[llvm] r256973 - [LibCallSimplifier] less indenting; NFCI
Sanjay Patel via llvm-commits
llvm-commits at lists.llvm.org
Wed Jan 6 12:52:21 PST 2016
Author: spatel
Date: Wed Jan 6 14:52:21 2016
New Revision: 256973
URL: http://llvm.org/viewvc/llvm-project?rev=256973&view=rev
Log:
[LibCallSimplifier] less indenting; NFCI
Modified:
llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=256973&r1=256972&r2=256973&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
+++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Wed Jan 6 14:52:21 2016
@@ -1400,61 +1400,60 @@ Value *LibCallSimplifier::optimizeSqrt(C
if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
return Ret;
- Value *Op = CI->getArgOperand(0);
- if (Instruction *I = dyn_cast<Instruction>(Op)) {
- if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
- // We're looking for a repeated factor in a multiplication tree,
- // so we can do this fold: sqrt(x * x) -> fabs(x);
- // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- Value *RepeatOp = nullptr;
- Value *OtherOp = nullptr;
- if (Op0 == Op1) {
- // Simple match: the operands of the multiply are identical.
- RepeatOp = Op0;
- } else {
- // Look for a more complicated pattern: one of the operands is itself
- // a multiply, so search for a common factor in that multiply.
- // Note: We don't bother looking any deeper than this first level or for
- // variations of this pattern because instcombine's visitFMUL and/or the
- // reassociation pass should give us this form.
- Value *OtherMul0, *OtherMul1;
- if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
- // Pattern: sqrt((x * y) * z)
- if (OtherMul0 == OtherMul1) {
- // Matched: sqrt((x * x) * z)
- RepeatOp = OtherMul0;
- OtherOp = Op1;
- }
- }
- }
- if (RepeatOp) {
- // Fast math flags for any created instructions should match the sqrt
- // and multiply.
- // FIXME: We're not checking the sqrt because it doesn't have
- // fast-math-flags (see earlier comment).
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.SetFastMathFlags(I->getFastMathFlags());
- // If we found a repeated factor, hoist it out of the square root and
- // replace it with the fabs of that factor.
- Module *M = Callee->getParent();
- Type *ArgType = Op->getType();
- Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
- Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
- if (OtherOp) {
- // If we found a non-repeated factor, we still need to get its square
- // root. We then multiply that by the value that was simplified out
- // of the square root calculation.
- Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
- Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
- return B.CreateFMul(FabsCall, SqrtCall);
- }
- return FabsCall;
+ Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
+ if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return Ret;
+
+ // We're looking for a repeated factor in a multiplication tree,
+ // so we can do this fold: sqrt(x * x) -> fabs(x);
+ // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+ Value *RepeatOp = nullptr;
+ Value *OtherOp = nullptr;
+ if (Op0 == Op1) {
+ // Simple match: the operands of the multiply are identical.
+ RepeatOp = Op0;
+ } else {
+ // Look for a more complicated pattern: one of the operands is itself
+ // a multiply, so search for a common factor in that multiply.
+ // Note: We don't bother looking any deeper than this first level or for
+ // variations of this pattern because instcombine's visitFMUL and/or the
+ // reassociation pass should give us this form.
+ Value *OtherMul0, *OtherMul1;
+ if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
+ // Pattern: sqrt((x * y) * z)
+ if (OtherMul0 == OtherMul1) {
+ // Matched: sqrt((x * x) * z)
+ RepeatOp = OtherMul0;
+ OtherOp = Op1;
}
}
}
- return Ret;
+ if (!RepeatOp)
+ return Ret;
+
+ // Fast math flags for any created instructions should match the sqrt
+ // and multiply.
+ // FIXME: We're not checking the sqrt because it doesn't have
+ // fast-math-flags (see earlier comment).
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.SetFastMathFlags(I->getFastMathFlags());
+ // If we found a repeated factor, hoist it out of the square root and
+ // replace it with the fabs of that factor.
+ Module *M = Callee->getParent();
+ Type *ArgType = I->getType();
+ Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
+ Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
+ if (OtherOp) {
+ // If we found a non-repeated factor, we still need to get its square
+ // root. We then multiply that by the value that was simplified out
+ // of the square root calculation.
+ Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
+ Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
+ return B.CreateFMul(FabsCall, SqrtCall);
+ }
+ return FabsCall;
}
// TODO: Generalize to handle any trig function and its inverse.
More information about the llvm-commits
mailing list