[llvm] r226594 - [PM] Clean up a bunch of the doxygen / API docs on the InstCombiner pass
Chandler Carruth
chandlerc at gmail.com
Tue Jan 20 11:27:58 PST 2015
Author: chandlerc
Date: Tue Jan 20 13:27:58 2015
New Revision: 226594
URL: http://llvm.org/viewvc/llvm-project?rev=226594&view=rev
Log:
[PM] Clean up a bunch of the doxygen / API docs on the InstCombiner pass
prior to refactoring it.
Modified:
llvm/trunk/lib/Transforms/InstCombine/InstCombine.h
Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombine.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombine.h?rev=226594&r1=226593&r2=226594&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombine.h (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombine.h Tue Jan 20 13:27:58 2015
@@ -35,8 +35,7 @@ class DbgDeclareInst;
class MemIntrinsic;
class MemSetInst;
-/// SelectPatternFlavor - We can match a variety of different patterns for
-/// select operations.
+/// \brief Specific patterns of select instructions we can match.
enum SelectPatternFlavor {
SPF_UNKNOWN = 0,
SPF_SMIN,
@@ -47,8 +46,15 @@ enum SelectPatternFlavor {
SPF_NABS
};
-/// getComplexity: Assign a complexity or rank value to LLVM Values...
-/// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
+/// \brief Assign a complexity or rank value to LLVM Values.
+///
+/// This routine maps IR values to various complexity ranks:
+/// 0 -> undef
+/// 1 -> Constants
+/// 2 -> Other non-instructions
+/// 3 -> Arguments
+/// 3 -> Unary operations
+/// 4 -> Other instructions
static inline unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
@@ -61,18 +67,17 @@ static inline unsigned getComplexity(Val
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
-/// AddOne - Add one to a Constant
+/// \brief Add one to a Constant
static inline Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
-/// SubOne - Subtract one from a Constant
+/// \brief Subtract one from a Constant
static inline Constant *SubOne(Constant *C) {
return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
-/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
-/// just like the normal insertion helper, but also adds any new instructions
-/// to the instcombine worklist.
+/// \brief An IRBuilder inserter that adds new instructions to the instcombine
+/// worklist.
class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
: public IRBuilderDefaultInserter<true> {
InstCombineWorklist &Worklist;
@@ -93,7 +98,11 @@ public:
}
};
-/// InstCombiner - The -instcombine pass.
+/// \brief The core instruction combiner logic.
+///
+/// This class provides both the logic to recursively visit instructions and
+/// combine them, as well as the pass infrastructure for running this as part
+/// of the LLVM pass pipeline.
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public FunctionPass,
public InstVisitor<InstCombiner, Instruction *> {
@@ -107,11 +116,11 @@ class LLVM_LIBRARY_VISIBILITY InstCombin
bool MinimizeSize;
public:
- /// Worklist - All of the instructions that need to be simplified.
+ /// \brief A worklist of the instructions that need to be simplified.
InstCombineWorklist Worklist;
- /// Builder - This is an IRBuilder that automatically inserts new
- /// instructions into the worklist when they are created.
+ /// \brief An IRBuilder that automatically inserts new instructions into the
+ /// worklist.
typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
BuilderTy *Builder;
@@ -271,10 +280,12 @@ private:
SmallVectorImpl<Value *> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
- /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
- /// results in any code being generated and is interesting to optimize out. If
- /// the cast can be eliminated by some other simple transformation, we prefer
- /// to do the simplification first.
+ /// \brief Classify whether a cast is worth optimizing.
+ ///
+ /// Returns true if the cast from "V to Ty" actually results in any code
+ /// being generated and is interesting to optimize out. If the cast can be
+ /// eliminated by some other simple transformation, we prefer to do the
+ /// simplification first.
bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
Type *Ty);
@@ -295,9 +306,10 @@ private:
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
public:
- // InsertNewInstBefore - insert an instruction New before instruction Old
- // in the program. Add the new instruction to the worklist.
- //
+ /// \brief Inserts an instruction \p New before instruction \p Old
+ ///
+ /// Also adds the new instruction to the worklist and returns \p New so that
+ /// it is suitable for use as the return from the visitation patterns.
Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
assert(New && !New->getParent() &&
"New instruction already inserted into a basic block!");
@@ -307,20 +319,18 @@ public:
return New;
}
- // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
- // debug loc.
- //
+ /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
New->setDebugLoc(Old.getDebugLoc());
return InsertNewInstBefore(New, Old);
}
- // ReplaceInstUsesWith - This method is to be used when an instruction is
- // found to be dead, replacable with another preexisting expression. Here
- // we add all uses of I to the worklist, replace all uses of I with the new
- // value, then return I, so that the inst combiner will know that I was
- // modified.
- //
+ /// \brief A combiner-aware RAUW-like routine.
+ ///
+ /// This method is to be used when an instruction is found to be dead,
+ /// replacable with another preexisting expression. Here we add all uses of
+ /// I to the worklist, replace all uses of I with the new value, then return
+ /// I, so that the inst combiner will know that I was modified.
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
@@ -350,10 +360,11 @@ public:
return InsertValueInst::Create(Struct, Result, 0);
}
- // EraseInstFromFunction - When dealing with an instruction that has side
- // effects or produces a void value, we can't rely on DCE to delete the
- // instruction. Instead, visit methods should return the value returned by
- // this function.
+ /// \brief Combiner aware instruction erasure.
+ ///
+ /// When dealing with an instruction that has side effects or produces a void
+ /// value, we can't rely on DCE to delete the instruction. Instead, visit
+ /// methods should return the value returned by this function.
Instruction *EraseInstFromFunction(Instruction &I) {
DEBUG(dbgs() << "IC: ERASE " << I << '\n');
@@ -401,19 +412,20 @@ public:
}
private:
- /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
- /// operators which are associative or commutative.
+ /// \brief Performs a few simplifications for operators which are associative
+ /// or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
- /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
- /// which some other binary operation distributes over either by factorizing
- /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
- /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
- /// a win). Returns the simplified value, or null if it didn't simplify.
+ /// \brief Tries to simplify binary operations which some other binary operation distributes over.
+ ///
+ /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
+ /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
+ /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
+ /// value, or null if it didn't simplify.
Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
- /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
- /// based on the demanded bits.
+ /// \brief Attempts to replace V with a simpler value based on the demanded
+ /// bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth,
Instruction *CxtI = nullptr);
@@ -425,9 +437,8 @@ private:
APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne);
- /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
- /// SimplifyDemandedBits knows about. See if the instruction has any
- /// properties that allow us to simplify its operands.
+ /// \brief Tries to simplify operands to an integer instruction based on its
+ /// demanded bits.
bool SimplifyDemandedInstructionBits(Instruction &Inst);
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
@@ -443,9 +454,8 @@ private:
//
Instruction *FoldOpIntoPhi(Instruction &I);
- // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
- // operator and they all are only used by the PHI, PHI together their
- // inputs, and do the operation once, to the result of the PHI.
+ /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
+ /// its operands.
Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
@@ -466,8 +476,9 @@ private:
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
- /// Descale - Return a value X such that Val = X * Scale, or null if none. If
- /// the multiplication is known not to overflow then NoSignedWrap is set.
+ /// \brief Returns a value X such that Val = X * Scale, or null if none.
+ ///
+ /// If the multiplication is known not to overflow then NoSignedWrap is set.
Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};
More information about the llvm-commits
mailing list