[llvm] r261392 - [SCEV] Don't use std::make_pair; NFC
Sanjoy Das via llvm-commits
llvm-commits at lists.llvm.org
Fri Feb 19 17:35:56 PST 2016
Author: sanjoy
Date: Fri Feb 19 19:35:56 2016
New Revision: 261392
URL: http://llvm.org/viewvc/llvm-project?rev=261392&view=rev
Log:
[SCEV] Don't use std::make_pair; NFC
`{A, B}` reads cleaner than `std::make_pair(A, B)`.
Modified:
llvm/trunk/lib/Analysis/ScalarEvolution.cpp
Modified: llvm/trunk/lib/Analysis/ScalarEvolution.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ScalarEvolution.cpp?rev=261392&r1=261391&r2=261392&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/ScalarEvolution.cpp (original)
+++ llvm/trunk/lib/Analysis/ScalarEvolution.cpp Fri Feb 19 19:35:56 2016
@@ -1903,7 +1903,7 @@ CollectAddOperandsWithScales(DenseMap<co
// the map.
SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
const SCEV *Key = SE.getMulExpr(MulOps);
- auto Pair = M.insert(std::make_pair(Key, NewScale));
+ auto Pair = M.insert({Key, NewScale});
if (Pair.second) {
NewOps.push_back(Pair.first->first);
} else {
@@ -1916,7 +1916,7 @@ CollectAddOperandsWithScales(DenseMap<co
} else {
// An ordinary operand. Update the map.
std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Ops[i], Scale));
+ M.insert({Ops[i], Scale});
if (Pair.second) {
NewOps.push_back(Pair.first->first);
} else {
@@ -3346,7 +3346,7 @@ bool ScalarEvolution::containsAddRecurre
FindAddRecurrence F;
SCEVTraversal<FindAddRecurrence> ST(F);
ST.visitAll(S);
- HasRecMap.insert(std::make_pair(S, F.FoundOne));
+ HasRecMap.insert({S, F.FoundOne});
return F.FoundOne;
}
@@ -3393,7 +3393,7 @@ const SCEV *ScalarEvolution::getSCEV(Val
// V, so it is needed to double check whether V->S is inserted into
// ValueExprMap before insert S->V into ExprValueMap.
std::pair<ValueExprMapType::iterator, bool> Pair =
- ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
+ ValueExprMap.insert({SCEVCallbackVH(V, this), S});
if (Pair.second)
ExprValueMap[S].insert(V);
}
@@ -3788,7 +3788,7 @@ const SCEV *ScalarEvolution::createAddRe
const SCEV *SymbolicName = getUnknown(PN);
assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
"PHI node already processed?");
- ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
+ ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
// Using this symbolic name for the PHI, analyze the value coming around
// the back-edge.
@@ -5018,7 +5018,7 @@ ScalarEvolution::getBackedgeTakenInfo(co
// code elsewhere that it shouldn't attempt to request a new
// backedge-taken count, which could result in infinite recursion.
std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
- BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
+ BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
if (!Pair.second)
return Pair.first->second;
@@ -5285,7 +5285,7 @@ ScalarEvolution::computeBackedgeTakenCou
// we won't be able to compute an exact value for the loop.
CouldComputeBECount = false;
else
- ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
+ ExitCounts.push_back({ExitBB, EL.Exact});
// 2. Derive the loop's MaxBECount from each exit's max number of
// non-exiting iterations. Partition the loop exits into two kinds:
@@ -6571,7 +6571,7 @@ SolveQuadraticEquation(const SCEVAddRecE
// We currently can only solve this if the coefficients are constants.
if (!LC || !MC || !NC) {
const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
+ return {CNC, CNC};
}
uint32_t BitWidth = LC->getAPInt().getBitWidth();
@@ -6600,7 +6600,7 @@ SolveQuadraticEquation(const SCEVAddRecE
if (SqrtTerm.isNegative()) {
// The loop is provably infinite.
const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
+ return {CNC, CNC};
}
// Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
@@ -6613,7 +6613,7 @@ SolveQuadraticEquation(const SCEVAddRecE
APInt TwoA(A << 1);
if (TwoA.isMinValue()) {
const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
+ return {CNC, CNC};
}
LLVMContext &Context = SE.getContext();
@@ -6623,8 +6623,7 @@ SolveQuadraticEquation(const SCEVAddRecE
ConstantInt *Solution2 =
ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
- return std::make_pair(SE.getConstant(Solution1),
- SE.getConstant(Solution2));
+ return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
} // end APIntOps namespace
}
@@ -6834,15 +6833,15 @@ ScalarEvolution::getPredecessorWithUniqu
// predecessor to the block that does not go through the direct edge
// from the predecessor to the block.
if (BasicBlock *Pred = BB->getSinglePredecessor())
- return std::make_pair(Pred, BB);
+ return {Pred, BB};
// A loop's header is defined to be a block that dominates the loop.
// If the header has a unique predecessor outside the loop, it must be
// a block that has exactly one successor that can reach the loop.
if (Loop *L = LI.getLoopFor(BB))
- return std::make_pair(L->getLoopPredecessor(), L->getHeader());
+ return {L->getLoopPredecessor(), L->getHeader()};
- return std::pair<BasicBlock *, BasicBlock *>();
+ return {nullptr, nullptr};
}
/// HasSameValue - SCEV structural equivalence is usually sufficient for
More information about the llvm-commits
mailing list