[llvm] r220191 - Clean up the comments and doxygen for DataLayout.
Chandler Carruth
chandlerc at gmail.com
Mon Oct 20 03:27:53 PDT 2014
Author: chandlerc
Date: Mon Oct 20 05:27:53 2014
New Revision: 220191
URL: http://llvm.org/viewvc/llvm-project?rev=220191&view=rev
Log:
Clean up the comments and doxygen for DataLayout.
Modified:
llvm/trunk/include/llvm/IR/DataLayout.h
Modified: llvm/trunk/include/llvm/IR/DataLayout.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/DataLayout.h?rev=220191&r1=220190&r2=220191&view=diff
==============================================================================
--- llvm/trunk/include/llvm/IR/DataLayout.h (original)
+++ llvm/trunk/include/llvm/IR/DataLayout.h Mon Oct 20 05:27:53 2014
@@ -27,7 +27,8 @@
#include "llvm/Pass.h"
#include "llvm/Support/DataTypes.h"
-// this needs to be outside of the namespace, to avoid conflict with llvm-c decl
+// This needs to be outside of the namespace, to avoid conflict with llvm-c
+// decl.
typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
namespace llvm {
@@ -52,12 +53,12 @@ enum AlignTypeEnum {
AGGREGATE_ALIGN = 'a' ///< Aggregate alignment
};
-/// Layout alignment element.
+/// \brief Layout alignment element.
///
/// Stores the alignment data associated with a given alignment type (integer,
/// vector, float) and type bit width.
///
-/// @note The unusual order of elements in the structure attempts to reduce
+/// \note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct LayoutAlignElem {
unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
@@ -65,18 +66,16 @@ struct LayoutAlignElem {
unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
- /// Initializer
static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
unsigned pref_align, uint32_t bit_width);
- /// Equality predicate
bool operator==(const LayoutAlignElem &rhs) const;
};
-/// Layout pointer alignment element.
+/// \brief Layout pointer alignment element.
///
/// Stores the alignment data associated with a given pointer and address space.
///
-/// @note The unusual order of elements in the structure attempts to reduce
+/// \note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct PointerAlignElem {
unsigned ABIAlign; ///< ABI alignment for this type/bitw
@@ -87,18 +86,21 @@ struct PointerAlignElem {
/// Initializer
static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
unsigned PrefAlign, uint32_t TypeByteWidth);
- /// Equality predicate
bool operator==(const PointerAlignElem &rhs) const;
};
-/// This class holds a parsed version of the target data layout string in a
-/// module and provides methods for querying it. The target data layout string
-/// is specified *by the target* - a frontend generating LLVM IR is required to
-/// generate the right target data for the target being codegen'd to.
+/// \brief A parsed version of the target data layout string in and methods for
+/// querying it.
+///
+/// The target data layout string is specified *by the target* - a frontend
+/// generating LLVM IR is required to generate the right target data for the
+/// target being codegen'd to.
class DataLayout {
private:
- bool LittleEndian; ///< Defaults to false
- unsigned StackNaturalAlign; ///< Stack natural alignment
+ /// Defaults to false.
+ bool LittleEndian;
+
+ unsigned StackNaturalAlign;
enum ManglingModeT {
MM_None,
@@ -109,15 +111,11 @@ private:
};
ManglingModeT ManglingMode;
- SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
+ SmallVector<unsigned char, 8> LegalIntWidths;
- /// Alignments - Where the primitive type alignment data is stored.
- ///
- /// @sa reset().
- /// @note Could support multiple size pointer alignments, e.g., 32-bit
- /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
- /// we don't.
+ /// \brief Primitive type alignment data.
SmallVector<LayoutAlignElem, 16> Alignments;
+
typedef SmallVector<PointerAlignElem, 8> PointersTy;
PointersTy Pointers;
@@ -128,31 +126,28 @@ private:
PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
- /// InvalidAlignmentElem - This member is a signal that a requested alignment
- /// type and bit width were not found in the SmallVector.
+ /// This member is a signal that a requested alignment type and bit width were
+ /// not found in the SmallVector.
static const LayoutAlignElem InvalidAlignmentElem;
- /// InvalidPointerElem - This member is a signal that a requested pointer
- /// type and bit width were not found in the DenseSet.
+ /// This member is a signal that a requested pointer type and bit width were
+ /// not found in the DenseSet.
static const PointerAlignElem InvalidPointerElem;
// The StructType -> StructLayout map.
mutable void *LayoutMap;
- //! Set/initialize target alignments
void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
unsigned pref_align, uint32_t bit_width);
unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
bool ABIAlign, Type *Ty) const;
-
- //! Set/initialize pointer alignments
void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
unsigned PrefAlign, uint32_t TypeByteWidth);
- //! Internal helper method that returns requested alignment for type.
+ /// Internal helper method that returns requested alignment for type.
unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
- /// Valid alignment predicate.
+ /// \brief Valid alignment predicate.
///
/// Predicate that tests a LayoutAlignElem reference returned by get() against
/// InvalidAlignmentElem.
@@ -160,7 +155,7 @@ private:
return &align != &InvalidAlignmentElem;
}
- /// Valid pointer predicate.
+ /// \brief Valid pointer predicate.
///
/// Predicate that tests a PointerAlignElem reference returned by get() against
/// InvalidPointerElem.
@@ -211,18 +206,19 @@ public:
bool isLittleEndian() const { return LittleEndian; }
bool isBigEndian() const { return !LittleEndian; }
- /// getStringRepresentation - Return the string representation of the
- /// DataLayout. This representation is in the same format accepted by the
- /// string constructor above.
+ /// \brief Returns the string representation of the DataLayout.
+ ///
+ /// This representation is in the same format accepted by the string
+ /// constructor above.
std::string getStringRepresentation() const;
- /// isLegalInteger - This function returns true if the specified type is
- /// known to be a native integer type supported by the CPU. For example,
- /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
- /// one. This returns false if the integer width is not legal.
+ /// \brief Returns true if the specified type is known to be a native integer
+ /// type supported by the CPU.
///
- /// The width is specified in bits.
+ /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
+ /// on any known one. This returns false if the integer width is not legal.
///
+ /// The width is specified in bits.
bool isLegalInteger(unsigned Width) const {
for (unsigned LegalIntWidth : LegalIntWidths)
if (LegalIntWidth == Width)
@@ -283,10 +279,11 @@ public:
static const char *getManglingComponent(const Triple &T);
- /// fitsInLegalInteger - This function returns true if the specified type fits
- /// in a native integer type supported by the CPU. For example, if the CPU
- /// only supports i32 as a native integer type, then i27 fits in a legal
- /// integer type but i45 does not.
+ /// \brief Returns true if the specified type fits in a native integer type
+ /// supported by the CPU.
+ ///
+ /// For example, if the CPU only supports i32 as a native integer type, then
+ /// i27 fits in a legal integer type but i45 does not.
bool fitsInLegalInteger(unsigned Width) const {
for (unsigned LegalIntWidth : LegalIntWidths)
if (Width <= LegalIntWidth)
@@ -344,99 +341,107 @@ public:
/// [*] The alloc size depends on the alignment, and thus on the target.
/// These values are for x86-32 linux.
- /// getTypeSizeInBits - Return the number of bits necessary to hold the
- /// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
- /// The type passed must have a size (Type::isSized() must return true).
+ /// \brief Returns the number of bits necessary to hold the specified type.
+ ///
+ /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
+ /// have a size (Type::isSized() must return true).
uint64_t getTypeSizeInBits(Type *Ty) const;
- /// getTypeStoreSize - Return the maximum number of bytes that may be
- /// overwritten by storing the specified type. For example, returns 5
- /// for i36 and 10 for x86_fp80.
+ /// \brief Returns the maximum number of bytes that may be overwritten by
+ /// storing the specified type.
+ ///
+ /// For example, returns 5 for i36 and 10 for x86_fp80.
uint64_t getTypeStoreSize(Type *Ty) const {
return (getTypeSizeInBits(Ty)+7)/8;
}
- /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
- /// overwritten by storing the specified type; always a multiple of 8. For
- /// example, returns 40 for i36 and 80 for x86_fp80.
+ /// \brief Returns the maximum number of bits that may be overwritten by
+ /// storing the specified type; always a multiple of 8.
+ ///
+ /// For example, returns 40 for i36 and 80 for x86_fp80.
uint64_t getTypeStoreSizeInBits(Type *Ty) const {
return 8*getTypeStoreSize(Ty);
}
- /// getTypeAllocSize - Return the offset in bytes between successive objects
- /// of the specified type, including alignment padding. This is the amount
- /// that alloca reserves for this type. For example, returns 12 or 16 for
- /// x86_fp80, depending on alignment.
+ /// \brief Returns the offset in bytes between successive objects of the
+ /// specified type, including alignment padding.
+ ///
+ /// This is the amount that alloca reserves for this type. For example,
+ /// returns 12 or 16 for x86_fp80, depending on alignment.
uint64_t getTypeAllocSize(Type *Ty) const {
// Round up to the next alignment boundary.
return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
}
- /// getTypeAllocSizeInBits - Return the offset in bits between successive
- /// objects of the specified type, including alignment padding; always a
- /// multiple of 8. This is the amount that alloca reserves for this type.
- /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
+ /// \brief Returns the offset in bits between successive objects of the
+ /// specified type, including alignment padding; always a multiple of 8.
+ ///
+ /// This is the amount that alloca reserves for this type. For example,
+ /// returns 96 or 128 for x86_fp80, depending on alignment.
uint64_t getTypeAllocSizeInBits(Type *Ty) const {
return 8*getTypeAllocSize(Ty);
}
- /// getABITypeAlignment - Return the minimum ABI-required alignment for the
- /// specified type.
+ /// \brief Returns the minimum ABI-required alignment for the specified type.
unsigned getABITypeAlignment(Type *Ty) const;
- /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
- /// an integer type of the specified bitwidth.
+ /// \brief Returns the minimum ABI-required alignment for an integer type of
+ /// the specified bitwidth.
unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
- /// getPrefTypeAlignment - Return the preferred stack/global alignment for
- /// the specified type. This is always at least as good as the ABI alignment.
+ /// \brief Returns the preferred stack/global alignment for the specified
+ /// type.
+ ///
+ /// This is always at least as good as the ABI alignment.
unsigned getPrefTypeAlignment(Type *Ty) const;
- /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
- /// specified type, returned as log2 of the value (a shift amount).
+ /// \brief Returns the preferred alignment for the specified type, returned as
+ /// log2 of the value (a shift amount).
unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
- /// getIntPtrType - Return an integer type with size at least as big as that
- /// of a pointer in the given address space.
+ /// \brief Returns an integer type with size at least as big as that of a
+ /// pointer in the given address space.
IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
- /// getIntPtrType - Return an integer (vector of integer) type with size at
- /// least as big as that of a pointer of the given pointer (vector of pointer)
- /// type.
+ /// \brief Returns an integer (vector of integer) type with size at least as
+ /// big as that of a pointer of the given pointer (vector of pointer) type.
Type *getIntPtrType(Type *) const;
- /// getSmallestLegalIntType - Return the smallest integer type with size at
- /// least as big as Width bits.
+ /// \brief Returns the smallest integer type with size at least as big as
+ /// Width bits.
Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
- /// getLargestLegalIntType - Return the largest legal integer type, or null if
- /// none are set.
+ /// \brief Returns the largest legal integer type, or null if none are set.
Type *getLargestLegalIntType(LLVMContext &C) const {
unsigned LargestSize = getLargestLegalIntTypeSize();
return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
}
- /// getLargestLegalIntTypeSize - Return the size of largest legal integer
- /// type size, or 0 if none are set.
+ /// \brief Returns the size of largest legal integer type size, or 0 if none
+ /// are set.
unsigned getLargestLegalIntTypeSize() const;
- /// getIndexedOffset - return the offset from the beginning of the type for
- /// the specified indices. This is used to implement getelementptr.
+ /// \brief Returns the offset from the beginning of the type for the specified
+ /// indices.
+ ///
+ /// This is used to implement getelementptr.
uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
- /// getStructLayout - Return a StructLayout object, indicating the alignment
- /// of the struct, its size, and the offsets of its fields. Note that this
- /// information is lazily cached.
+ /// \brief Returns a StructLayout object, indicating the alignment of the
+ /// struct, its size, and the offsets of its fields.
+ ///
+ /// Note that this information is lazily cached.
const StructLayout *getStructLayout(StructType *Ty) const;
- /// getPreferredAlignment - Return the preferred alignment of the specified
- /// global. This includes an explicitly requested alignment (if the global
- /// has one).
+ /// \brief Returns the preferred alignment of the specified global.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
unsigned getPreferredAlignment(const GlobalVariable *GV) const;
- /// getPreferredAlignmentLog - Return the preferred alignment of the
- /// specified global, returned in log form. This includes an explicitly
- /// requested alignment (if the global has one).
+ /// \brief Returns the preferred alignment of the specified global, returned
+ /// in log form.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
};
@@ -464,9 +469,8 @@ public:
bool doInitialization(Module &M) override;
};
-/// StructLayout - used to lazily calculate structure layout information for a
-/// target machine, based on the DataLayout structure.
-///
+/// Used to lazily calculate structure layout information for a target machine,
+/// based on the DataLayout structure.
class StructLayout {
uint64_t StructSize;
unsigned StructAlignment;
@@ -486,9 +490,8 @@ public:
return StructAlignment;
}
- /// getElementContainingOffset - Given a valid byte offset into the structure,
- /// return the structure index that contains it.
- ///
+ /// \brief Given a valid byte offset into the structure, returns the structure
+ /// index that contains it.
unsigned getElementContainingOffset(uint64_t Offset) const;
uint64_t getElementOffset(unsigned Idx) const {
More information about the llvm-commits
mailing list