[llvm] r228456 - [Orc] Add a Kaleidoscope tutorial for Orc demonstrating eager compilation.
Sean Silva
chisophugis at gmail.com
Fri Feb 6 19:36:52 PST 2015
+ if (V == 0) {
+ char ErrStr[256];
+ sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
+ return ErrorP<Value>(ErrStr);
+ }
Buffer overflow?
-- Sean Silva
On Fri, Feb 6, 2015 at 2:52 PM, Lang Hames <lhames at gmail.com> wrote:
> Author: lhames
> Date: Fri Feb 6 16:52:04 2015
> New Revision: 228456
>
> URL: http://llvm.org/viewvc/llvm-project?rev=228456&view=rev
> Log:
> [Orc] Add a Kaleidoscope tutorial for Orc demonstrating eager compilation.
>
> This tutorial demonstrates a very basic custom Orc JIT stack that performs
> eager
> compilation: All modules are CodeGen'd immediately upon being added to the
> JIT.
>
>
> Added:
> llvm/trunk/examples/Kaleidoscope/Orc/
> llvm/trunk/examples/Kaleidoscope/Orc/initial/
> llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile
> llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt
> llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp
>
> Added: llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile?rev=228456&view=auto
>
> ==============================================================================
> --- llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile (added)
> +++ llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile Fri Feb 6
> 16:52:04 2015
> @@ -0,0 +1,9 @@
> +.PHONY: all
> +all: toy
> +
> +toy: toy.cpp
> + clang++ -std=c++11 toy.cpp -g -O0 -rdynamic -fno-rtti `llvm-config
> --cppflags --ldflags --system-libs --libs core orcjit native` -o toy
> +
> +.PHONY: clean
> +clean:
> + rm -f toy
>
> Added: llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt?rev=228456&view=auto
>
> ==============================================================================
> --- llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt (added)
> +++ llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt Fri Feb 6
> 16:52:04 2015
> @@ -0,0 +1,13 @@
>
> +//===----------------------------------------------------------------------===/
> +// Kaleidoscope with Orc - Initial Version
>
> +//===----------------------------------------------------------------------===//
> +
> +This version of Kaleidoscope with Orc demonstrates fully eager
> compilation. When
> +a function definition or top-level expression is entered it is immediately
> +translated (IRGen'd) to LLVM IR and added to the JIT, where it is
> code-gen'd to
> +native code and either stored (for function definitions) or executed (for
> +top-level expressions).
> +
> +This directory contain a Makefile that allow the code to be built in a
> +standalone manner, independent of the larger LLVM build infrastructure.
> To build
> +the program you will need to have 'clang++' and 'llvm-config' in your
> path.
>
> Added: llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp?rev=228456&view=auto
>
> ==============================================================================
> --- llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp (added)
> +++ llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp Fri Feb 6
> 16:52:04 2015
> @@ -0,0 +1,1319 @@
> +#include "llvm/Analysis/Passes.h"
> +#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
> +#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
> +#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
> +#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
> +#include "llvm/IR/DataLayout.h"
> +#include "llvm/IR/DerivedTypes.h"
> +#include "llvm/IR/IRBuilder.h"
> +#include "llvm/IR/LLVMContext.h"
> +#include "llvm/IR/Module.h"
> +#include "llvm/IR/Verifier.h"
> +#include "llvm/PassManager.h"
> +#include "llvm/Support/TargetSelect.h"
> +#include "llvm/Transforms/Scalar.h"
> +#include <cctype>
> +#include <cstdio>
> +#include <map>
> +#include <string>
> +#include <vector>
> +using namespace llvm;
> +
>
> +//===----------------------------------------------------------------------===//
> +// Lexer
>
> +//===----------------------------------------------------------------------===//
> +
> +// The lexer returns tokens [0-255] if it is an unknown character,
> otherwise one
> +// of these for known things.
> +enum Token {
> + tok_eof = -1,
> +
> + // commands
> + tok_def = -2, tok_extern = -3,
> +
> + // primary
> + tok_identifier = -4, tok_number = -5,
> +
> + // control
> + tok_if = -6, tok_then = -7, tok_else = -8,
> + tok_for = -9, tok_in = -10,
> +
> + // operators
> + tok_binary = -11, tok_unary = -12,
> +
> + // var definition
> + tok_var = -13
> +};
> +
> +static std::string IdentifierStr; // Filled in if tok_identifier
> +static double NumVal; // Filled in if tok_number
> +
> +/// gettok - Return the next token from standard input.
> +static int gettok() {
> + static int LastChar = ' ';
> +
> + // Skip any whitespace.
> + while (isspace(LastChar))
> + LastChar = getchar();
> +
> + if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
> + IdentifierStr = LastChar;
> + while (isalnum((LastChar = getchar())))
> + IdentifierStr += LastChar;
> +
> + if (IdentifierStr == "def") return tok_def;
> + if (IdentifierStr == "extern") return tok_extern;
> + if (IdentifierStr == "if") return tok_if;
> + if (IdentifierStr == "then") return tok_then;
> + if (IdentifierStr == "else") return tok_else;
> + if (IdentifierStr == "for") return tok_for;
> + if (IdentifierStr == "in") return tok_in;
> + if (IdentifierStr == "binary") return tok_binary;
> + if (IdentifierStr == "unary") return tok_unary;
> + if (IdentifierStr == "var") return tok_var;
> + return tok_identifier;
> + }
> +
> + if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
> + std::string NumStr;
> + do {
> + NumStr += LastChar;
> + LastChar = getchar();
> + } while (isdigit(LastChar) || LastChar == '.');
> +
> + NumVal = strtod(NumStr.c_str(), 0);
> + return tok_number;
> + }
> +
> + if (LastChar == '#') {
> + // Comment until end of line.
> + do LastChar = getchar();
> + while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
> +
> + if (LastChar != EOF)
> + return gettok();
> + }
> +
> + // Check for end of file. Don't eat the EOF.
> + if (LastChar == EOF)
> + return tok_eof;
> +
> + // Otherwise, just return the character as its ascii value.
> + int ThisChar = LastChar;
> + LastChar = getchar();
> + return ThisChar;
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Abstract Syntax Tree (aka Parse Tree)
>
> +//===----------------------------------------------------------------------===//
> +
> +class IRGenContext;
> +
> +/// ExprAST - Base class for all expression nodes.
> +struct ExprAST {
> + virtual ~ExprAST() {}
> + virtual Value* IRGen(IRGenContext &C) = 0;
> +};
> +
> +/// NumberExprAST - Expression class for numeric literals like "1.0".
> +struct NumberExprAST : public ExprAST {
> + NumberExprAST(double Val) : Val(Val) {}
> + Value* IRGen(IRGenContext &C) override;
> +
> + double Val;
> +};
> +
> +/// VariableExprAST - Expression class for referencing a variable, like
> "a".
> +struct VariableExprAST : public ExprAST {
> + VariableExprAST(std::string Name) : Name(std::move(Name)) {}
> + Value* IRGen(IRGenContext &C) override;
> +
> + std::string Name;
> +};
> +
> +/// UnaryExprAST - Expression class for a unary operator.
> +struct UnaryExprAST : public ExprAST {
> + UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
> + : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
> +
> + Value* IRGen(IRGenContext &C) override;
> +
> + char Opcode;
> + std::unique_ptr<ExprAST> Operand;
> +};
> +
> +/// BinaryExprAST - Expression class for a binary operator.
> +struct BinaryExprAST : public ExprAST {
> + BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
> + std::unique_ptr<ExprAST> RHS)
> + : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
> +
> + Value* IRGen(IRGenContext &C) override;
> +
> + char Op;
> + std::unique_ptr<ExprAST> LHS, RHS;
> +};
> +
> +/// CallExprAST - Expression class for function calls.
> +struct CallExprAST : public ExprAST {
> + CallExprAST(std::string CalleeName,
> + std::vector<std::unique_ptr<ExprAST>> Args)
> + : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
> +
> + Value* IRGen(IRGenContext &C) override;
> +
> + std::string CalleeName;
> + std::vector<std::unique_ptr<ExprAST>> Args;
> +};
> +
> +/// IfExprAST - Expression class for if/then/else.
> +struct IfExprAST : public ExprAST {
> + IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
> + std::unique_ptr<ExprAST> Else)
> + : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else))
> {}
> + Value* IRGen(IRGenContext &C) override;
> +
> + std::unique_ptr<ExprAST> Cond, Then, Else;
> +};
> +
> +/// ForExprAST - Expression class for for/in.
> +struct ForExprAST : public ExprAST {
> + ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
> + std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
> + std::unique_ptr<ExprAST> Body)
> + : VarName(std::move(VarName)), Start(std::move(Start)),
> End(std::move(End)),
> + Step(std::move(Step)), Body(std::move(Body)) {}
> +
> + Value* IRGen(IRGenContext &C) override;
> +
> + std::string VarName;
> + std::unique_ptr<ExprAST> Start, End, Step, Body;
> +};
> +
> +/// VarExprAST - Expression class for var/in
> +struct VarExprAST : public ExprAST {
> + typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
> + typedef std::vector<Binding> BindingList;
> +
> + VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
> + : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
> +
> + Value* IRGen(IRGenContext &C) override;
> +
> + BindingList VarBindings;
> + std::unique_ptr<ExprAST> Body;
> +};
> +
> +/// PrototypeAST - This class represents the "prototype" for a function,
> +/// which captures its argument names as well as if it is an operator.
> +struct PrototypeAST {
> + PrototypeAST(std::string Name, std::vector<std::string> Args,
> + bool IsOperator = false, unsigned Precedence = 0)
> + : Name(std::move(Name)), Args(std::move(Args)),
> IsOperator(IsOperator),
> + Precedence(Precedence) {}
> +
> + Function* IRGen(IRGenContext &C);
> + void CreateArgumentAllocas(Function *F, IRGenContext &C);
> +
> + bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
> + bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
> +
> + char getOperatorName() const {
> + assert(isUnaryOp() || isBinaryOp());
> + return Name[Name.size()-1];
> + }
> +
> + std::string Name;
> + std::vector<std::string> Args;
> + bool IsOperator;
> + unsigned Precedence; // Precedence if a binary op.
> +};
> +
> +/// FunctionAST - This class represents a function definition itself.
> +struct FunctionAST {
> + FunctionAST(std::unique_ptr<PrototypeAST> Proto,
> + std::unique_ptr<ExprAST> Body)
> + : Proto(std::move(Proto)), Body(std::move(Body)) {}
> +
> + Function* IRGen(IRGenContext &C);
> +
> + std::unique_ptr<PrototypeAST> Proto;
> + std::unique_ptr<ExprAST> Body;
> +};
> +
>
> +//===----------------------------------------------------------------------===//
> +// Parser
>
> +//===----------------------------------------------------------------------===//
> +
> +/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the
> current
> +/// token the parser is looking at. getNextToken reads another token
> from the
> +/// lexer and updates CurTok with its results.
> +static int CurTok;
> +static int getNextToken() {
> + return CurTok = gettok();
> +}
> +
> +/// BinopPrecedence - This holds the precedence for each binary operator
> that is
> +/// defined.
> +static std::map<char, int> BinopPrecedence;
> +
> +/// GetTokPrecedence - Get the precedence of the pending binary operator
> token.
> +static int GetTokPrecedence() {
> + if (!isascii(CurTok))
> + return -1;
> +
> + // Make sure it's a declared binop.
> + int TokPrec = BinopPrecedence[CurTok];
> + if (TokPrec <= 0) return -1;
> + return TokPrec;
> +}
> +
> +template <typename T>
> +std::unique_ptr<T> ErrorU(const char *Str) {
> + fprintf(stderr, "Error: %s\n", Str);
> + return nullptr;
> +}
> +
> +template <typename T>
> +T* ErrorP(const char *Str) {
> + fprintf(stderr, "Error: %s\n", Str);
> + return nullptr;
> +}
> +
> +static std::unique_ptr<ExprAST> ParseExpression();
> +
> +/// identifierexpr
> +/// ::= identifier
> +/// ::= identifier '(' expression* ')'
> +static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
> + std::string IdName = IdentifierStr;
> +
> + getNextToken(); // eat identifier.
> +
> + if (CurTok != '(') // Simple variable ref.
> + return llvm::make_unique<VariableExprAST>(IdName);
> +
> + // Call.
> + getNextToken(); // eat (
> + std::vector<std::unique_ptr<ExprAST>> Args;
> + if (CurTok != ')') {
> + while (1) {
> + auto Arg = ParseExpression();
> + if (!Arg) return nullptr;
> + Args.push_back(std::move(Arg));
> +
> + if (CurTok == ')') break;
> +
> + if (CurTok != ',')
> + return ErrorU<CallExprAST>("Expected ')' or ',' in argument
> list");
> + getNextToken();
> + }
> + }
> +
> + // Eat the ')'.
> + getNextToken();
> +
> + return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
> +}
> +
> +/// numberexpr ::= number
> +static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
> + auto Result = llvm::make_unique<NumberExprAST>(NumVal);
> + getNextToken(); // consume the number
> + return Result;
> +}
> +
> +/// parenexpr ::= '(' expression ')'
> +static std::unique_ptr<ExprAST> ParseParenExpr() {
> + getNextToken(); // eat (.
> + auto V = ParseExpression();
> + if (!V)
> + return nullptr;
> +
> + if (CurTok != ')')
> + return ErrorU<ExprAST>("expected ')'");
> + getNextToken(); // eat ).
> + return V;
> +}
> +
> +/// ifexpr ::= 'if' expression 'then' expression 'else' expression
> +static std::unique_ptr<ExprAST> ParseIfExpr() {
> + getNextToken(); // eat the if.
> +
> + // condition.
> + auto Cond = ParseExpression();
> + if (!Cond)
> + return nullptr;
> +
> + if (CurTok != tok_then)
> + return ErrorU<ExprAST>("expected then");
> + getNextToken(); // eat the then
> +
> + auto Then = ParseExpression();
> + if (!Then)
> + return nullptr;
> +
> + if (CurTok != tok_else)
> + return ErrorU<ExprAST>("expected else");
> +
> + getNextToken();
> +
> + auto Else = ParseExpression();
> + if (!Else)
> + return nullptr;
> +
> + return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
> + std::move(Else));
> +}
> +
> +/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in'
> expression
> +static std::unique_ptr<ForExprAST> ParseForExpr() {
> + getNextToken(); // eat the for.
> +
> + if (CurTok != tok_identifier)
> + return ErrorU<ForExprAST>("expected identifier after for");
> +
> + std::string IdName = IdentifierStr;
> + getNextToken(); // eat identifier.
> +
> + if (CurTok != '=')
> + return ErrorU<ForExprAST>("expected '=' after for");
> + getNextToken(); // eat '='.
> +
> +
> + auto Start = ParseExpression();
> + if (!Start)
> + return nullptr;
> + if (CurTok != ',')
> + return ErrorU<ForExprAST>("expected ',' after for start value");
> + getNextToken();
> +
> + auto End = ParseExpression();
> + if (!End)
> + return nullptr;
> +
> + // The step value is optional.
> + std::unique_ptr<ExprAST> Step;
> + if (CurTok == ',') {
> + getNextToken();
> + Step = ParseExpression();
> + if (!Step)
> + return nullptr;
> + }
> +
> + if (CurTok != tok_in)
> + return ErrorU<ForExprAST>("expected 'in' after for");
> + getNextToken(); // eat 'in'.
> +
> + auto Body = ParseExpression();
> + if (Body)
> + return nullptr;
> +
> + return llvm::make_unique<ForExprAST>(IdName, std::move(Start),
> std::move(End),
> + std::move(Step), std::move(Body));
> +}
> +
> +/// varexpr ::= 'var' identifier ('=' expression)?
> +// (',' identifier ('=' expression)?)* 'in' expression
> +static std::unique_ptr<VarExprAST> ParseVarExpr() {
> + getNextToken(); // eat the var.
> +
> + VarExprAST::BindingList VarBindings;
> +
> + // At least one variable name is required.
> + if (CurTok != tok_identifier)
> + return ErrorU<VarExprAST>("expected identifier after var");
> +
> + while (1) {
> + std::string Name = IdentifierStr;
> + getNextToken(); // eat identifier.
> +
> + // Read the optional initializer.
> + std::unique_ptr<ExprAST> Init;
> + if (CurTok == '=') {
> + getNextToken(); // eat the '='.
> +
> + Init = ParseExpression();
> + if (!Init)
> + return nullptr;
> + }
> +
> + VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
> +
> + // End of var list, exit loop.
> + if (CurTok != ',') break;
> + getNextToken(); // eat the ','.
> +
> + if (CurTok != tok_identifier)
> + return ErrorU<VarExprAST>("expected identifier list after var");
> + }
> +
> + // At this point, we have to have 'in'.
> + if (CurTok != tok_in)
> + return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
> + getNextToken(); // eat 'in'.
> +
> + auto Body = ParseExpression();
> + if (!Body)
> + return nullptr;
> +
> + return llvm::make_unique<VarExprAST>(std::move(VarBindings),
> std::move(Body));
> +}
> +
> +/// primary
> +/// ::= identifierexpr
> +/// ::= numberexpr
> +/// ::= parenexpr
> +/// ::= ifexpr
> +/// ::= forexpr
> +/// ::= varexpr
> +static std::unique_ptr<ExprAST> ParsePrimary() {
> + switch (CurTok) {
> + default: return ErrorU<ExprAST>("unknown token when expecting an
> expression");
> + case tok_identifier: return ParseIdentifierExpr();
> + case tok_number: return ParseNumberExpr();
> + case '(': return ParseParenExpr();
> + case tok_if: return ParseIfExpr();
> + case tok_for: return ParseForExpr();
> + case tok_var: return ParseVarExpr();
> + }
> +}
> +
> +/// unary
> +/// ::= primary
> +/// ::= '!' unary
> +static std::unique_ptr<ExprAST> ParseUnary() {
> + // If the current token is not an operator, it must be a primary expr.
> + if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
> + return ParsePrimary();
> +
> + // If this is a unary operator, read it.
> + int Opc = CurTok;
> + getNextToken();
> + if (auto Operand = ParseUnary())
> + return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
> + return nullptr;
> +}
> +
> +/// binoprhs
> +/// ::= ('+' unary)*
> +static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
> + std::unique_ptr<ExprAST>
> LHS) {
> + // If this is a binop, find its precedence.
> + while (1) {
> + int TokPrec = GetTokPrecedence();
> +
> + // If this is a binop that binds at least as tightly as the current
> binop,
> + // consume it, otherwise we are done.
> + if (TokPrec < ExprPrec)
> + return LHS;
> +
> + // Okay, we know this is a binop.
> + int BinOp = CurTok;
> + getNextToken(); // eat binop
> +
> + // Parse the unary expression after the binary operator.
> + auto RHS = ParseUnary();
> + if (!RHS)
> + return nullptr;
> +
> + // If BinOp binds less tightly with RHS than the operator after RHS,
> let
> + // the pending operator take RHS as its LHS.
> + int NextPrec = GetTokPrecedence();
> + if (TokPrec < NextPrec) {
> + RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
> + if (!RHS)
> + return nullptr;
> + }
> +
> + // Merge LHS/RHS.
> + LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
> std::move(RHS));
> + }
> +}
> +
> +/// expression
> +/// ::= unary binoprhs
> +///
> +static std::unique_ptr<ExprAST> ParseExpression() {
> + auto LHS = ParseUnary();
> + if (!LHS)
> + return nullptr;
> +
> + return ParseBinOpRHS(0, std::move(LHS));
> +}
> +
> +/// prototype
> +/// ::= id '(' id* ')'
> +/// ::= binary LETTER number? (id, id)
> +/// ::= unary LETTER (id)
> +static std::unique_ptr<PrototypeAST> ParsePrototype() {
> + std::string FnName;
> +
> + unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
> + unsigned BinaryPrecedence = 30;
> +
> + switch (CurTok) {
> + default:
> + return ErrorU<PrototypeAST>("Expected function name in prototype");
> + case tok_identifier:
> + FnName = IdentifierStr;
> + Kind = 0;
> + getNextToken();
> + break;
> + case tok_unary:
> + getNextToken();
> + if (!isascii(CurTok))
> + return ErrorU<PrototypeAST>("Expected unary operator");
> + FnName = "unary";
> + FnName += (char)CurTok;
> + Kind = 1;
> + getNextToken();
> + break;
> + case tok_binary:
> + getNextToken();
> + if (!isascii(CurTok))
> + return ErrorU<PrototypeAST>("Expected binary operator");
> + FnName = "binary";
> + FnName += (char)CurTok;
> + Kind = 2;
> + getNextToken();
> +
> + // Read the precedence if present.
> + if (CurTok == tok_number) {
> + if (NumVal < 1 || NumVal > 100)
> + return ErrorU<PrototypeAST>("Invalid precedecnce: must be
> 1..100");
> + BinaryPrecedence = (unsigned)NumVal;
> + getNextToken();
> + }
> + break;
> + }
> +
> + if (CurTok != '(')
> + return ErrorU<PrototypeAST>("Expected '(' in prototype");
> +
> + std::vector<std::string> ArgNames;
> + while (getNextToken() == tok_identifier)
> + ArgNames.push_back(IdentifierStr);
> + if (CurTok != ')')
> + return ErrorU<PrototypeAST>("Expected ')' in prototype");
> +
> + // success.
> + getNextToken(); // eat ')'.
> +
> + // Verify right number of names for operator.
> + if (Kind && ArgNames.size() != Kind)
> + return ErrorU<PrototypeAST>("Invalid number of operands for
> operator");
> +
> + return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames),
> Kind != 0,
> + BinaryPrecedence);
> +}
> +
> +/// definition ::= 'def' prototype expression
> +static std::unique_ptr<FunctionAST> ParseDefinition() {
> + getNextToken(); // eat def.
> + auto Proto = ParsePrototype();
> + if (!Proto)
> + return nullptr;
> +
> + if (auto Body = ParseExpression())
> + return llvm::make_unique<FunctionAST>(std::move(Proto),
> std::move(Body));
> + return nullptr;
> +}
> +
> +/// toplevelexpr ::= expression
> +static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
> + if (auto E = ParseExpression()) {
> + // Make an anonymous proto.
> + auto Proto =
> + llvm::make_unique<PrototypeAST>("__anon_expr",
> std::vector<std::string>());
> + return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
> + }
> + return nullptr;
> +}
> +
> +/// external ::= 'extern' prototype
> +static std::unique_ptr<PrototypeAST> ParseExtern() {
> + getNextToken(); // eat extern.
> + return ParsePrototype();
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Code Generation
>
> +//===----------------------------------------------------------------------===//
> +
> +// FIXME: Obviously we can do better than this
> +std::string GenerateUniqueName(const char *root)
> +{
> + static int i = 0;
> + char s[16];
> + sprintf(s, "%s%d", root, i++);
> + std::string S = s;
> + return S;
> +}
> +
> +std::string MakeLegalFunctionName(std::string Name)
> +{
> + std::string NewName;
> + assert(!Name.empty() && "Base name must not be empty");
> +
> + // Start with what we have
> + NewName = Name;
> +
> + // Look for a numberic first character
> + if (NewName.find_first_of("0123456789") == 0) {
> + NewName.insert(0, 1, 'n');
> + }
> +
> + // Replace illegal characters with their ASCII equivalent
> + std::string legal_elements =
> "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
> + size_t pos;
> + while ((pos = NewName.find_first_not_of(legal_elements)) !=
> std::string::npos) {
> + char old_c = NewName.at(pos);
> + char new_str[16];
> + sprintf(new_str, "%d", (int)old_c);
> + NewName = NewName.replace(pos, 1, new_str);
> + }
> +
> + return NewName;
> +}
> +
> +class SessionContext {
> +public:
> + SessionContext(LLVMContext &C) : Context(C) {}
> + LLVMContext& getLLVMContext() const { return Context; }
> + void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
> + PrototypeAST* getPrototypeAST(const std::string &Name);
> +private:
> + typedef std::map<std::string, std::unique_ptr<PrototypeAST>>
> PrototypeMap;
> + LLVMContext &Context;
> + PrototypeMap Prototypes;
> +};
> +
> +void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
> + Prototypes[P->Name] = std::move(P);
> +}
> +
> +PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
> + PrototypeMap::iterator I = Prototypes.find(Name);
> + if (I != Prototypes.end())
> + return I->second.get();
> + return nullptr;
> +}
> +
> +class IRGenContext {
> +public:
> +
> + IRGenContext(SessionContext &S)
> + : Session(S),
> + M(new Module(GenerateUniqueName("jit_module_"),
> + Session.getLLVMContext())),
> + Builder(Session.getLLVMContext()) {}
> +
> + SessionContext& getSession() { return Session; }
> + Module& getM() const { return *M; }
> + std::unique_ptr<Module> takeM() { return std::move(M); }
> + IRBuilder<>& getBuilder() { return Builder; }
> + LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
> + Function* getPrototype(const std::string &Name);
> +
> + std::map<std::string, AllocaInst*> NamedValues;
> +private:
> + SessionContext &Session;
> + std::unique_ptr<Module> M;
> + IRBuilder<> Builder;
> +};
> +
> +Function* IRGenContext::getPrototype(const std::string &Name) {
> + if (Function *ExistingProto = M->getFunction(Name))
> + return ExistingProto;
> + if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
> + return ProtoAST->IRGen(*this);
> + return nullptr;
> +}
> +
> +/// CreateEntryBlockAlloca - Create an alloca instruction in the entry
> block of
> +/// the function. This is used for mutable variables etc.
> +static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
> + const std::string &VarName) {
> + IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
> + TheFunction->getEntryBlock().begin());
> + return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
> + VarName.c_str());
> +}
> +
> +Value *NumberExprAST::IRGen(IRGenContext &C) {
> + return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
> +}
> +
> +Value *VariableExprAST::IRGen(IRGenContext &C) {
> + // Look this variable up in the function.
> + Value *V = C.NamedValues[Name];
> +
> + if (V == 0) {
> + char ErrStr[256];
> + sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
> + return ErrorP<Value>(ErrStr);
> + }
> +
> + // Load the value.
> + return C.getBuilder().CreateLoad(V, Name.c_str());
> +}
> +
> +Value *UnaryExprAST::IRGen(IRGenContext &C) {
> + if (Value *OperandV = Operand->IRGen(C)) {
> + std::string FnName =
> MakeLegalFunctionName(std::string("unary")+Opcode);
> + if (Function *F = C.getPrototype(FnName))
> + return C.getBuilder().CreateCall(F, OperandV, "unop");
> + return ErrorP<Value>("Unknown unary operator");
> + }
> +
> + // Could not codegen operand - return null.
> + return nullptr;
> +}
> +
> +Value *BinaryExprAST::IRGen(IRGenContext &C) {
> + // Special case '=' because we don't want to emit the LHS as an
> expression.
> + if (Op == '=') {
> + // Assignment requires the LHS to be an identifier.
> + auto LHSVar = static_cast<VariableExprAST&>(*LHS);
> + // Codegen the RHS.
> + Value *Val = RHS->IRGen(C);
> + if (!Val) return nullptr;
> +
> + // Look up the name.
> + if (auto Variable = C.NamedValues[LHSVar.Name]) {
> + C.getBuilder().CreateStore(Val, Variable);
> + return Val;
> + }
> + return ErrorP<Value>("Unknown variable name");
> + }
> +
> + Value *L = LHS->IRGen(C);
> + Value *R = RHS->IRGen(C);
> + if (!L || !R) return nullptr;
> +
> + switch (Op) {
> + case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
> + case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
> + case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
> + case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
> + case '<':
> + L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
> + // Convert bool 0/1 to double 0.0 or 1.0
> + return C.getBuilder().CreateUIToFP(L,
> Type::getDoubleTy(getGlobalContext()),
> + "booltmp");
> + default: break;
> + }
> +
> + // If it wasn't a builtin binary operator, it must be a user defined
> one. Emit
> + // a call to it.
> + std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
> + if (Function *F = C.getPrototype(FnName)) {
> + Value *Ops[] = { L, R };
> + return C.getBuilder().CreateCall(F, Ops, "binop");
> + }
> +
> + return ErrorP<Value>("Unknown binary operator");
> +}
> +
> +Value *CallExprAST::IRGen(IRGenContext &C) {
> + // Look up the name in the global module table.
> + if (auto CalleeF = C.getPrototype(CalleeName)) {
> + // If argument mismatch error.
> + if (CalleeF->arg_size() != Args.size())
> + return ErrorP<Value>("Incorrect # arguments passed");
> +
> + std::vector<Value*> ArgsV;
> + for (unsigned i = 0, e = Args.size(); i != e; ++i) {
> + ArgsV.push_back(Args[i]->IRGen(C));
> + if (!ArgsV.back()) return nullptr;
> + }
> +
> + return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
> + }
> +
> + return ErrorP<Value>("Unknown function referenced");
> +}
> +
> +Value *IfExprAST::IRGen(IRGenContext &C) {
> + Value *CondV = Cond->IRGen(C);
> + if (!CondV) return nullptr;
> +
> + // Convert condition to a bool by comparing equal to 0.0.
> + ConstantFP *FPZero =
> + ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
> + CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
> +
> + Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
> +
> + // Create blocks for the then and else cases. Insert the 'then' block
> at the
> + // end of the function.
> + BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then",
> TheFunction);
> + BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
> + BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
> +
> + C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
> +
> + // Emit then value.
> + C.getBuilder().SetInsertPoint(ThenBB);
> +
> + Value *ThenV = Then->IRGen(C);
> + if (!ThenV) return nullptr;
> +
> + C.getBuilder().CreateBr(MergeBB);
> + // Codegen of 'Then' can change the current block, update ThenBB for
> the PHI.
> + ThenBB = C.getBuilder().GetInsertBlock();
> +
> + // Emit else block.
> + TheFunction->getBasicBlockList().push_back(ElseBB);
> + C.getBuilder().SetInsertPoint(ElseBB);
> +
> + Value *ElseV = Else->IRGen(C);
> + if (!ElseV) return nullptr;
> +
> + C.getBuilder().CreateBr(MergeBB);
> + // Codegen of 'Else' can change the current block, update ElseBB for
> the PHI.
> + ElseBB = C.getBuilder().GetInsertBlock();
> +
> + // Emit merge block.
> + TheFunction->getBasicBlockList().push_back(MergeBB);
> + C.getBuilder().SetInsertPoint(MergeBB);
> + PHINode *PN =
> C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
> + "iftmp");
> +
> + PN->addIncoming(ThenV, ThenBB);
> + PN->addIncoming(ElseV, ElseBB);
> + return PN;
> +}
> +
> +Value *ForExprAST::IRGen(IRGenContext &C) {
> + // Output this as:
> + // var = alloca double
> + // ...
> + // start = startexpr
> + // store start -> var
> + // goto loop
> + // loop:
> + // ...
> + // bodyexpr
> + // ...
> + // loopend:
> + // step = stepexpr
> + // endcond = endexpr
> + //
> + // curvar = load var
> + // nextvar = curvar + step
> + // store nextvar -> var
> + // br endcond, loop, endloop
> + // outloop:
> +
> + Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
> +
> + // Create an alloca for the variable in the entry block.
> + AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
> +
> + // Emit the start code first, without 'variable' in scope.
> + Value *StartVal = Start->IRGen(C);
> + if (!StartVal) return nullptr;
> +
> + // Store the value into the alloca.
> + C.getBuilder().CreateStore(StartVal, Alloca);
> +
> + // Make the new basic block for the loop header, inserting after current
> + // block.
> + BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop",
> TheFunction);
> +
> + // Insert an explicit fall through from the current block to the LoopBB.
> + C.getBuilder().CreateBr(LoopBB);
> +
> + // Start insertion in LoopBB.
> + C.getBuilder().SetInsertPoint(LoopBB);
> +
> + // Within the loop, the variable is defined equal to the PHI node. If
> it
> + // shadows an existing variable, we have to restore it, so save it now.
> + AllocaInst *OldVal = C.NamedValues[VarName];
> + C.NamedValues[VarName] = Alloca;
> +
> + // Emit the body of the loop. This, like any other expr, can change the
> + // current BB. Note that we ignore the value computed by the body, but
> don't
> + // allow an error.
> + if (!Body->IRGen(C))
> + return nullptr;
> +
> + // Emit the step value.
> + Value *StepVal;
> + if (Step) {
> + StepVal = Step->IRGen(C);
> + if (!StepVal) return nullptr;
> + } else {
> + // If not specified, use 1.0.
> + StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
> + }
> +
> + // Compute the end condition.
> + Value *EndCond = End->IRGen(C);
> + if (EndCond == 0) return EndCond;
> +
> + // Reload, increment, and restore the alloca. This handles the case
> where
> + // the body of the loop mutates the variable.
> + Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
> + Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
> + C.getBuilder().CreateStore(NextVar, Alloca);
> +
> + // Convert condition to a bool by comparing equal to 0.0.
> + EndCond = C.getBuilder().CreateFCmpONE(EndCond,
> + ConstantFP::get(getGlobalContext(),
> APFloat(0.0)),
> + "loopcond");
> +
> + // Create the "after loop" block and insert it.
> + BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(),
> "afterloop", TheFunction);
> +
> + // Insert the conditional branch into the end of LoopEndBB.
> + C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
> +
> + // Any new code will be inserted in AfterBB.
> + C.getBuilder().SetInsertPoint(AfterBB);
> +
> + // Restore the unshadowed variable.
> + if (OldVal)
> + C.NamedValues[VarName] = OldVal;
> + else
> + C.NamedValues.erase(VarName);
> +
> +
> + // for expr always returns 0.0.
> + return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
> +}
> +
> +Value *VarExprAST::IRGen(IRGenContext &C) {
> + std::vector<AllocaInst *> OldBindings;
> +
> + Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
> +
> + // Register all variables and emit their initializer.
> + for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
> + auto &VarName = VarBindings[i].first;
> + auto &Init = VarBindings[i].second;
> +
> + // Emit the initializer before adding the variable to scope, this
> prevents
> + // the initializer from referencing the variable itself, and permits
> stuff
> + // like this:
> + // var a = 1 in
> + // var a = a in ... # refers to outer 'a'.
> + Value *InitVal;
> + if (Init) {
> + InitVal = Init->IRGen(C);
> + if (!InitVal) return nullptr;
> + } else // If not specified, use 0.0.
> + InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
> +
> + AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
> + C.getBuilder().CreateStore(InitVal, Alloca);
> +
> + // Remember the old variable binding so that we can restore the
> binding when
> + // we unrecurse.
> + OldBindings.push_back(C.NamedValues[VarName]);
> +
> + // Remember this binding.
> + C.NamedValues[VarName] = Alloca;
> + }
> +
> + // Codegen the body, now that all vars are in scope.
> + Value *BodyVal = Body->IRGen(C);
> + if (!BodyVal) return nullptr;
> +
> + // Pop all our variables from scope.
> + for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
> + C.NamedValues[VarBindings[i].first] = OldBindings[i];
> +
> + // Return the body computation.
> + return BodyVal;
> +}
> +
> +Function *PrototypeAST::IRGen(IRGenContext &C) {
> + std::string FnName = MakeLegalFunctionName(Name);
> +
> + // Make the function type: double(double,double) etc.
> + std::vector<Type*> Doubles(Args.size(),
> + Type::getDoubleTy(getGlobalContext()));
> + FunctionType *FT =
> FunctionType::get(Type::getDoubleTy(getGlobalContext()),
> + Doubles, false);
> + Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
> + &C.getM());
> +
> + // If F conflicted, there was already something named 'FnName'. If it
> has a
> + // body, don't allow redefinition or reextern.
> + if (F->getName() != FnName) {
> + // Delete the one we just made and get the existing one.
> + F->eraseFromParent();
> + F = C.getM().getFunction(Name);
> +
> + // If F already has a body, reject this.
> + if (!F->empty()) {
> + ErrorP<Function>("redefinition of function");
> + return nullptr;
> + }
> +
> + // If F took a different number of args, reject.
> + if (F->arg_size() != Args.size()) {
> + ErrorP<Function>("redefinition of function with different # args");
> + return nullptr;
> + }
> + }
> +
> + // Set names for all arguments.
> + unsigned Idx = 0;
> + for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
> + ++AI, ++Idx)
> + AI->setName(Args[Idx]);
> +
> + return F;
> +}
> +
> +/// CreateArgumentAllocas - Create an alloca for each argument and
> register the
> +/// argument in the symbol table so that references to it will succeed.
> +void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
> + Function::arg_iterator AI = F->arg_begin();
> + for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
> + // Create an alloca for this variable.
> + AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
> +
> + // Store the initial value into the alloca.
> + C.getBuilder().CreateStore(AI, Alloca);
> +
> + // Add arguments to variable symbol table.
> + C.NamedValues[Args[Idx]] = Alloca;
> + }
> +}
> +
> +Function *FunctionAST::IRGen(IRGenContext &C) {
> + C.NamedValues.clear();
> +
> + Function *TheFunction = Proto->IRGen(C);
> + if (!TheFunction)
> + return nullptr;
> +
> + // If this is an operator, install it.
> + if (Proto->isBinaryOp())
> + BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
> +
> + // Create a new basic block to start insertion into.
> + BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry",
> TheFunction);
> + C.getBuilder().SetInsertPoint(BB);
> +
> + // Add all arguments to the symbol table and create their allocas.
> + Proto->CreateArgumentAllocas(TheFunction, C);
> +
> + if (Value *RetVal = Body->IRGen(C)) {
> + // Finish off the function.
> + C.getBuilder().CreateRet(RetVal);
> +
> + // Validate the generated code, checking for consistency.
> + verifyFunction(*TheFunction);
> +
> + return TheFunction;
> + }
> +
> + // Error reading body, remove function.
> + TheFunction->eraseFromParent();
> +
> + if (Proto->isBinaryOp())
> + BinopPrecedence.erase(Proto->getOperatorName());
> + return nullptr;
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Top-Level parsing and JIT Driver
>
> +//===----------------------------------------------------------------------===//
> +
> +class KaleidoscopeJIT {
> +public:
> + typedef ObjectLinkingLayer<> ObjLayerT;
> + typedef IRCompileLayer<ObjLayerT> CompileLayerT;
> +
> + typedef CompileLayerT::ModuleSetHandleT ModuleHandleT;
> +
> + KaleidoscopeJIT()
> + : TM(EngineBuilder().selectTarget()),
> + Mang(TM->getDataLayout()),
> + CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {}
> +
> + ModuleHandleT addModule(std::unique_ptr<Module> M) {
> + if (!M->getDataLayout())
> + M->setDataLayout(TM->getDataLayout());
> +
> + // The LazyEmitLayer takes lists of modules, rather than single
> modules, so
> + // we'll just build a single-element list.
> + std::vector<std::unique_ptr<Module>> S;
> + S.push_back(std::move(M));
> +
> + // We need a memory manager to allocate memory and resolve symbols
> for this
> + // new module. Create one that resolves symbols by looking back into
> the JIT.
> + auto MM = createLookasideRTDyldMM<SectionMemoryManager>(
> + [&](const std::string &S) {
> + return getUnmangledSymbolAddress(S);
> + },
> + [](const std::string &S) { return 0; } );
> +
> + return CompileLayer.addModuleSet(std::move(S), std::move(MM));
> + }
> +
> + void removeModule(ModuleHandleT H) { CompileLayer.removeModuleSet(H); }
> +
> + uint64_t getUnmangledSymbolAddress(const std::string &Name) {
> + return CompileLayer.getSymbolAddress(Name, false);
> + }
> +
> + uint64_t getSymbolAddress(const std::string Name) {
> + std::string MangledName;
> + {
> + raw_string_ostream MangledNameStream(MangledName);
> + Mang.getNameWithPrefix(MangledNameStream, Name);
> + }
> + return getUnmangledSymbolAddress(MangledName);
> + }
> +
> +private:
> +
> + std::unique_ptr<TargetMachine> TM;
> + Mangler Mang;
> +
> + ObjLayerT ObjectLayer;
> + CompileLayerT CompileLayer;
> +};
> +
> +static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
> + if (auto F = ParseDefinition()) {
> + IRGenContext C(S);
> + if (auto LF = F->IRGen(C)) {
> +#ifndef MINIMAL_STDERR_OUTPUT
> + fprintf(stderr, "Read function definition:");
> + LF->dump();
> +#endif
> + J.addModule(C.takeM());
> + S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
> + }
> + } else {
> + // Skip token for error recovery.
> + getNextToken();
> + }
> +}
> +
> +static void HandleExtern(SessionContext &S) {
> + if (auto P = ParseExtern())
> + S.addPrototypeAST(std::move(P));
> + else {
> + // Skip token for error recovery.
> + getNextToken();
> + }
> +}
> +
> +static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT
> &J) {
> + // Evaluate a top-level expression into an anonymous function.
> + if (auto F = ParseTopLevelExpr()) {
> + IRGenContext C(S);
> + if (auto ExprFunc = F->IRGen(C)) {
> +#ifndef MINIMAL_STDERR_OUTPUT
> + fprintf(stderr, "Expression function:\n");
> + ExprFunc->dump();
> +#endif
> + // Add the CodeGen'd module to the JIT. Keep a handle to it: We can
> remove
> + // this module as soon as we've executed Function ExprFunc.
> + auto H = J.addModule(C.takeM());
> +
> + // Get the address of the JIT'd function in memory.
> + uint64_t ExprFuncAddr = J.getSymbolAddress("__anon_expr");
> +
> + // Cast it to the right type (takes no arguments, returns a double)
> so we
> + // can call it as a native function.
> + double (*FP)() = (double (*)())(intptr_t)ExprFuncAddr;
> +#ifdef MINIMAL_STDERR_OUTPUT
> + FP();
> +#else
> + fprintf(stderr, "Evaluated to %f\n", FP());
> +#endif
> +
> + // Remove the function.
> + J.removeModule(H);
> + }
> + } else {
> + // Skip token for error recovery.
> + getNextToken();
> + }
> +}
> +
> +/// top ::= definition | external | expression | ';'
> +static void MainLoop() {
> + KaleidoscopeJIT J;
> + SessionContext S(getGlobalContext());
> +
> + while (1) {
> +#ifndef MINIMAL_STDERR_OUTPUT
> + fprintf(stderr, "ready> ");
> +#endif
> + switch (CurTok) {
> + case tok_eof: return;
> + case ';': getNextToken(); break; // ignore top-level
> semicolons.
> + case tok_def: HandleDefinition(S, J); break;
> + case tok_extern: HandleExtern(S); break;
> + default: HandleTopLevelExpression(S, J); break;
> + }
> + }
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// "Library" functions that can be "extern'd" from user code.
>
> +//===----------------------------------------------------------------------===//
> +
> +/// putchard - putchar that takes a double and returns 0.
> +extern "C"
> +double putchard(double X) {
> + putchar((char)X);
> + return 0;
> +}
> +
> +/// printd - printf that takes a double prints it as "%f\n", returning 0.
> +extern "C"
> +double printd(double X) {
> + printf("%f", X);
> + return 0;
> +}
> +
> +extern "C"
> +double printlf() {
> + printf("\n");
> + return 0;
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Main driver code.
>
> +//===----------------------------------------------------------------------===//
> +
> +int main() {
> + InitializeNativeTarget();
> + InitializeNativeTargetAsmPrinter();
> + InitializeNativeTargetAsmParser();
> + LLVMContext &Context = getGlobalContext();
> +
> + // Install standard binary operators.
> + // 1 is lowest precedence.
> + BinopPrecedence['='] = 2;
> + BinopPrecedence['<'] = 10;
> + BinopPrecedence['+'] = 20;
> + BinopPrecedence['-'] = 20;
> + BinopPrecedence['/'] = 40;
> + BinopPrecedence['*'] = 40; // highest.
> +
> + // Prime the first token.
> +#ifndef MINIMAL_STDERR_OUTPUT
> + fprintf(stderr, "ready> ");
> +#endif
> + getNextToken();
> +
> + // Run the main "interpreter loop" now.
> + MainLoop();
> +
> + return 0;
> +}
> +
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20150206/6a53fb4a/attachment.html>
More information about the llvm-commits
mailing list