[llvm] r245142 - [WebAssembly] Add Relooper

JF Bastien via llvm-commits llvm-commits at lists.llvm.org
Fri Aug 14 18:23:28 PDT 2015


Author: jfb
Date: Fri Aug 14 20:23:28 2015
New Revision: 245142

URL: http://llvm.org/viewvc/llvm-project?rev=245142&view=rev
Log:
[WebAssembly] Add Relooper

This is just an initial checkin of an implementation of the Relooper algorithm, in preparation for WebAssembly codegen to utilize. It doesn't do anything yet by itself.

The Relooper algorithm takes an arbitrary control flow graph and generates structured control flow from that, utilizing a helper variable when necessary to handle irreducibility. The WebAssembly backend will be able to use this in order to generate an AST for its binary format.

Author: azakai

Reviewers: jfb, sunfish

Subscribers: jevinskie, arsenm, jroelofs, llvm-commits

Differential revision: http://reviews.llvm.org/D11691

Added:
    llvm/trunk/lib/Target/WebAssembly/Relooper.cpp   (with props)
    llvm/trunk/lib/Target/WebAssembly/Relooper.h   (with props)
Modified:
    llvm/trunk/lib/Target/WebAssembly/CMakeLists.txt

Modified: llvm/trunk/lib/Target/WebAssembly/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/WebAssembly/CMakeLists.txt?rev=245142&r1=245141&r2=245142&view=diff
==============================================================================
--- llvm/trunk/lib/Target/WebAssembly/CMakeLists.txt (original)
+++ llvm/trunk/lib/Target/WebAssembly/CMakeLists.txt Fri Aug 14 20:23:28 2015
@@ -9,6 +9,7 @@ tablegen(LLVM WebAssemblyGenSubtargetInf
 add_public_tablegen_target(WebAssemblyCommonTableGen)
 
 add_llvm_target(WebAssemblyCodeGen
+  Relooper.cpp
   WebAssemblyAsmPrinter.cpp
   WebAssemblyFrameLowering.cpp
   WebAssemblyISelDAGToDAG.cpp

Added: llvm/trunk/lib/Target/WebAssembly/Relooper.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/WebAssembly/Relooper.cpp?rev=245142&view=auto
==============================================================================
--- llvm/trunk/lib/Target/WebAssembly/Relooper.cpp (added)
+++ llvm/trunk/lib/Target/WebAssembly/Relooper.cpp Fri Aug 14 20:23:28 2015
@@ -0,0 +1,906 @@
+//===-- Relooper.cpp - Top-level interface for WebAssembly  ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===---------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This implements the Relooper algorithm. This implementation includes
+/// optimizations added since the original academic paper [1] was published.
+///
+/// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
+/// Proceedings of the ACM international conference companion on Object
+/// oriented programming systems languages and applications companion
+/// (SPLASH '11). ACM, New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
+/// http://doi.acm.org/10.1145/2048147.2048224
+///
+//===-------------------------------------------------------------------===//
+
+#include "Relooper.h"
+
+#include <llvm/ADT/STLExtras.h>
+#include <llvm/Support/raw_ostream.h>
+#include <llvm/Support/CommandLine.h>
+
+#include <cstring>
+#include <cstdlib>
+#include <functional>
+#include <list>
+#include <stack>
+#include <string>
+
+using namespace llvm;
+
+static cl::opt<int> RelooperSplittingFactor(
+    "relooper-splitting-factor",
+    cl::desc(
+        "How much to discount code size when deciding whether to split a node"),
+    cl::init(5));
+
+static cl::opt<unsigned> RelooperMultipleSwitchThreshold(
+    "relooper-multiple-switch-threshold",
+    cl::desc(
+        "How many entries to allow in a multiple before we use a switch"),
+    cl::init(10));
+
+static cl::opt<unsigned> RelooperNestingLimit(
+    "relooper-nesting-limit",
+    cl::desc(
+        "How much nesting is acceptable"),
+    cl::init(20));
+
+namespace llvm {
+
+namespace Relooper {
+
+template <class T, class U>
+static bool contains(const T &container, const U &contained) {
+  return container.count(contained);
+}
+
+// Branch
+
+Branch::Branch(const char *ConditionInit, const char *CodeInit)
+    : Ancestor(nullptr), Labeled(true) {
+  // FIXME: move from char* to LLVM data structures
+  Condition = ConditionInit ? strdup(ConditionInit) : nullptr;
+  Code = CodeInit ? strdup(CodeInit) : nullptr;
+}
+
+Branch::~Branch() {
+  // FIXME: move from char* to LLVM data structures
+  free(static_cast<void *>(const_cast<char *>(Condition)));
+  free(static_cast<void *>(const_cast<char *>(Code)));
+}
+
+// Block
+
+Block::Block(const char *CodeInit, const char *BranchVarInit)
+    : Parent(nullptr), Id(-1), IsCheckedMultipleEntry(false) {
+  // FIXME: move from char* to LLVM data structures
+  Code = strdup(CodeInit);
+  BranchVar = BranchVarInit ? strdup(BranchVarInit) : nullptr;
+}
+
+Block::~Block() {
+  // FIXME: move from char* to LLVM data structures
+  free(static_cast<void *>(const_cast<char *>(Code)));
+  free(static_cast<void *>(const_cast<char *>(BranchVar)));
+}
+
+void Block::AddBranchTo(Block *Target, const char *Condition,
+                        const char *Code) {
+  assert(
+      !contains(BranchesOut,
+                Target)); // cannot add more than one branch to the same target
+  BranchesOut[Target] = make_unique<Branch>(Condition, Code);
+}
+
+// Relooper
+
+Relooper::Relooper()
+    : Root(nullptr), MinSize(false), BlockIdCounter(1),
+      ShapeIdCounter(0) { // block ID 0 is reserved for clearings
+}
+
+Relooper::~Relooper() {
+  for (auto Curr : Blocks)
+    delete Curr;
+  for (auto Curr : Shapes)
+    delete Curr;
+}
+
+void Relooper::AddBlock(Block *New, int Id) {
+  New->Id = Id == -1 ? BlockIdCounter++ : Id;
+  Blocks.push_back(New);
+}
+
+struct RelooperRecursor {
+  Relooper *Parent;
+  RelooperRecursor(Relooper *ParentInit) : Parent(ParentInit) {}
+};
+
+typedef std::list<Block *> BlockList;
+
+void Relooper::Calculate(Block *Entry) {
+  // Scan and optimize the input
+  struct PreOptimizer : public RelooperRecursor {
+    PreOptimizer(Relooper *Parent) : RelooperRecursor(Parent) {}
+    BlockSet Live;
+
+    void FindLive(Block *Root) {
+      BlockList ToInvestigate;
+      ToInvestigate.push_back(Root);
+      while (!ToInvestigate.empty()) {
+        Block *Curr = ToInvestigate.front();
+        ToInvestigate.pop_front();
+        if (contains(Live, Curr))
+          continue;
+        Live.insert(Curr);
+        for (const auto &iter : Curr->BranchesOut)
+          ToInvestigate.push_back(iter.first);
+      }
+    }
+
+    // If a block has multiple entries but no exits, and it is small enough, it
+    // is useful to split it. A common example is a C++ function where
+    // everything ends up at a final exit block and does some RAII cleanup.
+    // Without splitting, we will be forced to introduce labelled loops to
+    // allow reaching the final block
+    void SplitDeadEnds() {
+      unsigned TotalCodeSize = 0;
+      for (const auto &Curr : Live) {
+        TotalCodeSize += strlen(Curr->Code);
+      }
+      BlockSet Splits;
+      BlockSet Removed;
+      for (const auto &Original : Live) {
+        if (Original->BranchesIn.size() <= 1 ||
+            !Original->BranchesOut.empty())
+          continue; // only dead ends, for now
+        if (contains(Original->BranchesOut, Original))
+          continue; // cannot split a looping node
+        if (strlen(Original->Code) * (Original->BranchesIn.size() - 1) >
+            TotalCodeSize / RelooperSplittingFactor)
+          continue; // if splitting increases raw code size by a significant
+                    // amount, abort
+        // Split the node (for simplicity, we replace all the blocks, even
+        // though we could have reused the original)
+        for (const auto &Prior : Original->BranchesIn) {
+          Block *Split = new Block(Original->Code, Original->BranchVar);
+          Parent->AddBlock(Split, Original->Id);
+          Split->BranchesIn.insert(Prior);
+          std::unique_ptr<Branch> Details;
+          Details.swap(Prior->BranchesOut[Original]);
+          Prior->BranchesOut[Split] = make_unique<Branch>(Details->Condition,
+                                                          Details->Code);
+          for (const auto &iter : Original->BranchesOut) {
+            Block *Post = iter.first;
+            Branch *Details = iter.second.get();
+            Split->BranchesOut[Post] = make_unique<Branch>(Details->Condition,
+                                                           Details->Code);
+            Post->BranchesIn.insert(Split);
+          }
+          Splits.insert(Split);
+          Removed.insert(Original);
+        }
+        for (const auto &iter : Original->BranchesOut) {
+          Block *Post = iter.first;
+          Post->BranchesIn.remove(Original);
+        }
+      }
+      for (const auto &iter : Splits)
+        Live.insert(iter);
+      for (const auto &iter : Removed)
+        Live.remove(iter);
+    }
+  };
+  PreOptimizer Pre(this);
+  Pre.FindLive(Entry);
+
+  // Add incoming branches from live blocks, ignoring dead code
+  for (unsigned i = 0; i < Blocks.size(); i++) {
+    Block *Curr = Blocks[i];
+    if (!contains(Pre.Live, Curr))
+      continue;
+    for (const auto &iter : Curr->BranchesOut)
+      iter.first->BranchesIn.insert(Curr);
+  }
+
+  if (!MinSize)
+    Pre.SplitDeadEnds();
+
+  // Recursively process the graph
+
+  struct Analyzer : public RelooperRecursor {
+    Analyzer(Relooper *Parent) : RelooperRecursor(Parent) {}
+
+    // Add a shape to the list of shapes in this Relooper calculation
+    void Notice(Shape *New) {
+      New->Id = Parent->ShapeIdCounter++;
+      Parent->Shapes.push_back(New);
+    }
+
+    // Create a list of entries from a block. If LimitTo is provided, only
+    // results in that set will appear
+    void GetBlocksOut(Block *Source, BlockSet &Entries,
+                      BlockSet *LimitTo = nullptr) {
+      for (const auto &iter : Source->BranchesOut)
+        if (!LimitTo || contains(*LimitTo, iter.first))
+          Entries.insert(iter.first);
+    }
+
+    // Converts/processes all branchings to a specific target
+    void Solipsize(Block *Target, Branch::FlowType Type, Shape *Ancestor,
+                   BlockSet &From) {
+      for (auto iter = Target->BranchesIn.begin();
+           iter != Target->BranchesIn.end();) {
+        Block *Prior = *iter;
+        if (!contains(From, Prior)) {
+          iter++;
+          continue;
+        }
+        std::unique_ptr<Branch> PriorOut;
+        PriorOut.swap(Prior->BranchesOut[Target]);
+        PriorOut->Ancestor = Ancestor;
+        PriorOut->Type = Type;
+        if (MultipleShape *Multiple = dyn_cast<MultipleShape>(Ancestor))
+          Multiple->Breaks++; // We are breaking out of this Multiple, so need a
+                              // loop
+        iter++; // carefully increment iter before erasing
+        Target->BranchesIn.remove(Prior);
+        Target->ProcessedBranchesIn.insert(Prior);
+        Prior->ProcessedBranchesOut[Target].swap(PriorOut);
+      }
+    }
+
+    Shape *MakeSimple(BlockSet &Blocks, Block *Inner, BlockSet &NextEntries) {
+      SimpleShape *Simple = new SimpleShape;
+      Notice(Simple);
+      Simple->Inner = Inner;
+      Inner->Parent = Simple;
+      if (Blocks.size() > 1) {
+        Blocks.remove(Inner);
+        GetBlocksOut(Inner, NextEntries, &Blocks);
+        BlockSet JustInner;
+        JustInner.insert(Inner);
+        for (const auto &iter : NextEntries)
+          Solipsize(iter, Branch::Direct, Simple, JustInner);
+      }
+      return Simple;
+    }
+
+    Shape *MakeLoop(BlockSet &Blocks, BlockSet &Entries,
+                    BlockSet &NextEntries) {
+      // Find the inner blocks in this loop. Proceed backwards from the entries
+      // until
+      // you reach a seen block, collecting as you go.
+      BlockSet InnerBlocks;
+      BlockSet Queue = Entries;
+      while (!Queue.empty()) {
+        Block *Curr = *(Queue.begin());
+        Queue.remove(*Queue.begin());
+        if (!contains(InnerBlocks, Curr)) {
+          // This element is new, mark it as inner and remove from outer
+          InnerBlocks.insert(Curr);
+          Blocks.remove(Curr);
+          // Add the elements prior to it
+          for (const auto &iter : Curr->BranchesIn)
+            Queue.insert(iter);
+        }
+      }
+      assert(!InnerBlocks.empty());
+
+      for (const auto &Curr : InnerBlocks) {
+        for (const auto &iter : Curr->BranchesOut) {
+          Block *Possible = iter.first;
+          if (!contains(InnerBlocks, Possible))
+            NextEntries.insert(Possible);
+        }
+      }
+
+      LoopShape *Loop = new LoopShape();
+      Notice(Loop);
+
+      // Solipsize the loop, replacing with break/continue and marking branches
+      // as Processed (will not affect later calculations)
+      // A. Branches to the loop entries become a continue to this shape
+      for (const auto &iter : Entries)
+        Solipsize(iter, Branch::Continue, Loop, InnerBlocks);
+      // B. Branches to outside the loop (a next entry) become breaks on this
+      // shape
+      for (const auto &iter : NextEntries)
+        Solipsize(iter, Branch::Break, Loop, InnerBlocks);
+      // Finish up
+      Shape *Inner = Process(InnerBlocks, Entries, nullptr);
+      Loop->Inner = Inner;
+      return Loop;
+    }
+
+    // For each entry, find the independent group reachable by it. The
+    // independent group is the entry itself, plus all the blocks it can
+    // reach that cannot be directly reached by another entry. Note that we
+    // ignore directly reaching the entry itself by another entry.
+    //   @param Ignore - previous blocks that are irrelevant
+    void FindIndependentGroups(BlockSet &Entries,
+                               BlockBlockSetMap &IndependentGroups,
+                               BlockSet *Ignore = nullptr) {
+      typedef std::map<Block *, Block *> BlockBlockMap;
+
+      struct HelperClass {
+        BlockBlockSetMap &IndependentGroups;
+        BlockBlockMap Ownership; // For each block, which entry it belongs to.
+                                 // We have reached it from there.
+
+        HelperClass(BlockBlockSetMap &IndependentGroupsInit)
+            : IndependentGroups(IndependentGroupsInit) {}
+        void InvalidateWithChildren(Block *New) {
+          // Being in the list means you need to be invalidated
+          BlockList ToInvalidate;
+          ToInvalidate.push_back(New);
+          while (!ToInvalidate.empty()) {
+            Block *Invalidatee = ToInvalidate.front();
+            ToInvalidate.pop_front();
+            Block *Owner = Ownership[Invalidatee];
+            // Owner may have been invalidated, do not add to
+            // IndependentGroups!
+            if (contains(IndependentGroups, Owner))
+              IndependentGroups[Owner].remove(Invalidatee);
+            if (Ownership[Invalidatee]) { // may have been seen before and
+                                          // invalidated already
+              Ownership[Invalidatee] = nullptr;
+              for (const auto &iter : Invalidatee->BranchesOut) {
+                Block *Target = iter.first;
+                BlockBlockMap::iterator Known = Ownership.find(Target);
+                if (Known != Ownership.end()) {
+                  Block *TargetOwner = Known->second;
+                  if (TargetOwner)
+                    ToInvalidate.push_back(Target);
+                }
+              }
+            }
+          }
+        }
+      };
+      HelperClass Helper(IndependentGroups);
+
+      // We flow out from each of the entries, simultaneously.
+      // When we reach a new block, we add it as belonging to the one we got to
+      // it from.
+      // If we reach a new block that is already marked as belonging to someone,
+      // it is reachable by two entries and is not valid for any of them.
+      // Remove it and all it can reach that have been visited.
+
+      // Being in the queue means we just added this item, and
+      // we need to add its children
+      BlockList Queue;
+      for (const auto &Entry : Entries) {
+        Helper.Ownership[Entry] = Entry;
+        IndependentGroups[Entry].insert(Entry);
+        Queue.push_back(Entry);
+      }
+      while (!Queue.empty()) {
+        Block *Curr = Queue.front();
+        Queue.pop_front();
+        Block *Owner = Helper.Ownership[Curr]; // Curr must be in the ownership
+                                               // map if we are in the queue
+        if (!Owner)
+          continue; // we have been invalidated meanwhile after being reached
+                    // from two entries
+        // Add all children
+        for (const auto &iter : Curr->BranchesOut) {
+          Block *New = iter.first;
+          BlockBlockMap::iterator Known = Helper.Ownership.find(New);
+          if (Known == Helper.Ownership.end()) {
+            // New node. Add it, and put it in the queue
+            Helper.Ownership[New] = Owner;
+            IndependentGroups[Owner].insert(New);
+            Queue.push_back(New);
+            continue;
+          }
+          Block *NewOwner = Known->second;
+          if (!NewOwner)
+            continue; // We reached an invalidated node
+          if (NewOwner != Owner)
+            // Invalidate this and all reachable that we have seen - we reached
+            // this from two locations
+            Helper.InvalidateWithChildren(New);
+          // otherwise, we have the same owner, so do nothing
+        }
+      }
+
+      // Having processed all the interesting blocks, we remain with just one
+      // potential issue:
+      // If a->b, and a was invalidated, but then b was later reached by
+      // someone else, we must invalidate b. To check for this, we go over all
+      // elements in the independent groups, if an element has a parent which
+      // does *not* have the same owner, we/ must remove it and all its
+      // children.
+
+      for (const auto &iter : Entries) {
+        BlockSet &CurrGroup = IndependentGroups[iter];
+        BlockList ToInvalidate;
+        for (const auto &iter : CurrGroup) {
+          Block *Child = iter;
+          for (const auto &iter : Child->BranchesIn) {
+            Block *Parent = iter;
+            if (Ignore && contains(*Ignore, Parent))
+              continue;
+            if (Helper.Ownership[Parent] != Helper.Ownership[Child])
+              ToInvalidate.push_back(Child);
+          }
+        }
+        while (!ToInvalidate.empty()) {
+          Block *Invalidatee = ToInvalidate.front();
+          ToInvalidate.pop_front();
+          Helper.InvalidateWithChildren(Invalidatee);
+        }
+      }
+
+      // Remove empty groups
+      for (const auto &iter : Entries)
+        if (IndependentGroups[iter].empty())
+          IndependentGroups.erase(iter);
+    }
+
+    Shape *MakeMultiple(BlockSet &Blocks, BlockSet &Entries,
+                        BlockBlockSetMap &IndependentGroups, Shape *Prev,
+                        BlockSet &NextEntries) {
+      bool Fused = isa<SimpleShape>(Prev);
+      MultipleShape *Multiple = new MultipleShape();
+      Notice(Multiple);
+      BlockSet CurrEntries;
+      for (auto &iter : IndependentGroups) {
+        Block *CurrEntry = iter.first;
+        BlockSet &CurrBlocks = iter.second;
+        // Create inner block
+        CurrEntries.clear();
+        CurrEntries.insert(CurrEntry);
+        for (const auto &CurrInner : CurrBlocks) {
+          // Remove the block from the remaining blocks
+          Blocks.remove(CurrInner);
+          // Find new next entries and fix branches to them
+          for (auto iter = CurrInner->BranchesOut.begin();
+               iter != CurrInner->BranchesOut.end();) {
+            Block *CurrTarget = iter->first;
+            auto Next = iter;
+            Next++;
+            if (!contains(CurrBlocks, CurrTarget)) {
+              NextEntries.insert(CurrTarget);
+              Solipsize(CurrTarget, Branch::Break, Multiple, CurrBlocks);
+            }
+            iter = Next; // increment carefully because Solipsize can remove us
+          }
+        }
+        Multiple->InnerMap[CurrEntry->Id] =
+            Process(CurrBlocks, CurrEntries, nullptr);
+        // If we are not fused, then our entries will actually be checked
+        if (!Fused)
+          CurrEntry->IsCheckedMultipleEntry = true;
+      }
+      // Add entries not handled as next entries, they are deferred
+      for (const auto &Entry : Entries)
+        if (!contains(IndependentGroups, Entry))
+          NextEntries.insert(Entry);
+      // The multiple has been created, we can decide how to implement it
+      if (Multiple->InnerMap.size() >= RelooperMultipleSwitchThreshold) {
+        Multiple->UseSwitch = true;
+        Multiple->Breaks++; // switch captures breaks
+      }
+      return Multiple;
+    }
+
+    // Main function.
+    // Process a set of blocks with specified entries, returns a shape
+    // The Make* functions receive a NextEntries. If they fill it with data,
+    // those are the entries for the ->Next block on them, and the blocks
+    // are what remains in Blocks (which Make* modify). In this way
+    // we avoid recursing on Next (imagine a long chain of Simples, if we
+    // recursed we could blow the stack).
+    Shape *Process(BlockSet &Blocks, BlockSet &InitialEntries, Shape *Prev) {
+      BlockSet *Entries = &InitialEntries;
+      BlockSet TempEntries[2];
+      int CurrTempIndex = 0;
+      BlockSet *NextEntries;
+      Shape *Ret = nullptr;
+
+      auto Make = [&](Shape *Temp) {
+        if (Prev)
+          Prev->Next = Temp;
+        if (!Ret)
+          Ret = Temp;
+        Prev = Temp;
+        Entries = NextEntries;
+      };
+
+      while (1) {
+        CurrTempIndex = 1 - CurrTempIndex;
+        NextEntries = &TempEntries[CurrTempIndex];
+        NextEntries->clear();
+
+        if (Entries->empty())
+          return Ret;
+        if (Entries->size() == 1) {
+          Block *Curr = *(Entries->begin());
+          if (Curr->BranchesIn.empty()) {
+            // One entry, no looping ==> Simple
+            Make(MakeSimple(Blocks, Curr, *NextEntries));
+            if (NextEntries->empty())
+              return Ret;
+            continue;
+          }
+          // One entry, looping ==> Loop
+          Make(MakeLoop(Blocks, *Entries, *NextEntries));
+          if (NextEntries->empty())
+            return Ret;
+          continue;
+        }
+
+        // More than one entry, try to eliminate through a Multiple groups of
+        // independent blocks from an entry/ies. It is important to remove
+        // through multiples as opposed to looping since the former is more
+        // performant.
+        BlockBlockSetMap IndependentGroups;
+        FindIndependentGroups(*Entries, IndependentGroups);
+
+        if (!IndependentGroups.empty()) {
+          // We can handle a group in a multiple if its entry cannot be reached
+          // by another group.
+          // Note that it might be reachable by itself - a loop. But that is
+          // fine, we will create a loop inside the multiple block (which
+          // is the performant order to do it).
+          for (auto iter = IndependentGroups.begin();
+               iter != IndependentGroups.end();) {
+            Block *Entry = iter->first;
+            BlockSet &Group = iter->second;
+            auto curr = iter++; // iterate carefully, we may delete
+            for (BlockSet::iterator iterBranch = Entry->BranchesIn.begin();
+                 iterBranch != Entry->BranchesIn.end(); iterBranch++) {
+              Block *Origin = *iterBranch;
+              if (!contains(Group, Origin)) {
+                // Reached from outside the group, so we cannot handle this
+                IndependentGroups.erase(curr);
+                break;
+              }
+            }
+          }
+
+          // As an optimization, if we have 2 independent groups, and one is a
+          // small dead end, we can handle only that dead end.
+          // The other then becomes a Next - without nesting in the code and
+          // recursion in the analysis.
+          // TODO: if the larger is the only dead end, handle that too
+          // TODO: handle >2 groups
+          // TODO: handle not just dead ends, but also that do not branch to the
+          // NextEntries. However, must be careful there since we create a
+          // Next, and that Next can prevent eliminating a break (since we no
+          // longer naturally reach the same place), which may necessitate a
+          // one-time loop, which makes the unnesting pointless.
+          if (IndependentGroups.size() == 2) {
+            // Find the smaller one
+            auto iter = IndependentGroups.begin();
+            Block *SmallEntry = iter->first;
+            auto SmallSize = iter->second.size();
+            iter++;
+            Block *LargeEntry = iter->first;
+            auto LargeSize = iter->second.size();
+            if (SmallSize != LargeSize) { // ignore the case where they are
+                                          // identical - keep things symmetrical
+                                          // there
+              if (SmallSize > LargeSize) {
+                Block *Temp = SmallEntry;
+                SmallEntry = LargeEntry;
+                LargeEntry = Temp; // Note: we did not flip the Sizes too, they
+                                   // are now invalid. TODO: use the smaller
+                                   // size as a limit?
+              }
+              // Check if dead end
+              bool DeadEnd = true;
+              BlockSet &SmallGroup = IndependentGroups[SmallEntry];
+              for (const auto &Curr : SmallGroup) {
+                for (const auto &iter : Curr->BranchesOut) {
+                  Block *Target = iter.first;
+                  if (!contains(SmallGroup, Target)) {
+                    DeadEnd = false;
+                    break;
+                  }
+                }
+                if (!DeadEnd)
+                  break;
+              }
+              if (DeadEnd)
+                IndependentGroups.erase(LargeEntry);
+            }
+          }
+
+          if (!IndependentGroups.empty())
+            // Some groups removable ==> Multiple
+            Make(MakeMultiple(Blocks, *Entries, IndependentGroups, Prev,
+                              *NextEntries));
+            if (NextEntries->empty())
+              return Ret;
+            continue;
+        }
+        // No independent groups, must be loopable ==> Loop
+        Make(MakeLoop(Blocks, *Entries, *NextEntries));
+        if (NextEntries->empty())
+          return Ret;
+        continue;
+      }
+    }
+  };
+
+  // Main
+
+  BlockSet AllBlocks;
+  for (const auto &Curr : Pre.Live) {
+    AllBlocks.insert(Curr);
+  }
+
+  BlockSet Entries;
+  Entries.insert(Entry);
+  Root = Analyzer(this).Process(AllBlocks, Entries, nullptr);
+  assert(Root);
+
+  ///
+  /// Relooper post-optimizer
+  ///
+  struct PostOptimizer {
+    Relooper *Parent;
+    std::stack<Shape *> LoopStack;
+
+    PostOptimizer(Relooper *ParentInit) : Parent(ParentInit) {}
+
+    void ShapeSwitch(Shape* var,
+                     std::function<void (SimpleShape*)> simple,
+                     std::function<void (MultipleShape*)> multiple,
+                     std::function<void (LoopShape*)> loop) {
+      switch (var->getKind()) {
+        case Shape::SK_Simple: {
+          simple(cast<SimpleShape>(var));
+          break;
+        }
+        case Shape::SK_Multiple: {
+          multiple(cast<MultipleShape>(var));
+          break;
+        }
+        case Shape::SK_Loop: {
+          loop(cast<LoopShape>(var));
+          break;
+        }
+        default: llvm_unreachable("invalid shape");
+      }
+    }
+
+    // Find the blocks that natural control flow can get us directly to, or
+    // through a multiple that we ignore
+    void FollowNaturalFlow(Shape *S, BlockSet &Out) {
+      ShapeSwitch(S, [&](SimpleShape* Simple) {
+        Out.insert(Simple->Inner);
+      }, [&](MultipleShape* Multiple) {
+        for (const auto &iter : Multiple->InnerMap) {
+          FollowNaturalFlow(iter.second, Out);
+        }
+        FollowNaturalFlow(Multiple->Next, Out);
+      }, [&](LoopShape* Loop) {
+        FollowNaturalFlow(Loop->Inner, Out);
+      });
+    }
+
+    void FindNaturals(Shape *Root, Shape *Otherwise = nullptr) {
+      if (Root->Next) {
+        Root->Natural = Root->Next;
+        FindNaturals(Root->Next, Otherwise);
+      } else {
+        Root->Natural = Otherwise;
+      }
+
+      ShapeSwitch(Root, [](SimpleShape* Simple) {
+      }, [&](MultipleShape* Multiple) {
+        for (const auto &iter : Multiple->InnerMap) {
+          FindNaturals(iter.second, Root->Natural);
+        }
+      }, [&](LoopShape* Loop){
+        FindNaturals(Loop->Inner, Loop->Inner);
+      });
+    }
+
+    // Remove unneeded breaks and continues.
+    // A flow operation is trivially unneeded if the shape we naturally get to
+    // by normal code execution is the same as the flow forces us to.
+    void RemoveUnneededFlows(Shape *Root, Shape *Natural = nullptr,
+                             LoopShape *LastLoop = nullptr,
+                             unsigned Depth = 0) {
+      BlockSet NaturalBlocks;
+      FollowNaturalFlow(Natural, NaturalBlocks);
+      Shape *Next = Root;
+      while (Next) {
+        Root = Next;
+        Next = nullptr;
+        ShapeSwitch(
+            Root,
+            [&](SimpleShape* Simple) {
+              if (Simple->Inner->BranchVar)
+                LastLoop =
+                    nullptr; // a switch clears out the loop (TODO: only for
+                             // breaks, not continue)
+
+              if (Simple->Next) {
+                if (!Simple->Inner->BranchVar &&
+                    Simple->Inner->ProcessedBranchesOut.size() == 2 &&
+                    Depth < RelooperNestingLimit) {
+                  // If there is a next block, we already know at Simple
+                  // creation time to make direct branches, and we can do
+                  // nothing more in general. But, we try to optimize the
+                  // case of a break and a direct: This would normally be
+                  //   if (break?) { break; } ..
+                  // but if we make sure to nest the else, we can save the
+                  // break,
+                  //   if (!break?) { .. }
+                  // This is also better because the more canonical nested
+                  // form is easier to further optimize later. The
+                  // downside is more nesting, which adds to size in builds with
+                  // whitespace.
+                  // Note that we avoid switches, as it complicates control flow
+                  // and is not relevant for the common case we optimize here.
+                  bool Found = false;
+                  bool Abort = false;
+                  for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
+                    Block *Target = iter.first;
+                    Branch *Details = iter.second.get();
+                    if (Details->Type == Branch::Break) {
+                      Found = true;
+                      if (!contains(NaturalBlocks, Target))
+                        Abort = true;
+                    } else if (Details->Type != Branch::Direct)
+                      Abort = true;
+                  }
+                  if (Found && !Abort) {
+                    for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
+                      Branch *Details = iter.second.get();
+                      if (Details->Type == Branch::Break) {
+                        Details->Type = Branch::Direct;
+                        if (MultipleShape *Multiple =
+                                dyn_cast<MultipleShape>(Details->Ancestor))
+                          Multiple->Breaks--;
+                      } else {
+                        assert(Details->Type == Branch::Direct);
+                        Details->Type = Branch::Nested;
+                      }
+                    }
+                  }
+                  Depth++; // this optimization increases depth, for us and all
+                           // our next chain (i.e., until this call returns)
+                }
+                Next = Simple->Next;
+              } else {
+                // If there is no next then Natural is where we will
+                // go to by doing nothing, so we can potentially optimize some
+                // branches to direct.
+                for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
+                  Block *Target = iter.first;
+                  Branch *Details = iter.second.get();
+                  if (Details->Type != Branch::Direct &&
+                      contains(NaturalBlocks,
+                               Target)) { // note: cannot handle split blocks
+                    Details->Type = Branch::Direct;
+                    if (MultipleShape *Multiple =
+                            dyn_cast<MultipleShape>(Details->Ancestor))
+                      Multiple->Breaks--;
+                  } else if (Details->Type == Branch::Break && LastLoop &&
+                             LastLoop->Natural == Details->Ancestor->Natural) {
+                    // it is important to simplify breaks, as simpler breaks
+                    // enable other optimizations
+                    Details->Labeled = false;
+                    if (MultipleShape *Multiple =
+                            dyn_cast<MultipleShape>(Details->Ancestor))
+                      Multiple->Breaks--;
+                  }
+                }
+              }
+            }, [&](MultipleShape* Multiple)
+            {
+              for (const auto &iter : Multiple->InnerMap) {
+                RemoveUnneededFlows(iter.second, Multiple->Next,
+                                    Multiple->Breaks ? nullptr : LastLoop,
+                                    Depth + 1);
+              }
+              Next = Multiple->Next;
+            }, [&](LoopShape* Loop)
+            {
+              RemoveUnneededFlows(Loop->Inner, Loop->Inner, Loop, Depth + 1);
+              Next = Loop->Next;
+            });
+      }
+    }
+
+    // After we know which loops exist, we can calculate which need to be
+    // labeled
+    void FindLabeledLoops(Shape *Root) {
+      Shape *Next = Root;
+      while (Next) {
+        Root = Next;
+        Next = nullptr;
+
+        ShapeSwitch(
+            Root,
+            [&](SimpleShape *Simple) {
+          MultipleShape *Fused = dyn_cast<MultipleShape>(Root->Next);
+          // If we are fusing a Multiple with a loop into this Simple, then
+          // visit it now
+          if (Fused && Fused->Breaks)
+            LoopStack.push(Fused);
+          if (Simple->Inner->BranchVar)
+            LoopStack.push(nullptr); // a switch means breaks are now useless,
+                                     // push a dummy
+          if (Fused) {
+            if (Fused->UseSwitch)
+              LoopStack.push(nullptr); // a switch means breaks are now
+                                       // useless, push a dummy
+            for (const auto &iter : Fused->InnerMap) {
+              FindLabeledLoops(iter.second);
+            }
+          }
+          for (const auto &iter : Simple->Inner->ProcessedBranchesOut) {
+            Branch *Details = iter.second.get();
+            if (Details->Type == Branch::Break ||
+                Details->Type == Branch::Continue) {
+              assert(!LoopStack.empty());
+              if (Details->Ancestor != LoopStack.top() && Details->Labeled) {
+                if (MultipleShape *Multiple =
+                        dyn_cast<MultipleShape>(Details->Ancestor)) {
+                  Multiple->Labeled = true;
+                } else {
+                  LoopShape *Loop = cast<LoopShape>(Details->Ancestor);
+                  Loop->Labeled = true;
+                }
+              } else {
+                Details->Labeled = false;
+              }
+            }
+            if (Fused && Fused->UseSwitch)
+              LoopStack.pop();
+            if (Simple->Inner->BranchVar)
+              LoopStack.pop();
+            if (Fused && Fused->Breaks)
+              LoopStack.pop();
+            if (Fused)
+              Next = Fused->Next;
+            else
+              Next = Root->Next;
+          }
+          }
+          , [&](MultipleShape* Multiple) {
+            if (Multiple->Breaks)
+              LoopStack.push(Multiple);
+            for (const auto &iter : Multiple->InnerMap)
+              FindLabeledLoops(iter.second);
+            if (Multiple->Breaks)
+              LoopStack.pop();
+            Next = Root->Next;
+          }
+          , [&](LoopShape* Loop) {
+            LoopStack.push(Loop);
+            FindLabeledLoops(Loop->Inner);
+            LoopStack.pop();
+            Next = Root->Next;
+          });
+      }
+    }
+
+    void Process(Shape * Root) {
+      FindNaturals(Root);
+      RemoveUnneededFlows(Root);
+      FindLabeledLoops(Root);
+    }
+  };
+
+  PostOptimizer(this).Process(Root);
+}
+
+} // namespace Relooper
+
+} // namespace llvm

Propchange: llvm/trunk/lib/Target/WebAssembly/Relooper.cpp
------------------------------------------------------------------------------
    svn:eol-style = LF

Added: llvm/trunk/lib/Target/WebAssembly/Relooper.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/WebAssembly/Relooper.h?rev=245142&view=auto
==============================================================================
--- llvm/trunk/lib/Target/WebAssembly/Relooper.h (added)
+++ llvm/trunk/lib/Target/WebAssembly/Relooper.h Fri Aug 14 20:23:28 2015
@@ -0,0 +1,214 @@
+//===-- Relooper.h - Top-level interface for WebAssembly  ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===-------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This defines an optimized C++ implemention of the Relooper
+/// algorithm, originally developed as part of Emscripten, which
+/// generates a structured AST from arbitrary control flow.
+///
+//===-------------------------------------------------------------------===//
+
+#include <llvm/ADT/MapVector.h>
+#include <llvm/ADT/SetVector.h>
+#include <llvm/Support/Casting.h>
+
+#include <cassert>
+#include <cstdio>
+#include <cstdarg>
+#include <deque>
+#include <list>
+#include <map>
+#include <memory>
+#include <set>
+
+namespace llvm {
+
+namespace Relooper {
+
+struct Block;
+struct Shape;
+
+///
+/// Info about a branching from one block to another
+///
+struct Branch {
+  enum FlowType {
+    Direct = 0, // We will directly reach the right location through other
+                // means, no need for continue or break
+    Break = 1,
+    Continue = 2,
+    Nested = 3 // This code is directly reached, but we must be careful to
+               // ensure it is nested in an if - it is not reached
+    // unconditionally, other code paths exist alongside it that we need to make
+    // sure do not intertwine
+  };
+  Shape
+      *Ancestor; // If not nullptr, this shape is the relevant one for purposes
+                 // of getting to the target block. We break or continue on it
+  Branch::FlowType
+      Type;     // If Ancestor is not nullptr, this says whether to break or
+                // continue
+  bool Labeled; // If a break or continue, whether we need to use a label
+  const char *Condition; // The condition for which we branch. For example,
+                         // "my_var == 1". Conditions are checked one by one.
+                         // One of the conditions should have nullptr as the
+                         // condition, in which case it is the default
+                         // FIXME: move from char* to LLVM data structures
+  const char *Code; // If provided, code that is run right before the branch is
+                    // taken. This is useful for phis
+                    // FIXME: move from char* to LLVM data structures
+
+  Branch(const char *ConditionInit, const char *CodeInit = nullptr);
+  ~Branch();
+};
+
+typedef SetVector<Block *> BlockSet;
+typedef MapVector<Block *, Branch *> BlockBranchMap;
+typedef MapVector<Block *, std::unique_ptr<Branch>> OwningBlockBranchMap;
+
+///
+/// Represents a basic block of code - some instructions that end with a
+/// control flow modifier (a branch, return or throw).
+///
+struct Block {
+  // Branches become processed after we finish the shape relevant to them. For
+  // example, when we recreate a loop, branches to the loop start become
+  // continues and are now processed. When we calculate what shape to generate
+  // from a set of blocks, we ignore processed branches. Blocks own the Branch
+  // objects they use, and destroy them when done.
+  OwningBlockBranchMap BranchesOut;
+  BlockSet BranchesIn;
+  OwningBlockBranchMap ProcessedBranchesOut;
+  BlockSet ProcessedBranchesIn;
+  Shape *Parent; // The shape we are directly inside
+  int Id; // A unique identifier, defined when added to relooper. Note that this
+          // uniquely identifies a *logical* block - if we split it, the two
+          // instances have the same content *and* the same Id
+  const char *Code;      // The string representation of the code in this block.
+                         // Owning pointer (we copy the input)
+                         // FIXME: move from char* to LLVM data structures
+  const char *BranchVar; // A variable whose value determines where we go; if
+                         // this is not nullptr, emit a switch on that variable
+                         // FIXME: move from char* to LLVM data structures
+  bool IsCheckedMultipleEntry; // If true, we are a multiple entry, so reaching
+                               // us requires setting the label variable
+
+  Block(const char *CodeInit, const char *BranchVarInit);
+  ~Block();
+
+  void AddBranchTo(Block *Target, const char *Condition,
+                   const char *Code = nullptr);
+};
+
+///
+/// Represents a structured control flow shape
+///
+struct Shape {
+  int Id; // A unique identifier. Used to identify loops, labels are Lx where x
+          // is the Id. Defined when added to relooper
+  Shape *Next;    // The shape that will appear in the code right after this one
+  Shape *Natural; // The shape that control flow gets to naturally (if there is
+                  // Next, then this is Next)
+
+  /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
+  enum ShapeKind { SK_Simple, SK_Multiple, SK_Loop };
+
+private:
+  ShapeKind Kind;
+
+public:
+  ShapeKind getKind() const { return Kind; }
+
+  Shape(ShapeKind KindInit) : Id(-1), Next(nullptr), Kind(KindInit) {}
+};
+
+///
+/// Simple: No control flow at all, just instructions.
+///
+struct SimpleShape : public Shape {
+  Block *Inner;
+
+  SimpleShape() : Shape(SK_Simple), Inner(nullptr) {}
+
+  static bool classof(const Shape *S) { return S->getKind() == SK_Simple; }
+};
+
+///
+/// A shape that may be implemented with a labeled loop.
+///
+struct LabeledShape : public Shape {
+  bool Labeled; // If we have a loop, whether it needs to be labeled
+
+  LabeledShape(ShapeKind KindInit) : Shape(KindInit), Labeled(false) {}
+};
+
+// Blocks with the same id were split and are identical, so we just care about
+// ids in Multiple entries
+typedef std::map<int, Shape *> IdShapeMap;
+
+///
+/// Multiple: A shape with more than one entry. If the next block to
+///           be entered is among them, we run it and continue to
+///           the next shape, otherwise we continue immediately to the
+///           next shape.
+///
+struct MultipleShape : public LabeledShape {
+  IdShapeMap InnerMap; // entry block ID -> shape
+  int Breaks; // If we have branches on us, we need a loop (or a switch). This
+              // is a counter of requirements,
+              // if we optimize it to 0, the loop is unneeded
+  bool UseSwitch; // Whether to switch on label as opposed to an if-else chain
+
+  MultipleShape() : LabeledShape(SK_Multiple), Breaks(0), UseSwitch(false) {}
+
+  static bool classof(const Shape *S) { return S->getKind() == SK_Multiple; }
+};
+
+///
+/// Loop: An infinite loop.
+///
+struct LoopShape : public LabeledShape {
+  Shape *Inner;
+
+  LoopShape() : LabeledShape(SK_Loop), Inner(nullptr) {}
+
+  static bool classof(const Shape *S) { return S->getKind() == SK_Loop; }
+};
+
+///
+/// Implements the relooper algorithm for a function's blocks.
+///
+/// Implementation details: The Relooper instance has
+/// ownership of the blocks and shapes, and frees them when done.
+///
+struct Relooper {
+  std::deque<Block *> Blocks;
+  std::deque<Shape *> Shapes;
+  Shape *Root;
+  bool MinSize;
+  int BlockIdCounter;
+  int ShapeIdCounter;
+
+  Relooper();
+  ~Relooper();
+
+  void AddBlock(Block *New, int Id = -1);
+
+  // Calculates the shapes
+  void Calculate(Block *Entry);
+
+  // Sets us to try to minimize size
+  void SetMinSize(bool MinSize_) { MinSize = MinSize_; }
+};
+
+typedef MapVector<Block *, BlockSet> BlockBlockSetMap;
+
+} // namespace Relooper
+
+} // namespace llvm

Propchange: llvm/trunk/lib/Target/WebAssembly/Relooper.h
------------------------------------------------------------------------------
    svn:eol-style = LF




More information about the llvm-commits mailing list