[llvm] r257480 - RDF: Implement register liveness analysis
Krzysztof Parzyszek via llvm-commits
llvm-commits at lists.llvm.org
Tue Jan 12 07:56:34 PST 2016
Author: kparzysz
Date: Tue Jan 12 09:56:33 2016
New Revision: 257480
URL: http://llvm.org/viewvc/llvm-project?rev=257480&view=rev
Log:
RDF: Implement register liveness analysis
Compute block live-ins and operand kill flags from the DFG.
Added:
llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp
llvm/trunk/lib/Target/Hexagon/RDFLiveness.h
Modified:
llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
Modified: llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/CMakeLists.txt?rev=257480&r1=257479&r2=257480&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/CMakeLists.txt (original)
+++ llvm/trunk/lib/Target/Hexagon/CMakeLists.txt Tue Jan 12 09:56:33 2016
@@ -50,6 +50,7 @@ add_llvm_target(HexagonCodeGen
HexagonTargetTransformInfo.cpp
HexagonVLIWPacketizer.cpp
RDFGraph.cpp
+ RDFLiveness.cpp
)
add_subdirectory(AsmParser)
Added: llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp?rev=257480&view=auto
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp (added)
+++ llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp Tue Jan 12 09:56:33 2016
@@ -0,0 +1,848 @@
+//===--- RDFLiveness.cpp --------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Computation of the liveness information from the data-flow graph.
+//
+// The main functionality of this code is to compute block live-in
+// information. With the live-in information in place, the placement
+// of kill flags can also be recalculated.
+//
+// The block live-in calculation is based on the ideas from the following
+// publication:
+//
+// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
+// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
+// ACM Transactions on Architecture and Code Optimization, Association for
+// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
+// and Embedded Architectures and Compilers", 8 (4),
+// <10.1145/2086696.2086706>. <hal-00647369>
+//
+#include "RDFGraph.h"
+#include "RDFLiveness.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominanceFrontier.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+using namespace rdf;
+
+namespace rdf {
+ template<>
+ raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
+ OS << '{';
+ for (auto I : P.Obj) {
+ OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{';
+ for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
+ OS << Print<NodeId>(*J, P.G);
+ if (++J != E)
+ OS << ',';
+ }
+ OS << '}';
+ }
+ OS << " }";
+ return OS;
+ }
+}
+
+// The order in the returned sequence is the order of reaching defs in the
+// upward traversal: the first def is the closest to the given reference RefA,
+// the next one is further up, and so on.
+// The list ends at a reaching phi def, or when the reference from RefA is
+// covered by the defs in the list (see FullChain).
+// This function provides two modes of operation:
+// (1) Returning the sequence of reaching defs for a particular reference
+// node. This sequence will terminate at the first phi node [1].
+// (2) Returning a partial sequence of reaching defs, where the final goal
+// is to traverse past phi nodes to the actual defs arising from the code
+// itself.
+// In mode (2), the register reference for which the search was started
+// may be different from the reference node RefA, for which this call was
+// made, hence the argument RefRR, which holds the original register.
+// Also, some definitions may have already been encountered in a previous
+// call that will influence register covering. The register references
+// already defined are passed in through DefRRs.
+// In mode (1), the "continuation" considerations do not apply, and the
+// RefRR is the same as the register in RefA, and the set DefRRs is empty.
+//
+// [1] It is possible for multiple phi nodes to be included in the returned
+// sequence:
+// SubA = phi ...
+// SubB = phi ...
+// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
+// However, these phi nodes are independent from one another in terms of
+// the data-flow.
+
+NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
+ NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) {
+ SetVector<NodeId> DefQ;
+ SetVector<NodeId> Owners;
+
+ // The initial queue should not have reaching defs for shadows. The
+ // whole point of a shadow is that it will have a reaching def that
+ // is not aliased to the reaching defs of the related shadows.
+ NodeId Start = RefA.Id;
+ auto SNA = DFG.addr<RefNode*>(Start);
+ if (NodeId RD = SNA.Addr->getReachingDef())
+ DefQ.insert(RD);
+
+ // Collect all the reaching defs, going up until a phi node is encountered,
+ // or there are no more reaching defs. From this set, the actual set of
+ // reaching defs will be selected.
+ // The traversal upwards must go on until a covering def is encountered.
+ // It is possible that a collection of non-covering (individually) defs
+ // will be sufficient, but keep going until a covering one is found.
+ for (unsigned i = 0; i < DefQ.size(); ++i) {
+ auto TA = DFG.addr<DefNode*>(DefQ[i]);
+ if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
+ continue;
+ // Stop at the covering/overwriting def of the initial register reference.
+ RegisterRef RR = TA.Addr->getRegRef();
+ if (RAI.covers(RR, RefRR)) {
+ uint16_t Flags = TA.Addr->getFlags();
+ if (!(Flags & NodeAttrs::Preserving))
+ continue;
+ }
+ // Get the next level of reaching defs. This will include multiple
+ // reaching defs for shadows.
+ for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
+ if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
+ DefQ.insert(RD);
+ }
+
+ // Remove all non-phi defs that are not aliased to RefRR, and collect
+ // the owners of the remaining defs.
+ SetVector<NodeId> Defs;
+ for (auto N : DefQ) {
+ auto TA = DFG.addr<DefNode*>(N);
+ bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
+ if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef()))
+ continue;
+ Defs.insert(TA.Id);
+ Owners.insert(TA.Addr->getOwner(DFG).Id);
+ }
+
+ // Return the MachineBasicBlock containing a given instruction.
+ auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
+ if (IA.Addr->getKind() == NodeAttrs::Stmt)
+ return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
+ assert(IA.Addr->getKind() == NodeAttrs::Phi);
+ NodeAddr<PhiNode*> PA = IA;
+ NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
+ return BA.Addr->getCode();
+ };
+ // Less(A,B) iff instruction A is further down in the dominator tree than B.
+ auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
+ if (A == B)
+ return false;
+ auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
+ MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
+ if (BA != BB)
+ return MDT.dominates(BB, BA);
+ // They are in the same block.
+ bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
+ bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
+ if (StmtA) {
+ if (!StmtB) // OB is a phi and phis dominate statements.
+ return true;
+ auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
+ auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
+ // The order must be linear, so tie-break such equalities.
+ if (CA == CB)
+ return A < B;
+ return MDT.dominates(CB, CA);
+ } else {
+ // OA is a phi.
+ if (StmtB)
+ return false;
+ // Both are phis. There is no ordering between phis (in terms of
+ // the data-flow), so tie-break this via node id comparison.
+ return A < B;
+ }
+ };
+
+ std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
+ std::sort(Tmp.begin(), Tmp.end(), Less);
+
+ // The vector is a list of instructions, so that defs coming from
+ // the same instruction don't need to be artificially ordered.
+ // Then, when computing the initial segment, and iterating over an
+ // instruction, pick the defs that contribute to the covering (i.e. is
+ // not covered by previously added defs). Check the defs individually,
+ // i.e. first check each def if is covered or not (without adding them
+ // to the tracking set), and then add all the selected ones.
+
+ // The reason for this is this example:
+ // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
+ // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
+ // covered if we added A first, and A would be covered
+ // if we added B first.
+
+ NodeList RDefs;
+ RegisterSet RRs = DefRRs;
+
+ auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
+ return TA.Addr->getKind() == NodeAttrs::Def &&
+ Defs.count(TA.Id);
+ };
+ for (auto T : Tmp) {
+ if (!FullChain && RAI.covers(RRs, RefRR))
+ break;
+ auto TA = DFG.addr<InstrNode*>(T);
+ bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
+ NodeList Ds;
+ for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
+ auto QR = DA.Addr->getRegRef();
+ // Add phi defs even if they are covered by subsequent defs. This is
+ // for cases where the reached use is not covered by any of the defs
+ // encountered so far: the phi def is needed to expose the liveness
+ // of that use to the entry of the block.
+ // Example:
+ // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
+ // d2<R3>(d1,,u3), ...
+ // ..., u3<D1>(d2) This use needs to be live on entry.
+ if (FullChain || IsPhi || !RAI.covers(RRs, QR))
+ Ds.push_back(DA);
+ }
+ RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
+ for (NodeAddr<DefNode*> DA : Ds) {
+ // When collecting a full chain of definitions, do not consider phi
+ // defs to actually define a register.
+ uint16_t Flags = DA.Addr->getFlags();
+ if (!FullChain || !(Flags & NodeAttrs::PhiRef))
+ if (!(Flags & NodeAttrs::Preserving))
+ RRs.insert(DA.Addr->getRegRef());
+ }
+ }
+
+ return RDefs;
+}
+
+
+static const RegisterSet NoRegs;
+
+NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) {
+ return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs);
+}
+
+
+void Liveness::computePhiInfo() {
+ NodeList Phis;
+ NodeAddr<FuncNode*> FA = DFG.getFunc();
+ auto Blocks = FA.Addr->members(DFG);
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+ Phis.insert(Phis.end(), Ps.begin(), Ps.end());
+ }
+
+ // phi use -> (map: reaching phi -> set of registers defined in between)
+ std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp;
+ std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
+
+ // Go over all phis.
+ for (NodeAddr<PhiNode*> PhiA : Phis) {
+ // Go over all defs and collect the reached uses that are non-phi uses
+ // (i.e. the "real uses").
+ auto &RealUses = RealUseMap[PhiA.Id];
+ auto PhiRefs = PhiA.Addr->members(DFG);
+
+ // Have a work queue of defs whose reached uses need to be found.
+ // For each def, add to the queue all reached (non-phi) defs.
+ SetVector<NodeId> DefQ;
+ NodeSet PhiDefs;
+ for (auto R : PhiRefs) {
+ if (!DFG.IsRef<NodeAttrs::Def>(R))
+ continue;
+ DefQ.insert(R.Id);
+ PhiDefs.insert(R.Id);
+ }
+ for (unsigned i = 0; i < DefQ.size(); ++i) {
+ NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
+ NodeId UN = DA.Addr->getReachedUse();
+ while (UN != 0) {
+ NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
+ if (!(A.Addr->getFlags() & NodeAttrs::PhiRef))
+ RealUses[getRestrictedRegRef(A)].insert(A.Id);
+ UN = A.Addr->getSibling();
+ }
+ NodeId DN = DA.Addr->getReachedDef();
+ while (DN != 0) {
+ NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
+ for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
+ uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
+ // Must traverse the reached-def chain. Consider:
+ // def(D0) -> def(R0) -> def(R0) -> use(D0)
+ // The reachable use of D0 passes through a def of R0.
+ if (!(Flags & NodeAttrs::PhiRef))
+ DefQ.insert(T.Id);
+ }
+ DN = A.Addr->getSibling();
+ }
+ }
+ // Filter out these uses that appear to be reachable, but really
+ // are not. For example:
+ //
+ // R1:0 = d1
+ // = R1:0 u2 Reached by d1.
+ // R0 = d3
+ // = R1:0 u4 Still reached by d1: indirectly through
+ // the def d3.
+ // R1 = d5
+ // = R1:0 u6 Not reached by d1 (covered collectively
+ // by d3 and d5), but following reached
+ // defs and uses from d1 will lead here.
+ auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
+ return PhiDefs.count(DA.Id);
+ };
+ for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
+ // For each reached register UI->first, there is a set UI->second, of
+ // uses of it. For each such use, check if it is reached by this phi,
+ // i.e. check if the set of its reaching uses intersects the set of
+ // this phi's defs.
+ auto &Uses = UI->second;
+ for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
+ auto UA = DFG.addr<UseNode*>(*I);
+ NodeList RDs = getAllReachingDefs(UI->first, UA);
+ if (std::any_of(RDs.begin(), RDs.end(), HasDef))
+ ++I;
+ else
+ I = Uses.erase(I);
+ }
+ if (Uses.empty())
+ UI = RealUses.erase(UI);
+ else
+ ++UI;
+ }
+
+ // If this phi reaches some "real" uses, add it to the queue for upward
+ // propagation.
+ if (!RealUses.empty())
+ PhiUQ.push_back(PhiA.Id);
+
+ // Go over all phi uses and check if the reaching def is another phi.
+ // Collect the phis that are among the reaching defs of these uses.
+ // While traversing the list of reaching defs for each phi use, collect
+ // the set of registers defined between this phi (Phi) and the owner phi
+ // of the reaching def.
+ for (auto I : PhiRefs) {
+ if (!DFG.IsRef<NodeAttrs::Use>(I))
+ continue;
+ NodeAddr<UseNode*> UA = I;
+ auto &UpMap = PhiUp[UA.Id];
+ RegisterSet DefRRs;
+ for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) {
+ if (DA.Addr->getFlags() & NodeAttrs::PhiRef)
+ UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs;
+ else
+ DefRRs.insert(DA.Addr->getRegRef());
+ }
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "Phi-up-to-phi map:\n";
+ for (auto I : PhiUp) {
+ dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
+ for (auto R : I.second)
+ dbgs() << ' ' << Print<NodeId>(R.first, DFG)
+ << Print<RegisterSet>(R.second, DFG);
+ dbgs() << " }\n";
+ }
+ }
+
+ // Propagate the reached registers up in the phi chain.
+ //
+ // The following type of situation needs careful handling:
+ //
+ // phi d1<R1:0> (1)
+ // |
+ // ... d2<R1>
+ // |
+ // phi u3<R1:0> (2)
+ // |
+ // ... u4<R1>
+ //
+ // The phi node (2) defines a register pair R1:0, and reaches a "real"
+ // use u4 of just R1. The same phi node is also known to reach (upwards)
+ // the phi node (1). However, the use u4 is not reached by phi (1),
+ // because of the intervening definition d2 of R1. The data flow between
+ // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
+ //
+ // When propagating uses up the phi chains, get the all reaching defs
+ // for a given phi use, and traverse the list until the propagated ref
+ // is covered, or until or until reaching the final phi. Only assume
+ // that the reference reaches the phi in the latter case.
+
+ for (unsigned i = 0; i < PhiUQ.size(); ++i) {
+ auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
+ auto &RealUses = RealUseMap[PA.Id];
+ for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+ NodeAddr<UseNode*> UA = U;
+ auto &UpPhis = PhiUp[UA.Id];
+ for (auto UP : UpPhis) {
+ bool Changed = false;
+ auto &MidDefs = UP.second;
+ // Collect the set UpReached of uses that are reached by the current
+ // phi PA, and are not covered by any intervening def between PA and
+ // the upward phi UP.
+ RegisterSet UpReached;
+ for (auto T : RealUses) {
+ if (!isRestricted(PA, UA, T.first))
+ continue;
+ if (!RAI.covers(MidDefs, T.first))
+ UpReached.insert(T.first);
+ }
+ if (UpReached.empty())
+ continue;
+ // Update the set PRUs of real uses reached by the upward phi UP with
+ // the actual set of uses (UpReached) that the UP phi reaches.
+ auto &PRUs = RealUseMap[UP.first];
+ for (auto R : UpReached) {
+ unsigned Z = PRUs[R].size();
+ PRUs[R].insert(RealUses[R].begin(), RealUses[R].end());
+ Changed |= (PRUs[R].size() != Z);
+ }
+ if (Changed)
+ PhiUQ.push_back(UP.first);
+ }
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "Real use map:\n";
+ for (auto I : RealUseMap) {
+ dbgs() << "phi " << Print<NodeId>(I.first, DFG);
+ NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
+ NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
+ if (!Ds.empty()) {
+ RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef();
+ dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
+ } else {
+ dbgs() << "<noreg>";
+ }
+ dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
+ }
+ }
+}
+
+
+void Liveness::computeLiveIns() {
+ // Populate the node-to-block map. This speeds up the calculations
+ // significantly.
+ NBMap.clear();
+ for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
+ MachineBasicBlock *BB = BA.Addr->getCode();
+ for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
+ for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
+ NBMap.insert(std::make_pair(RA.Id, BB));
+ NBMap.insert(std::make_pair(IA.Id, BB));
+ }
+ }
+
+ MachineFunction &MF = DFG.getMF();
+
+ // Compute IDF first, then the inverse.
+ decltype(IIDF) IDF;
+ for (auto &B : MF) {
+ auto F1 = MDF.find(&B);
+ if (F1 == MDF.end())
+ continue;
+ SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
+ for (unsigned i = 0; i < IDFB.size(); ++i) {
+ auto F2 = MDF.find(IDFB[i]);
+ if (F2 != MDF.end())
+ IDFB.insert(F2->second.begin(), F2->second.end());
+ }
+ // Add B to the IDF(B). This will put B in the IIDF(B).
+ IDFB.insert(&B);
+ IDF[&B].insert(IDFB.begin(), IDFB.end());
+ }
+
+ for (auto I : IDF)
+ for (auto S : I.second)
+ IIDF[S].insert(I.first);
+
+ computePhiInfo();
+
+ NodeAddr<FuncNode*> FA = DFG.getFunc();
+ auto Blocks = FA.Addr->members(DFG);
+
+ // Build the phi live-on-entry map.
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ MachineBasicBlock *MB = BA.Addr->getCode();
+ auto &LON = PhiLON[MB];
+ for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
+ for (auto S : RealUseMap[P.Id])
+ LON[S.first].insert(S.second.begin(), S.second.end());
+ }
+
+ if (Trace) {
+ dbgs() << "Phi live-on-entry map:\n";
+ for (auto I : PhiLON)
+ dbgs() << "block #" << I.first->getNumber() << " -> "
+ << Print<RefMap>(I.second, DFG) << '\n';
+ }
+
+ // Build the phi live-on-exit map. Each phi node has some set of reached
+ // "real" uses. Propagate this set backwards into the block predecessors
+ // through the reaching defs of the corresponding phi uses.
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+ for (NodeAddr<PhiNode*> PA : Phis) {
+ auto &RUs = RealUseMap[PA.Id];
+ if (RUs.empty())
+ continue;
+
+ for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+ NodeAddr<PhiUseNode*> UA = U;
+ if (UA.Addr->getReachingDef() == 0)
+ continue;
+
+ // Mark all reached "real" uses of P as live on exit in the
+ // predecessor.
+ // Remap all the RUs so that they have a correct reaching def.
+ auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor());
+ auto &LOX = PhiLOX[PrA.Addr->getCode()];
+ for (auto R : RUs) {
+ RegisterRef RR = R.first;
+ if (!isRestricted(PA, UA, RR))
+ RR = getRestrictedRegRef(UA);
+ // The restricted ref may be different from the ref that was
+ // accessed in the "real use". This means that this phi use
+ // is not the one that carries this reference, so skip it.
+ if (!RAI.alias(R.first, RR))
+ continue;
+ for (auto D : getAllReachingDefs(RR, UA))
+ LOX[RR].insert(D.Id);
+ }
+ } // for U : phi uses
+ } // for P : Phis
+ } // for B : Blocks
+
+ if (Trace) {
+ dbgs() << "Phi live-on-exit map:\n";
+ for (auto I : PhiLOX)
+ dbgs() << "block #" << I.first->getNumber() << " -> "
+ << Print<RefMap>(I.second, DFG) << '\n';
+ }
+
+ RefMap LiveIn;
+ traverse(&MF.front(), LiveIn);
+
+ // Add function live-ins to the live-in set of the function entry block.
+ auto &EntryIn = LiveMap[&MF.front()];
+ for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I)
+ EntryIn.insert({I->first,0});
+
+ if (Trace) {
+ // Dump the liveness map
+ for (auto &B : MF) {
+ BitVector LV(TRI.getNumRegs());
+ for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+ LV.set(I->PhysReg);
+ dbgs() << "BB#" << B.getNumber() << "\t rec = {";
+ for (int x = LV.find_first(); x >= 0; x = LV.find_next(x))
+ dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG);
+ dbgs() << " }\n";
+ dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n';
+ }
+ }
+}
+
+
+void Liveness::resetLiveIns() {
+ for (auto &B : DFG.getMF()) {
+ // Remove all live-ins.
+ std::vector<unsigned> T;
+ for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+ T.push_back(I->PhysReg);
+ for (auto I : T)
+ B.removeLiveIn(I);
+ // Add the newly computed live-ins.
+ auto &LiveIns = LiveMap[&B];
+ for (auto I : LiveIns) {
+ assert(I.Sub == 0);
+ B.addLiveIn(I.Reg);
+ }
+ }
+}
+
+
+void Liveness::resetKills() {
+ for (auto &B : DFG.getMF())
+ resetKills(&B);
+}
+
+
+void Liveness::resetKills(MachineBasicBlock *B) {
+ auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void {
+ for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I)
+ LV.set(I->PhysReg);
+ };
+
+ BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
+ CopyLiveIns(B, LiveIn);
+ for (auto SI : B->successors())
+ CopyLiveIns(SI, Live);
+
+ for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ if (MI->isDebugValue())
+ continue;
+
+ MI->clearKillInfo();
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ unsigned R = Op.getReg();
+ if (!TargetRegisterInfo::isPhysicalRegister(R))
+ continue;
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+ Live.reset(*SR);
+ }
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse())
+ continue;
+ unsigned R = Op.getReg();
+ if (!TargetRegisterInfo::isPhysicalRegister(R))
+ continue;
+ bool IsLive = false;
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) {
+ if (!Live[*SR])
+ continue;
+ IsLive = true;
+ break;
+ }
+ if (IsLive)
+ continue;
+ Op.setIsKill(true);
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+ Live.set(*SR);
+ }
+ }
+}
+
+
+// For shadows, determine if RR is aliased to a reaching def of any other
+// shadow associated with RA. If it is not, then RR is "restricted" to RA,
+// and so it can be considered a value specific to RA. This is important
+// for accurately determining values associated with phi uses.
+// For non-shadows, this function returns "true".
+bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+ RegisterRef RR) const {
+ NodeId Start = RA.Id;
+ for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA);
+ TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) {
+ NodeId RD = TA.Addr->getReachingDef();
+ if (RD == 0)
+ continue;
+ if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef()))
+ return false;
+ }
+ return true;
+}
+
+
+RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const {
+ assert(DFG.IsRef<NodeAttrs::Use>(RA));
+ if (RA.Addr->getFlags() & NodeAttrs::Shadow) {
+ NodeId RD = RA.Addr->getReachingDef();
+ assert(RD);
+ RA = DFG.addr<DefNode*>(RD);
+ }
+ return RA.Addr->getRegRef();
+}
+
+
+unsigned Liveness::getPhysReg(RegisterRef RR) const {
+ if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg))
+ return 0;
+ return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg;
+}
+
+
+// Helper function to obtain the basic block containing the reaching def
+// of the given use.
+MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
+ auto F = NBMap.find(RN);
+ if (F != NBMap.end())
+ return F->second;
+ llvm_unreachable("Node id not in map");
+}
+
+
+void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
+ // The LiveIn map, for each (physical) register, contains the set of live
+ // reaching defs of that register that are live on entry to the associated
+ // block.
+
+ // The summary of the traversal algorithm:
+ //
+ // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
+ // and (U \in IDF(B) or B dom U).
+ //
+ // for (C : children) {
+ // LU = {}
+ // traverse(C, LU)
+ // LiveUses += LU
+ // }
+ //
+ // LiveUses -= Defs(B);
+ // LiveUses += UpwardExposedUses(B);
+ // for (C : IIDF[B])
+ // for (U : LiveUses)
+ // if (Rdef(U) dom C)
+ // C.addLiveIn(U)
+ //
+
+ // Go up the dominator tree (depth-first).
+ MachineDomTreeNode *N = MDT.getNode(B);
+ for (auto I : *N) {
+ RefMap L;
+ MachineBasicBlock *SB = I->getBlock();
+ traverse(SB, L);
+
+ for (auto S : L)
+ LiveIn[S.first].insert(S.second.begin(), S.second.end());
+ }
+
+ if (Trace) {
+ dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber()
+ << " after recursion into";
+ for (auto I : *N)
+ dbgs() << ' ' << I->getBlock()->getNumber();
+ dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG);
+ dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Add phi uses that are live on exit from this block.
+ RefMap &PUs = PhiLOX[B];
+ for (auto S : PUs)
+ LiveIn[S.first].insert(S.second.begin(), S.second.end());
+
+ if (Trace) {
+ dbgs() << "after LOX\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Stop tracking all uses defined in this block: erase those records
+ // where the reaching def is located in B and which cover all reached
+ // uses.
+ auto Copy = LiveIn;
+ LiveIn.clear();
+
+ for (auto I : Copy) {
+ auto &Defs = LiveIn[I.first];
+ NodeSet Rest;
+ for (auto R : I.second) {
+ auto DA = DFG.addr<DefNode*>(R);
+ RegisterRef DDR = DA.Addr->getRegRef();
+ NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
+ NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+ // Defs from a different block need to be preserved. Defs from this
+ // block will need to be processed further, except for phi defs, the
+ // liveness of which is handled through the PhiLON/PhiLOX maps.
+ if (B != BA.Addr->getCode())
+ Defs.insert(R);
+ else {
+ bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving;
+ if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) {
+ bool Covering = RAI.covers(DDR, I.first);
+ NodeId U = DA.Addr->getReachedUse();
+ while (U && Covering) {
+ auto DUA = DFG.addr<UseNode*>(U);
+ RegisterRef Q = DUA.Addr->getRegRef();
+ Covering = RAI.covers(DA.Addr->getRegRef(), Q);
+ U = DUA.Addr->getSibling();
+ }
+ if (!Covering)
+ Rest.insert(R);
+ }
+ }
+ }
+
+ // Non-covering defs from B.
+ for (auto R : Rest) {
+ auto DA = DFG.addr<DefNode*>(R);
+ RegisterRef DRR = DA.Addr->getRegRef();
+ RegisterSet RRs;
+ for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
+ NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
+ NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+ // Preserving defs do not count towards covering.
+ if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
+ RRs.insert(TA.Addr->getRegRef());
+ if (BA.Addr->getCode() == B)
+ continue;
+ if (RAI.covers(RRs, DRR))
+ break;
+ Defs.insert(TA.Id);
+ }
+ }
+ }
+
+ emptify(LiveIn);
+
+ if (Trace) {
+ dbgs() << "after defs in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Scan the block for upward-exposed uses and add them to the tracking set.
+ for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
+ NodeAddr<InstrNode*> IA = I;
+ if (IA.Addr->getKind() != NodeAttrs::Stmt)
+ continue;
+ for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
+ RegisterRef RR = UA.Addr->getRegRef();
+ for (auto D : getAllReachingDefs(UA))
+ if (getBlockWithRef(D.Id) != B)
+ LiveIn[RR].insert(D.Id);
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "after uses in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Phi uses should not be propagated up the dominator tree, since they
+ // are not dominated by their corresponding reaching defs.
+ auto &Local = LiveMap[B];
+ auto &LON = PhiLON[B];
+ for (auto R : LON)
+ Local.insert(R.first);
+
+ if (Trace) {
+ dbgs() << "after phi uses in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n';
+ }
+
+ for (auto C : IIDF[B]) {
+ auto &LiveC = LiveMap[C];
+ for (auto S : LiveIn)
+ for (auto R : S.second)
+ if (MDT.properlyDominates(getBlockWithRef(R), C))
+ LiveC.insert(S.first);
+ }
+}
+
+
+void Liveness::emptify(RefMap &M) {
+ for (auto I = M.begin(), E = M.end(); I != E; )
+ I = I->second.empty() ? M.erase(I) : std::next(I);
+}
+
Added: llvm/trunk/lib/Target/Hexagon/RDFLiveness.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/RDFLiveness.h?rev=257480&view=auto
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/RDFLiveness.h (added)
+++ llvm/trunk/lib/Target/Hexagon/RDFLiveness.h Tue Jan 12 09:56:33 2016
@@ -0,0 +1,106 @@
+//===--- RDFLiveness.h ----------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Recalculate the liveness information given a data flow graph.
+// This includes block live-ins and kill flags.
+
+#ifndef RDF_LIVENESS_H
+#define RDF_LIVENESS_H
+
+#include "RDFGraph.h"
+#include "llvm/ADT/DenseMap.h"
+#include <map>
+
+using namespace llvm;
+
+namespace llvm {
+ class MachineBasicBlock;
+ class MachineFunction;
+ class MachineRegisterInfo;
+ class TargetRegisterInfo;
+ class MachineDominatorTree;
+ class MachineDominanceFrontier;
+}
+
+namespace rdf {
+ struct Liveness {
+ public:
+ typedef std::map<MachineBasicBlock*,RegisterSet> LiveMapType;
+ typedef std::map<RegisterRef,NodeSet> RefMap;
+
+ Liveness(MachineRegisterInfo &mri, const DataFlowGraph &g)
+ : DFG(g), TRI(g.getTRI()), MDT(g.getDT()), MDF(g.getDF()),
+ RAI(g.getRAI()), MRI(mri), Empty(), Trace(false) {}
+
+ NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
+ bool FullChain = false, const RegisterSet &DefRRs = RegisterSet());
+ NodeList getAllReachingDefs(NodeAddr<RefNode*> RefA);
+
+ LiveMapType &getLiveMap() { return LiveMap; }
+ const LiveMapType &getLiveMap() const { return LiveMap; }
+ const RefMap &getRealUses(NodeId P) const {
+ auto F = RealUseMap.find(P);
+ return F == RealUseMap.end() ? Empty : F->second;
+ }
+
+ void computePhiInfo();
+ void computeLiveIns();
+ void resetLiveIns();
+ void resetKills();
+ void resetKills(MachineBasicBlock *B);
+
+ void trace(bool T) { Trace = T; }
+
+ private:
+ const DataFlowGraph &DFG;
+ const TargetRegisterInfo &TRI;
+ const MachineDominatorTree &MDT;
+ const MachineDominanceFrontier &MDF;
+ const RegisterAliasInfo &RAI;
+ MachineRegisterInfo &MRI;
+ LiveMapType LiveMap;
+ const RefMap Empty;
+ bool Trace;
+
+ // Cache of mapping from node ids (for RefNodes) to the containing
+ // basic blocks. Not computing it each time for each node reduces
+ // the liveness calculation time by a large fraction.
+ typedef DenseMap<NodeId,MachineBasicBlock*> NodeBlockMap;
+ NodeBlockMap NBMap;
+
+ // Phi information:
+ //
+ // map: NodeId -> (map: RegisterRef -> NodeSet)
+ // phi id -> (map: register -> set of reached non-phi uses)
+ std::map<NodeId, RefMap> RealUseMap;
+
+ // Inverse iterated dominance frontier.
+ std::map<MachineBasicBlock*,std::set<MachineBasicBlock*>> IIDF;
+
+ // Live on entry.
+ std::map<MachineBasicBlock*,RefMap> PhiLON;
+
+ // Phi uses are considered to be located at the end of the block that
+ // they are associated with. The reaching def of a phi use dominates the
+ // block that the use corresponds to, but not the block that contains
+ // the phi itself. To include these uses in the liveness propagation (up
+ // the dominator tree), create a map: block -> set of uses live on exit.
+ std::map<MachineBasicBlock*,RefMap> PhiLOX;
+
+ bool isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+ RegisterRef RR) const;
+ RegisterRef getRestrictedRegRef(NodeAddr<RefNode*> RA) const;
+ unsigned getPhysReg(RegisterRef RR) const;
+ MachineBasicBlock *getBlockWithRef(NodeId RN) const;
+ void traverse(MachineBasicBlock *B, RefMap &LiveIn);
+ void emptify(RefMap &M);
+ };
+}
+
+#endif // RDF_LIVENESS_H
More information about the llvm-commits
mailing list