[llvm] r228456 - [Orc] Add a Kaleidoscope tutorial for Orc demonstrating eager compilation.

Sean Silva chisophugis at gmail.com
Fri Feb 6 19:36:52 PST 2015


+  if (V == 0) {
+    char ErrStr[256];
+    sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
+    return ErrorP<Value>(ErrStr);
+  }

Buffer overflow?

-- Sean Silva


On Fri, Feb 6, 2015 at 2:52 PM, Lang Hames <lhames at gmail.com> wrote:

> Author: lhames
> Date: Fri Feb  6 16:52:04 2015
> New Revision: 228456
>
> URL: http://llvm.org/viewvc/llvm-project?rev=228456&view=rev
> Log:
> [Orc] Add a Kaleidoscope tutorial for Orc demonstrating eager compilation.
>
> This tutorial demonstrates a very basic custom Orc JIT stack that performs
> eager
> compilation: All modules are CodeGen'd immediately upon being added to the
> JIT.
>
>
> Added:
>     llvm/trunk/examples/Kaleidoscope/Orc/
>     llvm/trunk/examples/Kaleidoscope/Orc/initial/
>     llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile
>     llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt
>     llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp
>
> Added: llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile?rev=228456&view=auto
>
> ==============================================================================
> --- llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile (added)
> +++ llvm/trunk/examples/Kaleidoscope/Orc/initial/Makefile Fri Feb  6
> 16:52:04 2015
> @@ -0,0 +1,9 @@
> +.PHONY: all
> +all: toy
> +
> +toy: toy.cpp
> +       clang++ -std=c++11 toy.cpp -g -O0 -rdynamic -fno-rtti `llvm-config
> --cppflags --ldflags --system-libs --libs core orcjit native` -o toy
> +
> +.PHONY: clean
> +clean:
> +       rm -f toy
>
> Added: llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt?rev=228456&view=auto
>
> ==============================================================================
> --- llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt (added)
> +++ llvm/trunk/examples/Kaleidoscope/Orc/initial/README.txt Fri Feb  6
> 16:52:04 2015
> @@ -0,0 +1,13 @@
>
> +//===----------------------------------------------------------------------===/
> +//                 Kaleidoscope with Orc - Initial Version
>
> +//===----------------------------------------------------------------------===//
> +
> +This version of Kaleidoscope with Orc demonstrates fully eager
> compilation. When
> +a function definition or top-level expression is entered it is immediately
> +translated (IRGen'd) to LLVM IR and added to the JIT, where it is
> code-gen'd to
> +native code and either stored (for function definitions) or executed (for
> +top-level expressions).
> +
> +This directory contain a Makefile that allow the code to be built in a
> +standalone manner, independent of the larger LLVM build infrastructure.
> To build
> +the program you will need to have 'clang++' and 'llvm-config' in your
> path.
>
> Added: llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp?rev=228456&view=auto
>
> ==============================================================================
> --- llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp (added)
> +++ llvm/trunk/examples/Kaleidoscope/Orc/initial/toy.cpp Fri Feb  6
> 16:52:04 2015
> @@ -0,0 +1,1319 @@
> +#include "llvm/Analysis/Passes.h"
> +#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
> +#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
> +#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
> +#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
> +#include "llvm/IR/DataLayout.h"
> +#include "llvm/IR/DerivedTypes.h"
> +#include "llvm/IR/IRBuilder.h"
> +#include "llvm/IR/LLVMContext.h"
> +#include "llvm/IR/Module.h"
> +#include "llvm/IR/Verifier.h"
> +#include "llvm/PassManager.h"
> +#include "llvm/Support/TargetSelect.h"
> +#include "llvm/Transforms/Scalar.h"
> +#include <cctype>
> +#include <cstdio>
> +#include <map>
> +#include <string>
> +#include <vector>
> +using namespace llvm;
> +
>
> +//===----------------------------------------------------------------------===//
> +// Lexer
>
> +//===----------------------------------------------------------------------===//
> +
> +// The lexer returns tokens [0-255] if it is an unknown character,
> otherwise one
> +// of these for known things.
> +enum Token {
> +  tok_eof = -1,
> +
> +  // commands
> +  tok_def = -2, tok_extern = -3,
> +
> +  // primary
> +  tok_identifier = -4, tok_number = -5,
> +
> +  // control
> +  tok_if = -6, tok_then = -7, tok_else = -8,
> +  tok_for = -9, tok_in = -10,
> +
> +  // operators
> +  tok_binary = -11, tok_unary = -12,
> +
> +  // var definition
> +  tok_var = -13
> +};
> +
> +static std::string IdentifierStr;  // Filled in if tok_identifier
> +static double NumVal;              // Filled in if tok_number
> +
> +/// gettok - Return the next token from standard input.
> +static int gettok() {
> +  static int LastChar = ' ';
> +
> +  // Skip any whitespace.
> +  while (isspace(LastChar))
> +    LastChar = getchar();
> +
> +  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
> +    IdentifierStr = LastChar;
> +    while (isalnum((LastChar = getchar())))
> +      IdentifierStr += LastChar;
> +
> +    if (IdentifierStr == "def") return tok_def;
> +    if (IdentifierStr == "extern") return tok_extern;
> +    if (IdentifierStr == "if") return tok_if;
> +    if (IdentifierStr == "then") return tok_then;
> +    if (IdentifierStr == "else") return tok_else;
> +    if (IdentifierStr == "for") return tok_for;
> +    if (IdentifierStr == "in") return tok_in;
> +    if (IdentifierStr == "binary") return tok_binary;
> +    if (IdentifierStr == "unary") return tok_unary;
> +    if (IdentifierStr == "var") return tok_var;
> +    return tok_identifier;
> +  }
> +
> +  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
> +    std::string NumStr;
> +    do {
> +      NumStr += LastChar;
> +      LastChar = getchar();
> +    } while (isdigit(LastChar) || LastChar == '.');
> +
> +    NumVal = strtod(NumStr.c_str(), 0);
> +    return tok_number;
> +  }
> +
> +  if (LastChar == '#') {
> +    // Comment until end of line.
> +    do LastChar = getchar();
> +    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
> +
> +    if (LastChar != EOF)
> +      return gettok();
> +  }
> +
> +  // Check for end of file.  Don't eat the EOF.
> +  if (LastChar == EOF)
> +    return tok_eof;
> +
> +  // Otherwise, just return the character as its ascii value.
> +  int ThisChar = LastChar;
> +  LastChar = getchar();
> +  return ThisChar;
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Abstract Syntax Tree (aka Parse Tree)
>
> +//===----------------------------------------------------------------------===//
> +
> +class IRGenContext;
> +
> +/// ExprAST - Base class for all expression nodes.
> +struct ExprAST {
> +  virtual ~ExprAST() {}
> +  virtual Value* IRGen(IRGenContext &C) = 0;
> +};
> +
> +/// NumberExprAST - Expression class for numeric literals like "1.0".
> +struct NumberExprAST : public ExprAST {
> +  NumberExprAST(double Val) : Val(Val) {}
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  double Val;
> +};
> +
> +/// VariableExprAST - Expression class for referencing a variable, like
> "a".
> +struct VariableExprAST : public ExprAST {
> +  VariableExprAST(std::string Name) : Name(std::move(Name)) {}
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  std::string Name;
> +};
> +
> +/// UnaryExprAST - Expression class for a unary operator.
> +struct UnaryExprAST : public ExprAST {
> +  UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
> +    : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
> +
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  char Opcode;
> +  std::unique_ptr<ExprAST> Operand;
> +};
> +
> +/// BinaryExprAST - Expression class for a binary operator.
> +struct BinaryExprAST : public ExprAST {
> +  BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
> +                std::unique_ptr<ExprAST> RHS)
> +    : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
> +
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  char Op;
> +  std::unique_ptr<ExprAST> LHS, RHS;
> +};
> +
> +/// CallExprAST - Expression class for function calls.
> +struct CallExprAST : public ExprAST {
> +  CallExprAST(std::string CalleeName,
> +              std::vector<std::unique_ptr<ExprAST>> Args)
> +    : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
> +
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  std::string CalleeName;
> +  std::vector<std::unique_ptr<ExprAST>> Args;
> +};
> +
> +/// IfExprAST - Expression class for if/then/else.
> +struct IfExprAST : public ExprAST {
> +  IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
> +            std::unique_ptr<ExprAST> Else)
> +    : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else))
> {}
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  std::unique_ptr<ExprAST> Cond, Then, Else;
> +};
> +
> +/// ForExprAST - Expression class for for/in.
> +struct ForExprAST : public ExprAST {
> +  ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
> +             std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
> +             std::unique_ptr<ExprAST> Body)
> +    : VarName(std::move(VarName)), Start(std::move(Start)),
> End(std::move(End)),
> +      Step(std::move(Step)), Body(std::move(Body)) {}
> +
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  std::string VarName;
> +  std::unique_ptr<ExprAST> Start, End, Step, Body;
> +};
> +
> +/// VarExprAST - Expression class for var/in
> +struct VarExprAST : public ExprAST {
> +  typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
> +  typedef std::vector<Binding> BindingList;
> +
> +  VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
> +    : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
> +
> +  Value* IRGen(IRGenContext &C) override;
> +
> +  BindingList VarBindings;
> +  std::unique_ptr<ExprAST> Body;
> +};
> +
> +/// PrototypeAST - This class represents the "prototype" for a function,
> +/// which captures its argument names as well as if it is an operator.
> +struct PrototypeAST {
> +  PrototypeAST(std::string Name, std::vector<std::string> Args,
> +               bool IsOperator = false, unsigned Precedence = 0)
> +    : Name(std::move(Name)), Args(std::move(Args)),
> IsOperator(IsOperator),
> +      Precedence(Precedence) {}
> +
> +  Function* IRGen(IRGenContext &C);
> +  void CreateArgumentAllocas(Function *F, IRGenContext &C);
> +
> +  bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
> +  bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
> +
> +  char getOperatorName() const {
> +    assert(isUnaryOp() || isBinaryOp());
> +    return Name[Name.size()-1];
> +  }
> +
> +  std::string Name;
> +  std::vector<std::string> Args;
> +  bool IsOperator;
> +  unsigned Precedence;  // Precedence if a binary op.
> +};
> +
> +/// FunctionAST - This class represents a function definition itself.
> +struct FunctionAST {
> +  FunctionAST(std::unique_ptr<PrototypeAST> Proto,
> +              std::unique_ptr<ExprAST> Body)
> +    : Proto(std::move(Proto)), Body(std::move(Body)) {}
> +
> +  Function* IRGen(IRGenContext &C);
> +
> +  std::unique_ptr<PrototypeAST> Proto;
> +  std::unique_ptr<ExprAST> Body;
> +};
> +
>
> +//===----------------------------------------------------------------------===//
> +// Parser
>
> +//===----------------------------------------------------------------------===//
> +
> +/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the
> current
> +/// token the parser is looking at.  getNextToken reads another token
> from the
> +/// lexer and updates CurTok with its results.
> +static int CurTok;
> +static int getNextToken() {
> +  return CurTok = gettok();
> +}
> +
> +/// BinopPrecedence - This holds the precedence for each binary operator
> that is
> +/// defined.
> +static std::map<char, int> BinopPrecedence;
> +
> +/// GetTokPrecedence - Get the precedence of the pending binary operator
> token.
> +static int GetTokPrecedence() {
> +  if (!isascii(CurTok))
> +    return -1;
> +
> +  // Make sure it's a declared binop.
> +  int TokPrec = BinopPrecedence[CurTok];
> +  if (TokPrec <= 0) return -1;
> +  return TokPrec;
> +}
> +
> +template <typename T>
> +std::unique_ptr<T> ErrorU(const char *Str) {
> +  fprintf(stderr, "Error: %s\n", Str);
> +  return nullptr;
> +}
> +
> +template <typename T>
> +T* ErrorP(const char *Str) {
> +  fprintf(stderr, "Error: %s\n", Str);
> +  return nullptr;
> +}
> +
> +static std::unique_ptr<ExprAST> ParseExpression();
> +
> +/// identifierexpr
> +///   ::= identifier
> +///   ::= identifier '(' expression* ')'
> +static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
> +  std::string IdName = IdentifierStr;
> +
> +  getNextToken();  // eat identifier.
> +
> +  if (CurTok != '(') // Simple variable ref.
> +    return llvm::make_unique<VariableExprAST>(IdName);
> +
> +  // Call.
> +  getNextToken();  // eat (
> +  std::vector<std::unique_ptr<ExprAST>> Args;
> +  if (CurTok != ')') {
> +    while (1) {
> +      auto Arg = ParseExpression();
> +      if (!Arg) return nullptr;
> +      Args.push_back(std::move(Arg));
> +
> +      if (CurTok == ')') break;
> +
> +      if (CurTok != ',')
> +        return ErrorU<CallExprAST>("Expected ')' or ',' in argument
> list");
> +      getNextToken();
> +    }
> +  }
> +
> +  // Eat the ')'.
> +  getNextToken();
> +
> +  return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
> +}
> +
> +/// numberexpr ::= number
> +static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
> +  auto Result = llvm::make_unique<NumberExprAST>(NumVal);
> +  getNextToken(); // consume the number
> +  return Result;
> +}
> +
> +/// parenexpr ::= '(' expression ')'
> +static std::unique_ptr<ExprAST> ParseParenExpr() {
> +  getNextToken();  // eat (.
> +  auto V = ParseExpression();
> +  if (!V)
> +    return nullptr;
> +
> +  if (CurTok != ')')
> +    return ErrorU<ExprAST>("expected ')'");
> +  getNextToken();  // eat ).
> +  return V;
> +}
> +
> +/// ifexpr ::= 'if' expression 'then' expression 'else' expression
> +static std::unique_ptr<ExprAST> ParseIfExpr() {
> +  getNextToken();  // eat the if.
> +
> +  // condition.
> +  auto Cond = ParseExpression();
> +  if (!Cond)
> +    return nullptr;
> +
> +  if (CurTok != tok_then)
> +    return ErrorU<ExprAST>("expected then");
> +  getNextToken();  // eat the then
> +
> +  auto Then = ParseExpression();
> +  if (!Then)
> +    return nullptr;
> +
> +  if (CurTok != tok_else)
> +    return ErrorU<ExprAST>("expected else");
> +
> +  getNextToken();
> +
> +  auto Else = ParseExpression();
> +  if (!Else)
> +    return nullptr;
> +
> +  return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
> +                                      std::move(Else));
> +}
> +
> +/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in'
> expression
> +static std::unique_ptr<ForExprAST> ParseForExpr() {
> +  getNextToken();  // eat the for.
> +
> +  if (CurTok != tok_identifier)
> +    return ErrorU<ForExprAST>("expected identifier after for");
> +
> +  std::string IdName = IdentifierStr;
> +  getNextToken();  // eat identifier.
> +
> +  if (CurTok != '=')
> +    return ErrorU<ForExprAST>("expected '=' after for");
> +  getNextToken();  // eat '='.
> +
> +
> +  auto Start = ParseExpression();
> +  if (!Start)
> +    return nullptr;
> +  if (CurTok != ',')
> +    return ErrorU<ForExprAST>("expected ',' after for start value");
> +  getNextToken();
> +
> +  auto End = ParseExpression();
> +  if (!End)
> +    return nullptr;
> +
> +  // The step value is optional.
> +  std::unique_ptr<ExprAST> Step;
> +  if (CurTok == ',') {
> +    getNextToken();
> +    Step = ParseExpression();
> +    if (!Step)
> +      return nullptr;
> +  }
> +
> +  if (CurTok != tok_in)
> +    return ErrorU<ForExprAST>("expected 'in' after for");
> +  getNextToken();  // eat 'in'.
> +
> +  auto Body = ParseExpression();
> +  if (Body)
> +    return nullptr;
> +
> +  return llvm::make_unique<ForExprAST>(IdName, std::move(Start),
> std::move(End),
> +                                       std::move(Step), std::move(Body));
> +}
> +
> +/// varexpr ::= 'var' identifier ('=' expression)?
> +//                    (',' identifier ('=' expression)?)* 'in' expression
> +static std::unique_ptr<VarExprAST> ParseVarExpr() {
> +  getNextToken();  // eat the var.
> +
> +  VarExprAST::BindingList VarBindings;
> +
> +  // At least one variable name is required.
> +  if (CurTok != tok_identifier)
> +    return ErrorU<VarExprAST>("expected identifier after var");
> +
> +  while (1) {
> +    std::string Name = IdentifierStr;
> +    getNextToken();  // eat identifier.
> +
> +    // Read the optional initializer.
> +    std::unique_ptr<ExprAST> Init;
> +    if (CurTok == '=') {
> +      getNextToken(); // eat the '='.
> +
> +      Init = ParseExpression();
> +      if (!Init)
> +        return nullptr;
> +    }
> +
> +    VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
> +
> +    // End of var list, exit loop.
> +    if (CurTok != ',') break;
> +    getNextToken(); // eat the ','.
> +
> +    if (CurTok != tok_identifier)
> +      return ErrorU<VarExprAST>("expected identifier list after var");
> +  }
> +
> +  // At this point, we have to have 'in'.
> +  if (CurTok != tok_in)
> +    return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
> +  getNextToken();  // eat 'in'.
> +
> +  auto Body = ParseExpression();
> +  if (!Body)
> +    return nullptr;
> +
> +  return llvm::make_unique<VarExprAST>(std::move(VarBindings),
> std::move(Body));
> +}
> +
> +/// primary
> +///   ::= identifierexpr
> +///   ::= numberexpr
> +///   ::= parenexpr
> +///   ::= ifexpr
> +///   ::= forexpr
> +///   ::= varexpr
> +static std::unique_ptr<ExprAST> ParsePrimary() {
> +  switch (CurTok) {
> +  default: return ErrorU<ExprAST>("unknown token when expecting an
> expression");
> +  case tok_identifier: return ParseIdentifierExpr();
> +  case tok_number:     return ParseNumberExpr();
> +  case '(':            return ParseParenExpr();
> +  case tok_if:         return ParseIfExpr();
> +  case tok_for:        return ParseForExpr();
> +  case tok_var:        return ParseVarExpr();
> +  }
> +}
> +
> +/// unary
> +///   ::= primary
> +///   ::= '!' unary
> +static std::unique_ptr<ExprAST> ParseUnary() {
> +  // If the current token is not an operator, it must be a primary expr.
> +  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
> +    return ParsePrimary();
> +
> +  // If this is a unary operator, read it.
> +  int Opc = CurTok;
> +  getNextToken();
> +  if (auto Operand = ParseUnary())
> +    return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
> +  return nullptr;
> +}
> +
> +/// binoprhs
> +///   ::= ('+' unary)*
> +static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
> +                                              std::unique_ptr<ExprAST>
> LHS) {
> +  // If this is a binop, find its precedence.
> +  while (1) {
> +    int TokPrec = GetTokPrecedence();
> +
> +    // If this is a binop that binds at least as tightly as the current
> binop,
> +    // consume it, otherwise we are done.
> +    if (TokPrec < ExprPrec)
> +      return LHS;
> +
> +    // Okay, we know this is a binop.
> +    int BinOp = CurTok;
> +    getNextToken();  // eat binop
> +
> +    // Parse the unary expression after the binary operator.
> +    auto RHS = ParseUnary();
> +    if (!RHS)
> +      return nullptr;
> +
> +    // If BinOp binds less tightly with RHS than the operator after RHS,
> let
> +    // the pending operator take RHS as its LHS.
> +    int NextPrec = GetTokPrecedence();
> +    if (TokPrec < NextPrec) {
> +      RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
> +      if (!RHS)
> +        return nullptr;
> +    }
> +
> +    // Merge LHS/RHS.
> +    LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
> std::move(RHS));
> +  }
> +}
> +
> +/// expression
> +///   ::= unary binoprhs
> +///
> +static std::unique_ptr<ExprAST> ParseExpression() {
> +  auto LHS = ParseUnary();
> +  if (!LHS)
> +    return nullptr;
> +
> +  return ParseBinOpRHS(0, std::move(LHS));
> +}
> +
> +/// prototype
> +///   ::= id '(' id* ')'
> +///   ::= binary LETTER number? (id, id)
> +///   ::= unary LETTER (id)
> +static std::unique_ptr<PrototypeAST> ParsePrototype() {
> +  std::string FnName;
> +
> +  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
> +  unsigned BinaryPrecedence = 30;
> +
> +  switch (CurTok) {
> +  default:
> +    return ErrorU<PrototypeAST>("Expected function name in prototype");
> +  case tok_identifier:
> +    FnName = IdentifierStr;
> +    Kind = 0;
> +    getNextToken();
> +    break;
> +  case tok_unary:
> +    getNextToken();
> +    if (!isascii(CurTok))
> +      return ErrorU<PrototypeAST>("Expected unary operator");
> +    FnName = "unary";
> +    FnName += (char)CurTok;
> +    Kind = 1;
> +    getNextToken();
> +    break;
> +  case tok_binary:
> +    getNextToken();
> +    if (!isascii(CurTok))
> +      return ErrorU<PrototypeAST>("Expected binary operator");
> +    FnName = "binary";
> +    FnName += (char)CurTok;
> +    Kind = 2;
> +    getNextToken();
> +
> +    // Read the precedence if present.
> +    if (CurTok == tok_number) {
> +      if (NumVal < 1 || NumVal > 100)
> +        return ErrorU<PrototypeAST>("Invalid precedecnce: must be
> 1..100");
> +      BinaryPrecedence = (unsigned)NumVal;
> +      getNextToken();
> +    }
> +    break;
> +  }
> +
> +  if (CurTok != '(')
> +    return ErrorU<PrototypeAST>("Expected '(' in prototype");
> +
> +  std::vector<std::string> ArgNames;
> +  while (getNextToken() == tok_identifier)
> +    ArgNames.push_back(IdentifierStr);
> +  if (CurTok != ')')
> +    return ErrorU<PrototypeAST>("Expected ')' in prototype");
> +
> +  // success.
> +  getNextToken();  // eat ')'.
> +
> +  // Verify right number of names for operator.
> +  if (Kind && ArgNames.size() != Kind)
> +    return ErrorU<PrototypeAST>("Invalid number of operands for
> operator");
> +
> +  return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames),
> Kind != 0,
> +                                         BinaryPrecedence);
> +}
> +
> +/// definition ::= 'def' prototype expression
> +static std::unique_ptr<FunctionAST> ParseDefinition() {
> +  getNextToken();  // eat def.
> +  auto Proto = ParsePrototype();
> +  if (!Proto)
> +    return nullptr;
> +
> +  if (auto Body = ParseExpression())
> +    return llvm::make_unique<FunctionAST>(std::move(Proto),
> std::move(Body));
> +  return nullptr;
> +}
> +
> +/// toplevelexpr ::= expression
> +static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
> +  if (auto E = ParseExpression()) {
> +    // Make an anonymous proto.
> +    auto Proto =
> +      llvm::make_unique<PrototypeAST>("__anon_expr",
> std::vector<std::string>());
> +    return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
> +  }
> +  return nullptr;
> +}
> +
> +/// external ::= 'extern' prototype
> +static std::unique_ptr<PrototypeAST> ParseExtern() {
> +  getNextToken();  // eat extern.
> +  return ParsePrototype();
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Code Generation
>
> +//===----------------------------------------------------------------------===//
> +
> +// FIXME: Obviously we can do better than this
> +std::string GenerateUniqueName(const char *root)
> +{
> +  static int i = 0;
> +  char s[16];
> +  sprintf(s, "%s%d", root, i++);
> +  std::string S = s;
> +  return S;
> +}
> +
> +std::string MakeLegalFunctionName(std::string Name)
> +{
> +  std::string NewName;
> +  assert(!Name.empty() && "Base name must not be empty");
> +
> +  // Start with what we have
> +  NewName = Name;
> +
> +  // Look for a numberic first character
> +  if (NewName.find_first_of("0123456789") == 0) {
> +    NewName.insert(0, 1, 'n');
> +  }
> +
> +  // Replace illegal characters with their ASCII equivalent
> +  std::string legal_elements =
> "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
> +  size_t pos;
> +  while ((pos = NewName.find_first_not_of(legal_elements)) !=
> std::string::npos) {
> +    char old_c = NewName.at(pos);
> +    char new_str[16];
> +    sprintf(new_str, "%d", (int)old_c);
> +    NewName = NewName.replace(pos, 1, new_str);
> +  }
> +
> +  return NewName;
> +}
> +
> +class SessionContext {
> +public:
> +  SessionContext(LLVMContext &C) : Context(C) {}
> +  LLVMContext& getLLVMContext() const { return Context; }
> +  void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
> +  PrototypeAST* getPrototypeAST(const std::string &Name);
> +private:
> +  typedef std::map<std::string, std::unique_ptr<PrototypeAST>>
> PrototypeMap;
> +  LLVMContext &Context;
> +  PrototypeMap Prototypes;
> +};
> +
> +void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
> +  Prototypes[P->Name] = std::move(P);
> +}
> +
> +PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
> +  PrototypeMap::iterator I = Prototypes.find(Name);
> +  if (I != Prototypes.end())
> +    return I->second.get();
> +  return nullptr;
> +}
> +
> +class IRGenContext {
> +public:
> +
> +  IRGenContext(SessionContext &S)
> +    : Session(S),
> +      M(new Module(GenerateUniqueName("jit_module_"),
> +                   Session.getLLVMContext())),
> +      Builder(Session.getLLVMContext()) {}
> +
> +  SessionContext& getSession() { return Session; }
> +  Module& getM() const { return *M; }
> +  std::unique_ptr<Module> takeM() { return std::move(M); }
> +  IRBuilder<>& getBuilder() { return Builder; }
> +  LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
> +  Function* getPrototype(const std::string &Name);
> +
> +  std::map<std::string, AllocaInst*> NamedValues;
> +private:
> +  SessionContext &Session;
> +  std::unique_ptr<Module> M;
> +  IRBuilder<> Builder;
> +};
> +
> +Function* IRGenContext::getPrototype(const std::string &Name) {
> +  if (Function *ExistingProto = M->getFunction(Name))
> +    return ExistingProto;
> +  if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
> +    return ProtoAST->IRGen(*this);
> +  return nullptr;
> +}
> +
> +/// CreateEntryBlockAlloca - Create an alloca instruction in the entry
> block of
> +/// the function.  This is used for mutable variables etc.
> +static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
> +                                          const std::string &VarName) {
> +  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
> +                 TheFunction->getEntryBlock().begin());
> +  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
> +                           VarName.c_str());
> +}
> +
> +Value *NumberExprAST::IRGen(IRGenContext &C) {
> +  return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
> +}
> +
> +Value *VariableExprAST::IRGen(IRGenContext &C) {
> +  // Look this variable up in the function.
> +  Value *V = C.NamedValues[Name];
> +
> +  if (V == 0) {
> +    char ErrStr[256];
> +    sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
> +    return ErrorP<Value>(ErrStr);
> +  }
> +
> +  // Load the value.
> +  return C.getBuilder().CreateLoad(V, Name.c_str());
> +}
> +
> +Value *UnaryExprAST::IRGen(IRGenContext &C) {
> +  if (Value *OperandV = Operand->IRGen(C)) {
> +    std::string FnName =
> MakeLegalFunctionName(std::string("unary")+Opcode);
> +    if (Function *F = C.getPrototype(FnName))
> +      return C.getBuilder().CreateCall(F, OperandV, "unop");
> +    return ErrorP<Value>("Unknown unary operator");
> +  }
> +
> +  // Could not codegen operand - return null.
> +  return nullptr;
> +}
> +
> +Value *BinaryExprAST::IRGen(IRGenContext &C) {
> +  // Special case '=' because we don't want to emit the LHS as an
> expression.
> +  if (Op == '=') {
> +    // Assignment requires the LHS to be an identifier.
> +    auto LHSVar = static_cast<VariableExprAST&>(*LHS);
> +    // Codegen the RHS.
> +    Value *Val = RHS->IRGen(C);
> +    if (!Val) return nullptr;
> +
> +    // Look up the name.
> +    if (auto Variable = C.NamedValues[LHSVar.Name]) {
> +      C.getBuilder().CreateStore(Val, Variable);
> +      return Val;
> +    }
> +    return ErrorP<Value>("Unknown variable name");
> +  }
> +
> +  Value *L = LHS->IRGen(C);
> +  Value *R = RHS->IRGen(C);
> +  if (!L || !R) return nullptr;
> +
> +  switch (Op) {
> +  case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
> +  case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
> +  case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
> +  case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
> +  case '<':
> +    L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
> +    // Convert bool 0/1 to double 0.0 or 1.0
> +    return C.getBuilder().CreateUIToFP(L,
> Type::getDoubleTy(getGlobalContext()),
> +                                "booltmp");
> +  default: break;
> +  }
> +
> +  // If it wasn't a builtin binary operator, it must be a user defined
> one. Emit
> +  // a call to it.
> +  std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
> +  if (Function *F = C.getPrototype(FnName)) {
> +    Value *Ops[] = { L, R };
> +    return C.getBuilder().CreateCall(F, Ops, "binop");
> +  }
> +
> +  return ErrorP<Value>("Unknown binary operator");
> +}
> +
> +Value *CallExprAST::IRGen(IRGenContext &C) {
> +  // Look up the name in the global module table.
> +  if (auto CalleeF = C.getPrototype(CalleeName)) {
> +    // If argument mismatch error.
> +    if (CalleeF->arg_size() != Args.size())
> +      return ErrorP<Value>("Incorrect # arguments passed");
> +
> +    std::vector<Value*> ArgsV;
> +    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
> +      ArgsV.push_back(Args[i]->IRGen(C));
> +      if (!ArgsV.back()) return nullptr;
> +    }
> +
> +    return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
> +  }
> +
> +  return ErrorP<Value>("Unknown function referenced");
> +}
> +
> +Value *IfExprAST::IRGen(IRGenContext &C) {
> +  Value *CondV = Cond->IRGen(C);
> +  if (!CondV) return nullptr;
> +
> +  // Convert condition to a bool by comparing equal to 0.0.
> +  ConstantFP *FPZero =
> +    ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
> +  CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
> +
> +  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
> +
> +  // Create blocks for the then and else cases.  Insert the 'then' block
> at the
> +  // end of the function.
> +  BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then",
> TheFunction);
> +  BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
> +  BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
> +
> +  C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
> +
> +  // Emit then value.
> +  C.getBuilder().SetInsertPoint(ThenBB);
> +
> +  Value *ThenV = Then->IRGen(C);
> +  if (!ThenV) return nullptr;
> +
> +  C.getBuilder().CreateBr(MergeBB);
> +  // Codegen of 'Then' can change the current block, update ThenBB for
> the PHI.
> +  ThenBB = C.getBuilder().GetInsertBlock();
> +
> +  // Emit else block.
> +  TheFunction->getBasicBlockList().push_back(ElseBB);
> +  C.getBuilder().SetInsertPoint(ElseBB);
> +
> +  Value *ElseV = Else->IRGen(C);
> +  if (!ElseV) return nullptr;
> +
> +  C.getBuilder().CreateBr(MergeBB);
> +  // Codegen of 'Else' can change the current block, update ElseBB for
> the PHI.
> +  ElseBB = C.getBuilder().GetInsertBlock();
> +
> +  // Emit merge block.
> +  TheFunction->getBasicBlockList().push_back(MergeBB);
> +  C.getBuilder().SetInsertPoint(MergeBB);
> +  PHINode *PN =
> C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
> +                                  "iftmp");
> +
> +  PN->addIncoming(ThenV, ThenBB);
> +  PN->addIncoming(ElseV, ElseBB);
> +  return PN;
> +}
> +
> +Value *ForExprAST::IRGen(IRGenContext &C) {
> +  // Output this as:
> +  //   var = alloca double
> +  //   ...
> +  //   start = startexpr
> +  //   store start -> var
> +  //   goto loop
> +  // loop:
> +  //   ...
> +  //   bodyexpr
> +  //   ...
> +  // loopend:
> +  //   step = stepexpr
> +  //   endcond = endexpr
> +  //
> +  //   curvar = load var
> +  //   nextvar = curvar + step
> +  //   store nextvar -> var
> +  //   br endcond, loop, endloop
> +  // outloop:
> +
> +  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
> +
> +  // Create an alloca for the variable in the entry block.
> +  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
> +
> +  // Emit the start code first, without 'variable' in scope.
> +  Value *StartVal = Start->IRGen(C);
> +  if (!StartVal) return nullptr;
> +
> +  // Store the value into the alloca.
> +  C.getBuilder().CreateStore(StartVal, Alloca);
> +
> +  // Make the new basic block for the loop header, inserting after current
> +  // block.
> +  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop",
> TheFunction);
> +
> +  // Insert an explicit fall through from the current block to the LoopBB.
> +  C.getBuilder().CreateBr(LoopBB);
> +
> +  // Start insertion in LoopBB.
> +  C.getBuilder().SetInsertPoint(LoopBB);
> +
> +  // Within the loop, the variable is defined equal to the PHI node.  If
> it
> +  // shadows an existing variable, we have to restore it, so save it now.
> +  AllocaInst *OldVal = C.NamedValues[VarName];
> +  C.NamedValues[VarName] = Alloca;
> +
> +  // Emit the body of the loop.  This, like any other expr, can change the
> +  // current BB.  Note that we ignore the value computed by the body, but
> don't
> +  // allow an error.
> +  if (!Body->IRGen(C))
> +    return nullptr;
> +
> +  // Emit the step value.
> +  Value *StepVal;
> +  if (Step) {
> +    StepVal = Step->IRGen(C);
> +    if (!StepVal) return nullptr;
> +  } else {
> +    // If not specified, use 1.0.
> +    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
> +  }
> +
> +  // Compute the end condition.
> +  Value *EndCond = End->IRGen(C);
> +  if (EndCond == 0) return EndCond;
> +
> +  // Reload, increment, and restore the alloca.  This handles the case
> where
> +  // the body of the loop mutates the variable.
> +  Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
> +  Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
> +  C.getBuilder().CreateStore(NextVar, Alloca);
> +
> +  // Convert condition to a bool by comparing equal to 0.0.
> +  EndCond = C.getBuilder().CreateFCmpONE(EndCond,
> +                              ConstantFP::get(getGlobalContext(),
> APFloat(0.0)),
> +                                  "loopcond");
> +
> +  // Create the "after loop" block and insert it.
> +  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(),
> "afterloop", TheFunction);
> +
> +  // Insert the conditional branch into the end of LoopEndBB.
> +  C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
> +
> +  // Any new code will be inserted in AfterBB.
> +  C.getBuilder().SetInsertPoint(AfterBB);
> +
> +  // Restore the unshadowed variable.
> +  if (OldVal)
> +    C.NamedValues[VarName] = OldVal;
> +  else
> +    C.NamedValues.erase(VarName);
> +
> +
> +  // for expr always returns 0.0.
> +  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
> +}
> +
> +Value *VarExprAST::IRGen(IRGenContext &C) {
> +  std::vector<AllocaInst *> OldBindings;
> +
> +  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
> +
> +  // Register all variables and emit their initializer.
> +  for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
> +    auto &VarName = VarBindings[i].first;
> +    auto &Init = VarBindings[i].second;
> +
> +    // Emit the initializer before adding the variable to scope, this
> prevents
> +    // the initializer from referencing the variable itself, and permits
> stuff
> +    // like this:
> +    //  var a = 1 in
> +    //    var a = a in ...   # refers to outer 'a'.
> +    Value *InitVal;
> +    if (Init) {
> +      InitVal = Init->IRGen(C);
> +      if (!InitVal) return nullptr;
> +    } else // If not specified, use 0.0.
> +      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
> +
> +    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
> +    C.getBuilder().CreateStore(InitVal, Alloca);
> +
> +    // Remember the old variable binding so that we can restore the
> binding when
> +    // we unrecurse.
> +    OldBindings.push_back(C.NamedValues[VarName]);
> +
> +    // Remember this binding.
> +    C.NamedValues[VarName] = Alloca;
> +  }
> +
> +  // Codegen the body, now that all vars are in scope.
> +  Value *BodyVal = Body->IRGen(C);
> +  if (!BodyVal) return nullptr;
> +
> +  // Pop all our variables from scope.
> +  for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
> +    C.NamedValues[VarBindings[i].first] = OldBindings[i];
> +
> +  // Return the body computation.
> +  return BodyVal;
> +}
> +
> +Function *PrototypeAST::IRGen(IRGenContext &C) {
> +  std::string FnName = MakeLegalFunctionName(Name);
> +
> +  // Make the function type:  double(double,double) etc.
> +  std::vector<Type*> Doubles(Args.size(),
> +                             Type::getDoubleTy(getGlobalContext()));
> +  FunctionType *FT =
> FunctionType::get(Type::getDoubleTy(getGlobalContext()),
> +                                       Doubles, false);
> +  Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
> +                                 &C.getM());
> +
> +  // If F conflicted, there was already something named 'FnName'.  If it
> has a
> +  // body, don't allow redefinition or reextern.
> +  if (F->getName() != FnName) {
> +    // Delete the one we just made and get the existing one.
> +    F->eraseFromParent();
> +    F = C.getM().getFunction(Name);
> +
> +    // If F already has a body, reject this.
> +    if (!F->empty()) {
> +      ErrorP<Function>("redefinition of function");
> +      return nullptr;
> +    }
> +
> +    // If F took a different number of args, reject.
> +    if (F->arg_size() != Args.size()) {
> +      ErrorP<Function>("redefinition of function with different # args");
> +      return nullptr;
> +    }
> +  }
> +
> +  // Set names for all arguments.
> +  unsigned Idx = 0;
> +  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
> +       ++AI, ++Idx)
> +    AI->setName(Args[Idx]);
> +
> +  return F;
> +}
> +
> +/// CreateArgumentAllocas - Create an alloca for each argument and
> register the
> +/// argument in the symbol table so that references to it will succeed.
> +void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
> +  Function::arg_iterator AI = F->arg_begin();
> +  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
> +    // Create an alloca for this variable.
> +    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
> +
> +    // Store the initial value into the alloca.
> +    C.getBuilder().CreateStore(AI, Alloca);
> +
> +    // Add arguments to variable symbol table.
> +    C.NamedValues[Args[Idx]] = Alloca;
> +  }
> +}
> +
> +Function *FunctionAST::IRGen(IRGenContext &C) {
> +  C.NamedValues.clear();
> +
> +  Function *TheFunction = Proto->IRGen(C);
> +  if (!TheFunction)
> +    return nullptr;
> +
> +  // If this is an operator, install it.
> +  if (Proto->isBinaryOp())
> +    BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
> +
> +  // Create a new basic block to start insertion into.
> +  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry",
> TheFunction);
> +  C.getBuilder().SetInsertPoint(BB);
> +
> +  // Add all arguments to the symbol table and create their allocas.
> +  Proto->CreateArgumentAllocas(TheFunction, C);
> +
> +  if (Value *RetVal = Body->IRGen(C)) {
> +    // Finish off the function.
> +    C.getBuilder().CreateRet(RetVal);
> +
> +    // Validate the generated code, checking for consistency.
> +    verifyFunction(*TheFunction);
> +
> +    return TheFunction;
> +  }
> +
> +  // Error reading body, remove function.
> +  TheFunction->eraseFromParent();
> +
> +  if (Proto->isBinaryOp())
> +    BinopPrecedence.erase(Proto->getOperatorName());
> +  return nullptr;
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Top-Level parsing and JIT Driver
>
> +//===----------------------------------------------------------------------===//
> +
> +class KaleidoscopeJIT {
> +public:
> +  typedef ObjectLinkingLayer<> ObjLayerT;
> +  typedef IRCompileLayer<ObjLayerT> CompileLayerT;
> +
> +  typedef CompileLayerT::ModuleSetHandleT ModuleHandleT;
> +
> +  KaleidoscopeJIT()
> +    : TM(EngineBuilder().selectTarget()),
> +      Mang(TM->getDataLayout()),
> +      CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {}
> +
> +  ModuleHandleT addModule(std::unique_ptr<Module> M) {
> +    if (!M->getDataLayout())
> +      M->setDataLayout(TM->getDataLayout());
> +
> +    // The LazyEmitLayer takes lists of modules, rather than single
> modules, so
> +    // we'll just build a single-element list.
> +    std::vector<std::unique_ptr<Module>> S;
> +    S.push_back(std::move(M));
> +
> +    // We need a memory manager to allocate memory and resolve symbols
> for this
> +    // new module. Create one that resolves symbols by looking back into
> the JIT.
> +    auto MM = createLookasideRTDyldMM<SectionMemoryManager>(
> +                [&](const std::string &S) {
> +                  return getUnmangledSymbolAddress(S);
> +                },
> +                [](const std::string &S) { return 0; } );
> +
> +    return CompileLayer.addModuleSet(std::move(S), std::move(MM));
> +  }
> +
> +  void removeModule(ModuleHandleT H) { CompileLayer.removeModuleSet(H); }
> +
> +  uint64_t getUnmangledSymbolAddress(const std::string &Name) {
> +    return CompileLayer.getSymbolAddress(Name, false);
> +  }
> +
> +  uint64_t getSymbolAddress(const std::string Name) {
> +    std::string MangledName;
> +    {
> +      raw_string_ostream MangledNameStream(MangledName);
> +      Mang.getNameWithPrefix(MangledNameStream, Name);
> +    }
> +    return getUnmangledSymbolAddress(MangledName);
> +  }
> +
> +private:
> +
> +  std::unique_ptr<TargetMachine> TM;
> +  Mangler Mang;
> +
> +  ObjLayerT ObjectLayer;
> +  CompileLayerT CompileLayer;
> +};
> +
> +static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
> +  if (auto F = ParseDefinition()) {
> +    IRGenContext C(S);
> +    if (auto LF = F->IRGen(C)) {
> +#ifndef MINIMAL_STDERR_OUTPUT
> +      fprintf(stderr, "Read function definition:");
> +      LF->dump();
> +#endif
> +      J.addModule(C.takeM());
> +      S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
> +    }
> +  } else {
> +    // Skip token for error recovery.
> +    getNextToken();
> +  }
> +}
> +
> +static void HandleExtern(SessionContext &S) {
> +  if (auto P = ParseExtern())
> +    S.addPrototypeAST(std::move(P));
> +  else {
> +    // Skip token for error recovery.
> +    getNextToken();
> +  }
> +}
> +
> +static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT
> &J) {
> +  // Evaluate a top-level expression into an anonymous function.
> +  if (auto F = ParseTopLevelExpr()) {
> +    IRGenContext C(S);
> +    if (auto ExprFunc = F->IRGen(C)) {
> +#ifndef MINIMAL_STDERR_OUTPUT
> +      fprintf(stderr, "Expression function:\n");
> +      ExprFunc->dump();
> +#endif
> +      // Add the CodeGen'd module to the JIT. Keep a handle to it: We can
> remove
> +      // this module as soon as we've executed Function ExprFunc.
> +      auto H = J.addModule(C.takeM());
> +
> +      // Get the address of the JIT'd function in memory.
> +      uint64_t ExprFuncAddr = J.getSymbolAddress("__anon_expr");
> +
> +      // Cast it to the right type (takes no arguments, returns a double)
> so we
> +      // can call it as a native function.
> +      double (*FP)() = (double (*)())(intptr_t)ExprFuncAddr;
> +#ifdef MINIMAL_STDERR_OUTPUT
> +      FP();
> +#else
> +      fprintf(stderr, "Evaluated to %f\n", FP());
> +#endif
> +
> +      // Remove the function.
> +      J.removeModule(H);
> +    }
> +  } else {
> +    // Skip token for error recovery.
> +    getNextToken();
> +  }
> +}
> +
> +/// top ::= definition | external | expression | ';'
> +static void MainLoop() {
> +  KaleidoscopeJIT J;
> +  SessionContext S(getGlobalContext());
> +
> +  while (1) {
> +#ifndef MINIMAL_STDERR_OUTPUT
> +    fprintf(stderr, "ready> ");
> +#endif
> +    switch (CurTok) {
> +    case tok_eof:    return;
> +    case ';':        getNextToken(); break;  // ignore top-level
> semicolons.
> +    case tok_def:    HandleDefinition(S, J); break;
> +    case tok_extern: HandleExtern(S); break;
> +    default:         HandleTopLevelExpression(S, J); break;
> +    }
> +  }
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// "Library" functions that can be "extern'd" from user code.
>
> +//===----------------------------------------------------------------------===//
> +
> +/// putchard - putchar that takes a double and returns 0.
> +extern "C"
> +double putchard(double X) {
> +  putchar((char)X);
> +  return 0;
> +}
> +
> +/// printd - printf that takes a double prints it as "%f\n", returning 0.
> +extern "C"
> +double printd(double X) {
> +  printf("%f", X);
> +  return 0;
> +}
> +
> +extern "C"
> +double printlf() {
> +  printf("\n");
> +  return 0;
> +}
> +
>
> +//===----------------------------------------------------------------------===//
> +// Main driver code.
>
> +//===----------------------------------------------------------------------===//
> +
> +int main() {
> +  InitializeNativeTarget();
> +  InitializeNativeTargetAsmPrinter();
> +  InitializeNativeTargetAsmParser();
> +  LLVMContext &Context = getGlobalContext();
> +
> +  // Install standard binary operators.
> +  // 1 is lowest precedence.
> +  BinopPrecedence['='] = 2;
> +  BinopPrecedence['<'] = 10;
> +  BinopPrecedence['+'] = 20;
> +  BinopPrecedence['-'] = 20;
> +  BinopPrecedence['/'] = 40;
> +  BinopPrecedence['*'] = 40;  // highest.
> +
> +  // Prime the first token.
> +#ifndef MINIMAL_STDERR_OUTPUT
> +  fprintf(stderr, "ready> ");
> +#endif
> +  getNextToken();
> +
> +  // Run the main "interpreter loop" now.
> +  MainLoop();
> +
> +  return 0;
> +}
> +
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20150206/6a53fb4a/attachment.html>


More information about the llvm-commits mailing list