[llvm] r237156 - Reimplement heuristic for estimating complete-unroll optimization effects.

Chandler Carruth chandlerc at google.com
Thu May 21 00:01:45 PDT 2015


That'll work....

Honestly, I'd find it easier to read the test as a single run with 4
function with 4 different loops hitting differently set thresholds. But
hey, that's a minor point.

On Wed, May 20, 2015 at 11:20 PM Michael Zolotukhin <mzolotukhin at apple.com>
wrote:

> On May 20, 2015, at 10:38 PM, Chandler Carruth <chandlerc at google.com>
> wrote:
>
> If they cover the same different use cases, most notably the *specific*
> reason for using a percentage based threshold, that's what I was looking
> for.
>
> Hi Chandler,
>
> It is basically a single test, but it’s invoked with 4 different sets of
> thresholds:
> 1) Check that we unroll smallest loops (size < unroll-threshold)
> independently on the new heuristics - it’s basically a loop that we’d
> unroll even without the heuristic.
> 2) Check that we don’t unroll huge loops (size >
> absolute-unroll-threshold).
> 3) Check that we unroll mid-sized loops (unroll-threshold < size <
> absolute-unroll-threshold) for which we predict a certain part of
> instructions to be removed (percentage of predicted-to-be-removed
> instructions > min-percent-to-unroll).
> 4) Check that we don’t unroll mid-sized loops (unroll-threshold < size <
> absolute-unroll-threshold) for which we predict less than a certain part of
> instructions to be removed (percentage of predicted-to-be-removed
> instructions < min-percent-to-unroll).
>
> Is it what you were looking for?
>
> Thanks,
> Michael
>
>
> On Thu, May 14, 2015 at 5:16 PM Michael Zolotukhin <mzolotukhin at apple.com>
> wrote:
>
>> Hi Chandler,
>>
>> We agreed that I’ll follow-up on this with adding examples from our
>> discussion as tests. However, the original tests
>> (test/Transforms/LoopUnroll/full-unroll-heuristics.ll) are essentially
>> covering the same cases. Did you mean some other tests, or these are
>> sufficient?
>>
>> Thanks,
>> Michael
>>
>> > On May 12, 2015, at 10:20 AM, Michael Zolotukhin <mzolotukhin at apple.com>
>> wrote:
>> >
>> > Author: mzolotukhin
>> > Date: Tue May 12 12:20:03 2015
>> > New Revision: 237156
>> >
>> > URL: http://llvm.org/viewvc/llvm-project?rev=237156&view=rev
>> > Log:
>> > Reimplement heuristic for estimating complete-unroll optimization
>> effects.
>> >
>> > Summary:
>> > This patch reimplements heuristic that tries to estimate optimization
>> beneftis
>> > from complete loop unrolling.
>> >
>> > In this patch I kept the minimal changes - e.g. I removed code handling
>> > branches and folding compares. That's a promising area, but now there
>> > are too many questions to discuss before we can enable it.
>> >
>> > Test Plan: Tests are included in the patch.
>> >
>> > Reviewers: hfinkel, chandlerc
>> >
>> > Subscribers: llvm-commits
>> >
>> > Differential Revision: http://reviews.llvm.org/D8816
>> >
>> > Added:
>> >    llvm/trunk/test/Transforms/LoopUnroll/full-unroll-bad-geps.ll
>> > Modified:
>> >    llvm/trunk/lib/Transforms/Scalar/LoopUnrollPass.cpp
>> >    llvm/trunk/test/Transforms/LoopUnroll/full-unroll-heuristics.ll
>> >
>> > Modified: llvm/trunk/lib/Transforms/Scalar/LoopUnrollPass.cpp
>> > URL:
>> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopUnrollPass.cpp?rev=237156&r1=237155&r2=237156&view=diff
>> >
>> ==============================================================================
>> > --- llvm/trunk/lib/Transforms/Scalar/LoopUnrollPass.cpp (original)
>> > +++ llvm/trunk/lib/Transforms/Scalar/LoopUnrollPass.cpp Tue May 12
>> 12:20:03 2015
>> > @@ -186,33 +186,21 @@ namespace {
>> >     void selectThresholds(const Loop *L, bool HasPragma,
>> >                           const
>> TargetTransformInfo::UnrollingPreferences &UP,
>> >                           unsigned &Threshold, unsigned
>> &PartialThreshold,
>> > -                          unsigned NumberOfOptimizedInstructions) {
>> > +                          unsigned &AbsoluteThreshold,
>> > +                          unsigned
>> &PercentOfOptimizedForCompleteUnroll) {
>> >       // Determine the current unrolling threshold.  While this is
>> >       // normally set from UnrollThreshold, it is overridden to a
>> >       // smaller value if the current function is marked as
>> >       // optimize-for-size, and the unroll threshold was not user
>> >       // specified.
>> >       Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
>> > -
>> > -      // If we are allowed to completely unroll if we can remove M% of
>> > -      // instructions, and we know that with complete unrolling we'll
>> be able
>> > -      // to kill N instructions, then we can afford to completely
>> unroll loops
>> > -      // with unrolled size up to N*100/M.
>> > -      // Adjust the threshold according to that:
>> > -      unsigned PercentOfOptimizedForCompleteUnroll =
>> > -          UserPercentOfOptimized ? CurrentMinPercentOfOptimized
>> > -                                 : UP.MinPercentOfOptimized;
>> > -      unsigned AbsoluteThreshold = UserAbsoluteThreshold
>> > -                                       ? CurrentAbsoluteThreshold
>> > -                                       : UP.AbsoluteThreshold;
>> > -      if (PercentOfOptimizedForCompleteUnroll)
>> > -        Threshold = std::max<unsigned>(Threshold,
>> > -                                       NumberOfOptimizedInstructions *
>> 100 /
>> > -
>>  PercentOfOptimizedForCompleteUnroll);
>> > -      // But don't allow unrolling loops bigger than absolute
>> threshold.
>> > -      Threshold = std::min<unsigned>(Threshold, AbsoluteThreshold);
>> > -
>> >       PartialThreshold = UserThreshold ? CurrentThreshold :
>> UP.PartialThreshold;
>> > +      AbsoluteThreshold = UserAbsoluteThreshold ?
>> CurrentAbsoluteThreshold
>> > +                                                : UP.AbsoluteThreshold;
>> > +      PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized
>> > +                                                ?
>> CurrentMinPercentOfOptimized
>> > +                                                :
>> UP.MinPercentOfOptimized;
>> > +
>> >       if (!UserThreshold &&
>> >           L->getHeader()->getParent()->hasFnAttribute(
>> >               Attribute::OptimizeForSize)) {
>> > @@ -231,6 +219,10 @@ namespace {
>> >               std::max<unsigned>(PartialThreshold,
>> PragmaUnrollThreshold);
>> >       }
>> >     }
>> > +    bool canUnrollCompletely(Loop *L, unsigned Threshold,
>> > +                             unsigned AbsoluteThreshold, uint64_t
>> UnrolledSize,
>> > +                             unsigned NumberOfOptimizedInstructions,
>> > +                             unsigned
>> PercentOfOptimizedForCompleteUnroll);
>> >   };
>> > }
>> >
>> > @@ -253,57 +245,75 @@ Pass *llvm::createSimpleLoopUnrollPass()
>> >   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
>> > }
>> >
>> > -static bool isLoadFromConstantInitializer(Value *V) {
>> > -  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
>> > -    if (GV->isConstant() && GV->hasDefinitiveInitializer())
>> > -      return GV->getInitializer();
>> > -  return false;
>> > -}
>> > -
>> > namespace {
>> > +/// \brief SCEV expressions visitor used for finding expressions that
>> would
>> > +/// become constants if the loop L is unrolled.
>> > struct FindConstantPointers {
>> > -  bool LoadCanBeConstantFolded;
>> > +  /// \brief Shows whether the expression is ConstAddress+Constant or
>> not.
>> >   bool IndexIsConstant;
>> > -  APInt Step;
>> > -  APInt StartValue;
>> > +
>> > +  /// \brief Used for filtering out SCEV expressions with two or more
>> AddRec
>> > +  /// subexpressions.
>> > +  ///
>> > +  /// Used to filter out complicated SCEV expressions, having several
>> AddRec
>> > +  /// sub-expressions. We don't handle them, because unrolling one loop
>> > +  /// would help to replace only one of these inductions with a
>> constant, and
>> > +  /// consequently, the expression would remain non-constant.
>> > +  bool HaveSeenAR;
>> > +
>> > +  /// \brief If the SCEV expression becomes ConstAddress+Constant,
>> this value
>> > +  /// holds ConstAddress. Otherwise, it's nullptr.
>> >   Value *BaseAddress;
>> > +
>> > +  /// \brief The loop, which we try to completely unroll.
>> >   const Loop *L;
>> > +
>> >   ScalarEvolution &SE;
>> > -  FindConstantPointers(const Loop *loop, ScalarEvolution &SE)
>> > -      : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop),
>> SE(SE) {}
>> >
>> > +  FindConstantPointers(const Loop *L, ScalarEvolution &SE)
>> > +      : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr),
>> > +        L(L), SE(SE) {}
>> > +
>> > +  /// Examine the given expression S and figure out, if it can be a
>> part of an
>> > +  /// expression, that could become a constant after the loop is
>> unrolled.
>> > +  /// The routine sets IndexIsConstant and HaveSeenAR according to the
>> analysis
>> > +  /// results.
>> > +  /// \returns true if we need to examine subexpressions, and false
>> otherwise.
>> >   bool follow(const SCEV *S) {
>> >     if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
>> >       // We've reached the leaf node of SCEV, it's most probably just a
>> > -      // variable. Now it's time to see if it corresponds to a global
>> constant
>> > -      // global (in which case we can eliminate the load), or not.
>> > +      // variable.
>> > +      // If it's the only one SCEV-subexpression, then it might be a
>> base
>> > +      // address of an index expression.
>> > +      // If we've already recorded base address, then just give up on
>> this SCEV
>> > +      // - it's too complicated.
>> > +      if (BaseAddress) {
>> > +        IndexIsConstant = false;
>> > +        return false;
>> > +      }
>> >       BaseAddress = SC->getValue();
>> > -      LoadCanBeConstantFolded =
>> > -          IndexIsConstant &&
>> isLoadFromConstantInitializer(BaseAddress);
>> >       return false;
>> >     }
>> >     if (isa<SCEVConstant>(S))
>> > -      return true;
>> > +      return false;
>> >     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
>> >       // If the current SCEV expression is AddRec, and its loop isn't
>> the loop
>> >       // we are about to unroll, then we won't get a constant address
>> after
>> >       // unrolling, and thus, won't be able to eliminate the load.
>> > -      if (AR->getLoop() != L)
>> > -        return IndexIsConstant = false;
>> > -      // If the step isn't constant, we won't get constant addresses
>> in unrolled
>> > -      // version. Bail out.
>> > -      if (const SCEVConstant *StepSE =
>> > -              dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
>> > -        Step = StepSE->getValue()->getValue();
>> > -      else
>> > -        return IndexIsConstant = false;
>> > -
>> > -      return IndexIsConstant;
>> > +      if (AR->getLoop() != L) {
>> > +        IndexIsConstant = false;
>> > +        return false;
>> > +      }
>> > +      // We don't handle multiple AddRecs here, so give up in this
>> case.
>> > +      if (HaveSeenAR) {
>> > +        IndexIsConstant = false;
>> > +        return false;
>> > +      }
>> > +      HaveSeenAR = true;
>> >     }
>> > -    // If Result is true, continue traversal.
>> > -    // Otherwise, we have found something that prevents us from
>> (possible) load
>> > -    // elimination.
>> > -    return IndexIsConstant;
>> > +
>> > +    // Continue traversal.
>> > +    return true;
>> >   }
>> >   bool isDone() const { return !IndexIsConstant; }
>> > };
>> > @@ -328,27 +338,54 @@ class UnrollAnalyzer : public InstVisito
>> >   typedef InstVisitor<UnrollAnalyzer, bool> Base;
>> >   friend class InstVisitor<UnrollAnalyzer, bool>;
>> >
>> > +  struct SCEVGEPDescriptor {
>> > +    Value *BaseAddr;
>> > +    APInt Start;
>> > +    APInt Step;
>> > +  };
>> > +
>> > +  /// \brief The loop we're going to analyze.
>> >   const Loop *L;
>> > +
>> > +  /// \brief TripCount of the given loop.
>> >   unsigned TripCount;
>> > +
>> >   ScalarEvolution &SE;
>> > +
>> >   const TargetTransformInfo &TTI;
>> >
>> > +  // While we walk the loop instructions, we we build up and maintain
>> a mapping
>> > +  // of simplified values specific to this iteration.  The idea is to
>> propagate
>> > +  // any special information we have about loads that can be replaced
>> with
>> > +  // constants after complete unrolling, and account for likely
>> simplifications
>> > +  // post-unrolling.
>> >   DenseMap<Value *, Constant *> SimplifiedValues;
>> > -  DenseMap<LoadInst *, Value *> LoadBaseAddresses;
>> > -  SmallPtrSet<Instruction *, 32> CountedInstructions;
>> >
>> > -  /// \brief Count the number of optimized instructions.
>> > -  unsigned NumberOfOptimizedInstructions;
>> > +  // To avoid requesting SCEV info on every iteration, request it
>> once, and
>> > +  // for each value that would become ConstAddress+Constant after loop
>> > +  // unrolling, save the corresponding data.
>> > +  SmallDenseMap<Value *, SCEVGEPDescriptor> SCEVCache;
>> > +
>> > +  /// \brief Number of currently simulated iteration.
>> > +  ///
>> > +  /// If an expression is ConstAddress+Constant, then the Constant is
>> > +  /// Start + Iteration*Step, where Start and Step could be obtained
>> from
>> > +  /// SCEVCache.
>> > +  unsigned Iteration;
>> > +
>> > +  /// \brief Upper threshold for complete unrolling.
>> > +  unsigned MaxUnrolledLoopSize;
>> >
>> > -  // Provide base case for our instruction visit.
>> > +  /// Base case for the instruction visitor.
>> >   bool visitInstruction(Instruction &I) { return false; };
>> > -  // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc,
>> ZExt, SExt,
>> > -  // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select,
>> > -  // ExtractElement, InsertElement, ShuffleVector, ExtractValue,
>> InsertValue.
>> > -  //
>> > -  // Probaly it's worth to hoist the code for estimating the
>> simplifications
>> > -  // effects to a separate class, since we have a very similar code in
>> > -  // InlineCost already.
>> > +
>> > +  /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
>> > +
>> > +  /// Try to simplify binary operator I.
>> > +  ///
>> > +  /// TODO: Probaly it's worth to hoist the code for estimating the
>> > +  /// simplifications effects to a separate class, since we have a
>> very similar
>> > +  /// code in InlineCost already.
>> >   bool visitBinaryOperator(BinaryOperator &I) {
>> >     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
>> >     if (!isa<Constant>(LHS))
>> > @@ -365,7 +402,7 @@ class UnrollAnalyzer : public InstVisito
>> >     else
>> >       SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
>> >
>> > -    if (SimpleV && CountedInstructions.insert(&I).second)
>> > +    if (SimpleV)
>> >       NumberOfOptimizedInstructions += TTI.getUserCost(&I);
>> >
>> >     if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
>> > @@ -375,207 +412,172 @@ class UnrollAnalyzer : public InstVisito
>> >     return false;
>> >   }
>> >
>> > -  Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) {
>> > -    if (!LI)
>> > -      return nullptr;
>> > -    Value *BaseAddr = LoadBaseAddresses[LI];
>> > -    if (!BaseAddr)
>> > -      return nullptr;
>> > -
>> > -    auto GV = dyn_cast<GlobalVariable>(BaseAddr);
>> > -    if (!GV)
>> > -      return nullptr;
>> > +  /// Try to fold load I.
>> > +  bool visitLoad(LoadInst &I) {
>> > +    Value *AddrOp = I.getPointerOperand();
>> > +    if (!isa<Constant>(AddrOp))
>> > +      if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp))
>> > +        AddrOp = SimplifiedAddrOp;
>> > +
>> > +    auto It = SCEVCache.find(AddrOp);
>> > +    if (It == SCEVCache.end())
>> > +      return false;
>> > +    SCEVGEPDescriptor GEPDesc = It->second;
>> > +
>> > +    auto GV = dyn_cast<GlobalVariable>(GEPDesc.BaseAddr);
>> > +    // We're only interested in loads that can be completely folded to
>> a
>> > +    // constant.
>> > +    if (!GV || !GV->hasInitializer())
>> > +      return false;
>> >
>> >     ConstantDataSequential *CDS =
>> >         dyn_cast<ConstantDataSequential>(GV->getInitializer());
>> >     if (!CDS)
>> > -      return nullptr;
>> > -
>> > -    const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr);
>> > -    const SCEV *S = SE.getSCEV(LI->getPointerOperand());
>> > -    const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
>> > -
>> > -    APInt StepC, StartC;
>> > -    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
>> > -    if (!AR)
>> > -      return nullptr;
>> > -
>> > -    if (const SCEVConstant *StepSE =
>> > -            dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
>> > -      StepC = StepSE->getValue()->getValue();
>> > -    else
>> > -      return nullptr;
>> > -
>> > -    if (const SCEVConstant *StartSE =
>> dyn_cast<SCEVConstant>(AR->getStart()))
>> > -      StartC = StartSE->getValue()->getValue();
>> > -    else
>> > -      return nullptr;
>> > +      return false;
>> >
>> > +    // Check possible overflow.
>> > +    if (GEPDesc.Start.getActiveBits() > 32 ||
>> GEPDesc.Step.getActiveBits() > 32)
>> > +      return false;
>> >     unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits()
>> / 8U;
>> > -    unsigned Start = StartC.getLimitedValue();
>> > -    unsigned Step = StepC.getLimitedValue();
>> > -
>> > -    unsigned Index = (Start + Step * Iteration) / ElemSize;
>> > -    if (Index >= CDS->getNumElements())
>> > -      return nullptr;
>> > +    uint64_t Index = (GEPDesc.Start.getLimitedValue() +
>> > +                      GEPDesc.Step.getLimitedValue() * Iteration) /
>> > +                     ElemSize;
>> > +    if (Index >= CDS->getNumElements()) {
>> > +      // FIXME: For now we conservatively ignore out of bound
>> accesses, but
>> > +      // we're allowed to perform the optimization in this case.
>> > +      return false;
>> > +    }
>> >
>> >     Constant *CV = CDS->getElementAsConstant(Index);
>> > +    assert(CV && "Constant expected.");
>> > +    SimplifiedValues[&I] = CV;
>> >
>> > -    return CV;
>> > +    NumberOfOptimizedInstructions += TTI.getUserCost(&I);
>> > +    return true;
>> >   }
>> >
>> > -public:
>> > -  UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution
>> &SE,
>> > -                 const TargetTransformInfo &TTI)
>> > -      : L(L), TripCount(TripCount), SE(SE), TTI(TTI),
>> > -        NumberOfOptimizedInstructions(0) {}
>> > -
>> > -  // Visit all loads the loop L, and for those that, after complete
>> loop
>> > -  // unrolling, would have a constant address and it will point to a
>> known
>> > -  // constant initializer, record its base address for future use.  It
>> is used
>> > -  // when we estimate number of potentially simplified instructions.
>> > -  void findConstFoldableLoads() {
>> > +  /// Visit all GEPs in the loop and find those which after complete
>> loop
>> > +  /// unrolling would become a constant, or BaseAddress+Constant.
>> > +  ///
>> > +  /// Such GEPs could allow to evaluate a load to a constant later -
>> for now we
>> > +  /// just store the corresponding BaseAddress and StartValue with
>> StepValue in
>> > +  /// the SCEVCache.
>> > +  void cacheSCEVResults() {
>> >     for (auto BB : L->getBlocks()) {
>> > -      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I !=
>> E; ++I) {
>> > -        if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
>> > -          if (!LI->isSimple())
>> > -            continue;
>> > -          Value *AddrOp = LI->getPointerOperand();
>> > -          const SCEV *S = SE.getSCEV(AddrOp);
>> > +      for (Instruction &I : *BB) {
>> > +        if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
>> > +          Value *V = cast<Value>(GEP);
>> > +          if (!SE.isSCEVable(V->getType()))
>> > +              continue;
>> > +          const SCEV *S = SE.getSCEV(V);
>> > +          // FIXME: Hoist the initialization out of the loop.
>> >           FindConstantPointers Visitor(L, SE);
>> >           SCEVTraversal<FindConstantPointers> T(Visitor);
>> > +          // Try to find (BaseAddress+Step+Offset) tuple.
>> > +          // If succeeded, save it to the cache - it might help in
>> folding
>> > +          // loads.
>> >           T.visitAll(S);
>> > -          if (Visitor.IndexIsConstant &&
>> Visitor.LoadCanBeConstantFolded) {
>> > -            LoadBaseAddresses[LI] = Visitor.BaseAddress;
>> > -          }
>> > +          if (!Visitor.IndexIsConstant || !Visitor.BaseAddress)
>> > +            continue;
>> > +
>> > +          const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress);
>> > +          if (BaseAddrSE->getType() != S->getType())
>> > +            continue;
>> > +          const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
>> > +          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
>> > +
>> > +          if (!AR)
>> > +            continue;
>> > +
>> > +          const SCEVConstant *StepSE =
>> > +              dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE));
>> > +          const SCEVConstant *StartSE =
>> dyn_cast<SCEVConstant>(AR->getStart());
>> > +          if (!StepSE || !StartSE)
>> > +            continue;
>> > +
>> > +          SCEVCache[V] = {Visitor.BaseAddress,
>> StartSE->getValue()->getValue(),
>> > +                          StepSE->getValue()->getValue()};
>> >         }
>> >       }
>> >     }
>> >   }
>> >
>> > -  // Given a list of loads that could be constant-folded
>> (LoadBaseAddresses),
>> > -  // estimate number of optimized instructions after substituting the
>> concrete
>> > -  // values for the given Iteration. Also track how many instructions
>> become
>> > -  // dead through this process.
>> > -  unsigned estimateNumberOfOptimizedInstructions(unsigned Iteration) {
>> > -    // We keep a set vector for the worklist so that we don't wast
>> space in the
>> > -    // worklist queuing up the same instruction repeatedly. This can
>> happen due
>> > -    // to multiple operands being the same instruction or due to the
>> same
>> > -    // instruction being an operand of lots of things that end up dead
>> or
>> > -    // simplified.
>> > -    SmallSetVector<Instruction *, 8> Worklist;
>> > -
>> > -    // Clear the simplified values and counts for this iteration.
>> > -    SimplifiedValues.clear();
>> > -    CountedInstructions.clear();
>> > -    NumberOfOptimizedInstructions = 0;
>> > -
>> > -    // We start by adding all loads to the worklist.
>> > -    for (auto &LoadDescr : LoadBaseAddresses) {
>> > -      LoadInst *LI = LoadDescr.first;
>> > -      SimplifiedValues[LI] = computeLoadValue(LI, Iteration);
>> > -      if (CountedInstructions.insert(LI).second)
>> > -        NumberOfOptimizedInstructions += TTI.getUserCost(LI);
>> > +public:
>> > +  UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution
>> &SE,
>> > +                 const TargetTransformInfo &TTI, unsigned
>> MaxUnrolledLoopSize)
>> > +      : L(L), TripCount(TripCount), SE(SE), TTI(TTI),
>> > +        MaxUnrolledLoopSize(MaxUnrolledLoopSize),
>> > +        NumberOfOptimizedInstructions(0), UnrolledLoopSize(0) {}
>> >
>> > -      for (User *U : LI->users())
>> > -        Worklist.insert(cast<Instruction>(U));
>> > -    }
>> > +  /// \brief Count the number of optimized instructions.
>> > +  unsigned NumberOfOptimizedInstructions;
>> >
>> > -    // And then we try to simplify every user of every instruction
>> from the
>> > -    // worklist. If we do simplify a user, add it to the worklist to
>> process
>> > -    // its users as well.
>> > -    while (!Worklist.empty()) {
>> > -      Instruction *I = Worklist.pop_back_val();
>> > -      if (!L->contains(I))
>> > -        continue;
>> > -      if (!visit(I))
>> > -        continue;
>> > -      for (User *U : I->users())
>> > -        Worklist.insert(cast<Instruction>(U));
>> > -    }
>> > +  /// \brief Count the total number of instructions.
>> > +  unsigned UnrolledLoopSize;
>> >
>> > -    // Now that we know the potentially simplifed instructions,
>> estimate number
>> > -    // of instructions that would become dead if we do perform the
>> > -    // simplification.
>> > -
>> > -    // The dead instructions are held in a separate set. This is used
>> to
>> > -    // prevent us from re-examining instructions and make sure we only
>> count
>> > -    // the benifit once. The worklist's internal set handles insertion
>> > -    // deduplication.
>> > -    SmallPtrSet<Instruction *, 16> DeadInstructions;
>> > -
>> > -    // Lambda to enque operands onto the worklist.
>> > -    auto EnqueueOperands = [&](Instruction &I) {
>> > -      for (auto *Op : I.operand_values())
>> > -        if (auto *OpI = dyn_cast<Instruction>(Op))
>> > -          if (!OpI->use_empty())
>> > -            Worklist.insert(OpI);
>> > -    };
>> > -
>> > -    // Start by initializing worklist with simplified instructions.
>> > -    for (auto &FoldedKeyValue : SimplifiedValues)
>> > -      if (auto *FoldedInst =
>> dyn_cast<Instruction>(FoldedKeyValue.first)) {
>> > -        DeadInstructions.insert(FoldedInst);
>> > -
>> > -        // Add each instruction operand of this dead instruction to the
>> > -        // worklist.
>> > -        EnqueueOperands(*FoldedInst);
>> > -      }
>> > +  /// \brief Figure out if the loop is worth full unrolling.
>> > +  ///
>> > +  /// Complete loop unrolling can make some loads constant, and we
>> need to know
>> > +  /// if that would expose any further optimization opportunities.
>> This routine
>> > +  /// estimates this optimization.  It assigns computed number of
>> instructions,
>> > +  /// that potentially might be optimized away, to
>> > +  /// NumberOfOptimizedInstructions, and total number of instructions
>> to
>> > +  /// UnrolledLoopSize (not counting blocks that won't be reached, if
>> we were
>> > +  /// able to compute the condition).
>> > +  /// \returns false if we can't analyze the loop, or if we discovered
>> that
>> > +  /// unrolling won't give anything. Otherwise, returns true.
>> > +  bool analyzeLoop() {
>> > +    SmallSetVector<BasicBlock *, 16> BBWorklist;
>> > +
>> > +    // Don't simulate loops with a big or unknown tripcount
>> > +    if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
>> > +        TripCount > UnrollMaxIterationsCountToAnalyze)
>> > +      return false;
>> >
>> > -    // If a definition of an insn is only used by simplified or dead
>> > -    // instructions, it's also dead. Check defs of all instructions
>> from the
>> > -    // worklist.
>> > -    while (!Worklist.empty()) {
>> > -      Instruction *I = Worklist.pop_back_val();
>> > -      if (!L->contains(I))
>> > -        continue;
>> > -      if (DeadInstructions.count(I))
>> > -        continue;
>> > -
>> > -      if (std::all_of(I->user_begin(), I->user_end(), [&](User *U) {
>> > -            return DeadInstructions.count(cast<Instruction>(U));
>> > -          })) {
>> > -        NumberOfOptimizedInstructions += TTI.getUserCost(I);
>> > -        DeadInstructions.insert(I);
>> > -        EnqueueOperands(*I);
>> > +    // To avoid compute SCEV-expressions on every iteration, compute
>> them once
>> > +    // and store interesting to us in SCEVCache.
>> > +    cacheSCEVResults();
>> > +
>> > +    // Simulate execution of each iteration of the loop counting
>> instructions,
>> > +    // which would be simplified.
>> > +    // Since the same load will take different values on different
>> iterations,
>> > +    // we literally have to go through all loop's iterations.
>> > +    for (Iteration = 0; Iteration < TripCount; ++Iteration) {
>> > +      SimplifiedValues.clear();
>> > +      BBWorklist.clear();
>> > +      BBWorklist.insert(L->getHeader());
>> > +      // Note that we *must not* cache the size, this loop grows the
>> worklist.
>> > +      for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
>> > +        BasicBlock *BB = BBWorklist[Idx];
>> > +
>> > +        // Visit all instructions in the given basic block and try to
>> simplify
>> > +        // it.  We don't change the actual IR, just count optimization
>> > +        // opportunities.
>> > +        for (Instruction &I : *BB) {
>> > +          UnrolledLoopSize += TTI.getUserCost(&I);
>> > +          Base::visit(I);
>> > +          // If unrolled body turns out to be too big, bail out.
>> > +          if (UnrolledLoopSize - NumberOfOptimizedInstructions >
>> > +              MaxUnrolledLoopSize)
>> > +            return false;
>> > +        }
>> > +
>> > +        // Add BB's successors to the worklist.
>> > +        for (BasicBlock *Succ : successors(BB))
>> > +          if (L->contains(Succ))
>> > +            BBWorklist.insert(Succ);
>> >       }
>> > +
>> > +      // If we found no optimization opportunities on the first
>> iteration, we
>> > +      // won't find them on later ones too.
>> > +      if (!NumberOfOptimizedInstructions)
>> > +        return false;
>> >     }
>> > -    return NumberOfOptimizedInstructions;
>> > +    return true;
>> >   }
>> > };
>> > } // namespace
>> >
>> > -// Complete loop unrolling can make some loads constant, and we need
>> to know if
>> > -// that would expose any further optimization opportunities.
>> > -// This routine estimates this optimization effect and returns the
>> number of
>> > -// instructions, that potentially might be optimized away.
>> > -static unsigned
>> > -approximateNumberOfOptimizedInstructions(const Loop *L,
>> ScalarEvolution &SE,
>> > -                                         unsigned TripCount,
>> > -                                         const TargetTransformInfo
>> &TTI) {
>> > -  if (!TripCount || !UnrollMaxIterationsCountToAnalyze)
>> > -    return 0;
>> > -
>> > -  UnrollAnalyzer UA(L, TripCount, SE, TTI);
>> > -  UA.findConstFoldableLoads();
>> > -
>> > -  // Estimate number of instructions, that could be simplified if we
>> replace a
>> > -  // load with the corresponding constant. Since the same load will
>> take
>> > -  // different values on different iterations, we have to go through
>> all loop's
>> > -  // iterations here. To limit ourselves here, we check only first N
>> > -  // iterations, and then scale the found number, if necessary.
>> > -  unsigned IterationsNumberForEstimate =
>> > -      std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount);
>> > -  unsigned NumberOfOptimizedInstructions = 0;
>> > -  for (unsigned i = 0; i < IterationsNumberForEstimate; ++i)
>> > -    NumberOfOptimizedInstructions +=
>> > -        UA.estimateNumberOfOptimizedInstructions(i);
>> > -
>> > -  NumberOfOptimizedInstructions *= TripCount /
>> IterationsNumberForEstimate;
>> > -
>> > -  return NumberOfOptimizedInstructions;
>> > -}
>> > -
>> > /// ApproximateLoopSize - Approximate the size of the loop.
>> > static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
>> >                                     bool &NotDuplicatable,
>> > @@ -679,6 +681,49 @@ static void SetLoopAlreadyUnrolled(Loop
>> >   L->setLoopID(NewLoopID);
>> > }
>> >
>> > +bool LoopUnroll::canUnrollCompletely(
>> > +    Loop *L, unsigned Threshold, unsigned AbsoluteThreshold,
>> > +    uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions,
>> > +    unsigned PercentOfOptimizedForCompleteUnroll) {
>> > +
>> > +  if (Threshold == NoThreshold) {
>> > +    DEBUG(dbgs() << "  Can fully unroll, because no threshold is
>> set.\n");
>> > +    return true;
>> > +  }
>> > +
>> > +  if (UnrolledSize <= Threshold) {
>> > +    DEBUG(dbgs() << "  Can fully unroll, because unrolled size: "
>> > +                 << UnrolledSize << "<" << Threshold << "\n");
>> > +    return true;
>> > +  }
>> > +
>> > +  assert(UnrolledSize && "UnrolledSize can't be 0 at this point.");
>> > +  unsigned PercentOfOptimizedInstructions =
>> > +      (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize;
>> > +
>> > +  if (UnrolledSize <= AbsoluteThreshold &&
>> > +      PercentOfOptimizedInstructions >=
>> PercentOfOptimizedForCompleteUnroll) {
>> > +    DEBUG(dbgs() << "  Can fully unroll, because unrolling will help
>> removing "
>> > +                 << PercentOfOptimizedInstructions
>> > +                 << "% instructions (threshold: "
>> > +                 << PercentOfOptimizedForCompleteUnroll << "%)\n");
>> > +    DEBUG(dbgs() << "  Unrolled size (" << UnrolledSize
>> > +                 << ") is less than the threshold (" <<
>> AbsoluteThreshold
>> > +                 << ").\n");
>> > +    return true;
>> > +  }
>> > +
>> > +  DEBUG(dbgs() << "  Too large to fully unroll:\n");
>> > +  DEBUG(dbgs() << "    Unrolled size: " << UnrolledSize << "\n");
>> > +  DEBUG(dbgs() << "    Estimated number of optimized instructions: "
>> > +               << NumberOfOptimizedInstructions << "\n");
>> > +  DEBUG(dbgs() << "    Absolute threshold: " << AbsoluteThreshold <<
>> "\n");
>> > +  DEBUG(dbgs() << "    Minimum percent of removed instructions: "
>> > +               << PercentOfOptimizedForCompleteUnroll << "\n");
>> > +  DEBUG(dbgs() << "    Threshold for small loops: " << Threshold <<
>> "\n");
>> > +  return false;
>> > +}
>> > +
>> > unsigned LoopUnroll::selectUnrollCount(
>> >     const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
>> >     unsigned PragmaCount, const
>> TargetTransformInfo::UnrollingPreferences &UP,
>> > @@ -785,27 +830,34 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPa
>> >     return false;
>> >   }
>> >
>> > -  unsigned NumberOfOptimizedInstructions =
>> > -      approximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI);
>> > -  DEBUG(dbgs() << "  Complete unrolling could save: "
>> > -               << NumberOfOptimizedInstructions << "\n");
>> > -
>> >   unsigned Threshold, PartialThreshold;
>> > +  unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll;
>> >   selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
>> > -                   NumberOfOptimizedInstructions);
>> > +                   AbsoluteThreshold,
>> PercentOfOptimizedForCompleteUnroll);
>> >
>> >   // Given Count, TripCount and thresholds determine the type of
>> >   // unrolling which is to be performed.
>> >   enum { Full = 0, Partial = 1, Runtime = 2 };
>> >   int Unrolling;
>> >   if (TripCount && Count == TripCount) {
>> > -    if (Threshold != NoThreshold && UnrolledSize > Threshold) {
>> > -      DEBUG(dbgs() << "  Too large to fully unroll with count: " <<
>> Count
>> > -                   << " because size: " << UnrolledSize << ">" <<
>> Threshold
>> > -                   << "\n");
>> > -      Unrolling = Partial;
>> > -    } else {
>> > +    Unrolling = Partial;
>> > +    // If the loop is really small, we don't need to run an expensive
>> analysis.
>> > +    if (canUnrollCompletely(
>> > +            L, Threshold, AbsoluteThreshold,
>> > +            UnrolledSize, 0, 100)) {
>> >       Unrolling = Full;
>> > +    } else {
>> > +      // The loop isn't that small, but we still can fully unroll it
>> if that
>> > +      // helps to remove a significant number of instructions.
>> > +      // To check that, run additional analysis on the loop.
>> > +      UnrollAnalyzer UA(L, TripCount, *SE, TTI, AbsoluteThreshold);
>> > +      if (UA.analyzeLoop() &&
>> > +          canUnrollCompletely(L, Threshold, AbsoluteThreshold,
>> > +                              UA.UnrolledLoopSize,
>> > +                              UA.NumberOfOptimizedInstructions,
>> > +                              PercentOfOptimizedForCompleteUnroll)) {
>> > +        Unrolling = Full;
>> > +      }
>> >     }
>> >   } else if (TripCount && Count < TripCount) {
>> >     Unrolling = Partial;
>> >
>> > Added: llvm/trunk/test/Transforms/LoopUnroll/full-unroll-bad-geps.ll
>> > URL:
>> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/LoopUnroll/full-unroll-bad-geps.ll?rev=237156&view=auto
>> >
>> ==============================================================================
>> > --- llvm/trunk/test/Transforms/LoopUnroll/full-unroll-bad-geps.ll
>> (added)
>> > +++ llvm/trunk/test/Transforms/LoopUnroll/full-unroll-bad-geps.ll Tue
>> May 12 12:20:03 2015
>> > @@ -0,0 +1,34 @@
>> > +; Check that we don't crash on corner cases.
>> > +; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=10
>> -unroll-threshold=10  -unroll-percent-of-optimized-for-complete-unroll=20
>> -o /dev/null
>> > +target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
>> > +
>> > +define void @foo1() {
>> > +entry:
>> > +  br label %for.body
>> > +
>> > +for.body:
>> > +  %phi = phi i64 [ 0, %entry ], [ %inc, %for.body ]
>> > +  %idx = zext i32 undef to i64
>> > +  %add.ptr = getelementptr inbounds i64, i64* null, i64 %idx
>> > +  %inc = add nuw nsw i64 %phi, 1
>> > +  %cmp = icmp ult i64 %inc, 999
>> > +  br i1 %cmp, label %for.body, label %for.exit
>> > +
>> > +for.exit:
>> > +  ret void
>> > +}
>> > +
>> > +define void @foo2() {
>> > +entry:
>> > +  br label %for.body
>> > +
>> > +for.body:
>> > +  %phi = phi i64 [ 0, %entry ], [ %inc, %for.body ]
>> > +  %x = getelementptr i32, <4 x i32*> undef, <4 x i32> <i32 1, i32 1,
>> i32 1, i32 1>
>> > +  %inc = add nuw nsw i64 %phi, 1
>> > +  %cmp = icmp ult i64 %inc, 999
>> > +  br i1 %cmp, label %for.body, label %for.exit
>> > +
>> > +for.exit:
>> > +  ret void
>> > +}
>> >
>> > Modified:
>> llvm/trunk/test/Transforms/LoopUnroll/full-unroll-heuristics.ll
>> > URL:
>> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/LoopUnroll/full-unroll-heuristics.ll?rev=237156&r1=237155&r2=237156&view=diff
>> >
>> ==============================================================================
>> > --- llvm/trunk/test/Transforms/LoopUnroll/full-unroll-heuristics.ll
>> (original)
>> > +++ llvm/trunk/test/Transforms/LoopUnroll/full-unroll-heuristics.ll Tue
>> May 12 12:20:03 2015
>> > @@ -17,8 +17,8 @@
>> > ; optimizations to remove ~55% of the instructions, the loop body size
>> is 9,
>> > ; and unrolled size is 65.
>> >
>> > -; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=10
>> -unroll-threshold=10  -unroll-percent-of-optimized-for-complete-unroll=30 |
>> FileCheck %s -check-prefix=TEST1
>> > -; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=100
>> -unroll-threshold=10  -unroll-percent-of-optimized-for-complete-unroll=30 |
>> FileCheck %s -check-prefix=TEST2
>> > +; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=10
>> -unroll-threshold=10  -unroll-percent-of-optimized-for-complete-unroll=20 |
>> FileCheck %s -check-prefix=TEST1
>> > +; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=100
>> -unroll-threshold=10  -unroll-percent-of-optimized-for-complete-unroll=20 |
>> FileCheck %s -check-prefix=TEST2
>> > ; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=100
>> -unroll-threshold=10  -unroll-percent-of-optimized-for-complete-unroll=80 |
>> FileCheck %s -check-prefix=TEST3
>> > ; RUN: opt < %s -S -loop-unroll
>> -unroll-max-iteration-count-to-analyze=1000 -unroll-absolute-threshold=100
>> -unroll-threshold=100 -unroll-percent-of-optimized-for-complete-unroll=80 |
>> FileCheck %s -check-prefix=TEST4
>> >
>> >
>> >
>> > _______________________________________________
>> > llvm-commits mailing list
>> > llvm-commits at cs.uiuc.edu
>> > http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20150521/865dc536/attachment.html>


More information about the llvm-commits mailing list