[llvm] r214494 - SLPVectorizer: improved scheduling algorithm.
Eric Christopher
echristo at gmail.com
Fri Aug 1 11:29:18 PDT 2014
For the record, a commit log that's a bit more descriptive is helpful.
Saying what your patch did, what it changed, how it changed it, etc is
very helpful.
-eric
On Fri, Aug 1, 2014 at 2:20 AM, Erik Eckstein <eeckstein at apple.com> wrote:
> Author: eeckstein
> Date: Fri Aug 1 04:20:42 2014
> New Revision: 214494
>
> URL: http://llvm.org/viewvc/llvm-project?rev=214494&view=rev
> Log:
> SLPVectorizer: improved scheduling algorithm.
>
> Added:
> llvm/trunk/test/Transforms/SLPVectorizer/X86/scheduling.ll
> Modified:
> llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp
> llvm/trunk/test/Transforms/SLPVectorizer/X86/crash_vectorizeTree.ll
> llvm/trunk/test/Transforms/SLPVectorizer/X86/in-tree-user.ll
>
> Modified: llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp?rev=214494&r1=214493&r2=214494&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp (original)
> +++ llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp Fri Aug 1 04:20:42 2014
> @@ -43,6 +43,7 @@
> #include "llvm/Transforms/Utils/VectorUtils.h"
> #include <algorithm>
> #include <map>
> +#include <memory>
>
> using namespace llvm;
>
> @@ -71,53 +72,6 @@ static const unsigned MinVecRegSize = 12
>
> static const unsigned RecursionMaxDepth = 12;
>
> -/// A helper class for numbering instructions in multiple blocks.
> -/// Numbers start at zero for each basic block.
> -struct BlockNumbering {
> -
> - BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
> -
> - void numberInstructions() {
> - unsigned Loc = 0;
> - InstrIdx.clear();
> - InstrVec.clear();
> - // Number the instructions in the block.
> - for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
> - InstrIdx[it] = Loc++;
> - InstrVec.push_back(it);
> - assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
> - }
> - Valid = true;
> - }
> -
> - int getIndex(Instruction *I) {
> - assert(I->getParent() == BB && "Invalid instruction");
> - if (!Valid)
> - numberInstructions();
> - assert(InstrIdx.count(I) && "Unknown instruction");
> - return InstrIdx[I];
> - }
> -
> - Instruction *getInstruction(unsigned loc) {
> - if (!Valid)
> - numberInstructions();
> - assert(InstrVec.size() > loc && "Invalid Index");
> - return InstrVec[loc];
> - }
> -
> - void forget() { Valid = false; }
> -
> -private:
> - /// The block we are numbering.
> - BasicBlock *BB;
> - /// Is the block numbered.
> - bool Valid;
> - /// Maps instructions to numbers and back.
> - SmallDenseMap<Instruction *, int> InstrIdx;
> - /// Maps integers to Instructions.
> - SmallVector<Instruction *, 32> InstrVec;
> -};
> -
> /// \returns the parent basic block if all of the instructions in \p VL
> /// are in the same block or null otherwise.
> static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
> @@ -422,9 +376,12 @@ public:
> ScalarToTreeEntry.clear();
> MustGather.clear();
> ExternalUses.clear();
> - MemBarrierIgnoreList.clear();
> NumLoadsWantToKeepOrder = 0;
> NumLoadsWantToChangeOrder = 0;
> + for (auto &Iter : BlocksSchedules) {
> + BlockScheduling *BS = Iter.second.get();
> + BS->clear();
> + }
> }
>
> /// \returns true if the memory operations A and B are consecutive.
> @@ -474,20 +431,6 @@ private:
> /// roots. This method calculates the cost of extracting the values.
> int getGatherCost(ArrayRef<Value *> VL);
>
> - /// \returns the AA location that is being access by the instruction.
> - AliasAnalysis::Location getLocation(Instruction *I);
> -
> - /// \brief Checks if it is possible to sink an instruction from
> - /// \p Src to \p Dst.
> - /// \returns the pointer to the barrier instruction if we can't sink.
> - Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
> -
> - /// \returns the index of the last instruction in the BB from \p VL.
> - int getLastIndex(ArrayRef<Value *> VL);
> -
> - /// \returns the Instruction in the bundle \p VL.
> - Instruction *getLastInstruction(ArrayRef<Value *> VL);
> -
> /// \brief Set the Builder insert point to one after the last instruction in
> /// the bundle
> void setInsertPointAfterBundle(ArrayRef<Value *> VL);
> @@ -500,7 +443,7 @@ private:
> bool isFullyVectorizableTinyTree();
>
> struct TreeEntry {
> - TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0),
> + TreeEntry() : Scalars(), VectorizedValue(nullptr),
> NeedToGather(0) {}
>
> /// \returns true if the scalars in VL are equal to this entry.
> @@ -515,9 +458,6 @@ private:
> /// The Scalars are vectorized into this value. It is initialized to Null.
> Value *VectorizedValue;
>
> - /// The index in the basic block of the last scalar.
> - int LastScalarIndex;
> -
> /// Do we need to gather this sequence ?
> bool NeedToGather;
> };
> @@ -530,18 +470,16 @@ private:
> Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
> Last->NeedToGather = !Vectorized;
> if (Vectorized) {
> - Last->LastScalarIndex = getLastIndex(VL);
> for (int i = 0, e = VL.size(); i != e; ++i) {
> assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
> ScalarToTreeEntry[VL[i]] = idx;
> }
> } else {
> - Last->LastScalarIndex = 0;
> MustGather.insert(VL.begin(), VL.end());
> }
> return Last;
> }
> -
> +
> /// -- Vectorization State --
> /// Holds all of the tree entries.
> std::vector<TreeEntry> VectorizableTree;
> @@ -569,24 +507,304 @@ private:
> /// This list holds pairs of (Internal Scalar : External User).
> UserList ExternalUses;
>
> - /// A list of instructions to ignore while sinking
> - /// memory instructions. This map must be reset between runs of getCost.
> - ValueSet MemBarrierIgnoreList;
> -
> /// Holds all of the instructions that we gathered.
> SetVector<Instruction *> GatherSeq;
> /// A list of blocks that we are going to CSE.
> SetVector<BasicBlock *> CSEBlocks;
>
> - /// Numbers instructions in different blocks.
> - DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
> + /// Contains all scheduling relevant data for an instruction.
> + /// A ScheduleData either represents a single instruction or a member of an
> + /// instruction bundle (= a group of instructions which is combined into a
> + /// vector instruction).
> + struct ScheduleData {
> +
> + // The initial value for the dependency counters. It means that the
> + // dependencies are not calculated yet.
> + enum { InvalidDeps = -1 };
> +
> + ScheduleData()
> + : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
> + NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
> + Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
> + UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
> +
> + void init(int BlockSchedulingRegionID) {
> + FirstInBundle = this;
> + NextInBundle = nullptr;
> + NextLoadStore = nullptr;
> + IsScheduled = false;
> + SchedulingRegionID = BlockSchedulingRegionID;
> + UnscheduledDepsInBundle = UnscheduledDeps;
> + clearDependencies();
> + }
> +
> + /// Returns true if the dependency information has been calculated.
> + bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
> +
> + /// Returns true for single instructions and for bundle representatives
> + /// (= the head of a bundle).
> + bool isSchedulingEntity() const { return FirstInBundle == this; }
> +
> + /// Returns true if it represents an instruction bundle and not only a
> + /// single instruction.
> + bool isPartOfBundle() const {
> + return NextInBundle != nullptr || FirstInBundle != this;
> + }
> +
> + /// Returns true if it is ready for scheduling, i.e. it has no more
> + /// unscheduled depending instructions/bundles.
> + bool isReady() const {
> + assert(isSchedulingEntity() &&
> + "can't consider non-scheduling entity for ready list");
> + return UnscheduledDepsInBundle == 0 && !IsScheduled;
> + }
> +
> + /// Modifies the number of unscheduled dependencies, also updating it for
> + /// the whole bundle.
> + int incrementUnscheduledDeps(int Incr) {
> + UnscheduledDeps += Incr;
> + return FirstInBundle->UnscheduledDepsInBundle += Incr;
> + }
> +
> + /// Sets the number of unscheduled dependencies to the number of
> + /// dependencies.
> + void resetUnscheduledDeps() {
> + incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
> + }
> +
> + /// Clears all dependency information.
> + void clearDependencies() {
> + Dependencies = InvalidDeps;
> + resetUnscheduledDeps();
> + MemoryDependencies.clear();
> + }
> +
> + void dump(raw_ostream &os) const {
> + if (!isSchedulingEntity()) {
> + os << "/ " << *Inst;
> + } else if (NextInBundle) {
> + os << '[' << *Inst;
> + ScheduleData *SD = NextInBundle;
> + while (SD) {
> + os << ';' << *SD->Inst;
> + SD = SD->NextInBundle;
> + }
> + os << ']';
> + } else {
> + os << *Inst;
> + }
> + }
>
> - /// \brief Get the corresponding instruction numbering list for a given
> - /// BasicBlock. The list is allocated lazily.
> - BlockNumbering &getBlockNumbering(BasicBlock *BB) {
> - auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB)));
> - return I.first->second;
> - }
> + Instruction *Inst;
> +
> + /// Points to the head in an instruction bundle (and always to this for
> + /// single instructions).
> + ScheduleData *FirstInBundle;
> +
> + /// Single linked list of all instructions in a bundle. Null if it is a
> + /// single instruction.
> + ScheduleData *NextInBundle;
> +
> + /// Single linked list of all memory instructions (e.g. load, store, call)
> + /// in the block - until the end of the scheduling region.
> + ScheduleData *NextLoadStore;
> +
> + /// The dependent memory instructions.
> + /// This list is derived on demand in calculateDependencies().
> + SmallVector<ScheduleData *, 4> MemoryDependencies;
> +
> + /// This ScheduleData is in the current scheduling region if this matches
> + /// the current SchedulingRegionID of BlockScheduling.
> + int SchedulingRegionID;
> +
> + /// Used for getting a "good" final ordering of instructions.
> + int SchedulingPriority;
> +
> + /// The number of dependencies. Constitutes of the number of users of the
> + /// instruction plus the number of dependent memory instructions (if any).
> + /// This value is calculated on demand.
> + /// If InvalidDeps, the number of dependencies is not calculated yet.
> + ///
> + int Dependencies;
> +
> + /// The number of dependencies minus the number of dependencies of scheduled
> + /// instructions. As soon as this is zero, the instruction/bundle gets ready
> + /// for scheduling.
> + /// Note that this is negative as long as Dependencies is not calculated.
> + int UnscheduledDeps;
> +
> + /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
> + /// single instructions.
> + int UnscheduledDepsInBundle;
> +
> + /// True if this instruction is scheduled (or considered as scheduled in the
> + /// dry-run).
> + bool IsScheduled;
> + };
> +
> + friend raw_ostream &operator<<(raw_ostream &os,
> + const BoUpSLP::ScheduleData &SD);
> +
> + /// Contains all scheduling data for a basic block.
> + ///
> + struct BlockScheduling {
> +
> + BlockScheduling(BasicBlock *BB)
> + : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
> + ScheduleStart(nullptr), ScheduleEnd(nullptr),
> + FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
> + // Make sure that the initial SchedulingRegionID is greater than the
> + // initial SchedulingRegionID in ScheduleData (which is 0).
> + SchedulingRegionID(1) {}
> +
> + void clear() {
> + ReadyInsts.clear();
> + ScheduleStart = nullptr;
> + ScheduleEnd = nullptr;
> + FirstLoadStoreInRegion = nullptr;
> + LastLoadStoreInRegion = nullptr;
> +
> + // Make a new scheduling region, i.e. all existing ScheduleData is not
> + // in the new region yet.
> + ++SchedulingRegionID;
> + }
> +
> + ScheduleData *getScheduleData(Value *V) {
> + ScheduleData *SD = ScheduleDataMap[V];
> + if (SD && SD->SchedulingRegionID == SchedulingRegionID)
> + return SD;
> + return nullptr;
> + }
> +
> + bool isInSchedulingRegion(ScheduleData *SD) {
> + return SD->SchedulingRegionID == SchedulingRegionID;
> + }
> +
> + /// Marks an instruction as scheduled and puts all dependent ready
> + /// instructions into the ready-list.
> + template <typename ReadyListType>
> + void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
> + SD->IsScheduled = true;
> + DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
> +
> + ScheduleData *BundleMember = SD;
> + while (BundleMember) {
> + // Handle the def-use chain dependencies.
> + for (Use &U : BundleMember->Inst->operands()) {
> + ScheduleData *OpDef = getScheduleData(U.get());
> + if (OpDef && OpDef->hasValidDependencies() &&
> + OpDef->incrementUnscheduledDeps(-1) == 0) {
> + // There are no more unscheduled dependencies after decrementing,
> + // so we can put the dependent instruction into the ready list.
> + ScheduleData *DepBundle = OpDef->FirstInBundle;
> + assert(!DepBundle->IsScheduled &&
> + "already scheduled bundle gets ready");
> + ReadyList.insert(DepBundle);
> + DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n");
> + }
> + }
> + // Handle the memory dependencies.
> + for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
> + if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
> + // There are no more unscheduled dependencies after decrementing,
> + // so we can put the dependent instruction into the ready list.
> + ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
> + assert(!DepBundle->IsScheduled &&
> + "already scheduled bundle gets ready");
> + ReadyList.insert(DepBundle);
> + DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n");
> + }
> + }
> + BundleMember = BundleMember->NextInBundle;
> + }
> + }
> +
> + /// Put all instructions into the ReadyList which are ready for scheduling.
> + template <typename ReadyListType>
> + void initialFillReadyList(ReadyListType &ReadyList) {
> + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
> + ScheduleData *SD = getScheduleData(I);
> + if (SD->isSchedulingEntity() && SD->isReady()) {
> + ReadyList.insert(SD);
> + DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n");
> + }
> + }
> + }
> +
> + /// Checks if a bundle of instructions can be scheduled, i.e. has no
> + /// cyclic dependencies. This is only a dry-run, no instructions are
> + /// actually moved at this stage.
> + bool tryScheduleBundle(ArrayRef<Value *> VL, AliasAnalysis *AA);
> +
> + /// Un-bundles a group of instructions.
> + void cancelScheduling(ArrayRef<Value *> VL);
> +
> + /// Extends the scheduling region so that V is inside the region.
> + void extendSchedulingRegion(Value *V);
> +
> + /// Initialize the ScheduleData structures for new instructions in the
> + /// scheduling region.
> + void initScheduleData(Instruction *FromI, Instruction *ToI,
> + ScheduleData *PrevLoadStore,
> + ScheduleData *NextLoadStore);
> +
> + /// Updates the dependency information of a bundle and of all instructions/
> + /// bundles which depend on the original bundle.
> + void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
> + AliasAnalysis *AA);
> +
> + /// Sets all instruction in the scheduling region to un-scheduled.
> + void resetSchedule();
> +
> + BasicBlock *BB;
> +
> + /// Simple memory allocation for ScheduleData.
> + std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
> +
> + /// The size of a ScheduleData array in ScheduleDataChunks.
> + int ChunkSize;
> +
> + /// The allocator position in the current chunk, which is the last entry
> + /// of ScheduleDataChunks.
> + int ChunkPos;
> +
> + /// Attaches ScheduleData to Instruction.
> + /// Note that the mapping survives during all vectorization iterations, i.e.
> + /// ScheduleData structures are recycled.
> + DenseMap<Value *, ScheduleData *> ScheduleDataMap;
> +
> + struct ReadyList : SmallVector<ScheduleData *, 8> {
> + void insert(ScheduleData *SD) { push_back(SD); }
> + };
> +
> + /// The ready-list for scheduling (only used for the dry-run).
> + ReadyList ReadyInsts;
> +
> + /// The first instruction of the scheduling region.
> + Instruction *ScheduleStart;
> +
> + /// The first instruction _after_ the scheduling region.
> + Instruction *ScheduleEnd;
> +
> + /// The first memory accessing instruction in the scheduling region
> + /// (can be null).
> + ScheduleData *FirstLoadStoreInRegion;
> +
> + /// The last memory accessing instruction in the scheduling region
> + /// (can be null).
> + ScheduleData *LastLoadStoreInRegion;
> +
> + /// The ID of the scheduling region. For a new vectorization iteration this
> + /// is incremented which "removes" all ScheduleData from the region.
> + int SchedulingRegionID;
> + };
> +
> + /// Attaches the BlockScheduling structures to basic blocks.
> + DenseMap<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
> +
> + /// Performs the "real" scheduling. Done before vectorization is actually
> + /// performed in a basic block.
> + void scheduleBlock(BasicBlock *BB);
>
> /// List of users to ignore during scheduling and that don't need extracting.
> ArrayRef<Value *> UserIgnoreList;
> @@ -609,6 +827,11 @@ private:
> /// Instruction builder to construct the vectorized tree.
> IRBuilder<> Builder;
> };
> +
> +raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
> + SD.dump(os);
> + return os;
> +}
>
> void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
> ArrayRef<Value *> UserIgnoreLst) {
> @@ -743,69 +966,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> // Check that all of the users of the scalars that we want to vectorize are
> // schedulable.
> Instruction *VL0 = cast<Instruction>(VL[0]);
> - int MyLastIndex = getLastIndex(VL);
> BasicBlock *BB = cast<Instruction>(VL0)->getParent();
>
> - for (unsigned i = 0, e = VL.size(); i != e; ++i) {
> - Instruction *Scalar = cast<Instruction>(VL[i]);
> - DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
> - for (User *U : Scalar->users()) {
> - DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n");
> - Instruction *UI = dyn_cast<Instruction>(U);
> - if (!UI) {
> - DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
> - newTreeEntry(VL, false);
> - return;
> - }
> -
> - // We don't care if the user is in a different basic block.
> - BasicBlock *UserBlock = UI->getParent();
> - if (UserBlock != BB) {
> - DEBUG(dbgs() << "SLP: User from a different basic block "
> - << *UI << ". \n");
> - continue;
> - }
> -
> - // If this is a PHINode within this basic block then we can place the
> - // extract wherever we want.
> - if (isa<PHINode>(*UI)) {
> - DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n");
> - continue;
> - }
> -
> - // Check if this is a safe in-tree user.
> - if (ScalarToTreeEntry.count(UI)) {
> - int Idx = ScalarToTreeEntry[UI];
> - int VecLocation = VectorizableTree[Idx].LastScalarIndex;
> - if (VecLocation <= MyLastIndex) {
> - DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
> - newTreeEntry(VL, false);
> - return;
> - }
> - DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" <<
> - VecLocation << " vector value (" << *Scalar << ") at #"
> - << MyLastIndex << ".\n");
> - continue;
> - }
> -
> - // Ignore users in the user ignore list.
> - if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) !=
> - UserIgnoreList.end())
> - continue;
> -
> - // Make sure that we can schedule this unknown user.
> - BlockNumbering &BN = getBlockNumbering(BB);
> - int UserIndex = BN.getIndex(UI);
> - if (UserIndex < MyLastIndex) {
> -
> - DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
> - << *UI << ". \n");
> - newTreeEntry(VL, false);
> - return;
> - }
> - }
> - }
> -
> // Check that every instructions appears once in this bundle.
> for (unsigned i = 0, e = VL.size(); i < e; ++i)
> for (unsigned j = i+1; j < e; ++j)
> @@ -815,39 +977,20 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> return;
> }
>
> - // Check that instructions in this bundle don't reference other instructions.
> - // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
> - for (unsigned i = 0, e = VL.size(); i < e; ++i) {
> - for (User *U : VL[i]->users()) {
> - for (unsigned j = 0; j < e; ++j) {
> - if (i != j && U == VL[j]) {
> - DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n");
> - newTreeEntry(VL, false);
> - return;
> - }
> - }
> - }
> + auto &BSRef = BlocksSchedules[BB];
> + if (!BSRef) {
> + BSRef = llvm::make_unique<BlockScheduling>(BB);
> + }
> + BlockScheduling &BS = *BSRef.get();
> +
> + if (!BS.tryScheduleBundle(VL, AA)) {
> + DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
> + BS.cancelScheduling(VL);
> + newTreeEntry(VL, false);
> + return;
> }
> -
> DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
>
> - // Check if it is safe to sink the loads or the stores.
> - if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
> - Instruction *Last = getLastInstruction(VL);
> -
> - for (unsigned i = 0, e = VL.size(); i < e; ++i) {
> - if (VL[i] == Last)
> - continue;
> - Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
> - if (Barrier) {
> - DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
> - << "\n because of " << *Barrier << ". Gathering.\n");
> - newTreeEntry(VL, false);
> - return;
> - }
> - }
> - }
> -
> switch (Opcode) {
> case Instruction::PHI: {
> PHINode *PH = dyn_cast<PHINode>(VL0);
> @@ -859,6 +1002,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
> if (Term) {
> DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> return;
> }
> @@ -882,6 +1026,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> bool Reuse = CanReuseExtract(VL);
> if (Reuse) {
> DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
> + } else {
> + BS.cancelScheduling(VL);
> }
> newTreeEntry(VL, Reuse);
> return;
> @@ -891,6 +1037,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
> LoadInst *L = cast<LoadInst>(VL[i]);
> if (!L->isSimple()) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
> return;
> @@ -899,6 +1046,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) {
> ++NumLoadsWantToChangeOrder;
> }
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
> return;
> @@ -925,6 +1073,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> for (unsigned i = 0; i < VL.size(); ++i) {
> Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
> if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
> return;
> @@ -952,6 +1101,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> CmpInst *Cmp = cast<CmpInst>(VL[i]);
> if (Cmp->getPredicate() != P0 ||
> Cmp->getOperand(0)->getType() != ComparedTy) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
> return;
> @@ -998,20 +1148,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
> ValueList Left, Right;
> reorderInputsAccordingToOpcode(VL, Left, Right);
> - BasicBlock *LeftBB = getSameBlock(Left);
> - BasicBlock *RightBB = getSameBlock(Right);
> - // If we have common uses on separate paths in the tree make sure we
> - // process the one with greater common depth first.
> - // We can use block numbering to determine the subtree traversal as
> - // earler user has to come in between the common use and the later user.
> - if (LeftBB && RightBB && LeftBB == RightBB &&
> - getLastIndex(Right) > getLastIndex(Left)) {
> - buildTree_rec(Right, Depth + 1);
> - buildTree_rec(Left, Depth + 1);
> - } else {
> - buildTree_rec(Left, Depth + 1);
> - buildTree_rec(Right, Depth + 1);
> - }
> + buildTree_rec(Left, Depth + 1);
> + buildTree_rec(Right, Depth + 1);
> return;
> }
>
> @@ -1030,6 +1168,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> for (unsigned j = 0; j < VL.size(); ++j) {
> if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
> DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> return;
> }
> @@ -1042,6 +1181,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
> if (Ty0 != CurTy) {
> DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> return;
> }
> @@ -1053,6 +1193,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> if (!isa<ConstantInt>(Op)) {
> DEBUG(
> dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> return;
> }
> @@ -1074,6 +1215,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> // Check if the stores are consecutive or of we need to swizzle them.
> for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
> if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
> return;
> @@ -1086,8 +1228,6 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> for (unsigned j = 0; j < VL.size(); ++j)
> Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
>
> - // We can ignore these values because we are sinking them down.
> - MemBarrierIgnoreList.insert(VL.begin(), VL.end());
> buildTree_rec(Operands, Depth + 1);
> return;
> }
> @@ -1098,6 +1238,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> // represented by an intrinsic call
> Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
> if (!isTriviallyVectorizable(ID)) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
> return;
> @@ -1110,6 +1251,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
> if (!CI2 || CI2->getCalledFunction() != Int ||
> getIntrinsicIDForCall(CI2, TLI) != ID) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
> << "\n");
> @@ -1120,6 +1262,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> if (hasVectorInstrinsicScalarOpd(ID, 1)) {
> Value *A1J = CI2->getArgOperand(1);
> if (A1I != A1J) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
> << " argument "<< A1I<<"!=" << A1J
> @@ -1145,6 +1288,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> // If this is not an alternate sequence of opcode like add-sub
> // then do not vectorize this instruction.
> if (!isAltShuffle) {
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
> return;
> @@ -1162,6 +1306,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
> return;
> }
> default:
> + BS.cancelScheduling(VL);
> newTreeEntry(VL, false);
> DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
> return;
> @@ -1450,14 +1595,6 @@ int BoUpSLP::getGatherCost(ArrayRef<Valu
> return getGatherCost(VecTy);
> }
>
> -AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
> - if (StoreInst *SI = dyn_cast<StoreInst>(I))
> - return AA->getLocation(SI);
> - if (LoadInst *LI = dyn_cast<LoadInst>(I))
> - return AA->getLocation(LI);
> - return AliasAnalysis::Location();
> -}
> -
> Value *BoUpSLP::getPointerOperand(Value *I) {
> if (LoadInst *LI = dyn_cast<LoadInst>(I))
> return LI->getPointerOperand();
> @@ -1515,59 +1652,9 @@ bool BoUpSLP::isConsecutiveAccess(Value
> return X == PtrSCEVB;
> }
>
> -Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
> - assert(Src->getParent() == Dst->getParent() && "Not the same BB");
> - BasicBlock::iterator I = Src, E = Dst;
> - /// Scan all of the instruction from SRC to DST and check if
> - /// the source may alias.
> - for (++I; I != E; ++I) {
> - // Ignore store instructions that are marked as 'ignore'.
> - if (MemBarrierIgnoreList.count(I))
> - continue;
> - if (Src->mayWriteToMemory()) /* Write */ {
> - if (!I->mayReadOrWriteMemory())
> - continue;
> - } else /* Read */ {
> - if (!I->mayWriteToMemory())
> - continue;
> - }
> - AliasAnalysis::Location A = getLocation(&*I);
> - AliasAnalysis::Location B = getLocation(Src);
> -
> - if (!A.Ptr || !B.Ptr || AA->alias(A, B))
> - return I;
> - }
> - return nullptr;
> -}
> -
> -int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
> - BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
> - assert(BB == getSameBlock(VL) && "Invalid block");
> - BlockNumbering &BN = getBlockNumbering(BB);
> -
> - int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
> - for (unsigned i = 0, e = VL.size(); i < e; ++i)
> - MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
> - return MaxIdx;
> -}
> -
> -Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
> - BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
> - assert(BB == getSameBlock(VL) && "Invalid block");
> - BlockNumbering &BN = getBlockNumbering(BB);
> -
> - int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
> - for (unsigned i = 1, e = VL.size(); i < e; ++i)
> - MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
> - Instruction *I = BN.getInstruction(MaxIdx);
> - assert(I && "bad location");
> - return I;
> -}
> -
> void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
> Instruction *VL0 = cast<Instruction>(VL[0]);
> - Instruction *LastInst = getLastInstruction(VL);
> - BasicBlock::iterator NextInst = LastInst;
> + BasicBlock::iterator NextInst = VL0;
> ++NextInst;
> Builder.SetInsertPoint(VL0->getParent(), NextInst);
> Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
> @@ -1650,6 +1737,9 @@ Value *BoUpSLP::vectorizeTree(TreeEntry
> setInsertPointAfterBundle(E->Scalars);
> return Gather(E->Scalars, VecTy);
> }
> + BasicBlock *BB = VL0->getParent();
> + scheduleBlock(BB);
> +
> unsigned Opcode = getSameOpcode(E->Scalars);
>
> switch (Opcode) {
> @@ -2070,9 +2160,6 @@ Value *BoUpSLP::vectorizeTree() {
> }
> }
>
> - for (auto &BN : BlocksNumbers)
> - BN.second.forget();
> -
> Builder.ClearInsertionPoint();
>
> return VectorizableTree[0].VectorizedValue;
> @@ -2166,6 +2253,363 @@ void BoUpSLP::optimizeGatherSequence() {
> GatherSeq.clear();
> }
>
> +// Groups the instructions to a bundle (which is then a single scheduling entity)
> +// and schedules instructions until the bundle gets ready.
> +bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
> + AliasAnalysis *AA) {
> + if (isa<PHINode>(VL[0]))
> + return true;
> +
> + // Initialize the instruction bundle.
> + Instruction *OldScheduleEnd = ScheduleEnd;
> + ScheduleData *PrevInBundle = nullptr;
> + ScheduleData *Bundle = nullptr;
> + bool ReSchedule = false;
> + DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n");
> + for (Value *V : VL) {
> + extendSchedulingRegion(V);
> + ScheduleData *BundleMember = getScheduleData(V);
> + assert(BundleMember &&
> + "no ScheduleData for bundle member (maybe not in same basic block)");
> + if (BundleMember->IsScheduled) {
> + // A bundle member was scheduled as single instruction before and now
> + // needs to be scheduled as part of the bundle. We just get rid of the
> + // existing schedule.
> + DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
> + << " was already scheduled\n");
> + ReSchedule = true;
> + }
> + assert(BundleMember->isSchedulingEntity() &&
> + "bundle member already part of other bundle");
> + if (PrevInBundle) {
> + PrevInBundle->NextInBundle = BundleMember;
> + } else {
> + Bundle = BundleMember;
> + }
> + BundleMember->UnscheduledDepsInBundle = 0;
> + Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
> +
> + // Group the instructions to a bundle.
> + BundleMember->FirstInBundle = Bundle;
> + PrevInBundle = BundleMember;
> + }
> + if (ScheduleEnd != OldScheduleEnd) {
> + // The scheduling region got new instructions at the lower end (or it is a
> + // new region for the first bundle). This makes it necessary to
> + // recalculate all dependencies.
> + // It is seldom that this needs to be done a second time after adding the
> + // initial bundle to the region.
> + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
> + ScheduleData *SD = getScheduleData(I);
> + SD->clearDependencies();
> + }
> + ReSchedule = true;
> + }
> + if (ReSchedule) {
> + resetSchedule();
> + initialFillReadyList(ReadyInsts);
> + }
> +
> + DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
> + << BB->getName() << "\n");
> +
> + calculateDependencies(Bundle, true, AA);
> +
> + // Now try to schedule the new bundle. As soon as the bundle is "ready" it
> + // means that there are no cyclic dependencies and we can schedule it.
> + // Note that's important that we don't "schedule" the bundle yet (see
> + // cancelScheduling).
> + while (!Bundle->isReady() && !ReadyInsts.empty()) {
> +
> + ScheduleData *pickedSD = ReadyInsts.back();
> + ReadyInsts.pop_back();
> +
> + if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
> + schedule(pickedSD, ReadyInsts);
> + }
> + }
> + return Bundle->isReady();
> +}
> +
> +void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
> + if (isa<PHINode>(VL[0]))
> + return;
> +
> + ScheduleData *Bundle = getScheduleData(VL[0]);
> + DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
> + assert(!Bundle->IsScheduled &&
> + "Can't cancel bundle which is already scheduled");
> + assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
> + "tried to unbundle something which is not a bundle");
> +
> + // Un-bundle: make single instructions out of the bundle.
> + ScheduleData *BundleMember = Bundle;
> + while (BundleMember) {
> + assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
> + BundleMember->FirstInBundle = BundleMember;
> + ScheduleData *Next = BundleMember->NextInBundle;
> + BundleMember->NextInBundle = nullptr;
> + BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
> + if (BundleMember->UnscheduledDepsInBundle == 0) {
> + ReadyInsts.insert(BundleMember);
> + }
> + BundleMember = Next;
> + }
> +}
> +
> +void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
> + if (getScheduleData(V))
> + return;
> + Instruction *I = dyn_cast<Instruction>(V);
> + assert(I && "bundle member must be an instruction");
> + assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
> + if (!ScheduleStart) {
> + // It's the first instruction in the new region.
> + initScheduleData(I, I->getNextNode(), nullptr, nullptr);
> + ScheduleStart = I;
> + ScheduleEnd = I->getNextNode();
> + assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
> + DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
> + return;
> + }
> + // Search up and down at the same time, because we don't know if the new
> + // instruction is above or below the existing scheduling region.
> + BasicBlock::reverse_iterator UpIter(ScheduleStart);
> + BasicBlock::reverse_iterator UpperEnd = BB->rend();
> + BasicBlock::iterator DownIter(ScheduleEnd);
> + BasicBlock::iterator LowerEnd = BB->end();
> + for (;;) {
> + if (UpIter != UpperEnd) {
> + if (&*UpIter == I) {
> + initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
> + ScheduleStart = I;
> + DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n");
> + return;
> + }
> + UpIter++;
> + }
> + if (DownIter != LowerEnd) {
> + if (&*DownIter == I) {
> + initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
> + nullptr);
> + ScheduleEnd = I->getNextNode();
> + assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
> + DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
> + return;
> + }
> + DownIter++;
> + }
> + assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
> + "instruction not found in block");
> + }
> +}
> +
> +void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
> + Instruction *ToI,
> + ScheduleData *PrevLoadStore,
> + ScheduleData *NextLoadStore) {
> + ScheduleData *CurrentLoadStore = PrevLoadStore;
> + for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
> + ScheduleData *SD = ScheduleDataMap[I];
> + if (!SD) {
> + // Allocate a new ScheduleData for the instruction.
> + if (ChunkPos >= ChunkSize) {
> + ScheduleDataChunks.push_back(
> + llvm::make_unique<ScheduleData[]>(ChunkSize));
> + ChunkPos = 0;
> + }
> + SD = &(ScheduleDataChunks.back()[ChunkPos++]);
> + ScheduleDataMap[I] = SD;
> + SD->Inst = I;
> + }
> + assert(!isInSchedulingRegion(SD) &&
> + "new ScheduleData already in scheduling region");
> + SD->init(SchedulingRegionID);
> +
> + if (I->mayReadOrWriteMemory()) {
> + // Update the linked list of memory accessing instructions.
> + if (CurrentLoadStore) {
> + CurrentLoadStore->NextLoadStore = SD;
> + } else {
> + FirstLoadStoreInRegion = SD;
> + }
> + CurrentLoadStore = SD;
> + }
> + }
> + if (NextLoadStore) {
> + if (CurrentLoadStore)
> + CurrentLoadStore->NextLoadStore = NextLoadStore;
> + } else {
> + LastLoadStoreInRegion = CurrentLoadStore;
> + }
> +}
> +
> +/// \returns the AA location that is being access by the instruction.
> +static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) {
> + if (StoreInst *SI = dyn_cast<StoreInst>(I))
> + return AA->getLocation(SI);
> + if (LoadInst *LI = dyn_cast<LoadInst>(I))
> + return AA->getLocation(LI);
> + return AliasAnalysis::Location();
> +}
> +
> +void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
> + bool InsertInReadyList,
> + AliasAnalysis *AA) {
> + assert(SD->isSchedulingEntity());
> +
> + SmallVector<ScheduleData *, 10> WorkList;
> + WorkList.push_back(SD);
> +
> + while (!WorkList.empty()) {
> + ScheduleData *SD = WorkList.back();
> + WorkList.pop_back();
> +
> + ScheduleData *BundleMember = SD;
> + while (BundleMember) {
> + assert(isInSchedulingRegion(BundleMember));
> + if (!BundleMember->hasValidDependencies()) {
> +
> + DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n");
> + BundleMember->Dependencies = 0;
> + BundleMember->resetUnscheduledDeps();
> +
> + // Handle def-use chain dependencies.
> + for (User *U : BundleMember->Inst->users()) {
> + if (isa<Instruction>(U)) {
> + ScheduleData *UseSD = getScheduleData(U);
> + if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
> + BundleMember->Dependencies++;
> + ScheduleData *DestBundle = UseSD->FirstInBundle;
> + if (!DestBundle->IsScheduled) {
> + BundleMember->incrementUnscheduledDeps(1);
> + }
> + if (!DestBundle->hasValidDependencies()) {
> + WorkList.push_back(DestBundle);
> + }
> + }
> + } else {
> + // I'm not sure if this can ever happen. But we need to be safe.
> + // This lets the instruction/bundle never be scheduled and eventally
> + // disable vectorization.
> + BundleMember->Dependencies++;
> + BundleMember->incrementUnscheduledDeps(1);
> + }
> + }
> +
> + // Handle the memory dependencies.
> + ScheduleData *DepDest = BundleMember->NextLoadStore;
> + if (DepDest) {
> + AliasAnalysis::Location SrcLoc = getLocation(BundleMember->Inst, AA);
> + bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
> +
> + while (DepDest) {
> + assert(isInSchedulingRegion(DepDest));
> + if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) {
> + AliasAnalysis::Location DstLoc = getLocation(DepDest->Inst, AA);
> + if (!SrcLoc.Ptr || !DstLoc.Ptr || AA->alias(SrcLoc, DstLoc)) {
> + DepDest->MemoryDependencies.push_back(BundleMember);
> + BundleMember->Dependencies++;
> + ScheduleData *DestBundle = DepDest->FirstInBundle;
> + if (!DestBundle->IsScheduled) {
> + BundleMember->incrementUnscheduledDeps(1);
> + }
> + if (!DestBundle->hasValidDependencies()) {
> + WorkList.push_back(DestBundle);
> + }
> + }
> + }
> + DepDest = DepDest->NextLoadStore;
> + }
> + }
> + }
> + BundleMember = BundleMember->NextInBundle;
> + }
> + if (InsertInReadyList && SD->isReady()) {
> + ReadyInsts.push_back(SD);
> + DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n");
> + }
> + }
> +}
> +
> +void BoUpSLP::BlockScheduling::resetSchedule() {
> + assert(ScheduleStart &&
> + "tried to reset schedule on block which has not been scheduled");
> + for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
> + ScheduleData *SD = getScheduleData(I);
> + assert(isInSchedulingRegion(SD));
> + SD->IsScheduled = false;
> + SD->resetUnscheduledDeps();
> + }
> + ReadyInsts.clear();
> +}
> +
> +void BoUpSLP::scheduleBlock(BasicBlock *BB) {
> + DEBUG(dbgs() << "SLP: schedule block " << BB->getName() << "\n");
> +
> + BlockScheduling *BS = BlocksSchedules[BB].get();
> + if (!BS || !BS->ScheduleStart)
> + return;
> +
> + BS->resetSchedule();
> +
> + // For the real scheduling we use a more sophisticated ready-list: it is
> + // sorted by the original instruction location. This lets the final schedule
> + // be as close as possible to the original instruction order.
> + struct ScheduleDataCompare {
> + bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
> + return SD2->SchedulingPriority < SD1->SchedulingPriority;
> + }
> + };
> + std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
> +
> + // Ensure that all depencency data is updated and fill the ready-list with
> + // initial instructions.
> + int Idx = 0;
> + int NumToSchedule = 0;
> + for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
> + I = I->getNextNode()) {
> + ScheduleData *SD = BS->getScheduleData(I);
> + assert(
> + SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
> + "scheduler and vectorizer have different opinion on what is a bundle");
> + SD->FirstInBundle->SchedulingPriority = Idx++;
> + if (SD->isSchedulingEntity()) {
> + BS->calculateDependencies(SD, false, AA);
> + NumToSchedule++;
> + }
> + }
> + BS->initialFillReadyList(ReadyInsts);
> +
> + Instruction *LastScheduledInst = BS->ScheduleEnd;
> +
> + // Do the "real" scheduling.
> + while (!ReadyInsts.empty()) {
> + ScheduleData *picked = *ReadyInsts.begin();
> + ReadyInsts.erase(ReadyInsts.begin());
> +
> + // Move the scheduled instruction(s) to their dedicated places, if not
> + // there yet.
> + ScheduleData *BundleMember = picked;
> + while (BundleMember) {
> + Instruction *pickedInst = BundleMember->Inst;
> + if (LastScheduledInst->getNextNode() != pickedInst) {
> + BB->getInstList().remove(pickedInst);
> + BB->getInstList().insert(LastScheduledInst, pickedInst);
> + }
> + LastScheduledInst = pickedInst;
> + BundleMember = BundleMember->NextInBundle;
> + }
> +
> + BS->schedule(picked, ReadyInsts);
> + NumToSchedule--;
> + }
> + assert(NumToSchedule == 0 && "could not schedule all instructions");
> +
> + // Avoid duplicate scheduling of the block.
> + BS->ScheduleStart = nullptr;
> +}
> +
> /// The SLPVectorizer Pass.
> struct SLPVectorizer : public FunctionPass {
> typedef SmallVector<StoreInst *, 8> StoreList;
>
> Modified: llvm/trunk/test/Transforms/SLPVectorizer/X86/crash_vectorizeTree.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/SLPVectorizer/X86/crash_vectorizeTree.ll?rev=214494&r1=214493&r2=214494&view=diff
> ==============================================================================
> --- llvm/trunk/test/Transforms/SLPVectorizer/X86/crash_vectorizeTree.ll (original)
> +++ llvm/trunk/test/Transforms/SLPVectorizer/X86/crash_vectorizeTree.ll Fri Aug 1 04:20:42 2014
> @@ -1,4 +1,4 @@
> -; RUN: opt -slp-vectorizer -mtriple=x86_64-apple-macosx10.9.0 -mcpu=corei7-avx -S < %s | FileCheck %s
> +; RUN: opt -basicaa -slp-vectorizer -mtriple=x86_64-apple-macosx10.9.0 -mcpu=corei7-avx -S < %s | FileCheck %s
> target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
> target triple = "x86_64-apple-macosx10.9.0"
>
>
> Modified: llvm/trunk/test/Transforms/SLPVectorizer/X86/in-tree-user.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/SLPVectorizer/X86/in-tree-user.ll?rev=214494&r1=214493&r2=214494&view=diff
> ==============================================================================
> --- llvm/trunk/test/Transforms/SLPVectorizer/X86/in-tree-user.ll (original)
> +++ llvm/trunk/test/Transforms/SLPVectorizer/X86/in-tree-user.ll Fri Aug 1 04:20:42 2014
> @@ -5,9 +5,11 @@ target triple = "x86_64-apple-macosx10.7
>
> @.str = private unnamed_addr constant [6 x i8] c"bingo\00", align 1
>
> -; We can't vectorize when the roots are used inside the tree.
> +; Uses inside the tree must be scheduled after the corresponding tree bundle.
> ;CHECK-LABEL: @in_tree_user(
> -;CHECK-NOT: load <2 x double>
> +;CHECK: load <2 x double>
> +;CHECK: fadd <2 x double>
> +;CHECK: InTreeUser = fadd
> ;CHECK: ret
> define void @in_tree_user(double* nocapture %A, i32 %n) {
> entry:
> @@ -22,7 +24,7 @@ for.body:
> %mul1 = fmul double %conv, %1
> %mul2 = fmul double %mul1, 7.000000e+00
> %add = fadd double %mul2, 5.000000e+00
> - %BadValue = fadd double %add, %add ; <------------------ In tree user.
> + %InTreeUser = fadd double %add, %add ; <------------------ In tree user.
> %2 = or i64 %0, 1
> %arrayidx6 = getelementptr inbounds double* %A, i64 %2
> %3 = load double* %arrayidx6, align 8
> @@ -43,6 +45,7 @@ for.inc:
> br i1 %exitcond, label %for.end, label %for.body
>
> for.end: ; preds = %for.inc
> + store double %InTreeUser, double* %A, align 8 ; Avoid dead code elimination of the InTreeUser.
> ret void
> }
>
>
> Added: llvm/trunk/test/Transforms/SLPVectorizer/X86/scheduling.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/SLPVectorizer/X86/scheduling.ll?rev=214494&view=auto
> ==============================================================================
> --- llvm/trunk/test/Transforms/SLPVectorizer/X86/scheduling.ll (added)
> +++ llvm/trunk/test/Transforms/SLPVectorizer/X86/scheduling.ll Fri Aug 1 04:20:42 2014
> @@ -0,0 +1,78 @@
> +; RUN: opt < %s -basicaa -slp-vectorizer -S -mtriple=i386-apple-macosx10.8.0 -mcpu=corei7-avx | FileCheck %s
> +
> +target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
> +target triple = "x86_64-apple-macosx10.9.0"
> +
> +;CHECK-LABEL: @foo
> +;CHECK: load <4 x i32>
> +;CHECK: load <4 x i32>
> +;CHECK: %[[S1:.+]] = add <4 x i32>
> +;CHECK-DAG: store <4 x i32> %[[S1]]
> +;CHECK-DAG: %[[A1:.+]] = add nsw i32
> +;CHECK-DAG: %[[A2:.+]] = add nsw i32 %[[A1]]
> +;CHECK-DAG: %[[A3:.+]] = add nsw i32 %[[A2]]
> +;CHECK-DAG: %[[A4:.+]] = add nsw i32 %[[A3]]
> +;CHECK: ret i32 %[[A4]]
> +
> +define i32 @foo(i32* nocapture readonly %diff) #0 {
> +entry:
> + %m2 = alloca [8 x [8 x i32]], align 16
> + %0 = bitcast [8 x [8 x i32]]* %m2 to i8*
> + br label %for.body
> +
> +for.body: ; preds = %for.body, %entry
> + %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
> + %a.088 = phi i32 [ 0, %entry ], [ %add52, %for.body ]
> + %1 = shl i64 %indvars.iv, 3
> + %arrayidx = getelementptr inbounds i32* %diff, i64 %1
> + %2 = load i32* %arrayidx, align 4
> + %3 = or i64 %1, 4
> + %arrayidx2 = getelementptr inbounds i32* %diff, i64 %3
> + %4 = load i32* %arrayidx2, align 4
> + %add3 = add nsw i32 %4, %2
> + %arrayidx6 = getelementptr inbounds [8 x [8 x i32]]* %m2, i64 0, i64 %indvars.iv, i64 0
> + store i32 %add3, i32* %arrayidx6, align 16
> + %add10 = add nsw i32 %add3, %a.088
> + %5 = or i64 %1, 1
> + %arrayidx13 = getelementptr inbounds i32* %diff, i64 %5
> + %6 = load i32* %arrayidx13, align 4
> + %7 = or i64 %1, 5
> + %arrayidx16 = getelementptr inbounds i32* %diff, i64 %7
> + %8 = load i32* %arrayidx16, align 4
> + %add17 = add nsw i32 %8, %6
> + %arrayidx20 = getelementptr inbounds [8 x [8 x i32]]* %m2, i64 0, i64 %indvars.iv, i64 1
> + store i32 %add17, i32* %arrayidx20, align 4
> + %add24 = add nsw i32 %add10, %add17
> + %9 = or i64 %1, 2
> + %arrayidx27 = getelementptr inbounds i32* %diff, i64 %9
> + %10 = load i32* %arrayidx27, align 4
> + %11 = or i64 %1, 6
> + %arrayidx30 = getelementptr inbounds i32* %diff, i64 %11
> + %12 = load i32* %arrayidx30, align 4
> + %add31 = add nsw i32 %12, %10
> + %arrayidx34 = getelementptr inbounds [8 x [8 x i32]]* %m2, i64 0, i64 %indvars.iv, i64 2
> + store i32 %add31, i32* %arrayidx34, align 8
> + %add38 = add nsw i32 %add24, %add31
> + %13 = or i64 %1, 3
> + %arrayidx41 = getelementptr inbounds i32* %diff, i64 %13
> + %14 = load i32* %arrayidx41, align 4
> + %15 = or i64 %1, 7
> + %arrayidx44 = getelementptr inbounds i32* %diff, i64 %15
> + %16 = load i32* %arrayidx44, align 4
> + %add45 = add nsw i32 %16, %14
> + %arrayidx48 = getelementptr inbounds [8 x [8 x i32]]* %m2, i64 0, i64 %indvars.iv, i64 3
> + store i32 %add45, i32* %arrayidx48, align 4
> + %add52 = add nsw i32 %add38, %add45
> + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
> + %exitcond = icmp eq i64 %indvars.iv.next, 8
> + br i1 %exitcond, label %for.end, label %for.body
> +
> +for.end: ; preds = %for.body
> + %arraydecay = getelementptr inbounds [8 x [8 x i32]]* %m2, i64 0, i64 0
> + call void @ff([8 x i32]* %arraydecay) #1
> + ret i32 %add52
> +}
> +
> +declare void @ff([8 x i32]*) #2
> +
> +
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
More information about the llvm-commits
mailing list