[llvm] r281614 - [InstCombine] add helper function for foldICmpWithConstant; NFC

Sanjay Patel via llvm-commits llvm-commits at lists.llvm.org
Thu Sep 15 07:37:50 PDT 2016


Author: spatel
Date: Thu Sep 15 09:37:50 2016
New Revision: 281614

URL: http://llvm.org/viewvc/llvm-project?rev=281614&view=rev
Log:
[InstCombine] add helper function for foldICmpWithConstant; NFC

This is a big glob of transforms that probably should work for vectors,
but currently they are disallowed because of ConstantInt guards.

Modified:
    llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineInternal.h

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp?rev=281614&r1=281613&r2=281614&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp Thu Sep 15 09:37:50 2016
@@ -1283,6 +1283,225 @@ Instruction *InstCombiner::foldICmpCstSh
   return getConstant(false);
 }
 
+/// The caller has matched a pattern of the form:
+///   I = icmp ugt (add (add A, B), CI2), CI1
+/// If this is of the form:
+///   sum = a + b
+///   if (sum+128 >u 255)
+/// Then replace it with llvm.sadd.with.overflow.i8.
+///
+static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
+                                          ConstantInt *CI2, ConstantInt *CI1,
+                                          InstCombiner &IC) {
+  // The transformation we're trying to do here is to transform this into an
+  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
+  // with a narrower add, and discard the add-with-constant that is part of the
+  // range check (if we can't eliminate it, this isn't profitable).
+
+  // In order to eliminate the add-with-constant, the compare can be its only
+  // use.
+  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
+  if (!AddWithCst->hasOneUse())
+    return nullptr;
+
+  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
+  if (!CI2->getValue().isPowerOf2())
+    return nullptr;
+  unsigned NewWidth = CI2->getValue().countTrailingZeros();
+  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
+    return nullptr;
+
+  // The width of the new add formed is 1 more than the bias.
+  ++NewWidth;
+
+  // Check to see that CI1 is an all-ones value with NewWidth bits.
+  if (CI1->getBitWidth() == NewWidth ||
+      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
+    return nullptr;
+
+  // This is only really a signed overflow check if the inputs have been
+  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
+  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
+  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
+  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
+      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
+    return nullptr;
+
+  // In order to replace the original add with a narrower
+  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
+  // and truncates that discard the high bits of the add.  Verify that this is
+  // the case.
+  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
+  for (User *U : OrigAdd->users()) {
+    if (U == AddWithCst)
+      continue;
+
+    // Only accept truncates for now.  We would really like a nice recursive
+    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
+    // chain to see which bits of a value are actually demanded.  If the
+    // original add had another add which was then immediately truncated, we
+    // could still do the transformation.
+    TruncInst *TI = dyn_cast<TruncInst>(U);
+    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
+      return nullptr;
+  }
+
+  // If the pattern matches, truncate the inputs to the narrower type and
+  // use the sadd_with_overflow intrinsic to efficiently compute both the
+  // result and the overflow bit.
+  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
+  Value *F = Intrinsic::getDeclaration(I.getModule(),
+                                       Intrinsic::sadd_with_overflow, NewType);
+
+  InstCombiner::BuilderTy *Builder = IC.Builder;
+
+  // Put the new code above the original add, in case there are any uses of the
+  // add between the add and the compare.
+  Builder->SetInsertPoint(OrigAdd);
+
+  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
+  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
+  CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
+  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
+  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
+
+  // The inner add was the result of the narrow add, zero extended to the
+  // wider type.  Replace it with the result computed by the intrinsic.
+  IC.replaceInstUsesWith(*OrigAdd, ZExt);
+
+  // The original icmp gets replaced with the overflow value.
+  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
+}
+
+// Fold icmp Pred X, C.
+Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    Value *A = nullptr, *B = nullptr;
+
+    // Match the following pattern, which is a common idiom when writing
+    // overflow-safe integer arithmetic function.  The source performs an
+    // addition in wider type, and explicitly checks for overflow using
+    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
+    // sadd_with_overflow intrinsic.
+    //
+    // TODO: This could probably be generalized to handle other overflow-safe
+    // operations if we worked out the formulas to compute the appropriate
+    // magic constants.
+    //
+    // sum = a + b
+    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
+    {
+      ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
+      if (I.getPredicate() == ICmpInst::ICMP_UGT &&
+          match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
+        if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
+          return Res;
+    }
+
+    // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
+    if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
+      if (auto *SI = dyn_cast<SelectInst>(Op0)) {
+        SelectPatternResult SPR = matchSelectPattern(SI, A, B);
+        if (SPR.Flavor == SPF_SMIN) {
+          if (isKnownPositive(A, DL))
+            return new ICmpInst(I.getPredicate(), B, CI);
+          if (isKnownPositive(B, DL))
+            return new ICmpInst(I.getPredicate(), A, CI);
+        }
+      }
+
+    // The following transforms are only 'worth it' if the only user of the
+    // subtraction is the icmp.
+    if (Op0->hasOneUse()) {
+      // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
+      if (I.isEquality() && CI->isZero() &&
+          match(Op0, m_Sub(m_Value(A), m_Value(B))))
+        return new ICmpInst(I.getPredicate(), A, B);
+
+      // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
+      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
+          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+        return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
+
+      // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
+      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
+          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+        return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
+
+      // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
+      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
+          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+        return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
+
+      // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
+      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
+          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+        return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
+    }
+
+    if (I.isEquality()) {
+      ConstantInt *CI2;
+      if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
+          match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
+        // (icmp eq/ne (ashr/lshr const2, A), const1)
+        if (Instruction *Inst = foldICmpCstShrConst(I, Op0, A, CI, CI2))
+          return Inst;
+      }
+      if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
+        // (icmp eq/ne (shl const2, A), const1)
+        if (Instruction *Inst = foldICmpCstShlConst(I, Op0, A, CI, CI2))
+          return Inst;
+      }
+    }
+
+    // Canonicalize icmp instructions based on dominating conditions.
+    BasicBlock *Parent = I.getParent();
+    BasicBlock *Dom = Parent->getSinglePredecessor();
+    auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
+    ICmpInst::Predicate Pred;
+    BasicBlock *TrueBB, *FalseBB;
+    ConstantInt *CI2;
+    if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)),
+                             TrueBB, FalseBB)) &&
+        TrueBB != FalseBB) {
+      ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(),
+                                                              CI->getValue());
+      ConstantRange DominatingCR =
+          (Parent == TrueBB)
+              ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue())
+              : ConstantRange::makeExactICmpRegion(
+                    CmpInst::getInversePredicate(Pred), CI2->getValue());
+      ConstantRange Intersection = DominatingCR.intersectWith(CR);
+      ConstantRange Difference = DominatingCR.difference(CR);
+      if (Intersection.isEmptySet())
+        return replaceInstUsesWith(I, Builder->getFalse());
+      if (Difference.isEmptySet())
+        return replaceInstUsesWith(I, Builder->getTrue());
+
+      // If this is a normal comparison, it demands all bits. If it is a sign
+      // bit comparison, it only demands the sign bit.
+      bool UnusedBit;
+      bool IsSignBit =
+          isSignBitCheck(I.getPredicate(), CI->getValue(), UnusedBit);
+
+      // Canonicalizing a sign bit comparison that gets used in a branch,
+      // pessimizes codegen by generating branch on zero instruction instead
+      // of a test and branch. So we avoid canonicalizing in such situations
+      // because test and branch instruction has better branch displacement
+      // than compare and branch instruction.
+      if (!isBranchOnSignBitCheck(I, IsSignBit) && !I.isEquality()) {
+        if (auto *AI = Intersection.getSingleElement())
+          return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI));
+        if (auto *AD = Difference.getSingleElement())
+          return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD));
+      }
+    }
+  }
+
+  return nullptr;
+}
+
 /// Fold icmp (trunc X, Y), C.
 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
                                                  Instruction *Trunc,
@@ -2528,92 +2747,6 @@ Instruction *InstCombiner::foldICmpWithC
   return BinaryOperator::CreateNot(Result);
 }
 
-/// The caller has matched a pattern of the form:
-///   I = icmp ugt (add (add A, B), CI2), CI1
-/// If this is of the form:
-///   sum = a + b
-///   if (sum+128 >u 255)
-/// Then replace it with llvm.sadd.with.overflow.i8.
-///
-static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
-                                          ConstantInt *CI2, ConstantInt *CI1,
-                                          InstCombiner &IC) {
-  // The transformation we're trying to do here is to transform this into an
-  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
-  // with a narrower add, and discard the add-with-constant that is part of the
-  // range check (if we can't eliminate it, this isn't profitable).
-
-  // In order to eliminate the add-with-constant, the compare can be its only
-  // use.
-  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
-  if (!AddWithCst->hasOneUse()) return nullptr;
-
-  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
-  if (!CI2->getValue().isPowerOf2()) return nullptr;
-  unsigned NewWidth = CI2->getValue().countTrailingZeros();
-  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
-
-  // The width of the new add formed is 1 more than the bias.
-  ++NewWidth;
-
-  // Check to see that CI1 is an all-ones value with NewWidth bits.
-  if (CI1->getBitWidth() == NewWidth ||
-      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
-    return nullptr;
-
-  // This is only really a signed overflow check if the inputs have been
-  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
-  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
-  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
-  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
-      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
-    return nullptr;
-
-  // In order to replace the original add with a narrower
-  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
-  // and truncates that discard the high bits of the add.  Verify that this is
-  // the case.
-  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
-  for (User *U : OrigAdd->users()) {
-    if (U == AddWithCst) continue;
-
-    // Only accept truncates for now.  We would really like a nice recursive
-    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
-    // chain to see which bits of a value are actually demanded.  If the
-    // original add had another add which was then immediately truncated, we
-    // could still do the transformation.
-    TruncInst *TI = dyn_cast<TruncInst>(U);
-    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
-      return nullptr;
-  }
-
-  // If the pattern matches, truncate the inputs to the narrower type and
-  // use the sadd_with_overflow intrinsic to efficiently compute both the
-  // result and the overflow bit.
-  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
-  Value *F = Intrinsic::getDeclaration(I.getModule(),
-                                       Intrinsic::sadd_with_overflow, NewType);
-
-  InstCombiner::BuilderTy *Builder = IC.Builder;
-
-  // Put the new code above the original add, in case there are any uses of the
-  // add between the add and the compare.
-  Builder->SetInsertPoint(OrigAdd);
-
-  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
-  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
-  CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
-  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
-  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
-
-  // The inner add was the result of the narrow add, zero extended to the
-  // wider type.  Replace it with the result computed by the intrinsic.
-  IC.replaceInstUsesWith(*OrigAdd, ZExt);
-
-  // The original icmp gets replaced with the overflow value.
-  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
-}
-
 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
                                          Value *RHS, Instruction &OrigI,
                                          Value *&Result, Constant *&Overflow) {
@@ -3406,6 +3539,7 @@ static ICmpInst *canonicalizeCmpWithCons
 
       if (isa<UndefValue>(Elt))
         continue;
+
       // Bail out if we can't determine if this constant is min/max or if we
       // know that this constant is min/max.
       auto *CI = dyn_cast<ConstantInt>(Elt);
@@ -3509,130 +3643,8 @@ Instruction *InstCombiner::visitICmpInst
   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
     return NewICmp;
 
-  // See if we are doing a comparison with a constant.
-  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
-    Value *A = nullptr, *B = nullptr;
-
-    // Match the following pattern, which is a common idiom when writing
-    // overflow-safe integer arithmetic function.  The source performs an
-    // addition in wider type, and explicitly checks for overflow using
-    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
-    // sadd_with_overflow intrinsic.
-    //
-    // TODO: This could probably be generalized to handle other overflow-safe
-    // operations if we worked out the formulas to compute the appropriate
-    // magic constants.
-    //
-    // sum = a + b
-    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
-    {
-    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
-    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
-        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
-      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
-        return Res;
-    }
-
-    // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
-    if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
-      if (auto *SI = dyn_cast<SelectInst>(Op0)) {
-        SelectPatternResult SPR = matchSelectPattern(SI, A, B);
-        if (SPR.Flavor == SPF_SMIN) {
-          if (isKnownPositive(A, DL))
-            return new ICmpInst(I.getPredicate(), B, CI);
-          if (isKnownPositive(B, DL))
-            return new ICmpInst(I.getPredicate(), A, CI);
-        }
-      }
-
-
-    // The following transforms are only 'worth it' if the only user of the
-    // subtraction is the icmp.
-    if (Op0->hasOneUse()) {
-      // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
-      if (I.isEquality() && CI->isZero() &&
-          match(Op0, m_Sub(m_Value(A), m_Value(B))))
-        return new ICmpInst(I.getPredicate(), A, B);
-
-      // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
-      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
-          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
-        return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
-
-      // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
-      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
-          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
-        return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
-
-      // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
-      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
-          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
-        return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
-
-      // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
-      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
-          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
-        return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
-    }
-
-    if (I.isEquality()) {
-      ConstantInt *CI2;
-      if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
-          match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
-        // (icmp eq/ne (ashr/lshr const2, A), const1)
-        if (Instruction *Inst = foldICmpCstShrConst(I, Op0, A, CI, CI2))
-          return Inst;
-      }
-      if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
-        // (icmp eq/ne (shl const2, A), const1)
-        if (Instruction *Inst = foldICmpCstShlConst(I, Op0, A, CI, CI2))
-          return Inst;
-      }
-    }
-
-    // Canonicalize icmp instructions based on dominating conditions.
-    BasicBlock *Parent = I.getParent();
-    BasicBlock *Dom = Parent->getSinglePredecessor();
-    auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
-    ICmpInst::Predicate Pred;
-    BasicBlock *TrueBB, *FalseBB;
-    ConstantInt *CI2;
-    if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)),
-                             TrueBB, FalseBB)) &&
-        TrueBB != FalseBB) {
-      ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(),
-                                                              CI->getValue());
-      ConstantRange DominatingCR =
-          (Parent == TrueBB)
-              ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue())
-              : ConstantRange::makeExactICmpRegion(
-                    CmpInst::getInversePredicate(Pred), CI2->getValue());
-      ConstantRange Intersection = DominatingCR.intersectWith(CR);
-      ConstantRange Difference = DominatingCR.difference(CR);
-      if (Intersection.isEmptySet())
-        return replaceInstUsesWith(I, Builder->getFalse());
-      if (Difference.isEmptySet())
-        return replaceInstUsesWith(I, Builder->getTrue());
-
-      // If this is a normal comparison, it demands all bits. If it is a sign
-      // bit comparison, it only demands the sign bit.
-      bool UnusedBit;
-      bool IsSignBit =
-          isSignBitCheck(I.getPredicate(), CI->getValue(), UnusedBit);
-
-      // Canonicalizing a sign bit comparison that gets used in a branch,
-      // pessimizes codegen by generating branch on zero instruction instead
-      // of a test and branch. So we avoid canonicalizing in such situations
-      // because test and branch instruction has better branch displacement
-      // than compare and branch instruction.
-      if (!isBranchOnSignBitCheck(I, IsSignBit) && !I.isEquality()) {
-        if (auto *AI = Intersection.getSingleElement())
-          return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI));
-        if (auto *AD = Difference.getSingleElement())
-          return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD));
-      }
-    }
-  }
+  if (Instruction *Res = foldICmpWithConstant(I))
+    return Res;
 
   if (Instruction *Res = foldICmpUsingKnownBits(I))
     return Res;

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineInternal.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineInternal.h?rev=281614&r1=281613&r2=281614&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineInternal.h (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineInternal.h Thu Sep 15 09:37:50 2016
@@ -557,6 +557,7 @@ private:
   Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
 
   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
+  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
 
   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, Instruction *Trunc,




More information about the llvm-commits mailing list