[llvm] r226216 - Revert r226201 (Add a new pass "inductive range check elimination")
Sanjoy Das
sanjoy at playingwithpointers.com
Thu Jan 15 14:18:10 PST 2015
Author: sanjoy
Date: Thu Jan 15 16:18:10 2015
New Revision: 226216
URL: http://llvm.org/viewvc/llvm-project?rev=226216&view=rev
Log:
Revert r226201 (Add a new pass "inductive range check elimination")
The change used C++11 features not supported by MSVC 2012. I will fix
the change to use things supported MSVC 2012 and recommit shortly.
Removed:
llvm/trunk/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
llvm/trunk/test/Transforms/IRCE/
Modified:
llvm/trunk/include/llvm/InitializePasses.h
llvm/trunk/include/llvm/LinkAllPasses.h
llvm/trunk/include/llvm/Transforms/Scalar.h
llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt
llvm/trunk/lib/Transforms/Scalar/Scalar.cpp
Modified: llvm/trunk/include/llvm/InitializePasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=226216&r1=226215&r2=226216&view=diff
==============================================================================
--- llvm/trunk/include/llvm/InitializePasses.h (original)
+++ llvm/trunk/include/llvm/InitializePasses.h Thu Jan 15 16:18:10 2015
@@ -142,7 +142,6 @@ void initializeIPCPPass(PassRegistry&);
void initializeIPSCCPPass(PassRegistry&);
void initializeIVUsersPass(PassRegistry&);
void initializeIfConverterPass(PassRegistry&);
-void initializeInductiveRangeCheckEliminationPass(PassRegistry&);
void initializeIndVarSimplifyPass(PassRegistry&);
void initializeInlineCostAnalysisPass(PassRegistry&);
void initializeInstCombinerPass(PassRegistry&);
Modified: llvm/trunk/include/llvm/LinkAllPasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/LinkAllPasses.h?rev=226216&r1=226215&r2=226216&view=diff
==============================================================================
--- llvm/trunk/include/llvm/LinkAllPasses.h (original)
+++ llvm/trunk/include/llvm/LinkAllPasses.h Thu Jan 15 16:18:10 2015
@@ -86,7 +86,6 @@ namespace {
(void) llvm::createGlobalsModRefPass();
(void) llvm::createIPConstantPropagationPass();
(void) llvm::createIPSCCPPass();
- (void) llvm::createInductiveRangeCheckEliminationPass();
(void) llvm::createIndVarSimplifyPass();
(void) llvm::createInstructionCombiningPass();
(void) llvm::createInternalizePass();
Modified: llvm/trunk/include/llvm/Transforms/Scalar.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Scalar.h?rev=226216&r1=226215&r2=226216&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Transforms/Scalar.h (original)
+++ llvm/trunk/include/llvm/Transforms/Scalar.h Thu Jan 15 16:18:10 2015
@@ -98,13 +98,6 @@ FunctionPass *createScalarReplAggregates
//===----------------------------------------------------------------------===//
//
-// InductiveRangeCheckElimination - Transform loops to elide range checks on
-// linear functions of the induction variable.
-//
-Pass *createInductiveRangeCheckEliminationPass();
-
-//===----------------------------------------------------------------------===//
-//
// InductionVariableSimplify - Transform induction variables in a program to all
// use a single canonical induction variable per loop.
//
Modified: llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt?rev=226216&r1=226215&r2=226216&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt (original)
+++ llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt Thu Jan 15 16:18:10 2015
@@ -9,7 +9,6 @@ add_llvm_library(LLVMScalarOpts
EarlyCSE.cpp
FlattenCFGPass.cpp
GVN.cpp
- InductiveRangeCheckElimination.cpp
IndVarSimplify.cpp
JumpThreading.cpp
LICM.cpp
Removed: llvm/trunk/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp?rev=226215&view=auto
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (removed)
@@ -1,1189 +0,0 @@
-//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-// The InductiveRangeCheckElimination pass splits a loop's iteration space into
-// three disjoint ranges. It does that in a way such that the loop running in
-// the middle loop provably does not need range checks. As an example, it will
-// convert
-//
-// len = < known positive >
-// for (i = 0; i < n; i++) {
-// if (0 <= i && i < len) {
-// do_something();
-// } else {
-// throw_out_of_bounds();
-// }
-// }
-//
-// to
-//
-// len = < known positive >
-// limit = smin(n, len)
-// // no first segment
-// for (i = 0; i < limit; i++) {
-// if (0 <= i && i < len) { // this check is fully redundant
-// do_something();
-// } else {
-// throw_out_of_bounds();
-// }
-// }
-// for (i = limit; i < n; i++) {
-// if (0 <= i && i < len) {
-// do_something();
-// } else {
-// throw_out_of_bounds();
-// }
-// }
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/Optional.h"
-
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/ValueTracking.h"
-
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/IR/Verifier.h"
-
-#include "llvm/Support/Debug.h"
-
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/Transforms/Utils/UnrollLoop.h"
-
-#include "llvm/Pass.h"
-
-#include <array>
-
-using namespace llvm;
-
-cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
- cl::init(64));
-
-cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
- cl::init(false));
-
-#define DEBUG_TYPE "irce"
-
-namespace {
-
-/// An inductive range check is conditional branch in a loop with
-///
-/// 1. a very cold successor (i.e. the branch jumps to that successor very
-/// rarely)
-///
-/// and
-///
-/// 2. a condition that is provably true for some range of values taken by the
-/// containing loop's induction variable.
-///
-/// Currently all inductive range checks are branches conditional on an
-/// expression of the form
-///
-/// 0 <= (Offset + Scale * I) < Length
-///
-/// where `I' is the canonical induction variable of a loop to which Offset and
-/// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch
-/// is considered cold, looking at profiling data to verify that is a TODO.
-
-class InductiveRangeCheck {
- const SCEV *Offset = nullptr;
- const SCEV *Scale = nullptr;
- Value *Length = nullptr;
- BranchInst *Branch = nullptr;
-
- InductiveRangeCheck() {}
-
-public:
- const SCEV *getOffset() const { return Offset; }
- const SCEV *getScale() const { return Scale; }
- Value *getLength() const { return Length; }
-
- void print(raw_ostream &OS) const {
- OS << "InductiveRangeCheck:\n";
- OS << " Offset: ";
- Offset->print(OS);
- OS << " Scale: ";
- Scale->print(OS);
- OS << " Length: ";
- Length->print(OS);
- OS << " Branch: ";
- getBranch()->print(OS);
- }
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void dump() {
- print(dbgs());
- }
-#endif
-
- BranchInst *getBranch() const { return Branch; }
-
- /// Represents an integer range [Range.first, Range.second). If Range.second
- /// < Range.first, then the value denotes the empty range.
- typedef std::pair<Value *, Value *> Range;
- typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
-
- /// This is the value the condition of the branch needs to evaluate to for the
- /// branch to take the hot successor (see (1) above).
- bool getPassingDirection() { return true; }
-
- /// Computes a range for the induction variable in which the range check is
- /// redundant and can be constant-folded away.
- Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
- IRBuilder<> &B) const;
-
- /// Create an inductive range check out of BI if possible, else return
- /// nullptr.
- static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
- Loop *L, ScalarEvolution &SE);
-};
-
-class InductiveRangeCheckElimination : public LoopPass {
- InductiveRangeCheck::AllocatorTy Allocator;
-
-public:
- static char ID;
- InductiveRangeCheckElimination() : LoopPass(ID) {
- initializeInductiveRangeCheckEliminationPass(
- *PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<LoopInfo>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addRequired<ScalarEvolution>();
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
-};
-
-char InductiveRangeCheckElimination::ID = 0;
-}
-
-INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
- "Inductive range check elimination", false, false)
-
-static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
- using namespace llvm::PatternMatch;
-
- ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- Value *LHS = nullptr, *RHS = nullptr;
-
- if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
- return false;
-
- switch (Pred) {
- default:
- return false;
-
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_SGE:
- if (!match(RHS, m_ConstantInt<0>()))
- return false;
- IndexV = LHS;
- return true;
-
- case ICmpInst::ICMP_SLT:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_SGT:
- if (!match(RHS, m_ConstantInt<-1>()))
- return false;
- IndexV = LHS;
- return true;
- }
-}
-
-static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
- using namespace llvm::PatternMatch;
-
- ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- Value *LHS = nullptr, *RHS = nullptr;
-
- if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
- return false;
-
- switch (Pred) {
- default:
- return false;
-
- case ICmpInst::ICMP_SGT:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_SLT:
- if (LHS != Index)
- return false;
- UpperLimit = RHS;
- return true;
-
- case ICmpInst::ICMP_UGT:
- std::swap(LHS, RHS);
- // fallthrough
- case ICmpInst::ICMP_ULT:
- if (LHS != Index)
- return false;
- UpperLimit = RHS;
- return true;
- }
-}
-
-/// Split a condition into something semantically equivalent to (0 <= I <
-/// Limit), both comparisons signed and Len loop invariant on L and positive.
-/// On success, return true and set Index to I and UpperLimit to Limit. Return
-/// false on failure (we may still write to UpperLimit and Index on failure).
-/// It does not try to interpret I as a loop index.
-///
-static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
- Value *Condition, const SCEV *&Index,
- Value *&UpperLimit) {
-
- // TODO: currently this catches some silly cases like comparing "%idx slt 1".
- // Our transformations are still correct, but less likely to be profitable in
- // those cases. We have to come up with some heuristics that pick out the
- // range checks that are more profitable to clone a loop for. This function
- // in general can be made more robust.
-
- using namespace llvm::PatternMatch;
-
- Value *A = nullptr;
- Value *B = nullptr;
- ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
-
- // In these early checks we assume that the matched UpperLimit is positive.
- // We'll verify that fact later, before returning true.
-
- if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
- Value *IndexV = nullptr;
- Value *ExpectedUpperBoundCheck = nullptr;
-
- if (IsLowerBoundCheck(A, IndexV))
- ExpectedUpperBoundCheck = B;
- else if (IsLowerBoundCheck(B, IndexV))
- ExpectedUpperBoundCheck = A;
- else
- return false;
-
- if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
- return false;
-
- Index = SE.getSCEV(IndexV);
-
- if (isa<SCEVCouldNotCompute>(Index))
- return false;
-
- } else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
- switch (Pred) {
- default:
- return false;
-
- case ICmpInst::ICMP_SGT:
- std::swap(A, B);
- // fall through
- case ICmpInst::ICMP_SLT:
- UpperLimit = B;
- Index = SE.getSCEV(A);
- if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
- return false;
- break;
-
- case ICmpInst::ICMP_UGT:
- std::swap(A, B);
- // fall through
- case ICmpInst::ICMP_ULT:
- UpperLimit = B;
- Index = SE.getSCEV(A);
- if (isa<SCEVCouldNotCompute>(Index))
- return false;
- break;
- }
- } else {
- return false;
- }
-
- const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
- if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
- !SE.isKnownNonNegative(UpperLimitSCEV))
- return false;
-
- if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
- ScalarEvolution::LoopInvariant) {
- DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
- << " ";
- dbgs() << " UpperLimit is not loop invariant: "
- << UpperLimit->getName() << "\n";);
- return false;
- }
-
- return true;
-}
-
-InductiveRangeCheck *
-InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
- Loop *L, ScalarEvolution &SE) {
-
- if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
- return nullptr;
-
- Value *Length = nullptr;
- const SCEV *IndexSCEV = nullptr;
-
- if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
- return nullptr;
-
- assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
-
- const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
- bool IsAffineIndex =
- IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
-
- if (!IsAffineIndex)
- return nullptr;
-
- InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
- IRC->Length = Length;
- IRC->Offset = IndexAddRec->getStart();
- IRC->Scale = IndexAddRec->getStepRecurrence(SE);
- IRC->Branch = BI;
- return IRC;
-}
-
-static Value *MaybeSimplify(Value *V) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (Value *Simplified = SimplifyInstruction(I))
- return Simplified;
- return V;
-}
-
-static Value *ConstructSMinOf(Value *X, Value *Y, IRBuilder<> &B) {
- return MaybeSimplify(B.CreateSelect(B.CreateICmpSLT(X, Y), X, Y));
-}
-
-static Value *ConstructSMaxOf(Value *X, Value *Y, IRBuilder<> &B) {
- return MaybeSimplify(B.CreateSelect(B.CreateICmpSGT(X, Y), X, Y));
-}
-
-namespace {
-
-/// This class is used to constrain loops to run within a given iteration space.
-/// The algorithm this class implements is given a Loop and a range [Begin,
-/// End). The algorithm then tries to break out a "main loop" out of the loop
-/// it is given in a way that the "main loop" runs with the induction variable
-/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
-/// loops to run any remaining iterations. The pre loop runs any iterations in
-/// which the induction variable is < Begin, and the post loop runs any
-/// iterations in which the induction variable is >= End.
-///
-class LoopConstrainer {
-
- // Keeps track of the structure of a loop. This is similar to llvm::Loop,
- // except that it is more lightweight and can track the state of a loop
- // through changing and potentially invalid IR. This structure also
- // formalizes the kinds of loops we can deal with -- ones that have a single
- // latch that is also an exiting block *and* have a canonical induction
- // variable.
- struct LoopStructure {
- const char *Tag = "";
-
- BasicBlock *Header = nullptr;
- BasicBlock *Latch = nullptr;
-
- // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
- // successor is `LatchExit', the exit block of the loop.
- BranchInst *LatchBr = nullptr;
- BasicBlock *LatchExit = nullptr;
- unsigned LatchBrExitIdx = -1;
-
- // The canonical induction variable. It's value is `CIVStart` on the 0th
- // itertion and `CIVNext` for all iterations after that.
- PHINode *CIV = nullptr;
- Value *CIVStart = nullptr;
- Value *CIVNext = nullptr;
-
- template <typename M> LoopStructure map(M Map) const {
- LoopStructure Result;
- Result.Tag = Tag;
- Result.Header = cast<BasicBlock>(Map(Header));
- Result.Latch = cast<BasicBlock>(Map(Latch));
- Result.LatchBr = cast<BranchInst>(Map(LatchBr));
- Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.CIV = cast<PHINode>(Map(CIV));
- Result.CIVNext = Map(CIVNext);
- Result.CIVStart = Map(CIVStart);
- return Result;
- }
- };
-
- // The representation of a clone of the original loop we started out with.
- struct ClonedLoop {
- // The cloned blocks
- std::vector<BasicBlock *> Blocks;
-
- // `Map` maps values in the clonee into values in the cloned version
- ValueToValueMapTy Map;
-
- // An instance of `LoopStructure` for the cloned loop
- LoopStructure Structure;
- };
-
- // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
- // more details on what these fields mean.
- struct RewrittenRangeInfo {
- BasicBlock *PseudoExit = nullptr;
- BasicBlock *ExitSelector = nullptr;
- std::vector<PHINode *> PHIValuesAtPseudoExit;
- };
-
- // Calculated subranges we restrict the iteration space of the main loop to.
- // See the implementation of `calculateSubRanges' for more details on how
- // these fields are computed. `ExitPreLoopAt' is `None' if we don't need a
- // pre loop. `ExitMainLoopAt' is `None' if we don't need a post loop.
- struct SubRanges {
- Optional<Value *> ExitPreLoopAt;
- Optional<Value *> ExitMainLoopAt;
- };
-
- // Some global state.
- Function *F = nullptr;
- LLVMContext &Ctx;
- ScalarEvolution &SE;
-
- // Information about the original loop we started out with.
- Loop *OriginalLoop = nullptr;
- LoopInfo *OriginalLoopInfo = nullptr;
- const SCEV *LatchTakenCount = nullptr;
- BasicBlock *OriginalPreheader = nullptr;
- Value *OriginalHeaderCount = nullptr;
-
- // The range we need to run the main loop in.
- InductiveRangeCheck::Range Range;
-
- // The structure of the main loop (see comment at the beginning of this class
- // for a definition)
- LoopStructure MainLoopStructure;
-
- // The preheader of the main loop. This may or may not be different from
- // `OriginalPreheader'.
- BasicBlock *MainLoopPreheader = nullptr;
-
- // A utility function that does a `replaceUsesOfWith' on the incoming block
- // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
- // incoming block list with `ReplaceBy'.
- static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
- BasicBlock *ReplaceBy);
-
- // Try to "parse" `OriginalLoop' and populate the various out parameters.
- // Returns true on success, false on failure.
- //
- bool recognizeLoop(LoopStructure &LoopStructureOut,
- const SCEV *&LatchCountOut, BasicBlock *&PreHeaderOut,
- const char *&FailureReasonOut) const;
-
- // Compute a safe set of limits for the main loop to run in -- effectively the
- // intersection of `Range' and the iteration space of the original loop.
- // Return the header count (1 + the latch taken count) in `HeaderCount'.
- //
- SubRanges calculateSubRanges(Value *&HeaderCount) const;
-
- // Clone `OriginalLoop' and return the result in CLResult. The IR after
- // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
- // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
- // but there is no such edge.
- //
- void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
-
- // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
- // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
- // iteration space is not changed. `ExitLoopAt' is assumed to be slt
- // `OriginalHeaderCount'.
- //
- // If there are iterations left to execute, control is made to jump to
- // `ContinuationBlock', otherwise they take the normal loop exit. The
- // returned `RewrittenRangeInfo' object is populated as follows:
- //
- // .PseudoExit is a basic block that unconditionally branches to
- // `ContinuationBlock'.
- //
- // .ExitSelector is a basic block that decides, on exit from the loop,
- // whether to branch to the "true" exit or to `PseudoExit'.
- //
- // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
- // for each PHINode in the loop header on taking the pseudo exit.
- //
- // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
- // preheader because it is made to branch to the loop header only
- // conditionally.
- //
- RewrittenRangeInfo
- changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
- Value *ExitLoopAt,
- BasicBlock *ContinuationBlock) const;
-
- // The loop denoted by `LS' has `OldPreheader' as its preheader. This
- // function creates a new preheader for `LS' and returns it.
- //
- BasicBlock *createPreheader(const LoopConstrainer::LoopStructure &LS,
- BasicBlock *OldPreheader, const char *Tag) const;
-
- // `ContinuationBlockAndPreheader' was the continuation block for some call to
- // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
- // This function rewrites the PHI nodes in `LS.Header' to start with the
- // correct value.
- void rewriteIncomingValuesForPHIs(
- LoopConstrainer::LoopStructure &LS,
- BasicBlock *ContinuationBlockAndPreheader,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const;
-
- // Even though we do not preserve any passes at this time, we at least need to
- // keep the parent loop structure consistent. The `LPPassManager' seems to
- // verify this after running a loop pass. This function adds the list of
- // blocks denoted by the iterator range [BlocksBegin, BlocksEnd) to this loops
- // parent loop if required.
- template<typename IteratorTy>
- void addToParentLoopIfNeeded(IteratorTy BlocksBegin, IteratorTy BlocksEnd);
-
-public:
- LoopConstrainer(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- InductiveRangeCheck::Range R)
- : F(L->getHeader()->getParent()), Ctx(F->getContext()), SE(SE),
- OriginalLoop(L), OriginalLoopInfo(LI), Range(R) {}
-
- // Entry point for the algorithm. Returns true on success.
- bool run();
-};
-}
-
-void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
- BasicBlock *ReplaceBy) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingBlock(i) == Block)
- PN->setIncomingBlock(i, ReplaceBy);
-}
-
-bool LoopConstrainer::recognizeLoop(LoopStructure &LoopStructureOut,
- const SCEV *&LatchCountOut,
- BasicBlock *&PreheaderOut,
- const char *&FailureReason) const {
- using namespace llvm::PatternMatch;
-
- assert(OriginalLoop->isLoopSimplifyForm() &&
- "should follow from addRequired<>");
-
- BasicBlock *Latch = OriginalLoop->getLoopLatch();
- if (!OriginalLoop->isLoopExiting(Latch)) {
- FailureReason = "no loop latch";
- return false;
- }
-
- PHINode *CIV = OriginalLoop->getCanonicalInductionVariable();
- if (!CIV) {
- FailureReason = "no CIV";
- return false;
- }
-
- BasicBlock *Header = OriginalLoop->getHeader();
- BasicBlock *Preheader = OriginalLoop->getLoopPreheader();
- if (!Preheader) {
- FailureReason = "no preheader";
- return false;
- }
-
- Value *CIVNext = CIV->getIncomingValueForBlock(Latch);
- Value *CIVStart = CIV->getIncomingValueForBlock(Preheader);
-
- const SCEV *LatchCount = SE.getExitCount(OriginalLoop, Latch);
- if (isa<SCEVCouldNotCompute>(LatchCount)) {
- FailureReason = "could not compute latch count";
- return false;
- }
-
- // While SCEV does most of the analysis for us, we still have to
- // modify the latch; and currently we can only deal with certain
- // kinds of latches. This can be made more sophisticated as needed.
-
- BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
-
- if (!LatchBr || LatchBr->isUnconditional()) {
- FailureReason = "latch terminator not conditional branch";
- return false;
- }
-
- // Currently we only support a latch condition of the form:
- //
- // %condition = icmp slt %civNext, %limit
- // br i1 %condition, label %header, label %exit
-
- if (LatchBr->getSuccessor(0) != Header) {
- FailureReason = "unknown latch form (header not first successor)";
- return false;
- }
-
- Value *CIVComparedTo = nullptr;
- ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- if (!(match(LatchBr->getCondition(),
- m_ICmp(Pred, m_Specific(CIVNext), m_Value(CIVComparedTo))) &&
- Pred == ICmpInst::ICMP_SLT)) {
- FailureReason = "unknown latch form (not slt)";
- return false;
- }
-
- const SCEV *CIVComparedToSCEV = SE.getSCEV(CIVComparedTo);
- if (isa<SCEVCouldNotCompute>(CIVComparedToSCEV)) {
- FailureReason = "could not relate CIV to latch expression";
- return false;
- }
-
- const SCEV *ShouldBeOne = SE.getMinusSCEV(CIVComparedToSCEV, LatchCount);
- const SCEVConstant *SCEVOne = dyn_cast<SCEVConstant>(ShouldBeOne);
- if (!SCEVOne || SCEVOne->getValue()->getValue() != 1) {
- FailureReason = "unexpected header count in latch";
- return false;
- }
-
- unsigned LatchBrExitIdx = 1;
- BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
-
- assert(SE.getLoopDisposition(LatchCount, OriginalLoop) ==
- ScalarEvolution::LoopInvariant &&
- "loop variant exit count doesn't make sense!");
-
- assert(!OriginalLoop->contains(LatchExit) && "expected an exit block!");
-
- LoopStructureOut.Tag = "main";
- LoopStructureOut.Header = Header;
- LoopStructureOut.Latch = Latch;
- LoopStructureOut.LatchBr = LatchBr;
- LoopStructureOut.LatchExit = LatchExit;
- LoopStructureOut.LatchBrExitIdx = LatchBrExitIdx;
- LoopStructureOut.CIV = CIV;
- LoopStructureOut.CIVNext = CIVNext;
- LoopStructureOut.CIVStart = CIVStart;
-
- LatchCountOut = LatchCount;
- PreheaderOut = Preheader;
- FailureReason = nullptr;
-
- return true;
-}
-
-LoopConstrainer::SubRanges
-LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
- IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
-
- SCEVExpander Expander(SE, "irce");
- Instruction *InsertPt = OriginalPreheader->getTerminator();
-
- Value *LatchCountV =
- MaybeSimplify(Expander.expandCodeFor(LatchTakenCount, Ty, InsertPt));
-
- IRBuilder<> B(InsertPt);
-
- LoopConstrainer::SubRanges Result;
-
- // I think we can be more aggressive here and make this nuw / nsw if the
- // addition that feeds into the icmp for the latch's terminating branch is nuw
- // / nsw. In any case, a wrapping 2's complement addition is safe.
- ConstantInt *One = ConstantInt::get(Ty, 1);
- HeaderCountOut = MaybeSimplify(B.CreateAdd(LatchCountV, One, "header.count"));
-
- const SCEV *RangeBegin = SE.getSCEV(Range.first);
- const SCEV *RangeEnd = SE.getSCEV(Range.second);
- const SCEV *HeaderCountSCEV = SE.getSCEV(HeaderCountOut);
- const SCEV *Zero = SE.getConstant(Ty, 0);
-
- // In some cases we can prove that we don't need a pre or post loop
-
- bool ProvablyNoPreloop =
- SE.isKnownPredicate(ICmpInst::ICMP_SLE, RangeBegin, Zero);
- if (!ProvablyNoPreloop)
- Result.ExitPreLoopAt = ConstructSMinOf(HeaderCountOut, Range.first, B);
-
- bool ProvablyNoPostLoop =
- SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, RangeEnd);
- if (!ProvablyNoPostLoop)
- Result.ExitMainLoopAt = ConstructSMinOf(HeaderCountOut, Range.second, B);
-
- return Result;
-}
-
-void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
- const char *Tag) const {
- for (BasicBlock *BB : OriginalLoop->getBlocks()) {
- BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, F);
- Result.Blocks.push_back(Clone);
- Result.Map[BB] = Clone;
- }
-
- auto GetClonedValue = [&Result](Value *V) {
- assert(V && "null values not in domain!");
- auto It = Result.Map.find(V);
- if (It == Result.Map.end())
- return V;
- return static_cast<Value *>(It->second);
- };
-
- Result.Structure = MainLoopStructure.map(GetClonedValue);
- Result.Structure.Tag = Tag;
-
- for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
- BasicBlock *ClonedBB = Result.Blocks[i];
- BasicBlock *OriginalBB = OriginalLoop->getBlocks()[i];
-
- assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
-
- for (Instruction &I : *ClonedBB)
- RemapInstruction(&I, Result.Map,
- RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
-
- // Exit blocks will now have one more predecessor and their PHI nodes need
- // to be edited to reflect that. No phi nodes need to be introduced because
- // the loop is in LCSSA.
-
- for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
- SBBI != SBBE; ++SBBI) {
-
- if (OriginalLoop->contains(*SBBI))
- continue; // not an exit block
-
- for (Instruction &I : **SBBI) {
- if (!isa<PHINode>(&I))
- break;
-
- PHINode *PN = cast<PHINode>(&I);
- Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
- PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
- }
- }
- }
-}
-
-LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
- const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt,
- BasicBlock *ContinuationBlock) const {
-
- // We start with a loop with a single latch:
- //
- // +--------------------+
- // | |
- // | preheader |
- // | |
- // +--------+-----------+
- // | ----------------\
- // | / |
- // +--------v----v------+ |
- // | | |
- // | header | |
- // | | |
- // +--------------------+ |
- // |
- // ..... |
- // |
- // +--------------------+ |
- // | | |
- // | latch >----------/
- // | |
- // +-------v------------+
- // |
- // |
- // | +--------------------+
- // | | |
- // +---> original exit |
- // | |
- // +--------------------+
- //
- // We change the control flow to look like
- //
- //
- // +--------------------+
- // | |
- // | preheader >-------------------------+
- // | | |
- // +--------v-----------+ |
- // | /-------------+ |
- // | / | |
- // +--------v--v--------+ | |
- // | | | |
- // | header | | +--------+ |
- // | | | | | |
- // +--------------------+ | | +-----v-----v-----------+
- // | | | |
- // | | | .pseudo.exit |
- // | | | |
- // | | +-----------v-----------+
- // | | |
- // ..... | | |
- // | | +--------v-------------+
- // +--------------------+ | | | |
- // | | | | | ContinuationBlock |
- // | latch >------+ | | |
- // | | | +----------------------+
- // +---------v----------+ |
- // | |
- // | |
- // | +---------------^-----+
- // | | |
- // +-----> .exit.selector |
- // | |
- // +----------v----------+
- // |
- // +--------------------+ |
- // | | |
- // | original exit <----+
- // | |
- // +--------------------+
- //
-
- RewrittenRangeInfo RRI;
-
- auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
- RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
- F, BBInsertLocation);
- RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", F,
- BBInsertLocation);
-
- BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
-
- IRBuilder<> B(PreheaderJump);
-
- // EnterLoopCond - is it okay to start executing this `LS'?
- Value *EnterLoopCond = B.CreateICmpSLT(LS.CIVStart, ExitLoopAt);
- B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
- PreheaderJump->eraseFromParent();
-
- assert(LS.LatchBrExitIdx == 1 && "generalize this as needed!");
-
- B.SetInsertPoint(LS.LatchBr);
-
- // ContinueCond - is it okay to execute the next iteration in `LS'?
- Value *ContinueCond = B.CreateICmpSLT(LS.CIVNext, ExitLoopAt);
-
- LS.LatchBr->setCondition(ContinueCond);
- assert(LS.LatchBr->getSuccessor(LS.LatchBrExitIdx) == LS.LatchExit &&
- "invariant!");
- LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
-
- B.SetInsertPoint(RRI.ExitSelector);
-
- // IterationsLeft - are there any more iterations left, given the original
- // upper bound on the induction variable? If not, we branch to the "real"
- // exit.
- Value *IterationsLeft = B.CreateICmpSLT(LS.CIVNext, OriginalHeaderCount);
- B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
-
- BranchInst *BranchToContinuation =
- BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
-
- // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
- // each of the PHI nodes in the loop header. This feeds into the initial
- // value of the same PHI nodes if/when we continue execution.
- for (Instruction &I : *LS.Header) {
- if (!isa<PHINode>(&I))
- break;
-
- PHINode *PN = cast<PHINode>(&I);
-
- PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
- BranchToContinuation);
-
- NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
- NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
- RRI.ExitSelector);
- RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
- }
-
- // The latch exit now has a branch from `RRI.ExitSelector' instead of
- // `LS.Latch'. The PHI nodes need to be updated to reflect that.
- for (Instruction &I : *LS.LatchExit) {
- if (PHINode *PN = dyn_cast<PHINode>(&I))
- replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
- else
- break;
- }
-
- return RRI;
-}
-
-void LoopConstrainer::rewriteIncomingValuesForPHIs(
- LoopConstrainer::LoopStructure &LS, BasicBlock *ContinuationBlock,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const {
-
- unsigned PHIIndex = 0;
- for (Instruction &I : *LS.Header) {
- if (!isa<PHINode>(&I))
- break;
-
- PHINode *PN = cast<PHINode>(&I);
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
- if (PN->getIncomingBlock(i) == ContinuationBlock)
- PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
- }
-
- LS.CIVStart = LS.CIV->getIncomingValueForBlock(ContinuationBlock);
-}
-
-BasicBlock *
-LoopConstrainer::createPreheader(const LoopConstrainer::LoopStructure &LS,
- BasicBlock *OldPreheader,
- const char *Tag) const {
-
- BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, F, LS.Header);
- BranchInst::Create(LS.Header, Preheader);
-
- for (Instruction &I : *LS.Header) {
- if (!isa<PHINode>(&I))
- break;
-
- PHINode *PN = cast<PHINode>(&I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
- replacePHIBlock(PN, OldPreheader, Preheader);
- }
-
- return Preheader;
-}
-
-template<typename IteratorTy>
-void LoopConstrainer::addToParentLoopIfNeeded(IteratorTy Begin,
- IteratorTy End) {
- Loop *ParentLoop = OriginalLoop->getParentLoop();
- if (!ParentLoop)
- return;
-
- auto &LoopInfoBase = OriginalLoopInfo->getBase();
- for (; Begin != End; Begin++)
- ParentLoop->addBasicBlockToLoop(*Begin, LoopInfoBase);
-}
-
-bool LoopConstrainer::run() {
- BasicBlock *Preheader = nullptr;
- const char *CouldNotProceedBecause = nullptr;
- if (!recognizeLoop(MainLoopStructure, LatchTakenCount, Preheader,
- CouldNotProceedBecause)) {
- DEBUG(dbgs() << "irce: could not recognize loop, " << CouldNotProceedBecause
- << "\n";);
- return false;
- }
-
- OriginalPreheader = Preheader;
- MainLoopPreheader = Preheader;
-
- SubRanges SR = calculateSubRanges(OriginalHeaderCount);
-
- // It would have been better to make `PreLoop' and `PostLoop'
- // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
- // constructor.
- ClonedLoop PreLoop, PostLoop;
- bool NeedsPreLoop = SR.ExitPreLoopAt.hasValue();
- bool NeedsPostLoop = SR.ExitMainLoopAt.hasValue();
-
- // We clone these ahead of time so that we don't have to deal with changing
- // and temporarily invalid IR as we transform the loops.
- if (NeedsPreLoop)
- cloneLoop(PreLoop, "preloop");
- if (NeedsPostLoop)
- cloneLoop(PostLoop, "postloop");
-
- RewrittenRangeInfo PreLoopRRI;
-
- if (NeedsPreLoop) {
- Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
- PreLoop.Structure.Header);
-
- MainLoopPreheader =
- createPreheader(MainLoopStructure, Preheader, "mainloop");
- PreLoopRRI =
- changeIterationSpaceEnd(PreLoop.Structure, Preheader,
- SR.ExitPreLoopAt.getValue(), MainLoopPreheader);
- rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
- PreLoopRRI);
- }
-
- BasicBlock *PostLoopPreheader = nullptr;
- RewrittenRangeInfo PostLoopRRI;
-
- if (NeedsPostLoop) {
- PostLoopPreheader =
- createPreheader(PostLoop.Structure, Preheader, "postloop");
- PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
- SR.ExitMainLoopAt.getValue(),
- PostLoopPreheader);
- rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
- PostLoopRRI);
- }
-
- std::array<BasicBlock *, 6> NewBlocks { {PostLoopPreheader,
- PreLoopRRI.PseudoExit, PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
- PostLoopRRI.ExitSelector,
- MainLoopPreheader == Preheader ? nullptr : MainLoopPreheader } };
- // Some of the above may be nullptr, filter them out before passing to
- // addToParentLoopIfNeeded.
- auto NewBlocksEnd = std::remove(NewBlocks.begin(), NewBlocks.end(), nullptr);
-
- addToParentLoopIfNeeded(NewBlocks.begin(), NewBlocksEnd);
- addToParentLoopIfNeeded(PreLoop.Blocks.begin(), PreLoop.Blocks.end());
- addToParentLoopIfNeeded(PostLoop.Blocks.begin(), PostLoop.Blocks.end());
-
- return true;
-}
-
-/// Computes and returns a range of values for the induction variable in which
-/// the range check can be safely elided. If it cannot compute such a range,
-/// returns None.
-Optional<InductiveRangeCheck::Range>
-InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
- IRBuilder<> &B) const {
-
- // Currently we support inequalities of the form:
- //
- // 0 <= Offset + 1 * CIV < L given L >= 0
- //
- // The inequality is satisfied by -Offset <= CIV < (L - Offset) [^1]. All
- // additions and subtractions are twos-complement wrapping and comparisons are
- // signed.
- //
- // Proof:
- //
- // If there exists CIV such that -Offset <= CIV < (L - Offset) then it
- // follows that -Offset <= (-Offset + L) [== Eq. 1]. Since L >= 0, if
- // (-Offset + L) sign-overflows then (-Offset + L) < (-Offset). Hence by
- // [Eq. 1], (-Offset + L) could not have overflown.
- //
- // This means CIV = t + (-Offset) for t in [0, L). Hence (CIV + Offset) =
- // t. Hence 0 <= (CIV + Offset) < L
-
- // [^1]: Note that the solution does _not_ apply if L < 0; consider values
- // Offset = 127, CIV = 126 and L = -2 in an i8 world.
-
- const SCEVConstant *ScaleC = dyn_cast<SCEVConstant>(getScale());
- if (!(ScaleC && ScaleC->getValue()->getValue() == 1)) {
- DEBUG(dbgs() << "irce: could not compute safe iteration space for:\n";
- print(dbgs()));
- return None;
- }
-
- Value *OffsetV = SCEVExpander(SE, "safe.itr.space").expandCodeFor(
- getOffset(), getOffset()->getType(), B.GetInsertPoint());
- OffsetV = MaybeSimplify(OffsetV);
-
- Value *Begin = MaybeSimplify(B.CreateNeg(OffsetV));
- Value *End = MaybeSimplify(B.CreateSub(getLength(), OffsetV));
-
- return std::make_pair(Begin, End);
-}
-
-static InductiveRangeCheck::Range
-IntersectRange(const Optional<InductiveRangeCheck::Range> &R1,
- const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
- if (!R1.hasValue())
- return R2;
- auto &R1Value = R1.getValue();
-
- Value *NewMin = ConstructSMaxOf(R1Value.first, R2.first, B);
- Value *NewMax = ConstructSMinOf(R1Value.second, R2.second, B);
- return std::make_pair(NewMin, NewMax);
-}
-
-bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (L->getBlocks().size() >= LoopSizeCutoff) {
- DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
- return false;
- }
-
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
- return false;
- }
-
- LLVMContext &Context = Preheader->getContext();
- InductiveRangeCheck::AllocatorTy IRCAlloc;
- SmallVector<InductiveRangeCheck *, 16> RangeChecks;
- ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
-
- for (auto BBI : L->getBlocks())
- if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
- if (InductiveRangeCheck *IRC =
- InductiveRangeCheck::create(IRCAlloc, TBI, L, SE))
- RangeChecks.push_back(IRC);
-
- if (RangeChecks.empty())
- return false;
-
- DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
- dbgs() << "irce: loop has " << RangeChecks.size()
- << " inductive range checks: \n";
- for (InductiveRangeCheck *IRC : RangeChecks)
- IRC->print(dbgs());
- );
-
- Optional<InductiveRangeCheck::Range> SafeIterRange;
- Instruction *ExprInsertPt = Preheader->getTerminator();
-
- SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
-
- IRBuilder<> B(ExprInsertPt);
- for (InductiveRangeCheck *IRC : RangeChecks) {
- auto Result = IRC->computeSafeIterationSpace(SE, B);
- if (Result.hasValue()) {
- SafeIterRange = IntersectRange(SafeIterRange, Result.getValue(), B);
- RangeChecksToEliminate.push_back(IRC);
- }
- }
-
- if (!SafeIterRange.hasValue())
- return false;
-
- LoopConstrainer LC(L, &getAnalysis<LoopInfo>(), SE, SafeIterRange.getValue());
- bool Changed = LC.run();
-
- if (Changed) {
- auto PrintConstrainedLoopInfo = [L]() {
- dbgs() << "irce: in function ";
- dbgs() << L->getHeader()->getParent()->getName() << ": ";
- dbgs() << "constrained ";
- L->print(dbgs());
- };
-
- DEBUG(PrintConstrainedLoopInfo());
-
- if (PrintChangedLoops)
- PrintConstrainedLoopInfo();
-
- // Optimize away the now-redundant range checks.
-
- for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
- ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
- ? ConstantInt::getTrue(Context)
- : ConstantInt::getFalse(Context);
- IRC->getBranch()->setCondition(FoldedRangeCheck);
- }
- }
-
- return Changed;
-}
-
-Pass *llvm::createInductiveRangeCheckEliminationPass() {
- return new InductiveRangeCheckElimination;
-}
Modified: llvm/trunk/lib/Transforms/Scalar/Scalar.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/Scalar.cpp?rev=226216&r1=226215&r2=226216&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/Scalar.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/Scalar.cpp Thu Jan 15 16:18:10 2015
@@ -40,7 +40,6 @@ void llvm::initializeScalarOpts(PassRegi
initializeGVNPass(Registry);
initializeEarlyCSEPass(Registry);
initializeFlattenCFGPassPass(Registry);
- initializeInductiveRangeCheckEliminationPass(Registry);
initializeIndVarSimplifyPass(Registry);
initializeJumpThreadingPass(Registry);
initializeLICMPass(Registry);
More information about the llvm-commits
mailing list