[llvm] r290026 - AArch64CollectLOH: Rewrite as block-local analysis.
Matthias Braun via llvm-commits
llvm-commits at lists.llvm.org
Fri Dec 16 17:16:00 PST 2016
Author: matze
Date: Fri Dec 16 19:15:59 2016
New Revision: 290026
URL: http://llvm.org/viewvc/llvm-project?rev=290026&view=rev
Log:
AArch64CollectLOH: Rewrite as block-local analysis.
Re-apply r288561: Liveness tracking should be correct now after r290014.
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
Added:
llvm/trunk/test/CodeGen/AArch64/loh.mir
Modified:
llvm/trunk/lib/Target/AArch64/AArch64CollectLOH.cpp
llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-garbage-crash.ll
llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-str.ll
llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh.ll
Modified: llvm/trunk/lib/Target/AArch64/AArch64CollectLOH.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/AArch64/AArch64CollectLOH.cpp?rev=290026&r1=290025&r2=290026&view=diff
==============================================================================
--- llvm/trunk/lib/Target/AArch64/AArch64CollectLOH.cpp (original)
+++ llvm/trunk/lib/Target/AArch64/AArch64CollectLOH.cpp Fri Dec 16 19:15:59 2016
@@ -110,72 +110,34 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-collect-loh"
-static cl::opt<bool>
-PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
- cl::desc("Restrict analysis to registers invovled"
- " in LOHs"),
- cl::init(true));
-
-static cl::opt<bool>
-BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
- cl::desc("Restrict analysis at basic block scope"),
- cl::init(true));
-
STATISTIC(NumADRPSimpleCandidate,
"Number of simplifiable ADRP dominate by another");
-#ifndef NDEBUG
-STATISTIC(NumADRPComplexCandidate2,
- "Number of simplifiable ADRP reachable by 2 defs");
-STATISTIC(NumADRPComplexCandidate3,
- "Number of simplifiable ADRP reachable by 3 defs");
-STATISTIC(NumADRPComplexCandidateOther,
- "Number of simplifiable ADRP reachable by 4 or more defs");
-STATISTIC(NumADDToSTRWithImm,
- "Number of simplifiable STR with imm reachable by ADD");
-STATISTIC(NumLDRToSTRWithImm,
- "Number of simplifiable STR with imm reachable by LDR");
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
-STATISTIC(NumADDToLDRWithImm,
- "Number of simplifiable LDR with imm reachable by ADD");
-STATISTIC(NumLDRToLDRWithImm,
- "Number of simplifiable LDR with imm reachable by LDR");
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
-#endif // NDEBUG
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
-#ifndef NDEBUG
-STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
-STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
-STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
-STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
-#endif // NDEBUG
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
-STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
#define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
namespace {
+
struct AArch64CollectLOH : public MachineFunctionPass {
static char ID;
- AArch64CollectLOH() : MachineFunctionPass(ID) {
- initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
- }
+ AArch64CollectLOH() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
@@ -187,351 +149,57 @@ struct AArch64CollectLOH : public Machin
StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
- AU.addRequired<MachineDominatorTree>();
+ AU.setPreservesAll();
}
-
-private:
};
-/// A set of MachineInstruction.
-typedef SetVector<const MachineInstr *> SetOfMachineInstr;
-/// Map a basic block to a set of instructions per register.
-/// This is used to represent the exposed uses of a basic block
-/// per register.
-typedef MapVector<const MachineBasicBlock *,
- std::unique_ptr<SetOfMachineInstr[]>>
-BlockToSetOfInstrsPerColor;
-/// Map a basic block to an instruction per register.
-/// This is used to represent the live-out definitions of a basic block
-/// per register.
-typedef MapVector<const MachineBasicBlock *,
- std::unique_ptr<const MachineInstr *[]>>
-BlockToInstrPerColor;
-/// Map an instruction to a set of instructions. Used to represent the
-/// mapping def to reachable uses or use to definitions.
-typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
-/// Map a basic block to a BitVector.
-/// This is used to record the kill registers per basic block.
-typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
-
-/// Map a register to a dense id.
-typedef DenseMap<unsigned, unsigned> MapRegToId;
-/// Map a dense id to a register. Used for debug purposes.
-typedef SmallVector<unsigned, 32> MapIdToReg;
-} // end anonymous namespace.
-
char AArch64CollectLOH::ID = 0;
-INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
- AARCH64_COLLECT_LOH_NAME, false, false)
-INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
-INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
- AARCH64_COLLECT_LOH_NAME, false, false)
-
-/// Given a couple (MBB, reg) get the corresponding set of instruction from
-/// the given "sets".
-/// If this couple does not reference any set, an empty set is added to "sets"
-/// for this couple and returned.
-/// \param nbRegs is used internally allocate some memory. It must be consistent
-/// with the way sets is used.
-static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
- const MachineBasicBlock &MBB, unsigned reg,
- unsigned nbRegs) {
- SetOfMachineInstr *result;
- BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
- if (it != sets.end())
- result = it->second.get();
- else
- result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();
-
- return result[reg];
-}
-
-/// Given a couple (reg, MI) get the corresponding set of instructions from the
-/// the given "sets".
-/// This is used to get the uses record in sets of a definition identified by
-/// MI and reg, i.e., MI defines reg.
-/// If the couple does not reference anything, an empty set is added to
-/// "sets[reg]".
-/// \pre set[reg] is valid.
-static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
- const MachineInstr &MI) {
- return sets[reg][&MI];
-}
-
-/// Same as getUses but does not modify the input map: sets.
-/// \return NULL if the couple (reg, MI) is not in sets.
-static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
- const MachineInstr &MI) {
- InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
- if (Res != sets[reg].end())
- return &(Res->second);
- return nullptr;
-}
-
-/// Initialize the reaching definition algorithm:
-/// For each basic block BB in MF, record:
-/// - its kill set.
-/// - its reachable uses (uses that are exposed to BB's predecessors).
-/// - its the generated definitions.
-/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
-/// the list of uses of exposed defintions.
-/// \param ADRPMode specifies to only consider ADRP instructions for generated
-/// definition. It also consider definitions of ADRP instructions as uses and
-/// ignore other uses. The ADRPMode is used to collect the information for LHO
-/// that involve ADRP operation only.
-static void initReachingDef(const MachineFunction &MF,
- InstrToInstrs *ColorOpToReachedUses,
- BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
- BlockToSetOfInstrsPerColor &ReachableUses,
- const MapRegToId &RegToId,
- const MachineInstr *DummyOp, bool ADRPMode) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- unsigned NbReg = RegToId.size();
-
- for (const MachineBasicBlock &MBB : MF) {
- auto &BBGen = Gen[&MBB];
- BBGen = make_unique<const MachineInstr *[]>(NbReg);
- std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);
-
- BitVector &BBKillSet = Kill[&MBB];
- BBKillSet.resize(NbReg);
- for (const MachineInstr &MI : MBB) {
- bool IsADRP = MI.getOpcode() == AArch64::ADRP;
-
- // Process uses first.
- if (IsADRP || !ADRPMode)
- for (const MachineOperand &MO : MI.operands()) {
- // Treat ADRP def as use, as the goal of the analysis is to find
- // ADRP defs reached by other ADRP defs.
- if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
- (ADRPMode && (!IsADRP || !MO.isDef())))
- continue;
- unsigned CurReg = MO.getReg();
- MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
- if (ItCurRegId == RegToId.end())
- continue;
- CurReg = ItCurRegId->second;
-
- // if CurReg has not been defined, this use is reachable.
- if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
- getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
- // current basic block definition for this color, if any, is in Gen.
- if (BBGen[CurReg])
- getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
- }
-
- // Process clobbers.
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isRegMask())
- continue;
- // Clobbers kill the related colors.
- const uint32_t *PreservedRegs = MO.getRegMask();
-
- // Set generated regs.
- for (const auto &Entry : RegToId) {
- unsigned Reg = Entry.second;
- // Use the global register ID when querying APIs external to this
- // pass.
- if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
- // Do not register clobbered definition for no ADRP.
- // This definition is not used anyway (otherwise register
- // allocation is wrong).
- BBGen[Reg] = ADRPMode ? &MI : nullptr;
- BBKillSet.set(Reg);
- }
- }
- }
-
- // Process register defs.
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isReg() || !MO.isDef())
- continue;
- unsigned CurReg = MO.getReg();
- MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
- if (ItCurRegId == RegToId.end())
- continue;
-
- for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
- MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
- // If this alias has not been recorded, then it is not interesting
- // for the current analysis.
- // We can end up in this situation because of tuple registers.
- // E.g., Let say we are interested in S1. When we register
- // S1, we will also register its aliases and in particular
- // the tuple Q1_Q2.
- // Now, when we encounter Q1_Q2, we will look through its aliases
- // and will find that S2 is not registered.
- if (ItRegId == RegToId.end())
- continue;
-
- BBKillSet.set(ItRegId->second);
- BBGen[ItRegId->second] = &MI;
- }
- BBGen[ItCurRegId->second] = &MI;
- }
- }
-
- // If we restrict our analysis to basic block scope, conservatively add a
- // dummy
- // use for each generated value.
- if (!ADRPMode && DummyOp && !MBB.succ_empty())
- for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
- if (BBGen[CurReg])
- getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
- }
-}
-
-/// Reaching def core algorithm:
-/// while an Out has changed
-/// for each bb
-/// for each color
-/// In[bb][color] = U Out[bb.predecessors][color]
-/// insert reachableUses[bb][color] in each in[bb][color]
-/// op.reachedUses
-///
-/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
-static void reachingDefAlgorithm(const MachineFunction &MF,
- InstrToInstrs *ColorOpToReachedUses,
- BlockToSetOfInstrsPerColor &In,
- BlockToSetOfInstrsPerColor &Out,
- BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
- BlockToSetOfInstrsPerColor &ReachableUses,
- unsigned NbReg) {
- bool HasChanged;
- do {
- HasChanged = false;
- for (const MachineBasicBlock &MBB : MF) {
- unsigned CurReg;
- for (CurReg = 0; CurReg < NbReg; ++CurReg) {
- SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
- SetOfMachineInstr &BBReachableUses =
- getSet(ReachableUses, MBB, CurReg, NbReg);
- SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
- unsigned Size = BBOutSet.size();
- // In[bb][color] = U Out[bb.predecessors][color]
- for (const MachineBasicBlock *PredMBB : MBB.predecessors()) {
- SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
- BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
- }
- // insert reachableUses[bb][color] in each in[bb][color] op.reachedses
- for (const MachineInstr *MI : BBInSet) {
- SetOfMachineInstr &OpReachedUses =
- getUses(ColorOpToReachedUses, CurReg, *MI);
- OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
- }
- // Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
- if (!Kill[&MBB].test(CurReg))
- BBOutSet.insert(BBInSet.begin(), BBInSet.end());
- if (Gen[&MBB][CurReg])
- BBOutSet.insert(Gen[&MBB][CurReg]);
- HasChanged |= BBOutSet.size() != Size;
- }
- }
- } while (HasChanged);
-}
+} // end anonymous namespace.
-/// Reaching definition algorithm.
-/// \param MF function on which the algorithm will operate.
-/// \param[out] ColorOpToReachedUses will contain the result of the reaching
-/// def algorithm.
-/// \param ADRPMode specify whether the reaching def algorithm should be tuned
-/// for ADRP optimization. \see initReachingDef for more details.
-/// \param DummyOp if not NULL, the algorithm will work at
-/// basic block scope and will set for every exposed definition a use to
-/// @p DummyOp.
-/// \pre ColorOpToReachedUses is an array of at least number of registers of
-/// InstrToInstrs.
-static void reachingDef(const MachineFunction &MF,
- InstrToInstrs *ColorOpToReachedUses,
- const MapRegToId &RegToId, bool ADRPMode = false,
- const MachineInstr *DummyOp = nullptr) {
- // structures:
- // For each basic block.
- // Out: a set per color of definitions that reach the
- // out boundary of this block.
- // In: Same as Out but for in boundary.
- // Gen: generated color in this block (one operation per color).
- // Kill: register set of killed color in this block.
- // ReachableUses: a set per color of uses (operation) reachable
- // for "In" definitions.
- BlockToSetOfInstrsPerColor Out, In, ReachableUses;
- BlockToInstrPerColor Gen;
- BlockToRegSet Kill;
-
- // Initialize Gen, kill and reachableUses.
- initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
- DummyOp, ADRPMode);
-
- // Algo.
- if (!DummyOp)
- reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
- ReachableUses, RegToId.size());
-}
-
-#ifndef NDEBUG
-/// print the result of the reaching definition algorithm.
-static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
- unsigned NbReg, const TargetRegisterInfo *TRI,
- const MapIdToReg &IdToReg) {
- unsigned CurReg;
- for (CurReg = 0; CurReg < NbReg; ++CurReg) {
- if (ColorOpToReachedUses[CurReg].empty())
- continue;
- DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
+INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
+ AARCH64_COLLECT_LOH_NAME, false, false)
- for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
- DEBUG(dbgs() << "Def:\n");
- DEBUG(DefsIt.first->print(dbgs()));
- DEBUG(dbgs() << "Reachable uses:\n");
- for (const MachineInstr *MI : DefsIt.second) {
- DEBUG(MI->print(dbgs()));
- }
- }
+static bool canAddBePartOfLOH(const MachineInstr &MI) {
+ // Check immediate to see if the immediate is an address.
+ switch (MI.getOperand(2).getType()) {
+ default:
+ return false;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_BlockAddress:
+ return true;
}
}
-#endif // NDEBUG
/// Answer the following question: Can Def be one of the definition
/// involved in a part of a LOH?
-static bool canDefBePartOfLOH(const MachineInstr *Def) {
- unsigned Opc = Def->getOpcode();
+static bool canDefBePartOfLOH(const MachineInstr &MI) {
// Accept ADRP, ADDLow and LOADGot.
- switch (Opc) {
+ switch (MI.getOpcode()) {
default:
return false;
case AArch64::ADRP:
return true;
case AArch64::ADDXri:
- // Check immediate to see if the immediate is an address.
- switch (Def->getOperand(2).getType()) {
- default:
- return false;
- case MachineOperand::MO_GlobalAddress:
- case MachineOperand::MO_JumpTableIndex:
- case MachineOperand::MO_ConstantPoolIndex:
- case MachineOperand::MO_BlockAddress:
- return true;
- }
+ return canAddBePartOfLOH(MI);
case AArch64::LDRXui:
// Check immediate to see if the immediate is an address.
- switch (Def->getOperand(2).getType()) {
+ switch (MI.getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
- return true;
+ return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
}
}
- // Unreachable.
- return false;
}
/// Check whether the given instruction can the end of a LOH chain involving a
/// store.
-static bool isCandidateStore(const MachineInstr *Instr) {
- switch (Instr->getOpcode()) {
+static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
+ switch (MI.getOpcode()) {
default:
return false;
case AArch64::STRBBui:
@@ -543,109 +211,19 @@ static bool isCandidateStore(const Machi
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
+ // We can only optimize the index operand.
// In case we have str xA, [xA, #imm], this is two different uses
// of xA and we cannot fold, otherwise the xA stored may be wrong,
// even if #imm == 0.
- if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
- return true;
- }
- return false;
-}
-
-/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
-/// Build the Use to Defs information and filter out obvious non-LOH candidates.
-/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
-/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
-/// i.e., no simple chain.
-/// \param ADRPMode -- \see initReachingDef.
-static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
- const InstrToInstrs *ColorOpToReachedUses,
- const MapRegToId &RegToId,
- bool ADRPMode = false) {
-
- SetOfMachineInstr NotCandidate;
- unsigned NbReg = RegToId.size();
- MapRegToId::const_iterator EndIt = RegToId.end();
- for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
- // If this color is never defined, continue.
- if (ColorOpToReachedUses[CurReg].empty())
- continue;
-
- for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
- for (const MachineInstr *MI : DefsIt.second) {
- const MachineInstr *Def = DefsIt.first;
- MapRegToId::const_iterator It;
- // if all the reaching defs are not adrp, this use will not be
- // simplifiable.
- if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
- (!ADRPMode && !canDefBePartOfLOH(Def)) ||
- (!ADRPMode && isCandidateStore(MI) &&
- // store are LOH candidate iff the end of the chain is used as
- // base.
- ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
- It->second != CurReg))) {
- NotCandidate.insert(MI);
- continue;
- }
- // Do not consider self reaching as a simplifiable case for ADRP.
- if (!ADRPMode || MI != DefsIt.first) {
- UseToReachingDefs[MI].insert(DefsIt.first);
- // If UsesIt has several reaching definitions, it is not
- // candidate for simplificaton in non-ADRPMode.
- if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
- NotCandidate.insert(MI);
- }
- }
- }
- }
- for (const MachineInstr *Elem : NotCandidate) {
- DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
- // It would have been better if we could just remove the entry
- // from the map. Because of that, we have to filter the garbage
- // (second.empty) in the subsequence analysis.
- UseToReachingDefs[Elem].clear();
- }
-}
-
-/// Based on the use to defs information (in ADRPMode), compute the
-/// opportunities of LOH ADRP-related.
-static void computeADRP(const InstrToInstrs &UseToDefs,
- AArch64FunctionInfo &AArch64FI,
- const MachineDominatorTree *MDT) {
- DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
- for (const auto &Entry : UseToDefs) {
- unsigned Size = Entry.second.size();
- if (Size == 0)
- continue;
- if (Size == 1) {
- const MachineInstr *L2 = *Entry.second.begin();
- const MachineInstr *L1 = Entry.first;
- if (!MDT->dominates(L2, L1)) {
- DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
- << '\n');
- continue;
- }
- DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
- AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, {L2, L1});
- ++NumADRPSimpleCandidate;
- }
-#ifndef NDEBUG
- else if (Size == 2)
- ++NumADRPComplexCandidate2;
- else if (Size == 3)
- ++NumADRPComplexCandidate3;
- else
- ++NumADRPComplexCandidateOther;
-#endif
- // if Size < 1, the use should have been removed from the candidates
- assert(Size >= 1 && "No reaching defs for that use!");
+ return MI.getOperandNo(&MO) == 1 &&
+ MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
}
}
/// Check whether the given instruction can be the end of a LOH chain
/// involving a load.
-static bool isCandidateLoad(const MachineInstr *Instr) {
- switch (Instr->getOpcode()) {
+static bool isCandidateLoad(const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDRSBWui:
@@ -660,17 +238,13 @@ static bool isCandidateLoad(const Machin
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
- if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
- return false;
- return true;
+ return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
}
- // Unreachable.
- return false;
}
/// Check whether the given instruction can load a litteral.
-static bool supportLoadFromLiteral(const MachineInstr *Instr) {
- switch (Instr->getOpcode()) {
+static bool supportLoadFromLiteral(const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDRSWui:
@@ -681,353 +255,232 @@ static bool supportLoadFromLiteral(const
case AArch64::LDRQui:
return true;
}
- // Unreachable.
- return false;
}
-/// Check whether the given instruction is a LOH candidate.
-/// \param UseToDefs is used to check that Instr is at the end of LOH supported
-/// chain.
-/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
-/// already been filtered out.
-static bool isCandidate(const MachineInstr *Instr,
- const InstrToInstrs &UseToDefs,
- const MachineDominatorTree *MDT) {
- if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
- return false;
+/// Number of GPR registers traked by mapRegToGPRIndex()
+static const unsigned N_GPR_REGS = 31;
+/// Map register number to index from 0-30.
+static int mapRegToGPRIndex(MCPhysReg Reg) {
+ static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
+ static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
+ if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
+ return Reg - AArch64::X0;
+ if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
+ return Reg - AArch64::W0;
+ // TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
+ // handle them as special cases.
+ if (Reg == AArch64::FP)
+ return 29;
+ if (Reg == AArch64::LR)
+ return 30;
+ return -1;
+}
+
+/// State tracked per register.
+/// The main algorithm walks backwards over a basic block maintaining this
+/// datastructure for each tracked general purpose register.
+struct LOHInfo {
+ MCLOHType Type : 8; ///< "Best" type of LOH possible.
+ bool IsCandidate : 1; ///< Possible LOH candidate.
+ bool OneUser : 1; ///< Found exactly one user (yet).
+ bool MultiUsers : 1; ///< Found multiple users.
+ const MachineInstr *MI0; ///< First instruction involved in the LOH.
+ const MachineInstr *MI1; ///< Second instruction involved in the LOH
+ /// (if any).
+ const MachineInstr *LastADRP; ///< Last ADRP in same register.
+};
- const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
- if (Def->getOpcode() != AArch64::ADRP) {
- // At this point, Def is ADDXri or LDRXui of the right type of
- // symbol, because we filtered out the uses that were not defined
- // by these kind of instructions (+ ADRP).
-
- // Check if this forms a simple chain: each intermediate node must
- // dominates the next one.
- if (!MDT->dominates(Def, Instr))
- return false;
- // Move one node up in the simple chain.
- if (UseToDefs.find(Def) ==
- UseToDefs.end()
- // The map may contain garbage we have to ignore.
- ||
- UseToDefs.find(Def)->second.empty())
- return false;
- Instr = Def;
- Def = *UseToDefs.find(Def)->second.begin();
+/// Update state \p Info given \p MI uses the tracked register.
+static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
+ LOHInfo &Info) {
+ // We have multiple uses if we already found one before.
+ if (Info.MultiUsers || Info.OneUser) {
+ Info.IsCandidate = false;
+ Info.MultiUsers = true;
+ return;
}
- // Check if we reached the top of the simple chain:
- // - top is ADRP.
- // - check the simple chain property: each intermediate node must
- // dominates the next one.
- if (Def->getOpcode() == AArch64::ADRP)
- return MDT->dominates(Def, Instr);
- return false;
-}
+ Info.OneUser = true;
-static bool registerADRCandidate(const MachineInstr &Use,
- const InstrToInstrs &UseToDefs,
- const InstrToInstrs *DefsPerColorToUses,
- AArch64FunctionInfo &AArch64FI,
- SetOfMachineInstr *InvolvedInLOHs,
- const MapRegToId &RegToId) {
- // Look for opportunities to turn ADRP -> ADD or
- // ADRP -> LDR GOTPAGEOFF into ADR.
- // If ADRP has more than one use. Give up.
- if (Use.getOpcode() != AArch64::ADDXri &&
- (Use.getOpcode() != AArch64::LDRXui ||
- !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
- return false;
- InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
- // The map may contain garbage that we need to ignore.
- if (It == UseToDefs.end() || It->second.empty())
- return false;
- const MachineInstr &Def = **It->second.begin();
- if (Def.getOpcode() != AArch64::ADRP)
- return false;
- // Check the number of users of ADRP.
- const SetOfMachineInstr *Users =
- getUses(DefsPerColorToUses,
- RegToId.find(Def.getOperand(0).getReg())->second, Def);
- if (Users->size() > 1) {
- ++NumADRComplexCandidate;
- return false;
- }
- ++NumADRSimpleCandidate;
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
- "ADRP already involved in LOH.");
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
- "ADD already involved in LOH.");
- DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
-
- AArch64FI.addLOHDirective(
- Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd : MCLOH_AdrpLdrGot,
- {&Def, &Use});
- return true;
-}
-
-/// Based on the use to defs information (in non-ADRPMode), compute the
-/// opportunities of LOH non-ADRP-related
-static void computeOthers(const InstrToInstrs &UseToDefs,
- const InstrToInstrs *DefsPerColorToUses,
- AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
- const MachineDominatorTree *MDT) {
- SetOfMachineInstr *InvolvedInLOHs = nullptr;
-#ifndef NDEBUG
- SetOfMachineInstr InvolvedInLOHsStorage;
- InvolvedInLOHs = &InvolvedInLOHsStorage;
-#endif // NDEBUG
- DEBUG(dbgs() << "*** Compute LOH for Others\n");
- // ADRP -> ADD/LDR -> LDR/STR pattern.
- // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
-
- // FIXME: When the statistics are not important,
- // This initial filtering loop can be merged into the next loop.
- // Currently, we didn't do it to have the same code for both DEBUG and
- // NDEBUG builds. Indeed, the iterator of the second loop would need
- // to be changed.
- SetOfMachineInstr PotentialCandidates;
- SetOfMachineInstr PotentialADROpportunities;
- for (auto &Use : UseToDefs) {
- // If no definition is available, this is a non candidate.
- if (Use.second.empty())
- continue;
- // Keep only instructions that are load or store and at the end of
- // a ADRP -> ADD/LDR/Nothing chain.
- // We already filtered out the no-chain cases.
- if (!isCandidate(Use.first, UseToDefs, MDT)) {
- PotentialADROpportunities.insert(Use.first);
- continue;
- }
- PotentialCandidates.insert(Use.first);
+ // Start new LOHInfo if applicable.
+ if (isCandidateLoad(MI)) {
+ Info.Type = MCLOH_AdrpLdr;
+ Info.IsCandidate = true;
+ Info.MI0 = &MI;
+ // Note that even this is AdrpLdr now, we can switch to a Ldr variant
+ // later.
+ } else if (isCandidateStore(MI, MO)) {
+ Info.Type = MCLOH_AdrpAddStr;
+ Info.IsCandidate = true;
+ Info.MI0 = &MI;
+ Info.MI1 = nullptr;
+ } else if (MI.getOpcode() == AArch64::ADDXri) {
+ Info.Type = MCLOH_AdrpAdd;
+ Info.IsCandidate = true;
+ Info.MI0 = &MI;
+ } else if (MI.getOpcode() == AArch64::LDRXui &&
+ MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
+ Info.Type = MCLOH_AdrpLdrGot;
+ Info.IsCandidate = true;
+ Info.MI0 = &MI;
}
+}
- // Make the following distinctions for statistics as the linker does
- // know how to decode instructions:
- // - ADD/LDR/Nothing make there different patterns.
- // - LDR/STR make two different patterns.
- // Hence, 6 - 1 base patterns.
- // (because ADRP-> Nothing -> STR is not simplifiable)
-
- // The linker is only able to have a simple semantic, i.e., if pattern A
- // do B.
- // However, we want to see the opportunity we may miss if we were able to
- // catch more complex cases.
-
- // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
- // A potential candidate becomes a candidate, if its current immediate
- // operand is zero and all nodes of the chain have respectively only one user
-#ifndef NDEBUG
- SetOfMachineInstr DefsOfPotentialCandidates;
-#endif
- for (const MachineInstr *Candidate : PotentialCandidates) {
- // Get the definition of the candidate i.e., ADD or LDR.
- const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
- // Record the elements of the chain.
- const MachineInstr *L1 = Def;
- const MachineInstr *L2 = nullptr;
- unsigned ImmediateDefOpc = Def->getOpcode();
- if (Def->getOpcode() != AArch64::ADRP) {
- // Check the number of users of this node.
- const SetOfMachineInstr *Users =
- getUses(DefsPerColorToUses,
- RegToId.find(Def->getOperand(0).getReg())->second, *Def);
- if (Users->size() > 1) {
-#ifndef NDEBUG
- // if all the uses of this def are in potential candidate, this is
- // a complex candidate of level 2.
- bool IsLevel2 = true;
- for (const MachineInstr *MI : *Users) {
- if (!PotentialCandidates.count(MI)) {
- ++NumTooCplxLvl2;
- IsLevel2 = false;
- break;
- }
- }
- if (IsLevel2)
- ++NumCplxLvl2;
-#endif // NDEBUG
- PotentialADROpportunities.insert(Def);
- continue;
- }
- L2 = Def;
- Def = *UseToDefs.find(Def)->second.begin();
- L1 = Def;
- } // else the element in the middle of the chain is nothing, thus
- // Def already contains the first element of the chain.
-
- // Check the number of users of the first node in the chain, i.e., ADRP
- const SetOfMachineInstr *Users =
- getUses(DefsPerColorToUses,
- RegToId.find(Def->getOperand(0).getReg())->second, *Def);
- if (Users->size() > 1) {
-#ifndef NDEBUG
- // if all the uses of this def are in the defs of the potential candidate,
- // this is a complex candidate of level 1
- if (DefsOfPotentialCandidates.empty()) {
- // lazy init
- DefsOfPotentialCandidates = PotentialCandidates;
- for (const MachineInstr *Candidate : PotentialCandidates) {
- if (!UseToDefs.find(Candidate)->second.empty())
- DefsOfPotentialCandidates.insert(
- *UseToDefs.find(Candidate)->second.begin());
- }
- }
- bool Found = false;
- for (auto &Use : *Users) {
- if (!DefsOfPotentialCandidates.count(Use)) {
- ++NumTooCplxLvl1;
- Found = true;
- break;
- }
- }
- if (!Found)
- ++NumCplxLvl1;
-#endif // NDEBUG
- continue;
+/// Update state \p Info given the tracked register is clobbered.
+static void handleClobber(LOHInfo &Info) {
+ Info.IsCandidate = false;
+ Info.OneUser = false;
+ Info.MultiUsers = false;
+ Info.LastADRP = nullptr;
+}
+
+/// Update state \p Info given that \p MI is possibly the middle instruction
+/// of an LOH involving 3 instructions.
+static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
+ LOHInfo &OpInfo) {
+ if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
+ return false;
+ // Copy LOHInfo for dest register to LOHInfo for source register.
+ if (&DefInfo != &OpInfo) {
+ OpInfo = DefInfo;
+ // Invalidate \p DefInfo because we track it in \p OpInfo now.
+ handleClobber(DefInfo);
+ }
+
+ // Advance state machine.
+ assert(OpInfo.IsCandidate && "Expect valid state");
+ if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
+ if (OpInfo.Type == MCLOH_AdrpLdr) {
+ OpInfo.Type = MCLOH_AdrpAddLdr;
+ OpInfo.IsCandidate = true;
+ OpInfo.MI1 = &MI;
+ return true;
+ } else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
+ OpInfo.Type = MCLOH_AdrpAddStr;
+ OpInfo.IsCandidate = true;
+ OpInfo.MI1 = &MI;
+ return true;
}
+ } else {
+ assert(MI.getOpcode() == AArch64::LDRXui && "Expect LDRXui");
+ assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
+ "Expected GOT relocation");
+ if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
+ OpInfo.Type = MCLOH_AdrpLdrGotStr;
+ OpInfo.IsCandidate = true;
+ OpInfo.MI1 = &MI;
+ return true;
+ } else if (OpInfo.Type == MCLOH_AdrpLdr) {
+ OpInfo.Type = MCLOH_AdrpLdrGotLdr;
+ OpInfo.IsCandidate = true;
+ OpInfo.MI1 = &MI;
+ return true;
+ }
+ }
+ return false;
+}
- bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
- // If the chain is three instructions long and ldr is the second element,
- // then this ldr must load form GOT, otherwise this is not a correct chain.
- if (L2 && !IsL2Add &&
- !(L2->getOperand(2).getTargetFlags() & AArch64II::MO_GOT))
- continue;
- SmallVector<const MachineInstr *, 3> Args;
- MCLOHType Kind;
- if (isCandidateLoad(Candidate)) {
- if (!L2) {
- // At this point, the candidate LOH indicates that the ldr instruction
- // may use a direct access to the symbol. There is not such encoding
- // for loads of byte and half.
- if (!supportLoadFromLiteral(Candidate))
- continue;
-
- DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
- << '\n');
- Kind = MCLOH_AdrpLdr;
- Args.push_back(L1);
- Args.push_back(Candidate);
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
- "L1 already involved in LOH.");
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
- "Candidate already involved in LOH.");
+/// Update state when seeing and ADRP instruction.
+static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
+ LOHInfo &Info) {
+ if (Info.LastADRP != nullptr) {
+ DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n" << '\t' << MI << '\t'
+ << *Info.LastADRP);
+ AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
+ ++NumADRPSimpleCandidate;
+ }
+
+ // Produce LOH directive if possible.
+ if (Info.IsCandidate) {
+ switch (Info.Type) {
+ case MCLOH_AdrpAdd:
+ DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n" << '\t' << MI << '\t'
+ << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
+ ++NumADRSimpleCandidate;
+ break;
+ case MCLOH_AdrpLdr:
+ if (supportLoadFromLiteral(*Info.MI0)) {
+ DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n" << '\t' << MI << '\t'
+ << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
++NumADRPToLDR;
- } else {
- DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
- << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
- << '\n');
-
- Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
- Args.push_back(L1);
- Args.push_back(L2);
- Args.push_back(Candidate);
-
- PotentialADROpportunities.remove(L2);
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
- "L1 already involved in LOH.");
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
- "L2 already involved in LOH.");
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
- "Candidate already involved in LOH.");
-#ifndef NDEBUG
- // get the immediate of the load
- if (Candidate->getOperand(2).getImm() == 0)
- if (ImmediateDefOpc == AArch64::ADDXri)
- ++NumADDToLDR;
- else
- ++NumLDRToLDR;
- else if (ImmediateDefOpc == AArch64::ADDXri)
- ++NumADDToLDRWithImm;
- else
- ++NumLDRToLDRWithImm;
-#endif // NDEBUG
- }
- } else {
- if (ImmediateDefOpc == AArch64::ADRP)
- continue;
- else {
-
- DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
- << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
- << '\n');
-
- Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
- Args.push_back(L1);
- Args.push_back(L2);
- Args.push_back(Candidate);
-
- PotentialADROpportunities.remove(L2);
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
- "L1 already involved in LOH.");
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
- "L2 already involved in LOH.");
- assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
- "Candidate already involved in LOH.");
-#ifndef NDEBUG
- // get the immediate of the store
- if (Candidate->getOperand(2).getImm() == 0)
- if (ImmediateDefOpc == AArch64::ADDXri)
- ++NumADDToSTR;
- else
- ++NumLDRToSTR;
- else if (ImmediateDefOpc == AArch64::ADDXri)
- ++NumADDToSTRWithImm;
- else
- ++NumLDRToSTRWithImm;
-#endif // DEBUG
}
+ break;
+ case MCLOH_AdrpAddLdr:
+ DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n" << '\t' << MI << '\t'
+ << *Info.MI1 << '\t' << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
+ ++NumADDToLDR;
+ break;
+ case MCLOH_AdrpAddStr:
+ if (Info.MI1 != nullptr) {
+ DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n" << '\t' << MI << '\t'
+ << *Info.MI1 << '\t' << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
+ ++NumADDToSTR;
+ }
+ break;
+ case MCLOH_AdrpLdrGotLdr:
+ DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n" << '\t' << MI << '\t'
+ << *Info.MI1 << '\t' << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
+ ++NumLDRToLDR;
+ break;
+ case MCLOH_AdrpLdrGotStr:
+ DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n" << '\t' << MI << '\t'
+ << *Info.MI1 << '\t' << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
+ ++NumLDRToSTR;
+ break;
+ case MCLOH_AdrpLdrGot:
+ DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n" << '\t' << MI << '\t'
+ << *Info.MI0);
+ AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
+ break;
+ case MCLOH_AdrpAdrp:
+ llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
}
- AArch64FI.addLOHDirective(Kind, Args);
}
- // Now, we grabbed all the big patterns, check ADR opportunities.
- for (const MachineInstr *Candidate : PotentialADROpportunities)
- registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
- InvolvedInLOHs, RegToId);
-}
-
-/// Look for every register defined by potential LOHs candidates.
-/// Map these registers with dense id in @p RegToId and vice-versa in
-/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
-static void collectInvolvedReg(const MachineFunction &MF, MapRegToId &RegToId,
- MapIdToReg &IdToReg,
- const TargetRegisterInfo *TRI) {
- unsigned CurRegId = 0;
- if (!PreCollectRegister) {
- unsigned NbReg = TRI->getNumRegs();
- for (; CurRegId < NbReg; ++CurRegId) {
- RegToId[CurRegId] = CurRegId;
- DEBUG(IdToReg.push_back(CurRegId));
- DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
- }
+ handleClobber(Info);
+ Info.LastADRP = &MI;
+}
+
+static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
+ LOHInfo *LOHInfos) {
+ if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
return;
- }
+ int Idx = mapRegToGPRIndex(Reg);
+ if (Idx >= 0)
+ handleClobber(LOHInfos[Idx]);
+}
- DEBUG(dbgs() << "** Collect Involved Register\n");
- for (const auto &MBB : MF) {
- for (const MachineInstr &MI : MBB) {
- if (!canDefBePartOfLOH(&MI) &&
- !isCandidateLoad(&MI) && !isCandidateStore(&MI))
- continue;
-
- // Process defs
- for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
- IOEnd = MI.operands_end();
- IO != IOEnd; ++IO) {
- if (!IO->isReg() || !IO->isDef())
- continue;
- unsigned CurReg = IO->getReg();
- for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
- if (RegToId.find(*AI) == RegToId.end()) {
- DEBUG(IdToReg.push_back(*AI);
- assert(IdToReg[CurRegId] == *AI &&
- "Reg index mismatches insertion index."));
- RegToId[*AI] = CurRegId++;
- DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
- }
- }
+static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
+ // Handle defs and regmasks.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (MO.isRegMask()) {
+ const uint32_t *RegMask = MO.getRegMask();
+ for (MCPhysReg Reg : AArch64::GPR32RegClass)
+ handleRegMaskClobber(RegMask, Reg, LOHInfos);
+ for (MCPhysReg Reg : AArch64::GPR64RegClass)
+ handleRegMaskClobber(RegMask, Reg, LOHInfos);
+ continue;
}
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ int Idx = mapRegToGPRIndex(MO.getReg());
+ if (Idx < 0)
+ continue;
+ handleClobber(LOHInfos[Idx]);
+ }
+ // Handle uses.
+ for (const MachineOperand &MO : MI.uses()) {
+ if (!MO.isReg() || !MO.readsReg())
+ continue;
+ int Idx = mapRegToGPRIndex(MO.getReg());
+ if (Idx < 0)
+ continue;
+ handleUse(MI, MO, LOHInfos[Idx]);
}
}
@@ -1035,74 +488,59 @@ bool AArch64CollectLOH::runOnMachineFunc
if (skipFunction(*MF.getFunction()))
return false;
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
-
- MapRegToId RegToId;
- MapIdToReg IdToReg;
- AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
- assert(AArch64FI && "No MachineFunctionInfo for this function!");
+ DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
+ << "Looking in function " << MF.getName() << '\n');
- DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
-
- collectInvolvedReg(MF, RegToId, IdToReg, TRI);
- if (RegToId.empty())
- return false;
+ LOHInfo LOHInfos[N_GPR_REGS];
+ AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
+ for (const MachineBasicBlock &MBB : MF) {
+ // Reset register tracking state.
+ memset(LOHInfos, 0, sizeof(LOHInfos));
+ // Live-out registers are used.
+ for (const MachineBasicBlock *Succ : MBB.successors()) {
+ for (const auto &LI : Succ->liveins()) {
+ int RegIdx = mapRegToGPRIndex(LI.PhysReg);
+ if (RegIdx >= 0)
+ LOHInfos[RegIdx].OneUser = true;
+ }
+ }
- MachineInstr *DummyOp = nullptr;
- if (BasicBlockScopeOnly) {
- const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
- // For local analysis, create a dummy operation to record uses that are not
- // local.
- DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
+ // Walk the basic block backwards and update the per register state machine
+ // in the process.
+ for (const MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
+ unsigned Opcode = MI.getOpcode();
+ switch (Opcode) {
+ case AArch64::ADDXri:
+ case AArch64::LDRXui:
+ if (canDefBePartOfLOH(MI)) {
+ const MachineOperand &Def = MI.getOperand(0);
+ const MachineOperand &Op = MI.getOperand(1);
+ assert(Def.isReg() && Def.isDef() && "Expected reg def");
+ assert(Op.isReg() && Op.isUse() && "Expected reg use");
+ int DefIdx = mapRegToGPRIndex(Def.getReg());
+ int OpIdx = mapRegToGPRIndex(Op.getReg());
+ if (DefIdx >= 0 && OpIdx >= 0 &&
+ handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
+ continue;
+ }
+ break;
+ case AArch64::ADRP:
+ const MachineOperand &Op0 = MI.getOperand(0);
+ int Idx = mapRegToGPRIndex(Op0.getReg());
+ if (Idx >= 0) {
+ handleADRP(MI, AFI, LOHInfos[Idx]);
+ continue;
+ }
+ break;
+ }
+ handleNormalInst(MI, LOHInfos);
+ }
}
- unsigned NbReg = RegToId.size();
- bool Modified = false;
-
- // Start with ADRP.
- InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
-
- // Compute the reaching def in ADRP mode, meaning ADRP definitions
- // are first considered as uses.
- reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
- DEBUG(dbgs() << "ADRP reaching defs\n");
- DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
-
- // Translate the definition to uses map into a use to definitions map to ease
- // statistic computation.
- InstrToInstrs ADRPToReachingDefs;
- reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
-
- // Compute LOH for ADRP.
- computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
- delete[] ColorOpToReachedUses;
-
- // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
- ColorOpToReachedUses = new InstrToInstrs[NbReg];
-
- // first perform a regular reaching def analysis.
- reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
- DEBUG(dbgs() << "All reaching defs\n");
- DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
-
- // Turn that into a use to defs to ease statistic computation.
- InstrToInstrs UsesToReachingDefs;
- reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
-
- // Compute other than AdrpAdrp LOH.
- computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
- MDT);
- delete[] ColorOpToReachedUses;
-
- if (BasicBlockScopeOnly)
- MF.DeleteMachineInstr(DummyOp);
-
- return Modified;
+ // Return "no change": The pass only collects information.
+ return false;
}
-/// createAArch64CollectLOHPass - returns an instance of the Statistic for
-/// linker optimization pass.
FunctionPass *llvm::createAArch64CollectLOHPass() {
return new AArch64CollectLOH();
}
Modified: llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-garbage-crash.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-garbage-crash.ll?rev=290026&r1=290025&r2=290026&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-garbage-crash.ll (original)
+++ llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-garbage-crash.ll Fri Dec 16 19:15:59 2016
@@ -1,4 +1,4 @@
-; RUN: llc -mtriple=arm64-apple-ios -O3 -aarch64-enable-collect-loh -aarch64-collect-loh-bb-only=true -aarch64-collect-loh-pre-collect-register=false < %s -o - | FileCheck %s
+; RUN: llc -o - %s -mtriple=arm64-apple-ios -O3 -aarch64-enable-collect-loh | FileCheck %s
; Check that the LOH analysis does not crash when the analysed chained
; contains instructions that are filtered out.
;
Modified: llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-str.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-str.ll?rev=290026&r1=290025&r2=290026&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-str.ll (original)
+++ llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh-str.ll Fri Dec 16 19:15:59 2016
@@ -1,4 +1,4 @@
-; RUN: llc -mtriple=arm64-apple-ios -O2 -aarch64-enable-collect-loh -aarch64-collect-loh-bb-only=false < %s -o - | FileCheck %s
+; RUN: llc -o - %s -mtriple=arm64-apple-ios -O2 | FileCheck %s
; Test case for <rdar://problem/15942912>.
; AdrpAddStr cannot be used when the store uses same
; register as address and value. Indeed, the related
Modified: llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh.ll?rev=290026&r1=290025&r2=290026&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh.ll (original)
+++ llvm/trunk/test/CodeGen/AArch64/arm64-collect-loh.ll Fri Dec 16 19:15:59 2016
@@ -1,5 +1,5 @@
-; RUN: llc -mtriple=arm64-apple-ios -O2 -aarch64-enable-collect-loh -aarch64-collect-loh-bb-only=false < %s -o - | FileCheck %s
-; RUN: llc -mtriple=arm64-linux-gnu -O2 -aarch64-enable-collect-loh -aarch64-collect-loh-bb-only=false < %s -o - | FileCheck %s --check-prefix=CHECK-ELF
+; RUN: llc -o - %s -mtriple=arm64-apple-ios -O2 | FileCheck %s
+; RUN: llc -o - %s -mtriple=arm64-linux-gnu -O2 | FileCheck %s --check-prefix=CHECK-ELF
; CHECK-ELF-NOT: .loh
; CHECK-ELF-NOT: AdrpAdrp
@@ -633,11 +633,14 @@ define void @setL(<1 x i8> %t) {
; a tuple register to appear in the lowering. Thus, the target
; cpu is required to have the problem reproduced.
; CHECK-LABEL: _uninterestingSub
+; CHECK: [[LOH_LABEL0:Lloh[0-9]+]]:
; CHECK: adrp [[ADRP_REG:x[0-9]+]], [[CONSTPOOL:lCPI[0-9]+_[0-9]+]]@PAGE
-; CHECK-NEXT: ldr q[[IDX:[0-9]+]], {{\[}}[[ADRP_REG]], [[CONSTPOOL]]@PAGEOFF]
+; CHECK: [[LOH_LABEL1:Lloh[0-9]+]]:
+; CHECK: ldr q[[IDX:[0-9]+]], {{\[}}[[ADRP_REG]], [[CONSTPOOL]]@PAGEOFF]
; The tuple comes from the next instruction.
; CHECK-NEXT: tbl.16b v{{[0-9]+}}, { v{{[0-9]+}}, v{{[0-9]+}} }, v[[IDX]]
; CHECK: ret
+; CHECK: .loh AdrpLdr [[LOH_LABEL0]], [[LOH_LABEL1]]
define void @uninterestingSub(i8* nocapture %row) #0 {
%tmp = bitcast i8* %row to <16 x i8>*
%tmp1 = load <16 x i8>, <16 x i8>* %tmp, align 16
@@ -664,10 +667,10 @@ entry:
if.then.i:
ret void
if.end.i:
-; CHECK: .loh AdrpAdrp Lloh91, Lloh93
-; CHECK: .loh AdrpLdr Lloh91, Lloh92
-; CHECK: .loh AdrpLdrGot Lloh93, Lloh95
-; CHECK: .loh AdrpLdrGot Lloh94, Lloh96
+; CHECK: .loh AdrpLdrGot
+; CHECK: .loh AdrpLdrGot
+; CHECK: .loh AdrpAdrp
+; CHECK: .loh AdrpLdr
%mul.i.i.i = fmul double undef, 1.000000e-06
%add.i.i.i = fadd double undef, %mul.i.i.i
%sub.i.i = fsub double %add.i.i.i, undef
Added: llvm/trunk/test/CodeGen/AArch64/loh.mir
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/AArch64/loh.mir?rev=290026&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/AArch64/loh.mir (added)
+++ llvm/trunk/test/CodeGen/AArch64/loh.mir Fri Dec 16 19:15:59 2016
@@ -0,0 +1,182 @@
+# RUN: llc -o /dev/null %s -mtriple=aarch64-apple-ios -run-pass=aarch64-collect-loh -debug-only=aarch64-collect-loh 2>&1 | FileCheck %s
+# REQUIRES: asserts
+--- |
+ define void @func0() { ret void }
+
+ declare void @extfunc()
+
+ @g0 = external global i32
+ @g1 = external global i32
+ @g2 = external global i32
+ @g3 = external global i32
+ @g4 = external global i32
+ @g5 = external global i32
+...
+---
+# Check various LOH variants. Remember that the algorithms walks the basic
+# blocks backwards.
+# CHECK-LABEL: ********** AArch64 Collect LOH **********
+# CHECK-LABEL: Looking in function func0
+name: func0
+tracksRegLiveness: true
+body: |
+ bb.0:
+ ; CHECK: Adding MCLOH_AdrpAdrp:
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g3>
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g4>
+ ; CHECK-NEXT: Adding MCLOH_AdrpAdrp:
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g2>
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g3>
+ ; CHECK-NEXT: Adding MCLOH_AdrpAdrp:
+ ; CHECK-NEXT: %X0<def> = ADRP <ga:@g0>
+ ; CHECK-NEXT: %X0<def> = ADRP <ga:@g1>
+ %x0 = ADRP target-flags(aarch64-page) @g0
+ %x0 = ADRP target-flags(aarch64-page) @g1
+ %x1 = ADRP target-flags(aarch64-page) @g2
+ %x1 = ADRP target-flags(aarch64-page) @g3
+ %x1 = ADRP target-flags(aarch64-page) @g4
+
+ bb.1:
+ ; CHECK-NEXT: Adding MCLOH_AdrpAdd:
+ ; CHECK-NEXT: %X20<def> = ADRP <ga:@g0>
+ ; CHECK-NEXT: %X3<def> = ADDXri %X20, <ga:@g0>
+ ; CHECK-NEXT: Adding MCLOH_AdrpAdd:
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g0>
+ ; CHECK-NEXT: %X1<def> = ADDXri %X1, <ga:@g0>
+ %x1 = ADRP target-flags(aarch64-page) @g0
+ %x9 = SUBXri undef %x11, 5, 0 ; should not affect MCLOH formation
+ %x1 = ADDXri %x1, target-flags(aarch64-pageoff) @g0, 0
+ %x20 = ADRP target-flags(aarch64-page) @g0
+ BL @extfunc, csr_aarch64_aapcs ; should not clobber X20
+ %x3 = ADDXri %x20, target-flags(aarch64-pageoff) @g0, 0
+
+ bb.2:
+ ; CHECK-NOT: MCLOH_AdrpAdd
+ %x9 = ADRP target-flags(aarch64-page) @g0
+ BL @extfunc, csr_aarch64_aapcs ; clobbers x9
+ ; Verification requires the use of 'undef' in front of the clobbered %x9
+ %x9 = ADDXri undef %x9, target-flags(aarch64-pageoff) @g0, 0
+
+ bb.3:
+ ; CHECK-NOT: MCLOH_AdrpAdd
+ %x10 = ADRP target-flags(aarch64-page) @g0
+ HINT 0, implicit def %x10 ; clobbers x10
+ %x10 = ADDXri %x10, target-flags(aarch64-pageoff) @g0, 0
+
+ bb.4:
+ ; Cannot produce a LOH for multiple users
+ ; CHECK-NOT: MCLOH_AdrpAdd
+ %x10 = ADRP target-flags(aarch64-page) @g0
+ HINT 0, implicit def %x10 ; clobbers x10
+ %x11 = ADDXri %x10, target-flags(aarch64-pageoff) @g0, 0
+ %x12 = ADDXri %x10, target-flags(aarch64-pageoff) @g0, 0
+
+ bb.5:
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdr:
+ ; CHECK-NEXT: %X5<def> = ADRP <ga:@g2>
+ ; CHECK-NEXT: %S6<def> = LDRSui %X5, <ga:@g2>
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdr:
+ ; CHECK-NEXT: %X4<def> = ADRP <ga:@g2>
+ ; CHECK-NEXT: %X4<def> = LDRXui %X4, <ga:@g2>
+ %x4 = ADRP target-flags(aarch64-page) @g2
+ %x4 = LDRXui %x4, target-flags(aarch64-pageoff) @g2
+ %x5 = ADRP target-flags(aarch64-page) @g2
+ %s6 = LDRSui %x5, target-flags(aarch64-pageoff) @g2
+
+ bb.6:
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdrGot:
+ ; CHECK-NEXT: %X5<def> = ADRP <ga:@g2>
+ ; CHECK-NEXT: %X6<def> = LDRXui %X5, <ga:@g2>
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdrGot:
+ ; CHECK-NEXT: %X4<def> = ADRP <ga:@g2>
+ ; CHECK-NEXT: %X4<def> = LDRXui %X4, <ga:@g2>
+ %x4 = ADRP target-flags(aarch64-page, aarch64-got) @g2
+ %x4 = LDRXui %x4, target-flags(aarch64-pageoff, aarch64-got) @g2
+ %x5 = ADRP target-flags(aarch64-page, aarch64-got) @g2
+ %x6 = LDRXui %x5, target-flags(aarch64-pageoff, aarch64-got) @g2
+
+ bb.7:
+ ; CHECK-NOT: Adding MCLOH_AdrpLdrGot:
+ ; Loading a float value from a GOT table makes no sense so this should not
+ ; produce an LOH.
+ %x11 = ADRP target-flags(aarch64-page, aarch64-got) @g5
+ %s11 = LDRSui %x11, target-flags(aarch64-pageoff, aarch64-got) @g5
+
+ bb.8:
+ ; CHECK-NEXT: Adding MCLOH_AdrpAddLdr:
+ ; CHECK-NEXT: %X7<def> = ADRP <ga:@g3>[TF=1]
+ ; CHECK-NEXT: %X8<def> = ADDXri %X7, <ga:@g3>
+ ; CHECK-NEXT: %D1<def> = LDRDui %X8, 8
+ %x7 = ADRP target-flags(aarch64-page) @g3
+ %x8 = ADDXri %x7, target-flags(aarch64-pageoff) @g3, 0
+ %d1 = LDRDui %x8, 8
+
+ bb.9:
+ ; CHECK-NEXT: Adding MCLOH_AdrpAdd:
+ ; CHECK-NEXT: %X3<def> = ADRP <ga:@g3>
+ ; CHECK-NEXT: %X3<def> = ADDXri %X3, <ga:@g3>
+ ; CHECK-NEXT: Adding MCLOH_AdrpAdd:
+ ; CHECK-NEXT: %X5<def> = ADRP <ga:@g3>
+ ; CHECK-NEXT: %X2<def> = ADDXri %X5, <ga:@g3>
+ ; CHECK-NEXT: Adding MCLOH_AdrpAddStr:
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g3>
+ ; CHECK-NEXT: %X1<def> = ADDXri %X1, <ga:@g3>
+ ; CHECK-NEXT: STRXui %XZR, %X1, 16
+ %x1 = ADRP target-flags(aarch64-page) @g3
+ %x1 = ADDXri %x1, target-flags(aarch64-pageoff) @g3, 0
+ STRXui %xzr, %x1, 16
+
+ ; This sequence should just produce an AdrpAdd (not AdrpAddStr)
+ %x5 = ADRP target-flags(aarch64-page) @g3
+ %x2 = ADDXri %x5, target-flags(aarch64-pageoff) @g3, 0
+ STRXui %x2, undef %x11, 16
+
+ ; This sequence should just produce an AdrpAdd (not AdrpAddStr)
+ %x3 = ADRP target-flags(aarch64-page) @g3
+ %x3 = ADDXri %x3, target-flags(aarch64-pageoff) @g3, 0
+ STRXui %x3, %x3, 16
+
+ bb.10:
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdr:
+ ; CHECK-NEXT: %X2<def> = ADRP <ga:@g3>
+ ; CHECK-NEXT: %X2<def> = LDRXui %X2, <ga:@g3>
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdrGotLdr:
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g4>
+ ; CHECK-NEXT: %X1<def> = LDRXui %X1, <ga:@g4>
+ ; CHECK-NEXT: %X1<def> = LDRXui %X1, 24
+ %x1 = ADRP target-flags(aarch64-page, aarch64-got) @g4
+ %x1 = LDRXui %x1, target-flags(aarch64-pageoff, aarch64-got) @g4
+ %x1 = LDRXui %x1, 24
+ ; Should just produce a MCLOH_AdrpLdr (not MCLOH_AdrpLdrGotLdr)
+ %x2 = ADRP target-flags(aarch64-page) @g3
+ %x2 = LDRXui %x2, target-flags(aarch64-pageoff) @g3
+ %x2 = LDRXui %x2, 24
+
+ bb.11:
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdr
+ ; CHECK-NEXT: %X5<def> = ADRP <ga:@g1>
+ ; CHECK-NEXT: %X5<def> = LDRXui %X5, <ga:@g1>
+ ; CHECK-NEXT: Adding MCLOH_AdrpLdrGotStr:
+ ; CHECK-NEXT: %X1<def> = ADRP <ga:@g4>
+ ; CHECK-NEXT: %X1<def> = LDRXui %X1, <ga:@g4>
+ ; CHECK-NEXT: STRXui %XZR, %X1, 32
+ %x1 = ADRP target-flags(aarch64-page, aarch64-got) @g4
+ %x1 = LDRXui %x1, target-flags(aarch64-pageoff, aarch64-got) @g4
+ STRXui %xzr, %x1, 32
+ ; Should just produce a MCLOH_AdrpLdr (not MCLOH_AdrpLdrGotStr)
+ %x5 = ADRP target-flags(aarch64-page) @g1
+ %x5 = LDRXui %x5, target-flags(aarch64-pageoff) @g1
+ STRXui undef %x11, %x5, 32
+
+ bb.12:
+ successors: %bb.13
+ ; Cannot produce a LOH for multiple users
+ ; CHECK-NOT: MCLOH_AdrpAdd
+ %x10 = ADRP target-flags(aarch64-page) @g0
+ %x11 = ADDXri %x10, target-flags(aarch64-pageoff) @g0, 0
+ B %bb.13
+
+ bb.13:
+ liveins: %x10
+ %x12 = ADDXri %x10, target-flags(aarch64-pageoff) @g0, 0
+...
More information about the llvm-commits
mailing list