. On Data edges, this
-    /// value may be zero, meaning there is no associated register.
+    /// Returns the register associated with this edge. This is only valid on
+    /// Data, Anti, and Output edges. On Data edges, this value may be zero,
+    /// meaning there is no associated register.
     unsigned getReg() const {
       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
              "getReg called on non-register dependence edge!");
       return Contents.Reg;
     }
 
-    /// setReg - Assign the associated register for this edge. This is
-    /// only valid on Data, Anti, and Output edges. On Anti and Output
-    /// edges, this value must not be zero. On Data edges, the value may
-    /// be zero, which would mean that no specific register is associated
-    /// with this edge.
+    /// Assigns the associated register for this edge. This is only valid on
+    /// Data, Anti, and Output edges. On Anti and Output edges, this value must
+    /// not be zero. On Data edges, the value may be zero, which would mean that
+    /// no specific register is associated with this edge.
     void setReg(unsigned Reg) {
       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
              "setReg called on non-register dependence edge!");
@@ -240,71 +234,70 @@ namespace llvm {
   template <>
   struct isPodLike<SDep> { static const bool value = true; };
 
-  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
+  /// Scheduling unit. This is a node in the scheduling DAG.
   class SUnit {
   private:
     enum : unsigned { BoundaryID = ~0u };
 
-    SDNode *Node;                       // Representative node.
-    MachineInstr *Instr;                // Alternatively, a MachineInstr.
+    SDNode *Node;                       ///< Representative node.
+    MachineInstr *Instr;                ///< Alternatively, a MachineInstr.
   public:
-    SUnit *OrigNode;                    // If not this, the node from which
-                                        // this node was cloned.
-                                        // (SD scheduling only)
-
-    const MCSchedClassDesc *SchedClass; // NULL or resolved SchedClass.
-
-    // Preds/Succs - The SUnits before/after us in the graph.
-    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
-    SmallVector<SDep, 4> Succs;  // All sunit successors.
+    SUnit *OrigNode;                    ///< If not this, the node from which
+                                        /// this node was cloned.
+                                        /// (SD scheduling only)
+
+    const MCSchedClassDesc *SchedClass; ///< nullptr or resolved SchedClass.
+
+    SmallVector<SDep, 4> Preds;  ///< All sunit predecessors.
+    SmallVector<SDep, 4> Succs;  ///< All sunit successors.
 
     typedef SmallVectorImpl<SDep>::iterator pred_iterator;
     typedef SmallVectorImpl<SDep>::iterator succ_iterator;
     typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
     typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
 
-    unsigned NodeNum;                   // Entry # of node in the node vector.
-    unsigned NodeQueueId;               // Queue id of node.
-    unsigned NumPreds;                  // # of SDep::Data preds.
-    unsigned NumSuccs;                  // # of SDep::Data sucss.
-    unsigned NumPredsLeft;              // # of preds not scheduled.
-    unsigned NumSuccsLeft;              // # of succs not scheduled.
-    unsigned WeakPredsLeft;             // # of weak preds not scheduled.
-    unsigned WeakSuccsLeft;             // # of weak succs not scheduled.
-    unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
-    unsigned short Latency;             // Node latency.
-    bool isVRegCycle      : 1;          // May use and def the same vreg.
-    bool isCall           : 1;          // Is a function call.
-    bool isCallOp         : 1;          // Is a function call operand.
-    bool isTwoAddress     : 1;          // Is a two-address instruction.
-    bool isCommutable     : 1;          // Is a commutable instruction.
-    bool hasPhysRegUses   : 1;          // Has physreg uses.
-    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
-    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
-    bool isPending        : 1;          // True once pending.
-    bool isAvailable      : 1;          // True once available.
-    bool isScheduled      : 1;          // True once scheduled.
-    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
-    bool isScheduleLow    : 1;          // True if preferable to schedule low.
-    bool isCloned         : 1;          // True if this node has been cloned.
-    bool isUnbuffered     : 1;          // Uses an unbuffered resource.
-    bool hasReservedResource : 1;       // Uses a reserved resource.
-    Sched::Preference SchedulingPref;   // Scheduling preference.
+    unsigned NodeNum;                 ///< Entry # of node in the node vector.
+    unsigned NodeQueueId;             ///< Queue id of node.
+    unsigned NumPreds;                ///< # of SDep::Data preds.
+    unsigned NumSuccs;                ///< # of SDep::Data sucss.
+    unsigned NumPredsLeft;            ///< # of preds not scheduled.
+    unsigned NumSuccsLeft;            ///< # of succs not scheduled.
+    unsigned WeakPredsLeft;           ///< # of weak preds not scheduled.
+    unsigned WeakSuccsLeft;           ///< # of weak succs not scheduled.
+    unsigned short NumRegDefsLeft;    ///< # of reg defs with no scheduled use.
+    unsigned short Latency;           ///< Node latency.
+    bool isVRegCycle      : 1;        ///< May use and def the same vreg.
+    bool isCall           : 1;        ///< Is a function call.
+    bool isCallOp         : 1;        ///< Is a function call operand.
+    bool isTwoAddress     : 1;        ///< Is a two-address instruction.
+    bool isCommutable     : 1;        ///< Is a commutable instruction.
+    bool hasPhysRegUses   : 1;        ///< Has physreg uses.
+    bool hasPhysRegDefs   : 1;        ///< Has physreg defs that are being used.
+    bool hasPhysRegClobbers : 1;      ///< Has any physreg defs, used or not.
+    bool isPending        : 1;        ///< True once pending.
+    bool isAvailable      : 1;        ///< True once available.
+    bool isScheduled      : 1;        ///< True once scheduled.
+    bool isScheduleHigh   : 1;        ///< True if preferable to schedule high.
+    bool isScheduleLow    : 1;        ///< True if preferable to schedule low.
+    bool isCloned         : 1;        ///< True if this node has been cloned.
+    bool isUnbuffered     : 1;        ///< Uses an unbuffered resource.
+    bool hasReservedResource : 1;     ///< Uses a reserved resource.
+    Sched::Preference SchedulingPref; ///< Scheduling preference.
 
   private:
-    bool isDepthCurrent   : 1;          // True if Depth is current.
-    bool isHeightCurrent  : 1;          // True if Height is current.
-    unsigned Depth;                     // Node depth.
-    unsigned Height;                    // Node height.
+    bool isDepthCurrent   : 1;        ///< True if Depth is current.
+    bool isHeightCurrent  : 1;        ///< True if Height is current.
+    unsigned Depth;                   ///< Node depth.
+    unsigned Height;                  ///< Node height.
   public:
-    unsigned TopReadyCycle; // Cycle relative to start when node is ready.
-    unsigned BotReadyCycle; // Cycle relative to end when node is ready.
+    unsigned TopReadyCycle; ///< Cycle relative to start when node is ready.
+    unsigned BotReadyCycle; ///< Cycle relative to end when node is ready.
 
-    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
+    const TargetRegisterClass *CopyDstRC; ///< Is a special copy node if !=null.
     const TargetRegisterClass *CopySrcRC;
 
-    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
-    /// an SDNode and any nodes flagged to it.
+    /// \brief Constructs an SUnit for pre-regalloc scheduling to represent an
+    /// SDNode and any nodes flagged to it.
     SUnit(SDNode *node, unsigned nodenum)
       : Node(node), Instr(nullptr), OrigNode(nullptr), SchedClass(nullptr),
         NodeNum(nodenum), NodeQueueId(0), NumPreds(0), NumSuccs(0),
@@ -319,8 +312,8 @@ namespace llvm {
         isHeightCurrent(false), Depth(0), Height(0), TopReadyCycle(0),
         BotReadyCycle(0), CopyDstRC(nullptr), CopySrcRC(nullptr) {}
 
-    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
-    /// a MachineInstr.
+    /// \brief Constructs an SUnit for post-regalloc scheduling to represent a
+    /// MachineInstr.
     SUnit(MachineInstr *instr, unsigned nodenum)
       : Node(nullptr), Instr(instr), OrigNode(nullptr), SchedClass(nullptr),
         NodeNum(nodenum), NodeQueueId(0), NumPreds(0), NumSuccs(0),
@@ -335,7 +328,7 @@ namespace llvm {
         isHeightCurrent(false), Depth(0), Height(0), TopReadyCycle(0),
         BotReadyCycle(0), CopyDstRC(nullptr), CopySrcRC(nullptr) {}
 
-    /// SUnit - Construct a placeholder SUnit.
+    /// \brief Constructs a placeholder SUnit.
     SUnit()
       : Node(nullptr), Instr(nullptr), OrigNode(nullptr), SchedClass(nullptr),
         NodeNum(BoundaryID), NodeQueueId(0), NumPreds(0), NumSuccs(0),
@@ -359,46 +352,44 @@ namespace llvm {
     /// an assoicative data structure keyed on node ID.
     bool isBoundaryNode() const { return NodeNum == BoundaryID; }
 
-    /// setNode - Assign the representative SDNode for this SUnit.
-    /// This may be used during pre-regalloc scheduling.
+    /// Assigns the representative SDNode for this SUnit. This may be used
+    /// during pre-regalloc scheduling.
     void setNode(SDNode *N) {
       assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
       Node = N;
     }
 
-    /// getNode - Return the representative SDNode for this SUnit.
-    /// This may be used during pre-regalloc scheduling.
+    /// Returns the representative SDNode for this SUnit. This may be used
+    /// during pre-regalloc scheduling.
     SDNode *getNode() const {
       assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
       return Node;
     }
 
-    /// isInstr - Return true if this SUnit refers to a machine instruction as
+    /// \brief Returns true if this SUnit refers to a machine instruction as
     /// opposed to an SDNode.
     bool isInstr() const { return Instr; }
 
-    /// setInstr - Assign the instruction for the SUnit.
-    /// This may be used during post-regalloc scheduling.
+    /// Assigns the instruction for the SUnit. This may be used during
+    /// post-regalloc scheduling.
     void setInstr(MachineInstr *MI) {
       assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
       Instr = MI;
     }
 
-    /// getInstr - Return the representative MachineInstr for this SUnit.
-    /// This may be used during post-regalloc scheduling.
+    /// Returns the representative MachineInstr for this SUnit. This may be used
+    /// during post-regalloc scheduling.
     MachineInstr *getInstr() const {
       assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
       return Instr;
     }
 
-    /// addPred - This adds the specified edge as a pred of the current node if
-    /// not already.  It also adds the current node as a successor of the
-    /// specified node.
+    /// Adds the specified edge as a pred of the current node if not already.
+    /// It also adds the current node as a successor of the specified node.
     bool addPred(const SDep &D, bool Required = true);
 
-    /// addPredBarrier - This adds a barrier edge to SU by calling
-    /// addPred(), with latency 0 generally or latency 1 for a store
-    /// followed by a load.
+    /// \brief Adds a barrier edge to SU by calling addPred(), with latency 0
+    /// generally or latency 1 for a store followed by a load.
     bool addPredBarrier(SUnit *SU) {
       SDep Dep(SU, SDep::Barrier);
       unsigned TrueMemOrderLatency =
@@ -407,20 +398,19 @@ namespace llvm {
       return addPred(Dep);
     }
 
-    /// removePred - This removes the specified edge as a pred of the current
-    /// node if it exists.  It also removes the current node as a successor of
-    /// the specified node.
+    /// Removes the specified edge as a pred of the current node if it exists.
+    /// It also removes the current node as a successor of the specified node.
     void removePred(const SDep &D);
 
-    /// getDepth - Return the depth of this node, which is the length of the
-    /// maximum path up to any node which has no predecessors.
+    /// Returns the depth of this node, which is the length of the maximum path
+    /// up to any node which has no predecessors.
     unsigned getDepth() const {
       if (!isDepthCurrent)
         const_cast<SUnit *>(this)->ComputeDepth();
       return Depth;
     }
 
-    /// getHeight - Return the height of this node, which is the length of the
+    /// \brief Returns the height of this node, which is the length of the
     /// maximum path down to any node which has no successors.
     unsigned getHeight() const {
       if (!isHeightCurrent)
@@ -428,38 +418,36 @@ namespace llvm {
       return Height;
     }
 
-    /// setDepthToAtLeast - If NewDepth is greater than this node's
-    /// depth value, set it to be the new depth value. This also
-    /// recursively marks successor nodes dirty.
+    /// \brief If NewDepth is greater than this node's depth value, sets it to
+    /// be the new depth value. This also recursively marks successor nodes
+    /// dirty.
     void setDepthToAtLeast(unsigned NewDepth);
 
-    /// setDepthToAtLeast - If NewDepth is greater than this node's
-    /// depth value, set it to be the new height value. This also
-    /// recursively marks predecessor nodes dirty.
+    /// \brief If NewDepth is greater than this node's depth value, set it to be
+    /// the new height value. This also recursively marks predecessor nodes
+    /// dirty.
     void setHeightToAtLeast(unsigned NewHeight);
 
-    /// setDepthDirty - Set a flag in this node to indicate that its
-    /// stored Depth value will require recomputation the next time
-    /// getDepth() is called.
+    /// \brief Sets a flag in this node to indicate that its stored Depth value
+    /// will require recomputation the next time getDepth() is called.
     void setDepthDirty();
 
-    /// setHeightDirty - Set a flag in this node to indicate that its
-    /// stored Height value will require recomputation the next time
-    /// getHeight() is called.
+    /// \brief Sets a flag in this node to indicate that its stored Height value
+    /// will require recomputation the next time getHeight() is called.
     void setHeightDirty();
 
-    /// isPred - Test if node N is a predecessor of this node.
-    bool isPred(SUnit *N) {
-      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
-        if (Preds[i].getSUnit() == N)
+    /// Tests if node N is a predecessor of this node.
+    bool isPred(const SUnit *N) const {
+      for (const SDep &Pred : Preds)
+        if (Pred.getSUnit() == N)
           return true;
       return false;
     }
 
-    /// isSucc - Test if node N is a successor of this node.
-    bool isSucc(SUnit *N) {
-      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
-        if (Succs[i].getSUnit() == N)
+    /// Tests if node N is a successor of this node.
+    bool isSucc(const SUnit *N) const {
+      for (const SDep &Succ : Succs)
+        if (Succ.getSUnit() == N)
           return true;
       return false;
     }
@@ -471,7 +459,7 @@ namespace llvm {
       return NumSuccsLeft == 0;
     }
 
-    /// \brief Order this node's predecessor edges such that the critical path
+    /// \brief Orders this node's predecessor edges such that the critical path
     /// edge occurs first.
     void biasCriticalPath();
 
@@ -484,7 +472,7 @@ namespace llvm {
     void ComputeHeight();
   };
 
-  /// Return true if the specified SDep is equivalent except for latency.
+  /// Returns true if the specified SDep is equivalent except for latency.
   inline bool SDep::overlaps(const SDep &Other) const {
     if (Dep != Other.Dep)
       return false;
@@ -499,23 +487,23 @@ namespace llvm {
     llvm_unreachable("Invalid dependency kind!");
   }
 
-  //// getSUnit - Return the SUnit to which this edge points.
+  //// Returns the SUnit to which this edge points.
   inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }
 
-  //// setSUnit - Assign the SUnit to which this edge points.
+  //// Assigns the SUnit to which this edge points.
   inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }
 
-  /// getKind - Return an enum value representing the kind of the dependence.
+  /// Returns an enum value representing the kind of the dependence.
   inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }
 
   //===--------------------------------------------------------------------===//
-  /// SchedulingPriorityQueue - This interface is used to plug different
-  /// priorities computation algorithms into the list scheduler. It implements
-  /// the interface of a standard priority queue, where nodes are inserted in
-  /// arbitrary order and returned in priority order.  The computation of the
-  /// priority and the representation of the queue are totally up to the
-  /// implementation to decide.
-  ///
+
+  /// \brief This interface is used to plug different priorities computation
+  /// algorithms into the list scheduler. It implements the interface of a
+  /// standard priority queue, where nodes are inserted in arbitrary order and
+  /// returned in priority order.  The computation of the priority and the
+  /// representation of the queue are totally up to the implementation to
+  /// decide.
   class SchedulingPriorityQueue {
     virtual void anchor();
     unsigned CurCycle;
@@ -556,10 +544,9 @@ namespace llvm {
 
     virtual void dump(ScheduleDAG *) const {}
 
-    /// scheduledNode - As each node is scheduled, this method is invoked.  This
-    /// allows the priority function to adjust the priority of related
-    /// unscheduled nodes, for example.
-    ///
+    /// As each node is scheduled, this method is invoked.  This allows the
+    /// priority function to adjust the priority of related unscheduled nodes,
+    /// for example.
     virtual void scheduledNode(SUnit *) {}
 
     virtual void unscheduledNode(SUnit *) {}
@@ -575,14 +562,14 @@ namespace llvm {
 
   class ScheduleDAG {
   public:
-    const TargetMachine &TM;              // Target processor
-    const TargetInstrInfo *TII;           // Target instruction information
-    const TargetRegisterInfo *TRI;        // Target processor register info
-    MachineFunction &MF;                  // Machine function
-    MachineRegisterInfo &MRI;             // Virtual/real register map
-    std::vector<SUnit> SUnits;            // The scheduling units.
-    SUnit EntrySU;                        // Special node for the region entry.
-    SUnit ExitSU;                         // Special node for the region exit.
+    const TargetMachine &TM;            ///< Target processor
+    const TargetInstrInfo *TII;         ///< Target instruction information
+    const TargetRegisterInfo *TRI;      ///< Target processor register info
+    MachineFunction &MF;                ///< Machine function
+    MachineRegisterInfo &MRI;           ///< Virtual/real register map
+    std::vector<SUnit> SUnits;          ///< The scheduling units.
+    SUnit EntrySU;                      ///< Special node for the region entry.
+    SUnit ExitSU;                       ///< Special node for the region exit.
 
 #ifdef NDEBUG
     static const bool StressSched = false;
@@ -594,43 +581,39 @@ namespace llvm {
 
     virtual ~ScheduleDAG();
 
-    /// clearDAG - clear the DAG state (between regions).
+    /// Clears the DAG state (between regions).
     void clearDAG();
 
-    /// getInstrDesc - Return the MCInstrDesc of this SUnit.
-    /// Return NULL for SDNodes without a machine opcode.
+    /// Returns the MCInstrDesc of this SUnit.
+    /// Returns NULL for SDNodes without a machine opcode.
     const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
       if (SU->isInstr()) return &SU->getInstr()->getDesc();
       return getNodeDesc(SU->getNode());
     }
 
-    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
-    /// using 'dot'.
-    ///
+    /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
     virtual void viewGraph(const Twine &Name, const Twine &Title);
     virtual void viewGraph();
 
     virtual void dumpNode(const SUnit *SU) const = 0;
 
-    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
-    /// of the ScheduleDAG.
+    /// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
     virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
 
-    /// getDAGLabel - Return a label for the region of code covered by the DAG.
+    /// Returns a label for the region of code covered by the DAG.
     virtual std::string getDAGName() const = 0;
 
-    /// addCustomGraphFeatures - Add custom features for a visualization of
-    /// the ScheduleDAG.
+    /// Adds custom features for a visualization of the ScheduleDAG.
     virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
 
 #ifndef NDEBUG
-    /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
-    /// their state is consistent. Return the number of scheduled SUnits.
+    /// \brief Verifies that all SUnits were scheduled and that their state is
+    /// consistent. Returns the number of scheduled SUnits.
     unsigned VerifyScheduledDAG(bool isBottomUp);
 #endif
 
   private:
-    // Return the MCInstrDesc of this SDNode or NULL.
+    /// Returns the MCInstrDesc of this SDNode or NULL.
     const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
   };
 
@@ -666,7 +649,7 @@ namespace llvm {
 
     unsigned getOperand() const { return Operand; }
     const SUnit *getNode() const { return Node; }
-    /// isCtrlDep - Test if this is not an SDep::Data dependence.
+    /// Tests if this is not an SDep::Data dependence.
     bool isCtrlDep() const {
       return getSDep().isCtrl();
     }
@@ -700,56 +683,53 @@ namespace llvm {
     }
   };
 
-  /// ScheduleDAGTopologicalSort is a class that computes a topological
-  /// ordering for SUnits and provides methods for dynamically updating
-  /// the ordering as new edges are added.
+  /// This class can compute a topological ordering for SUnits and provides
+  /// methods for dynamically updating the ordering as new edges are added.
   ///
   /// This allows a very fast implementation of IsReachable, for example.
-  ///
   class ScheduleDAGTopologicalSort {
-    /// SUnits - A reference to the ScheduleDAG's SUnits.
+    /// A reference to the ScheduleDAG's SUnits.
     std::vector<SUnit> &SUnits;
     SUnit *ExitSU;
 
-    /// Index2Node - Maps topological index to the node number.
+    /// Maps topological index to the node number.
     std::vector<int> Index2Node;
-    /// Node2Index - Maps the node number to its topological index.
+    /// Maps the node number to its topological index.
     std::vector<int> Node2Index;
-    /// Visited - a set of nodes visited during a DFS traversal.
+    /// a set of nodes visited during a DFS traversal.
     BitVector Visited;
 
-    /// DFS - make a DFS traversal and mark all nodes affected by the
-    /// edge insertion. These nodes will later get new topological indexes
-    /// by means of the Shift method.
+    /// Makes a DFS traversal and mark all nodes affected by the edge insertion.
+    /// These nodes will later get new topological indexes by means of the Shift
+    /// method.
     void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
 
-    /// Shift - reassign topological indexes for the nodes in the DAG
-    /// to preserve the topological ordering.
+    /// \brief Reassigns topological indexes for the nodes in the DAG to
+    /// preserve the topological ordering.
     void Shift(BitVector& Visited, int LowerBound, int UpperBound);
 
-    /// Allocate - assign the topological index to the node n.
+    /// Assigns the topological index to the node n.
     void Allocate(int n, int index);
 
   public:
     ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
 
-    /// InitDAGTopologicalSorting - create the initial topological
-    /// ordering from the DAG to be scheduled.
+    /// Creates the initial topological ordering from the DAG to be scheduled.
     void InitDAGTopologicalSorting();
 
-    /// IsReachable - Checks if SU is reachable from TargetSU.
+    /// Checks if \p SU is reachable from \p TargetSU.
     bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
 
-    /// WillCreateCycle - Return true if addPred(TargetSU, SU) creates a cycle.
+    /// Returns true if addPred(TargetSU, SU) creates a cycle.
     bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
 
-    /// AddPred - Updates the topological ordering to accommodate an edge
-    /// to be added from SUnit X to SUnit Y.
+    /// \brief Updates the topological ordering to accommodate an edge to be
+    /// added from SUnit \p X to SUnit \p Y.
     void AddPred(SUnit *Y, SUnit *X);
 
-    /// RemovePred - Updates the topological ordering to accommodate an
-    /// an edge to be removed from the specified node N from the predecessors
-    /// of the current node M.
+    /// \brief Updates the topological ordering to accommodate an an edge to be
+    /// removed from the specified node \p N from the predecessors of the
+    /// current node \p M.
     void RemovePred(SUnit *M, SUnit *N);
 
     typedef std::vector<int>::iterator iterator;

Modified: llvm/trunk/lib/CodeGen/ScheduleDAG.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/ScheduleDAG.cpp?rev=295688&r1=295687&r2=295688&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/ScheduleDAG.cpp (original)
+++ llvm/trunk/lib/CodeGen/ScheduleDAG.cpp Mon Feb 20 19:27:33 2017
@@ -7,8 +7,8 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This implements the ScheduleDAG class, which is a base class used by
-// scheduling implementation classes.
+/// \file Implements the ScheduleDAG class, which is a base class used by
+/// scheduling implementation classes.
 //
 //===----------------------------------------------------------------------===//
 
@@ -46,45 +46,39 @@ ScheduleDAG::ScheduleDAG(MachineFunction
 
 ScheduleDAG::~ScheduleDAG() {}
 
-/// Clear the DAG state (e.g. between scheduling regions).
 void ScheduleDAG::clearDAG() {
   SUnits.clear();
   EntrySU = SUnit();
   ExitSU = SUnit();
 }
 
-/// getInstrDesc helper to handle SDNodes.
 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
   if (!Node || !Node->isMachineOpcode()) return nullptr;
   return &TII->get(Node->getMachineOpcode());
 }
 
-/// addPred - This adds the specified edge as a pred of the current node if
-/// not already.  It also adds the current node as a successor of the
-/// specified node.
 bool SUnit::addPred(const SDep &D, bool Required) {
   // If this node already has this dependence, don't add a redundant one.
-  for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
-         I != E; ++I) {
+  for (SDep &PredDep : Preds) {
     // Zero-latency weak edges may be added purely for heuristic ordering. Don't
     // add them if another kind of edge already exists.
-    if (!Required && I->getSUnit() == D.getSUnit())
+    if (!Required && PredDep.getSUnit() == D.getSUnit())
       return false;
-    if (I->overlaps(D)) {
-      // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
-      if (I->getLatency() < D.getLatency()) {
-        SUnit *PredSU = I->getSUnit();
+    if (PredDep.overlaps(D)) {
+      // Extend the latency if needed. Equivalent to
+      // removePred(PredDep) + addPred(D).
+      if (PredDep.getLatency() < D.getLatency()) {
+        SUnit *PredSU = PredDep.getSUnit();
         // Find the corresponding successor in N.
-        SDep ForwardD = *I;
+        SDep ForwardD = PredDep;
         ForwardD.setSUnit(this);
-        for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(),
-               EE = PredSU->Succs.end(); II != EE; ++II) {
-          if (*II == ForwardD) {
-            II->setLatency(D.getLatency());
+        for (SDep &SuccDep : PredSU->Succs) {
+          if (SuccDep == ForwardD) {
+            SuccDep.setLatency(D.getLatency());
             break;
           }
         }
-        I->setLatency(D.getLatency());
+        PredDep.setLatency(D.getLatency());
       }
       return false;
     }
@@ -127,51 +121,46 @@ bool SUnit::addPred(const SDep &D, bool
   return true;
 }
 
-/// removePred - This removes the specified edge as a pred of the current
-/// node if it exists.  It also removes the current node as a successor of
-/// the specified node.
 void SUnit::removePred(const SDep &D) {
   // Find the matching predecessor.
-  for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
-         I != E; ++I)
-    if (*I == D) {
-      // Find the corresponding successor in N.
-      SDep P = D;
-      P.setSUnit(this);
-      SUnit *N = D.getSUnit();
-      SmallVectorImpl<SDep>::iterator Succ = find(N->Succs, P);
-      assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
-      N->Succs.erase(Succ);
-      Preds.erase(I);
-      // Update the bookkeeping.
-      if (P.getKind() == SDep::Data) {
-        assert(NumPreds > 0 && "NumPreds will underflow!");
-        assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
-        --NumPreds;
-        --N->NumSuccs;
-      }
-      if (!N->isScheduled) {
-        if (D.isWeak())
-          --WeakPredsLeft;
-        else {
-          assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
-          --NumPredsLeft;
-        }
-      }
-      if (!isScheduled) {
-        if (D.isWeak())
-          --N->WeakSuccsLeft;
-        else {
-          assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
-          --N->NumSuccsLeft;
-        }
-      }
-      if (P.getLatency() != 0) {
-        this->setDepthDirty();
-        N->setHeightDirty();
-      }
-      return;
+  SmallVectorImpl<SDep>::iterator I = find(Preds, D);
+  if (I == Preds.end())
+    return;
+  // Find the corresponding successor in N.
+  SDep P = D;
+  P.setSUnit(this);
+  SUnit *N = D.getSUnit();
+  SmallVectorImpl<SDep>::iterator Succ = find(N->Succs, P);
+  assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
+  N->Succs.erase(Succ);
+  Preds.erase(I);
+  // Update the bookkeeping.
+  if (P.getKind() == SDep::Data) {
+    assert(NumPreds > 0 && "NumPreds will underflow!");
+    assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
+    --NumPreds;
+    --N->NumSuccs;
+  }
+  if (!N->isScheduled) {
+    if (D.isWeak())
+      --WeakPredsLeft;
+    else {
+      assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
+      --NumPredsLeft;
+    }
+  }
+  if (!isScheduled) {
+    if (D.isWeak())
+      --N->WeakSuccsLeft;
+    else {
+      assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
+      --N->NumSuccsLeft;
     }
+  }
+  if (P.getLatency() != 0) {
+    this->setDepthDirty();
+    N->setHeightDirty();
+  }
 }
 
 void SUnit::setDepthDirty() {
@@ -181,9 +170,8 @@ void SUnit::setDepthDirty() {
   do {
     SUnit *SU = WorkList.pop_back_val();
     SU->isDepthCurrent = false;
-    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
-         E = SU->Succs.end(); I != E; ++I) {
-      SUnit *SuccSU = I->getSUnit();
+    for (SDep &SuccDep : SU->Succs) {
+      SUnit *SuccSU = SuccDep.getSUnit();
       if (SuccSU->isDepthCurrent)
         WorkList.push_back(SuccSU);
     }
@@ -197,18 +185,14 @@ void SUnit::setHeightDirty() {
   do {
     SUnit *SU = WorkList.pop_back_val();
     SU->isHeightCurrent = false;
-    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
-         E = SU->Preds.end(); I != E; ++I) {
-      SUnit *PredSU = I->getSUnit();
+    for (SDep &PredDep : SU->Preds) {
+      SUnit *PredSU = PredDep.getSUnit();
       if (PredSU->isHeightCurrent)
         WorkList.push_back(PredSU);
     }
   } while (!WorkList.empty());
 }
 
-/// setDepthToAtLeast - Update this node's successors to reflect the
-/// fact that this node's depth just increased.
-///
 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
   if (NewDepth <= getDepth())
     return;
@@ -217,9 +201,6 @@ void SUnit::setDepthToAtLeast(unsigned N
   isDepthCurrent = true;
 }
 
-/// setHeightToAtLeast - Update this node's predecessors to reflect the
-/// fact that this node's height just increased.
-///
 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
   if (NewHeight <= getHeight())
     return;
@@ -228,8 +209,7 @@ void SUnit::setHeightToAtLeast(unsigned
   isHeightCurrent = true;
 }
 
-/// ComputeDepth - Calculate the maximal path from the node to the exit.
-///
+/// Calculates the maximal path from the node to the exit.
 void SUnit::ComputeDepth() {
   SmallVector<SUnit*, 8> WorkList;
   WorkList.push_back(this);
@@ -238,12 +218,11 @@ void SUnit::ComputeDepth() {
 
     bool Done = true;
     unsigned MaxPredDepth = 0;
-    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
-         E = Cur->Preds.end(); I != E; ++I) {
-      SUnit *PredSU = I->getSUnit();
+    for (const SDep &PredDep : Cur->Preds) {
+      SUnit *PredSU = PredDep.getSUnit();
       if (PredSU->isDepthCurrent)
         MaxPredDepth = std::max(MaxPredDepth,
-                                PredSU->Depth + I->getLatency());
+                                PredSU->Depth + PredDep.getLatency());
       else {
         Done = false;
         WorkList.push_back(PredSU);
@@ -261,8 +240,7 @@ void SUnit::ComputeDepth() {
   } while (!WorkList.empty());
 }
 
-/// ComputeHeight - Calculate the maximal path from the node to the entry.
-///
+/// Calculates the maximal path from the node to the entry.
 void SUnit::ComputeHeight() {
   SmallVector<SUnit*, 8> WorkList;
   WorkList.push_back(this);
@@ -271,12 +249,11 @@ void SUnit::ComputeHeight() {
 
     bool Done = true;
     unsigned MaxSuccHeight = 0;
-    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
-         E = Cur->Succs.end(); I != E; ++I) {
-      SUnit *SuccSU = I->getSUnit();
+    for (const SDep &SuccDep : Cur->Succs) {
+      SUnit *SuccSU = SuccDep.getSUnit();
       if (SuccSU->isHeightCurrent)
         MaxSuccHeight = std::max(MaxSuccHeight,
-                                 SuccSU->Height + I->getLatency());
+                                 SuccSU->Height + SuccDep.getLatency());
       else {
         Done = false;
         WorkList.push_back(SuccSU);
@@ -320,8 +297,6 @@ void SUnit::print(raw_ostream &OS, const
     OS << "SU(" << NodeNum << ")";
 }
 
-/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
-/// a group of nodes flagged together.
 LLVM_DUMP_METHOD void SUnit::dump(const ScheduleDAG *G) const {
   print(dbgs(), G);
   dbgs() << ": ";
@@ -344,41 +319,39 @@ LLVM_DUMP_METHOD void SUnit::dumpAll(con
 
   if (Preds.size() != 0) {
     dbgs() << "  Predecessors:\n";
-    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
-         I != E; ++I) {
+    for (const SDep &SuccDep : Preds) {
       dbgs() << "   ";
-      switch (I->getKind()) {
+      switch (SuccDep.getKind()) {
       case SDep::Data:   dbgs() << "data "; break;
       case SDep::Anti:   dbgs() << "anti "; break;
       case SDep::Output: dbgs() << "out  "; break;
       case SDep::Order:  dbgs() << "ord  "; break;
       }
-      I->getSUnit()->print(dbgs(), G);
-      if (I->isArtificial())
+      SuccDep.getSUnit()->print(dbgs(), G);
+      if (SuccDep.isArtificial())
         dbgs() << " *";
-      dbgs() << ": Latency=" << I->getLatency();
-      if (I->isAssignedRegDep())
-        dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
+      dbgs() << ": Latency=" << SuccDep.getLatency();
+      if (SuccDep.isAssignedRegDep())
+        dbgs() << " Reg=" << PrintReg(SuccDep.getReg(), G->TRI);
       dbgs() << "\n";
     }
   }
   if (Succs.size() != 0) {
     dbgs() << "  Successors:\n";
-    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
-         I != E; ++I) {
+    for (const SDep &SuccDep : Succs) {
       dbgs() << "   ";
-      switch (I->getKind()) {
+      switch (SuccDep.getKind()) {
       case SDep::Data:   dbgs() << "data "; break;
       case SDep::Anti:   dbgs() << "anti "; break;
       case SDep::Output: dbgs() << "out  "; break;
       case SDep::Order:  dbgs() << "ord  "; break;
       }
-      I->getSUnit()->print(dbgs(), G);
-      if (I->isArtificial())
+      SuccDep.getSUnit()->print(dbgs(), G);
+      if (SuccDep.isArtificial())
         dbgs() << " *";
-      dbgs() << ": Latency=" << I->getLatency();
-      if (I->isAssignedRegDep())
-        dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
+      dbgs() << ": Latency=" << SuccDep.getLatency();
+      if (SuccDep.isAssignedRegDep())
+        dbgs() << " Reg=" << PrintReg(SuccDep.getReg(), G->TRI);
       dbgs() << "\n";
     }
   }
@@ -386,47 +359,44 @@ LLVM_DUMP_METHOD void SUnit::dumpAll(con
 #endif
 
 #ifndef NDEBUG
-/// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
-/// their state is consistent. Return the number of scheduled nodes.
-///
 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
   bool AnyNotSched = false;
   unsigned DeadNodes = 0;
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    if (!SUnits[i].isScheduled) {
-      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
+  for (const SUnit &SUnit : SUnits) {
+    if (!SUnit.isScheduled) {
+      if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
         ++DeadNodes;
         continue;
       }
       if (!AnyNotSched)
         dbgs() << "*** Scheduling failed! ***\n";
-      SUnits[i].dump(this);
+      SUnit.dump(this);
       dbgs() << "has not been scheduled!\n";
       AnyNotSched = true;
     }
-    if (SUnits[i].isScheduled &&
-        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
+    if (SUnit.isScheduled &&
+        (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
           unsigned(INT_MAX)) {
       if (!AnyNotSched)
         dbgs() << "*** Scheduling failed! ***\n";
-      SUnits[i].dump(this);
+      SUnit.dump(this);
       dbgs() << "has an unexpected "
            << (isBottomUp ? "Height" : "Depth") << " value!\n";
       AnyNotSched = true;
     }
     if (isBottomUp) {
-      if (SUnits[i].NumSuccsLeft != 0) {
+      if (SUnit.NumSuccsLeft != 0) {
         if (!AnyNotSched)
           dbgs() << "*** Scheduling failed! ***\n";
-        SUnits[i].dump(this);
+        SUnit.dump(this);
         dbgs() << "has successors left!\n";
         AnyNotSched = true;
       }
     } else {
-      if (SUnits[i].NumPredsLeft != 0) {
+      if (SUnit.NumPredsLeft != 0) {
         if (!AnyNotSched)
           dbgs() << "*** Scheduling failed! ***\n";
-        SUnits[i].dump(this);
+        SUnit.dump(this);
         dbgs() << "has predecessors left!\n";
         AnyNotSched = true;
       }
@@ -437,36 +407,33 @@ unsigned ScheduleDAG::VerifyScheduledDAG
 }
 #endif
 
-/// InitDAGTopologicalSorting - create the initial topological
-/// ordering from the DAG to be scheduled.
-///
-/// The idea of the algorithm is taken from
-/// "Online algorithms for managing the topological order of
-/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
-/// This is the MNR algorithm, which was first introduced by
-/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
-/// "Maintaining a topological order under edge insertions".
-///
-/// Short description of the algorithm:
-///
-/// Topological ordering, ord, of a DAG maps each node to a topological
-/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
-///
-/// This means that if there is a path from the node X to the node Z,
-/// then ord(X) < ord(Z).
-///
-/// This property can be used to check for reachability of nodes:
-/// if Z is reachable from X, then an insertion of the edge Z->X would
-/// create a cycle.
-///
-/// The algorithm first computes a topological ordering for the DAG by
-/// initializing the Index2Node and Node2Index arrays and then tries to keep
-/// the ordering up-to-date after edge insertions by reordering the DAG.
-///
-/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
-/// the nodes reachable from Y, and then shifts them using Shift to lie
-/// immediately after X in Index2Node.
 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
+  // The idea of the algorithm is taken from
+  // "Online algorithms for managing the topological order of
+  // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
+  // This is the MNR algorithm, which was first introduced by
+  // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
+  // "Maintaining a topological order under edge insertions".
+  //
+  // Short description of the algorithm:
+  //
+  // Topological ordering, ord, of a DAG maps each node to a topological
+  // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
+  //
+  // This means that if there is a path from the node X to the node Z,
+  // then ord(X) < ord(Z).
+  //
+  // This property can be used to check for reachability of nodes:
+  // if Z is reachable from X, then an insertion of the edge Z->X would
+  // create a cycle.
+  //
+  // The algorithm first computes a topological ordering for the DAG by
+  // initializing the Index2Node and Node2Index arrays and then tries to keep
+  // the ordering up-to-date after edge insertions by reordering the DAG.
+  //
+  // On insertion of the edge X->Y, the algorithm first marks by calling DFS
+  // the nodes reachable from Y, and then shifts them using Shift to lie
+  // immediately after X in Index2Node.
   unsigned DAGSize = SUnits.size();
   std::vector<SUnit*> WorkList;
   WorkList.reserve(DAGSize);
@@ -477,18 +444,17 @@ void ScheduleDAGTopologicalSort::InitDAG
   // Initialize the data structures.
   if (ExitSU)
     WorkList.push_back(ExitSU);
-  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
-    SUnit *SU = &SUnits[i];
-    int NodeNum = SU->NodeNum;
-    unsigned Degree = SU->Succs.size();
+  for (SUnit &SU : SUnits) {
+    int NodeNum = SU.NodeNum;
+    unsigned Degree = SU.Succs.size();
     // Temporarily use the Node2Index array as scratch space for degree counts.
     Node2Index[NodeNum] = Degree;
 
     // Is it a node without dependencies?
     if (Degree == 0) {
-      assert(SU->Succs.empty() && "SUnit should have no successors");
+      assert(SU.Succs.empty() && "SUnit should have no successors");
       // Collect leaf nodes.
-      WorkList.push_back(SU);
+      WorkList.push_back(&SU);
     }
   }
 
@@ -498,9 +464,8 @@ void ScheduleDAGTopologicalSort::InitDAG
     WorkList.pop_back();
     if (SU->NodeNum < DAGSize)
       Allocate(SU->NodeNum, --Id);
-    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-         I != E; ++I) {
-      SUnit *SU = I->getSUnit();
+    for (const SDep &PredDep : SU->Preds) {
+      SUnit *SU = PredDep.getSUnit();
       if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
         // If all dependencies of the node are processed already,
         // then the node can be computed now.
@@ -512,19 +477,15 @@ void ScheduleDAGTopologicalSort::InitDAG
 
 #ifndef NDEBUG
   // Check correctness of the ordering
-  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
-    SUnit *SU = &SUnits[i];
-    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-         I != E; ++I) {
-      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
+  for (SUnit &SU : SUnits)  {
+    for (const SDep &PD : SU.Preds) {
+      assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
       "Wrong topological sorting");
     }
   }
 #endif
 }
 
-/// AddPred - Updates the topological ordering to accommodate an edge
-/// to be added from SUnit X to SUnit Y.
 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
   int UpperBound, LowerBound;
   LowerBound = Node2Index[Y->NodeNum];
@@ -541,16 +502,10 @@ void ScheduleDAGTopologicalSort::AddPred
   }
 }
 
-/// RemovePred - Updates the topological ordering to accommodate an
-/// an edge to be removed from the specified node N from the predecessors
-/// of the current node M.
 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
   // InitDAGTopologicalSorting();
 }
 
-/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
-/// all nodes affected by the edge insertion. These nodes will later get new
-/// topological indexes by means of the Shift method.
 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
                                      bool &HasLoop) {
   std::vector<const SUnit*> WorkList;
@@ -561,8 +516,9 @@ void ScheduleDAGTopologicalSort::DFS(con
     SU = WorkList.back();
     WorkList.pop_back();
     Visited.set(SU->NodeNum);
-    for (int I = SU->Succs.size()-1; I >= 0; --I) {
-      unsigned s = SU->Succs[I].getSUnit()->NodeNum;
+    for (const SDep &SuccDep
+         : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
+      unsigned s = SuccDep.getSUnit()->NodeNum;
       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
       if (s >= Node2Index.size())
         continue;
@@ -572,14 +528,12 @@ void ScheduleDAGTopologicalSort::DFS(con
       }
       // Visit successors if not already and in affected region.
       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
-        WorkList.push_back(SU->Succs[I].getSUnit());
+        WorkList.push_back(SuccDep.getSUnit());
       }
     }
   } while (!WorkList.empty());
 }
 
-/// Shift - Renumber the nodes so that the topological ordering is
-/// preserved.
 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
                                        int UpperBound) {
   std::vector<int> L;
@@ -599,28 +553,24 @@ void ScheduleDAGTopologicalSort::Shift(B
     }
   }
 
-  for (unsigned j = 0; j < L.size(); ++j) {
-    Allocate(L[j], i - shift);
+  for (unsigned LI : L) {
+    Allocate(LI, i - shift);
     i = i + 1;
   }
 }
 
 
-/// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will
-/// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU).
 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
   // Is SU reachable from TargetSU via successor edges?
   if (IsReachable(SU, TargetSU))
     return true;
-  for (SUnit::pred_iterator
-         I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I)
-    if (I->isAssignedRegDep() &&
-        IsReachable(SU, I->getSUnit()))
+  for (const SDep &PredDep : TargetSU->Preds)
+    if (PredDep.isAssignedRegDep() &&
+        IsReachable(SU, PredDep.getSUnit()))
       return true;
   return false;
 }
 
-/// IsReachable - Checks if SU is reachable from TargetSU.
 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
                                              const SUnit *TargetSU) {
   // If insertion of the edge SU->TargetSU would create a cycle
@@ -638,7 +588,6 @@ bool ScheduleDAGTopologicalSort::IsReach
   return HasLoop;
 }
 
-/// Allocate - assign the topological index to the node n.
 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
   Node2Index[n] = index;
   Index2Node[index] = n;




More information about the llvm-commits mailing list