[llvm] r280979 - [LV] Don't mark pointers used by scalarized memory accesses uniform

Matthew Simpson via llvm-commits llvm-commits at lists.llvm.org
Thu Sep 8 12:11:08 PDT 2016


Author: mssimpso
Date: Thu Sep  8 14:11:07 2016
New Revision: 280979

URL: http://llvm.org/viewvc/llvm-project?rev=280979&view=rev
Log:
[LV] Don't mark pointers used by scalarized memory accesses uniform

Previously, all consecutive pointers were marked uniform after vectorization.
However, if a consecutive pointer is used by a memory access that is eventually
scalarized, the pointer won't remain uniform after all. An example is
predicated stores. Even though a predicated store may be consecutive, it will
still be scalarized, making it's pointer operand non-uniform.

This patch updates the logic in collectLoopUniforms to consider the cases where
a memory access may be scalarized. If a memory access may be scalarized, its
pointer operand is not marked uniform. The determination of whether a given
memory instruction will be scalarized or not has been moved into a common
function that is used by the vectorizer, cost model, and legality analysis.

Differential Revision: https://reviews.llvm.org/D24271

Added:
    llvm/trunk/test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll
Modified:
    llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp

Modified: llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp?rev=280979&r1=280978&r2=280979&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp (original)
+++ llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp Thu Sep  8 14:11:07 2016
@@ -299,6 +299,23 @@ static Value *getPointerOperand(Value *I
   return nullptr;
 }
 
+/// A helper function that returns true if the given type is irregular. The
+/// type is irregular if its allocated size doesn't equal the store size of an
+/// element of the corresponding vector type at the given vectorization factor.
+static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
+
+  // Determine if an array of VF elements of type Ty is "bitcast compatible"
+  // with a <VF x Ty> vector.
+  if (VF > 1) {
+    auto *VectorTy = VectorType::get(Ty, VF);
+    return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
+  }
+
+  // If the vectorization factor is one, we just check if an array of type Ty
+  // requires padding between elements.
+  return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
+}
+
 /// InnerLoopVectorizer vectorizes loops which contain only one basic
 /// block to a specified vectorization factor (VF).
 /// This class performs the widening of scalars into vectors, or multiple
@@ -1611,6 +1628,20 @@ public:
   unsigned getNumLoads() const { return LAI->getNumLoads(); }
   unsigned getNumPredStores() const { return NumPredStores; }
 
+  /// Returns true if \p I is a store instruction in a predicated block that
+  /// will be scalarized during vectorization.
+  bool isPredicatedStore(Instruction *I);
+
+  /// Returns true if \p I is a memory instruction that has a consecutive or
+  /// consecutive-like pointer operand. Consecutive-like pointers are pointers
+  /// that are treated like consecutive pointers during vectorization. The
+  /// pointer operands of interleaved accesses are an example.
+  bool hasConsecutiveLikePtrOperand(Instruction *I);
+
+  /// Returns true if \p I is a memory instruction that must be scalarized
+  /// during vectorization.
+  bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1);
+
 private:
   /// Check if a single basic block loop is vectorizable.
   /// At this point we know that this is a loop with a constant trip count
@@ -2733,30 +2764,19 @@ void InnerLoopVectorizer::vectorizeMemor
   if (!Alignment)
     Alignment = DL.getABITypeAlignment(ScalarDataTy);
   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
-  uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
-  uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
 
-  if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
-      !Legal->isMaskRequired(SI))
-    return scalarizeInstruction(Instr, true);
-
-  if (ScalarAllocatedSize != VectorElementSize)
-    return scalarizeInstruction(Instr);
-
-  // If the pointer is loop invariant scalarize the load.
-  if (LI && Legal->isUniform(Ptr))
-    return scalarizeInstruction(Instr);
+  // Scalarize the memory instruction if necessary.
+  if (Legal->memoryInstructionMustBeScalarized(Instr, VF))
+    return scalarizeInstruction(Instr, Legal->isPredicatedStore(Instr));
 
-  // If the pointer is non-consecutive and gather/scatter is not supported
-  // scalarize the instruction.
+  // Determine if the pointer operand of the access is either consecutive or
+  // reverse consecutive.
   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   bool Reverse = ConsecutiveStride < 0;
-  bool CreateGatherScatter =
-      !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) ||
-                             (SI && Legal->isLegalMaskedScatter(ScalarDataTy)));
 
-  if (!ConsecutiveStride && !CreateGatherScatter)
-    return scalarizeInstruction(Instr);
+  // Determine if either a gather or scatter operation is legal.
+  bool CreateGatherScatter =
+      !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr);
 
   VectorParts VectorGep;
 
@@ -5273,6 +5293,60 @@ void LoopVectorizationLegality::collectL
   }
 }
 
+bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) {
+  if (isAccessInterleaved(I))
+    return true;
+  if (auto *Ptr = getPointerOperand(I))
+    return isConsecutivePtr(Ptr);
+  return false;
+}
+
+bool LoopVectorizationLegality::isPredicatedStore(Instruction *I) {
+  auto *SI = dyn_cast<StoreInst>(I);
+  return SI && blockNeedsPredication(SI->getParent()) && !isMaskRequired(SI);
+}
+
+bool LoopVectorizationLegality::memoryInstructionMustBeScalarized(
+    Instruction *I, unsigned VF) {
+
+  // If the memory instruction is in an interleaved group, it will be
+  // vectorized and its pointer will remain uniform.
+  if (isAccessInterleaved(I))
+    return false;
+
+  // Get and ensure we have a valid memory instruction.
+  LoadInst *LI = dyn_cast<LoadInst>(I);
+  StoreInst *SI = dyn_cast<StoreInst>(I);
+  assert((LI || SI) && "Invalid memory instruction");
+
+  // If the pointer operand is uniform (loop invariant), the memory instruction
+  // will be scalarized.
+  auto *Ptr = getPointerOperand(I);
+  if (LI && isUniform(Ptr))
+    return true;
+
+  // If the pointer operand is non-consecutive and neither a gather nor a
+  // scatter operation is legal, the memory instruction will be scalarized.
+  if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I))
+    return true;
+
+  // If the instruction is a store located in a predicated block, it will be
+  // scalarized.
+  if (isPredicatedStore(I))
+    return true;
+
+  // If the instruction's allocated size doesn't equal it's type size, it
+  // requires padding and will be scalarized.
+  auto &DL = I->getModule()->getDataLayout();
+  auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+  if (hasIrregularType(ScalarTy, DL, VF))
+    return true;
+
+  // Otherwise, the memory instruction should be vectorized if the rest of the
+  // loop is.
+  return false;
+}
+
 void LoopVectorizationLegality::collectLoopUniforms() {
   // We now know that the loop is vectorizable!
   // Collect instructions inside the loop that will remain uniform after
@@ -5294,21 +5368,48 @@ void LoopVectorizationLegality::collectL
     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
   }
 
-  // Add all consecutive pointer values; these values will be uniform after
-  // vectorization (and subsequent cleanup). Although non-consecutive, we also
-  // add the pointer operands of interleaved accesses since they are treated
-  // like consecutive pointers during vectorization.
+  // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
+  // are pointers that are treated like consecutive pointers during
+  // vectorization. The pointer operands of interleaved accesses are an
+  // example.
+  SmallPtrSet<Instruction *, 8> ConsecutiveLikePtrs;
+
+  // Holds pointer operands of instructions that are possibly non-uniform.
+  SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
+
+  // Iterate over the instructions in the loop, and collect all
+  // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
+  // that a consecutive-like pointer operand will be scalarized, we collect it
+  // in PossibleNonUniformPtrs instead. We use two sets here because a single
+  // getelementptr instruction can be used by both vectorized and scalarized
+  // memory instructions. For example, if a loop loads and stores from the same
+  // location, but the store is conditional, the store will be scalarized, and
+  // the getelementptr won't remain uniform.
   for (auto *BB : TheLoop->blocks())
     for (auto &I : *BB) {
-      Instruction *Ptr = nullptr;
-      if (I.getType()->isPointerTy() && isConsecutivePtr(&I))
-        Ptr = &I;
-      else if (isAccessInterleaved(&I))
-        Ptr = cast<Instruction>(getPointerOperand(&I));
-      else
+
+      // If the pointer operand is not consecutive-like, there's nothing to do.
+      auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
+      if (!Ptr || isUniform(Ptr) || !hasConsecutiveLikePtrOperand(&I))
         continue;
-      Worklist.insert(Ptr);
-      DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ptr << "\n");
+
+      // Ensure the memory instruction will not be scalarized, making its
+      // pointer operand non-uniform.
+      if (memoryInstructionMustBeScalarized(&I))
+        PossibleNonUniformPtrs.insert(Ptr);
+
+      // If the memory instruction will be vectorized, its consecutive-like
+      // pointer operand should remain uniform.
+      else
+        ConsecutiveLikePtrs.insert(Ptr);
+    }
+
+  // Add to the Worklist all consecutive and consecutive-like pointers that
+  // aren't also identified as possibly non-uniform.
+  for (auto *V : ConsecutiveLikePtrs)
+    if (!PossibleNonUniformPtrs.count(V)) {
+      DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
+      Worklist.insert(V);
     }
 
   // Expand Worklist in topological order: whenever a new instruction
@@ -6519,17 +6620,8 @@ unsigned LoopVectorizationCostModel::get
       return Cost;
     }
 
-    // Scalarized loads/stores.
-    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
-    bool UseGatherOrScatter =
-        (ConsecutiveStride == 0) && Legal->isLegalGatherOrScatter(I);
-
-    bool Reverse = ConsecutiveStride < 0;
-    const DataLayout &DL = I->getModule()->getDataLayout();
-    uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
-    uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
-    if ((!ConsecutiveStride && !UseGatherOrScatter) ||
-        ScalarAllocatedSize != VectorElementSize) {
+    // Check if the memory instruction will be scalarized.
+    if (Legal->memoryInstructionMustBeScalarized(I, VF)) {
       bool IsComplexComputation =
           isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
       unsigned Cost = 0;
@@ -6554,6 +6646,15 @@ unsigned LoopVectorizationCostModel::get
       return Cost;
     }
 
+    // Determine if the pointer operand of the access is either consecutive or
+    // reverse consecutive.
+    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
+    bool Reverse = ConsecutiveStride < 0;
+
+    // Determine if either a gather or scatter operation is legal.
+    bool UseGatherOrScatter =
+        !ConsecutiveStride && Legal->isLegalGatherOrScatter(I);
+
     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
     if (UseGatherOrScatter) {
       assert(ConsecutiveStride == 0 &&

Added: llvm/trunk/test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll?rev=280979&view=auto
==============================================================================
--- llvm/trunk/test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll (added)
+++ llvm/trunk/test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll Thu Sep  8 14:11:07 2016
@@ -0,0 +1,268 @@
+; REQUIRES: asserts
+; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -instcombine -debug-only=loop-vectorize -disable-output -print-after=instcombine 2>&1 | FileCheck %s
+; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -enable-interleaved-mem-accesses -enable-cond-stores-vec -instcombine -debug-only=loop-vectorize -disable-output -print-after=instcombine 2>&1 | FileCheck %s --check-prefix=INTER
+
+target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
+
+%pair = type { i32, i32 }
+
+; CHECK-LABEL: consecutive_ptr_forward
+;
+; Check that a forward consecutive pointer is recognized as uniform and remains
+; uniform after vectorization.
+;
+; CHECK:     LV: Found uniform instruction: %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
+; CHECK:     vector.body
+; CHECK:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK-NOT:   getelementptr
+; CHECK:       getelementptr inbounds i32, i32* %a, i64 %index
+; CHECK-NOT:   getelementptr
+; CHECK:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define i32 @consecutive_ptr_forward(i32* %a, i64 %n) {
+entry:
+  br label %for.body
+
+for.body:
+  %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+  %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
+  %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
+  %tmp2 = load i32, i32* %tmp1, align 8
+  %tmp3 = add i32 %tmp0, %tmp2
+  %i.next = add nuw nsw i64 %i, 1
+  %cond = icmp slt i64 %i.next, %n
+  br i1 %cond, label %for.body, label %for.end
+
+for.end:
+  %tmp4 = phi i32 [ %tmp3, %for.body ]
+  ret i32 %tmp4
+}
+
+; CHECK-LABEL: consecutive_ptr_reverse
+;
+; Check that a reverse consecutive pointer is recognized as uniform and remains
+; uniform after vectorization.
+;
+; CHECK:     LV: Found uniform instruction: %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
+; CHECK:     vector.body
+; CHECK:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK:       %offset.idx = sub i64 %n, %index
+; CHECK-NOT:   getelementptr
+; CHECK:       %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %offset.idx
+; CHECK:       getelementptr i32, i32* %[[G0]], i64 -3
+; CHECK-NOT:   getelementptr
+; CHECK:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define i32 @consecutive_ptr_reverse(i32* %a, i64 %n) {
+entry:
+  br label %for.body
+
+for.body:
+  %i = phi i64 [ %i.next, %for.body ], [ %n, %entry ]
+  %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
+  %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
+  %tmp2 = load i32, i32* %tmp1, align 8
+  %tmp3 = add i32 %tmp0, %tmp2
+  %i.next = add nuw nsw i64 %i, -1
+  %cond = icmp sgt i64 %i.next, 0
+  br i1 %cond, label %for.body, label %for.end
+
+for.end:
+  %tmp4 = phi i32 [ %tmp3, %for.body ]
+  ret i32 %tmp4
+}
+; CHECK-LABEL: interleaved_access_forward
+;
+; Check that a consecutive-like pointer used by a forward interleaved group is
+; recognized as uniform and remains uniform after vectorization. When
+; interleaved memory accesses aren't enabled, the pointer should not be
+; recognized as uniform, and it should not be uniform after vectorization.
+;
+; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+; CHECK-NOT: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
+; CHECK:     vector.body
+; CHECK:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK:       %[[I1:.+]] = or i64 %index, 1
+; CHECK:       %[[I2:.+]] = or i64 %index, 2
+; CHECK:       %[[I3:.+]] = or i64 %index, 3
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %index, i32 1
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 1
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 1
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 1
+; CHECK:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+; INTER:     LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+; INTER:     LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
+; INTER:     vector.body
+; INTER:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; INTER-NOT:   getelementptr
+; INTER:       getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0
+; INTER-NOT:   getelementptr
+; INTER:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define i32 @interleaved_access_forward(%pair* %p, i64 %n) {
+entry:
+  br label %for.body
+
+for.body:
+  %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+  %tmp0 = phi i32 [ %tmp6, %for.body ], [ 0, %entry ]
+  %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+  %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
+  %tmp3 = load i32, i32* %tmp1, align 8
+  %tmp4 = load i32, i32* %tmp2, align 8
+  %tmp5 = add i32 %tmp3, %tmp4
+  %tmp6 = add i32 %tmp0, %tmp5
+  %i.next = add nuw nsw i64 %i, 1
+  %cond = icmp slt i64 %i.next, %n
+  br i1 %cond, label %for.body, label %for.end
+
+for.end:
+  %tmp14 = phi i32 [ %tmp6, %for.body ]
+  ret i32 %tmp14
+}
+
+; CHECK-LABEL: interleaved_access_reverse
+;
+; Check that a consecutive-like pointer used by a reverse interleaved group is
+; recognized as uniform and remains uniform after vectorization. When
+; interleaved memory accesses aren't enabled, the pointer should not be
+; recognized as uniform, and it should not be uniform after vectorization.
+;
+; recognized as uniform, and it should not be uniform after vectorization.
+; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+; CHECK-NOT: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
+; CHECK:     vector.body
+; CHECK:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK:       %offset.idx = sub i64 %n, %index
+; CHECK:       %[[I1:.+]] = add i64 %offset.idx, -1
+; CHECK:       %[[I2:.+]] = add i64 %offset.idx, -2
+; CHECK:       %[[I3:.+]] = add i64 %offset.idx, -3
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 1
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 1
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 1
+; CHECK:       getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 1
+; CHECK:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+; INTER:     LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+; INTER:     LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
+; INTER:     vector.body
+; INTER:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; INTER:       %offset.idx = sub i64 %n, %index
+; INTER-NOT:   getelementptr
+; INTER:       %[[G0:.+]] = getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 0
+; INTER:       getelementptr i32, i32* %[[G0]], i64 -6
+; INTER-NOT:   getelementptr
+; INTER:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define i32 @interleaved_access_reverse(%pair* %p, i64 %n) {
+entry:
+  br label %for.body
+
+for.body:
+  %i = phi i64 [ %i.next, %for.body ], [ %n, %entry ]
+  %tmp0 = phi i32 [ %tmp6, %for.body ], [ 0, %entry ]
+  %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+  %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
+  %tmp3 = load i32, i32* %tmp1, align 8
+  %tmp4 = load i32, i32* %tmp2, align 8
+  %tmp5 = add i32 %tmp3, %tmp4
+  %tmp6 = add i32 %tmp0, %tmp5
+  %i.next = add nuw nsw i64 %i, -1
+  %cond = icmp sgt i64 %i.next, 0
+  br i1 %cond, label %for.body, label %for.end
+
+for.end:
+  %tmp14 = phi i32 [ %tmp6, %for.body ]
+  ret i32 %tmp14
+}
+
+; CHECK-LABEL: predicated_store
+;
+; Check that a consecutive-like pointer used by a forward interleaved group and
+; scalarized store is not recognized as uniform and is not uniform after
+; vectorization. The store is scalarized because it's in a predicated block.
+; Even though the load in this example is vectorized and only uses the pointer
+; as if it were uniform, the store is scalarized, making the pointer
+; non-uniform.
+;
+; INTER-NOT: LV: Found uniform instruction: %tmp0 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+; INTER:     vector.body
+; INTER:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, {{.*}} ]
+; INTER:       %[[I1:.+]] = or i64 %index, 1
+; INTER:       %[[I2:.+]] = or i64 %index, 2
+; INTER:       %[[I3:.+]] = or i64 %index, 3
+; INTER:       %[[G0:.+]] = getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0
+; INTER:       getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0
+; INTER:       getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0
+; INTER:       getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0
+; INTER:       %[[B0:.+]] = bitcast i32* %[[G0]] to <8 x i32>*
+; INTER:       %wide.vec = load <8 x i32>, <8 x i32>* %[[B0]], align 8
+; INTER:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define void @predicated_store(%pair *%p, i32 %x, i64 %n) {
+entry:
+  br label %for.body
+
+for.body:
+  %i  = phi i64 [ %i.next, %if.merge ], [ 0, %entry ]
+  %tmp0 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
+  %tmp1 = load i32, i32* %tmp0, align 8
+  %tmp2 = icmp eq i32 %tmp1, %x
+  br i1 %tmp2, label %if.then, label %if.merge
+
+if.then:
+  store i32 %tmp1, i32* %tmp0, align 8
+  br label %if.merge
+
+if.merge:
+  %i.next = add nuw nsw i64 %i, 1
+  %cond = icmp slt i64 %i.next, %n
+  br i1 %cond, label %for.body, label %for.end
+
+for.end:
+  ret void
+}
+
+; CHECK-LABEL: irregular_type
+;
+; Check that a consecutive pointer used by a scalarized store is not recognized
+; as uniform and is not uniform after vectorization. The store is scalarized
+; because the stored type may required padding.
+;
+; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %i
+; CHECK:     vector.body
+; CHECK:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK:       %[[I1:.+]] = or i64 %index, 1
+; CHECK:       %[[I2:.+]] = or i64 %index, 2
+; CHECK:       %[[I3:.+]] = or i64 %index, 3
+; CHECK:       getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %index
+; CHECK:       getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I1]]
+; CHECK:       getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I2]]
+; CHECK:       getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I3]]
+; CHECK:       br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define void @irregular_type(x86_fp80* %a, i64 %n) {
+entry:
+  br label %for.body
+
+for.body:
+  %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
+  %tmp0 = sitofp i32 1 to x86_fp80
+  %tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %i
+  store x86_fp80 %tmp0, x86_fp80* %tmp1, align 16
+  %i.next = add i64 %i, 1
+  %cond = icmp slt i64 %i.next, %n
+  br i1 %cond, label %for.body, label %for.end
+
+for.end:
+  ret void
+}




More information about the llvm-commits mailing list