[llvm] r233105 - Revert r233062 ""float2int": Add a new pass to demote from float to int where possible."
Hans Wennborg
hans at hanshq.net
Tue Mar 24 13:07:08 PDT 2015
Author: hans
Date: Tue Mar 24 15:07:08 2015
New Revision: 233105
URL: http://llvm.org/viewvc/llvm-project?rev=233105&view=rev
Log:
Revert r233062 ""float2int": Add a new pass to demote from float to int where possible."
This caused PR23008, compiles failing with: "Use still stuck around after Def is
destroyed: %.sroa.speculated"
Also reverting follow-up r233064.
Removed:
llvm/trunk/lib/Transforms/Scalar/Float2Int.cpp
llvm/trunk/test/Transforms/Float2Int/basic.ll
llvm/trunk/test/Transforms/Float2Int/toolarge.ll
Modified:
llvm/trunk/include/llvm/InitializePasses.h
llvm/trunk/include/llvm/LinkAllPasses.h
llvm/trunk/include/llvm/Transforms/Scalar.h
llvm/trunk/lib/Transforms/IPO/PassManagerBuilder.cpp
llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt
llvm/trunk/lib/Transforms/Scalar/Scalar.cpp
Modified: llvm/trunk/include/llvm/InitializePasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=233105&r1=233104&r2=233105&view=diff
==============================================================================
--- llvm/trunk/include/llvm/InitializePasses.h (original)
+++ llvm/trunk/include/llvm/InitializePasses.h Tue Mar 24 15:07:08 2015
@@ -294,7 +294,6 @@ void initializeWinEHPreparePass(PassRegi
void initializePlaceBackedgeSafepointsImplPass(PassRegistry&);
void initializePlaceSafepointsPass(PassRegistry&);
void initializeDwarfEHPreparePass(PassRegistry&);
-void initializeFloat2IntPass(PassRegistry&);
}
#endif
Modified: llvm/trunk/include/llvm/LinkAllPasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/LinkAllPasses.h?rev=233105&r1=233104&r2=233105&view=diff
==============================================================================
--- llvm/trunk/include/llvm/LinkAllPasses.h (original)
+++ llvm/trunk/include/llvm/LinkAllPasses.h Tue Mar 24 15:07:08 2015
@@ -169,7 +169,6 @@ namespace {
(void) llvm::createRewriteSymbolsPass();
(void) llvm::createStraightLineStrengthReducePass();
(void) llvm::createMemDerefPrinter();
- (void) llvm::createFloat2IntPass();
(void)new llvm::IntervalPartition();
(void)new llvm::ScalarEvolution();
Modified: llvm/trunk/include/llvm/Transforms/Scalar.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Scalar.h?rev=233105&r1=233104&r2=233105&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Transforms/Scalar.h (original)
+++ llvm/trunk/include/llvm/Transforms/Scalar.h Tue Mar 24 15:07:08 2015
@@ -429,6 +429,7 @@ BasicBlockPass *createLoadCombinePass();
FunctionPass *createStraightLineStrengthReducePass();
+
//===----------------------------------------------------------------------===//
//
// PlaceSafepoints - Rewrite any IR calls to gc.statepoints and insert any
@@ -446,12 +447,6 @@ ModulePass *createPlaceSafepointsPass();
//
FunctionPass *createRewriteStatepointsForGCPass();
-//===----------------------------------------------------------------------===//
-//
-// Float2Int - Demote floats to ints where possible.
-//
-FunctionPass *createFloat2IntPass();
-
} // End llvm namespace
#endif
Modified: llvm/trunk/lib/Transforms/IPO/PassManagerBuilder.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/IPO/PassManagerBuilder.cpp?rev=233105&r1=233104&r2=233105&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/IPO/PassManagerBuilder.cpp (original)
+++ llvm/trunk/lib/Transforms/IPO/PassManagerBuilder.cpp Tue Mar 24 15:07:08 2015
@@ -59,10 +59,6 @@ static cl::opt<bool>
RunLoopRerolling("reroll-loops", cl::Hidden,
cl::desc("Run the loop rerolling pass"));
-static cl::opt<bool>
-RunFloat2Int("float-to-int", cl::Hidden, cl::init(true),
- cl::desc("Run the float2int (float demotion) pass"));
-
static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
cl::Hidden,
cl::desc("Run the load combining pass"));
@@ -311,9 +307,6 @@ void PassManagerBuilder::populateModuleP
// we must insert a no-op module pass to reset the pass manager.
MPM.add(createBarrierNoopPass());
- if (RunFloat2Int)
- MPM.add(createFloat2IntPass());
-
// Re-rotate loops in all our loop nests. These may have fallout out of
// rotated form due to GVN or other transformations, and the vectorizer relies
// on the rotated form.
Modified: llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt?rev=233105&r1=233104&r2=233105&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt (original)
+++ llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt Tue Mar 24 15:07:08 2015
@@ -9,7 +9,6 @@ add_llvm_library(LLVMScalarOpts
DeadStoreElimination.cpp
EarlyCSE.cpp
FlattenCFGPass.cpp
- Float2Int.cpp
GVN.cpp
InductiveRangeCheckElimination.cpp
IndVarSimplify.cpp
Removed: llvm/trunk/lib/Transforms/Scalar/Float2Int.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/Float2Int.cpp?rev=233104&view=auto
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/Float2Int.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/Float2Int.cpp (removed)
@@ -1,536 +0,0 @@
-//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Float2Int pass, which aims to demote floating
-// point operations to work on integers, where that is losslessly possible.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "float2int"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/APSInt.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include <deque>
-#include <functional> // For std::function
-using namespace llvm;
-
-// The algorithm is simple. Start at instructions that convert from the
-// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
-// graph, using an equivalence datastructure to unify graphs that interfere.
-//
-// Mappable instructions are those with an integer corrollary that, given
-// integer domain inputs, produce an integer output; fadd, for example.
-//
-// If a non-mappable instruction is seen, this entire def-use graph is marked
-// as non-transformable. If we see an instruction that converts from the
-// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
-
-/// The largest integer type worth dealing with.
-static cl::opt<unsigned>
-MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
- cl::desc("Max integer bitwidth to consider in float2int"
- "(default=64)"));
-
-namespace {
- struct Float2Int : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- Float2Int() : FunctionPass(ID) {
- initializeFloat2IntPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- }
-
- void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
- ConstantRange seen(Instruction *I, ConstantRange R);
- ConstantRange badRange();
- ConstantRange unknownRange();
- ConstantRange validateRange(ConstantRange R);
- void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
- void walkForwards();
- bool validateAndTransform();
- Value *convert(Instruction *I, Type *ToTy);
- void cleanup();
-
- MapVector<Instruction*, ConstantRange > SeenInsts;
- SmallPtrSet<Instruction*,8> Roots;
- EquivalenceClasses<Instruction*> ECs;
- MapVector<Instruction*, Value*> ConvertedInsts;
- LLVMContext *Ctx;
- };
-}
-
-char Float2Int::ID = 0;
-INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false)
-
-// Given a FCmp predicate, return a matching ICmp predicate if one
-// exists, otherwise return BAD_ICMP_PREDICATE.
-static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
- switch (P) {
- case CmpInst::FCMP_OEQ:
- case CmpInst::FCMP_UEQ:
- return CmpInst::ICMP_EQ;
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_UGT:
- return CmpInst::ICMP_SGT;
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGE:
- return CmpInst::ICMP_SGE;
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_ULT:
- return CmpInst::ICMP_SLT;
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULE:
- return CmpInst::ICMP_SLE;
- case CmpInst::FCMP_ONE:
- case CmpInst::FCMP_UNE:
- return CmpInst::ICMP_NE;
- default:
- return CmpInst::BAD_ICMP_PREDICATE;
- }
-}
-
-// Given a floating point binary operator, return the matching
-// integer version.
-static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
- switch (Opcode) {
- default: llvm_unreachable("Unhandled opcode!");
- case Instruction::FAdd: return Instruction::Add;
- case Instruction::FSub: return Instruction::Sub;
- case Instruction::FMul: return Instruction::Mul;
- }
-}
-
-// Find the roots - instructions that convert from the FP domain to
-// integer domain.
-void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
- for (auto &I : inst_range(F)) {
- switch (I.getOpcode()) {
- default: break;
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- Roots.insert(&I);
- break;
- case Instruction::FCmp:
- if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
- CmpInst::BAD_ICMP_PREDICATE)
- Roots.insert(&I);
- break;
- }
- }
-}
-
-// Helper - mark I as having been traversed, having range R.
-ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
- DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
- if (SeenInsts.find(I) != SeenInsts.end())
- SeenInsts.find(I)->second = R;
- else
- SeenInsts.insert(std::make_pair(I, R));
- return R;
-}
-
-// Helper - get a range representing a poison value.
-ConstantRange Float2Int::badRange() {
- return ConstantRange(MaxIntegerBW + 1, true);
-}
-ConstantRange Float2Int::unknownRange() {
- return ConstantRange(MaxIntegerBW + 1, false);
-}
-ConstantRange Float2Int::validateRange(ConstantRange R) {
- if (R.getBitWidth() > MaxIntegerBW + 1)
- return badRange();
- return R;
-}
-
-// The most obvious way to structure the search is a depth-first, eager
-// search from each root. However, that require direct recursion and so
-// can only handle small instruction sequences. Instead, we split the search
-// up into two phases:
-// - walkBackwards: A breadth-first walk of the use-def graph starting from
-// the roots. Populate "SeenInsts" with interesting
-// instructions and poison values if they're obvious and
-// cheap to compute. Calculate the equivalance set structure
-// while we're here too.
-// - walkForwards: Iterate over SeenInsts in reverse order, so we visit
-// defs before their uses. Calculate the real range info.
-
-// Breadth-first walk of the use-def graph; determine the set of nodes
-// we care about and eagerly determine if some of them are poisonous.
-void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
- std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
- while (!Worklist.empty()) {
- Instruction *I = Worklist.back();
- Worklist.pop_back();
-
- if (SeenInsts.find(I) != SeenInsts.end())
- // Seen already.
- continue;
-
- switch (I->getOpcode()) {
- // FIXME: Handle select and phi nodes.
- default:
- // Path terminated uncleanly.
- seen(I, badRange());
- continue;
-
- case Instruction::UIToFP: {
- // Path terminated cleanly.
- unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
- APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
- APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
- seen(I, validateRange(ConstantRange(Min, Max)));
- continue;
- }
-
- case Instruction::SIToFP: {
- // Path terminated cleanly.
- unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
- APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
- APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
- seen(I, validateRange(ConstantRange(SMin, SMax)));
- continue;
- }
-
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FCmp:
- break;
- }
-
- seen(I, unknownRange());
- for (Value *O : I->operands()) {
- if (Instruction *OI = dyn_cast<Instruction>(O)) {
- // Unify def-use chains if they interfere.
- ECs.unionSets(I, OI);
- Worklist.push_back(OI);
- } else if (!isa<ConstantFP>(O)) {
- // Not an instruction or ConstantFP? we can't do anything.
- seen(I, badRange());
- break;
- }
- }
- }
-}
-
-// Walk forwards down the list of seen instructions, so we visit defs before
-// uses.
-void Float2Int::walkForwards() {
- for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) {
- if (It->second != unknownRange())
- continue;
-
- Instruction *I = It->first;
- std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
- switch (I->getOpcode()) {
- // FIXME: Handle select and phi nodes.
- default:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- llvm_unreachable("Should have been handled in walkForwards!");
-
- case Instruction::FAdd:
- Op = [](ArrayRef<ConstantRange> Ops) {
- assert(Ops.size() == 2 && "FAdd is a binary operator!");
- return Ops[0].add(Ops[1]);
- };
- break;
-
- case Instruction::FSub:
- Op = [](ArrayRef<ConstantRange> Ops) {
- assert(Ops.size() == 2 && "FSub is a binary operator!");
- return Ops[0].sub(Ops[1]);
- };
- break;
-
- case Instruction::FMul:
- Op = [](ArrayRef<ConstantRange> Ops) {
- assert(Ops.size() == 2 && "FMul is a binary operator!");
- return Ops[0].multiply(Ops[1]);
- };
- break;
-
- //
- // Root-only instructions - we'll only see these if they're the
- // first node in a walk.
- //
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- Op = [](ArrayRef<ConstantRange> Ops) {
- assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
- return Ops[0];
- };
- break;
-
- case Instruction::FCmp:
- Op = [](ArrayRef<ConstantRange> Ops) {
- assert(Ops.size() == 2 && "FCmp is a binary operator!");
- return Ops[0].unionWith(Ops[1]);
- };
- break;
- }
-
- bool Abort = false;
- SmallVector<ConstantRange,4> OpRanges;
- for (Value *O : I->operands()) {
- if (Instruction *OI = dyn_cast<Instruction>(O)) {
- assert(SeenInsts.find(OI) != SeenInsts.end() &&
- "def not seen before use!");
- OpRanges.push_back(SeenInsts.find(OI)->second);
- } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
- // Work out if the floating point number can be losslessly represented
- // as an integer.
- // APFloat::convertToInteger(&Exact) purports to do what we want, but
- // the exactness can be too precise. For example, negative zero can
- // never be exactly converted to an integer.
- //
- // Instead, we ask APFloat to round itself to an integral value - this
- // preserves sign-of-zero - then compare the result with the original.
- //
- APFloat F = CF->getValueAPF();
-
- // First, weed out obviously incorrect values. Non-finite numbers
- // can't be represented and neither can negative zero, unless
- // we're in fast math mode.
- if (!F.isFinite() ||
- (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
- !I->hasNoSignedZeros())) {
- seen(I, badRange());
- Abort = true;
- break;
- }
-
- APFloat NewF = F;
- auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
- if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
- seen(I, badRange());
- Abort = true;
- break;
- }
- // OK, it's representable. Now get it.
- APSInt Int(MaxIntegerBW+1, false);
- bool Exact;
- CF->getValueAPF().convertToInteger(Int,
- APFloat::rmNearestTiesToEven,
- &Exact);
- OpRanges.push_back(ConstantRange(Int));
- } else {
- llvm_unreachable("Should have already marked this as badRange!");
- }
- }
-
- // Reduce the operands' ranges to a single range and return.
- if (!Abort)
- seen(I, Op(OpRanges));
- }
-}
-
-// If there is a valid transform to be done, do it.
-bool Float2Int::validateAndTransform() {
- bool MadeChange = false;
-
- // Iterate over every disjoint partition of the def-use graph.
- for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
- ConstantRange R(MaxIntegerBW + 1, false);
- bool Fail = false;
- Type *ConvertedToTy = nullptr;
-
- // For every member of the partition, union all the ranges together.
- for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
- MI != ME; ++MI) {
- Instruction *I = *MI;
- auto SeenI = SeenInsts.find(I);
- assert (SeenI != SeenInsts.end() && "Didn't see this instruction?");
-
- R = R.unionWith(SeenI->second);
- // We need to ensure I has no users that have not been seen.
- // If it does, transformation would be illegal.
- //
- // Don't count the roots, as they terminate the graphs.
- if (Roots.count(I) == 0) {
- // Set the type of the conversion while we're here.
- if (!ConvertedToTy)
- ConvertedToTy = I->getType();
- for (User *U : I->users()) {
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
- DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
- Fail = true;
- break;
- }
- }
- }
- if (Fail)
- break;
- }
-
- // If the set was empty, or we failed, or the range is poisonous,
- // bail out.
- if (ECs.member_begin(It) == ECs.member_end() || Fail ||
- R.isFullSet() || R.isSignWrappedSet())
- continue;
- assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
-
- // The number of bits required is the maximum of the upper and
- // lower limits, plus one so it can be signed.
- unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
- R.getUpper().getMinSignedBits()) + 1;
- DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
-
- // If we've run off the realms of the exactly representable integers,
- // the floating point result will differ from an integer approximation.
-
- // Do we need more bits than are in the mantissa of the type we converted
- // to? semanticsPrecision returns the number of mantissa bits plus one
- // for the sign bit.
- unsigned MaxRepresentableBits
- = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
- if (MinBW > MaxRepresentableBits) {
- DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
- continue;
- }
- if (MinBW > 64) {
- DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
- continue;
- }
-
- // OK, R is known to be representable. Now pick a type for it.
- // FIXME: Pick the smallest legal type that will fit.
- Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
-
- for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
- MI != ME; ++MI)
- convert(*MI, Ty);
- MadeChange = true;
- }
-
- return MadeChange;
-}
-
-Value *Float2Int::convert(Instruction *I, Type *ToTy) {
- if (ConvertedInsts.find(I) != ConvertedInsts.end())
- // Already converted this instruction.
- return ConvertedInsts[I];
-
- SmallVector<Value*,4> NewOperands;
- for (Value *V : I->operands()) {
- // Don't recurse if we're an instruction that terminates the path.
- if (I->getOpcode() == Instruction::UIToFP ||
- I->getOpcode() == Instruction::SIToFP) {
- NewOperands.push_back(V);
- } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
- NewOperands.push_back(convert(VI, ToTy));
- } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
- APSInt Val(ToTy->getPrimitiveSizeInBits(), true);
- bool Exact;
- CF->getValueAPF().convertToInteger(Val,
- APFloat::rmNearestTiesToEven,
- &Exact);
- NewOperands.push_back(ConstantInt::get(ToTy, Val));
- } else {
- llvm_unreachable("Unhandled operand type?");
- }
- }
-
- // Now create a new instruction.
- IRBuilder<> IRB(I);
- Value *NewV = nullptr;
- switch (I->getOpcode()) {
- default: llvm_unreachable("Unhandled instruction!");
-
- case Instruction::FPToUI:
- NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
- break;
-
- case Instruction::FPToSI:
- NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
- break;
-
- case Instruction::FCmp: {
- CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
- assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
- NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
- break;
- }
-
- case Instruction::UIToFP:
- NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
- break;
-
- case Instruction::SIToFP:
- NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
- break;
-
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
- NewOperands[0], NewOperands[1],
- I->getName());
- break;
- }
-
- // If we're a root instruction, RAUW.
- if (Roots.count(I))
- I->replaceAllUsesWith(NewV);
-
- ConvertedInsts[I] = NewV;
- return NewV;
-}
-
-// Perform dead code elimination on the instructions we just modified.
-void Float2Int::cleanup() {
- for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend();
- I != E; ++I)
- I->first->eraseFromParent();
-}
-
-bool Float2Int::runOnFunction(Function &F) {
- DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
- // Clear out all state.
- ECs = EquivalenceClasses<Instruction*>();
- SeenInsts.clear();
- ConvertedInsts.clear();
- Roots.clear();
-
- Ctx = &F.getParent()->getContext();
-
- findRoots(F, Roots);
-
- walkBackwards(Roots);
- walkForwards();
-
- bool Modified = validateAndTransform();
- if (Modified)
- cleanup();
- return Modified;
-}
-
-FunctionPass *llvm::createFloat2IntPass() {
- return new Float2Int();
-}
-
Modified: llvm/trunk/lib/Transforms/Scalar/Scalar.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/Scalar.cpp?rev=233105&r1=233104&r2=233105&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/Scalar.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/Scalar.cpp Tue Mar 24 15:07:08 2015
@@ -77,7 +77,6 @@ void llvm::initializeScalarOpts(PassRegi
initializeLoadCombinePass(Registry);
initializePlaceBackedgeSafepointsImplPass(Registry);
initializePlaceSafepointsPass(Registry);
- initializeFloat2IntPass(Registry);
}
void LLVMInitializeScalarOpts(LLVMPassRegistryRef R) {
Removed: llvm/trunk/test/Transforms/Float2Int/basic.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/Float2Int/basic.ll?rev=233104&view=auto
==============================================================================
--- llvm/trunk/test/Transforms/Float2Int/basic.ll (original)
+++ llvm/trunk/test/Transforms/Float2Int/basic.ll (removed)
@@ -1,227 +0,0 @@
-; RUN: opt < %s -float2int -S | FileCheck %s
-
-;
-; Positive tests
-;
-
-; CHECK-LABEL: @simple1
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = add i32 %1, 1
-; CHECK: %3 = trunc i32 %2 to i16
-; CHECK: ret i16 %3
-define i16 @simple1(i8 %a) {
- %1 = uitofp i8 %a to float
- %2 = fadd float %1, 1.0
- %3 = fptoui float %2 to i16
- ret i16 %3
-}
-
-; CHECK-LABEL: @simple2
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = sub i32 %1, 1
-; CHECK: %3 = trunc i32 %2 to i8
-; CHECK: ret i8 %3
-define i8 @simple2(i8 %a) {
- %1 = uitofp i8 %a to float
- %2 = fsub float %1, 1.0
- %3 = fptoui float %2 to i8
- ret i8 %3
-}
-
-; CHECK-LABEL: @simple3
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = sub i32 %1, 1
-; CHECK: ret i32 %2
-define i32 @simple3(i8 %a) {
- %1 = uitofp i8 %a to float
- %2 = fsub float %1, 1.0
- %3 = fptoui float %2 to i32
- ret i32 %3
-}
-
-; CHECK-LABEL: @cmp
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = zext i8 %b to i32
-; CHECK: %3 = icmp slt i32 %1, %2
-; CHECK: ret i1 %3
-define i1 @cmp(i8 %a, i8 %b) {
- %1 = uitofp i8 %a to float
- %2 = uitofp i8 %b to float
- %3 = fcmp ult float %1, %2
- ret i1 %3
-}
-
-; CHECK-LABEL: @simple4
-; CHECK: %1 = zext i32 %a to i64
-; CHECK: %2 = add i64 %1, 1
-; CHECK: %3 = trunc i64 %2 to i32
-; CHECK: ret i32 %3
-define i32 @simple4(i32 %a) {
- %1 = uitofp i32 %a to double
- %2 = fadd double %1, 1.0
- %3 = fptoui double %2 to i32
- ret i32 %3
-}
-
-; CHECK-LABEL: @simple5
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = zext i8 %b to i32
-; CHECK: %3 = add i32 %1, 1
-; CHECK: %4 = mul i32 %3, %2
-; CHECK: ret i32 %4
-define i32 @simple5(i8 %a, i8 %b) {
- %1 = uitofp i8 %a to float
- %2 = uitofp i8 %b to float
- %3 = fadd float %1, 1.0
- %4 = fmul float %3, %2
- %5 = fptoui float %4 to i32
- ret i32 %5
-}
-
-; The two chains don't interact - failure of one shouldn't
-; cause failure of the other.
-
-; CHECK-LABEL: @multi1
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = zext i8 %b to i32
-; CHECK: %fc = uitofp i8 %c to float
-; CHECK: %x1 = add i32 %1, %2
-; CHECK: %z = fadd float %fc, %d
-; CHECK: %w = fptoui float %z to i32
-; CHECK: %r = add i32 %x1, %w
-; CHECK: ret i32 %r
-define i32 @multi1(i8 %a, i8 %b, i8 %c, float %d) {
- %fa = uitofp i8 %a to float
- %fb = uitofp i8 %b to float
- %fc = uitofp i8 %c to float
- %x = fadd float %fa, %fb
- %y = fptoui float %x to i32
- %z = fadd float %fc, %d
- %w = fptoui float %z to i32
- %r = add i32 %y, %w
- ret i32 %r
-}
-
-; CHECK-LABEL: @simple_negzero
-; CHECK: %1 = zext i8 %a to i32
-; CHECK: %2 = add i32 %1, 0
-; CHECK: %3 = trunc i32 %2 to i16
-; CHECK: ret i16 %3
-define i16 @simple_negzero(i8 %a) {
- %1 = uitofp i8 %a to float
- %2 = fadd fast float %1, -0.0
- %3 = fptoui float %2 to i16
- ret i16 %3
-}
-
-;
-; Negative tests
-;
-
-; CHECK-LABEL: @neg_multi1
-; CHECK: %fa = uitofp i8 %a to float
-; CHECK: %fc = uitofp i8 %c to float
-; CHECK: %x = fadd float %fa, %fc
-; CHECK: %y = fptoui float %x to i32
-; CHECK: %z = fadd float %fc, %d
-; CHECK: %w = fptoui float %z to i32
-; CHECK: %r = add i32 %y, %w
-; CHECK: ret i32 %r
-; The two chains intersect, which means because one fails, no
-; transform can occur.
-define i32 @neg_multi1(i8 %a, i8 %b, i8 %c, float %d) {
- %fa = uitofp i8 %a to float
- %fc = uitofp i8 %c to float
- %x = fadd float %fa, %fc
- %y = fptoui float %x to i32
- %z = fadd float %fc, %d
- %w = fptoui float %z to i32
- %r = add i32 %y, %w
- ret i32 %r
-}
-
-; CHECK-LABEL: @neg_muld
-; CHECK: %fa = uitofp i32 %a to double
-; CHECK: %fb = uitofp i32 %b to double
-; CHECK: %mul = fmul double %fa, %fb
-; CHECK: %r = fptoui double %mul to i64
-; CHECK: ret i64 %r
-; The i32 * i32 = i64, which has 64 bits, which is greater than the 52 bits
-; that can be exactly represented in a double.
-define i64 @neg_muld(i32 %a, i32 %b) {
- %fa = uitofp i32 %a to double
- %fb = uitofp i32 %b to double
- %mul = fmul double %fa, %fb
- %r = fptoui double %mul to i64
- ret i64 %r
-}
-
-; CHECK-LABEL: @neg_mulf
-; CHECK: %fa = uitofp i16 %a to float
-; CHECK: %fb = uitofp i16 %b to float
-; CHECK: %mul = fmul float %fa, %fb
-; CHECK: %r = fptoui float %mul to i32
-; CHECK: ret i32 %r
-; The i16 * i16 = i32, which can't be represented in a float, but can in a
-; double. This should fail, as the written code uses floats, not doubles so
-; the original result may be inaccurate.
-define i32 @neg_mulf(i16 %a, i16 %b) {
- %fa = uitofp i16 %a to float
- %fb = uitofp i16 %b to float
- %mul = fmul float %fa, %fb
- %r = fptoui float %mul to i32
- ret i32 %r
-}
-
-; CHECK-LABEL: @neg_cmp
-; CHECK: %1 = uitofp i8 %a to float
-; CHECK: %2 = uitofp i8 %b to float
-; CHECK: %3 = fcmp false float %1, %2
-; CHECK: ret i1 %3
-; "false" doesn't have an icmp equivalent.
-define i1 @neg_cmp(i8 %a, i8 %b) {
- %1 = uitofp i8 %a to float
- %2 = uitofp i8 %b to float
- %3 = fcmp false float %1, %2
- ret i1 %3
-}
-
-; CHECK-LABEL: @neg_div
-; CHECK: %1 = uitofp i8 %a to float
-; CHECK: %2 = fdiv float %1, 1.0
-; CHECK: %3 = fptoui float %2 to i16
-; CHECK: ret i16 %3
-; Division isn't a supported operator.
-define i16 @neg_div(i8 %a) {
- %1 = uitofp i8 %a to float
- %2 = fdiv float %1, 1.0
- %3 = fptoui float %2 to i16
- ret i16 %3
-}
-
-; CHECK-LABEL: @neg_remainder
-; CHECK: %1 = uitofp i8 %a to float
-; CHECK: %2 = fadd float %1, 1.2
-; CHECK: %3 = fptoui float %2 to i16
-; CHECK: ret i16 %3
-; 1.2 is not an integer.
-define i16 @neg_remainder(i8 %a) {
- %1 = uitofp i8 %a to float
- %2 = fadd float %1, 1.25
- %3 = fptoui float %2 to i16
- ret i16 %3
-}
-
-; CHECK-LABEL: @neg_toolarge
-; CHECK: %1 = uitofp i80 %a to fp128
-; CHECK: %2 = fadd fp128 %1, %1
-; CHECK: %3 = fptoui fp128 %2 to i80
-; CHECK: ret i80 %3
-; i80 > i64, which is the largest bitwidth handleable by default.
-define i80 @neg_toolarge(i80 %a) {
- %1 = uitofp i80 %a to fp128
- %2 = fadd fp128 %1, %1
- %3 = fptoui fp128 %2 to i80
- ret i80 %3
-}
-
Removed: llvm/trunk/test/Transforms/Float2Int/toolarge.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/Float2Int/toolarge.ll?rev=233104&view=auto
==============================================================================
--- llvm/trunk/test/Transforms/Float2Int/toolarge.ll (original)
+++ llvm/trunk/test/Transforms/Float2Int/toolarge.ll (removed)
@@ -1,16 +0,0 @@
-; RUN: opt < %s -float2int -float2int-max-integer-bw=256 -S | FileCheck %s
-
-; CHECK-LABEL: @neg_toolarge
-; CHECK: %1 = uitofp i80 %a to fp128
-; CHECK: %2 = fadd fp128 %1, %1
-; CHECK: %3 = fptoui fp128 %2 to i80
-; CHECK: ret i80 %3
-; fp128 has a 112-bit mantissa, which can hold an i80. But we only support
-; up to i64, so it should fail (even though the max integer bitwidth is 256).
-define i80 @neg_toolarge(i80 %a) {
- %1 = uitofp i80 %a to fp128
- %2 = fadd fp128 %1, %1
- %3 = fptoui fp128 %2 to i80
- ret i80 %3
-}
-
More information about the llvm-commits
mailing list