[llvm] r213048 - Revert "[FastISel][X86] Remove no longer needed functions."

Juergen Ributzka juergen at apple.com
Mon Jul 14 22:23:40 PDT 2014


Author: ributzka
Date: Tue Jul 15 00:23:40 2014
New Revision: 213048

URL: http://llvm.org/viewvc/llvm-project?rev=213048&view=rev
Log:
Revert "[FastISel][X86] Remove no longer needed functions."
Revert "[FastISel][X86] Implement the FastLowerIntrinsicCall hook."
Revert "[FastISel][X86] Implement the FastLowerCall hook."

This reverts commit r213035, r213036, and r213037 to make the
buildbots happy again.

Modified:
    llvm/trunk/lib/Target/X86/X86FastISel.cpp

Modified: llvm/trunk/lib/Target/X86/X86FastISel.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86FastISel.cpp?rev=213048&r1=213047&r2=213048&view=diff
==============================================================================
--- llvm/trunk/lib/Target/X86/X86FastISel.cpp (original)
+++ llvm/trunk/lib/Target/X86/X86FastISel.cpp Tue Jul 15 00:23:40 2014
@@ -74,8 +74,6 @@ public:
                            const LoadInst *LI) override;
 
   bool FastLowerArguments() override;
-  bool FastLowerCall(CallLoweringInfo &CLI) override;
-  bool FastLowerIntrinsicCall(const IntrinsicInst *II) override;
 
 #include "X86GenFastISel.inc"
 
@@ -126,6 +124,11 @@ private:
   bool X86SelectFPExt(const Instruction *I);
   bool X86SelectFPTrunc(const Instruction *I);
 
+  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
+  bool X86SelectCall(const Instruction *I);
+
+  bool DoSelectCall(const Instruction *I, const char *MemIntName);
+
   const X86InstrInfo *getInstrInfo() const {
     return getTargetMachine()->getInstrInfo();
   }
@@ -2163,8 +2166,8 @@ bool X86FastISel::TryEmitSmallMemcpy(X86
   return true;
 }
 
-static bool isCommutativeIntrinsic(IntrinsicInst const *II) {
-  switch (II->getIntrinsicID()) {
+static bool isCommutativeIntrinsic(IntrinsicInst const &I) {
+  switch (I.getIntrinsicID()) {
   case Intrinsic::sadd_with_overflow:
   case Intrinsic::uadd_with_overflow:
   case Intrinsic::smul_with_overflow:
@@ -2175,12 +2178,12 @@ static bool isCommutativeIntrinsic(Intri
   }
 }
 
-bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
+bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
   // FIXME: Handle more intrinsics.
-  switch (II->getIntrinsicID()) {
+  switch (I.getIntrinsicID()) {
   default: return false;
   case Intrinsic::frameaddress: {
-    Type *RetTy = II->getCalledFunction()->getReturnType();
+    Type *RetTy = I.getCalledFunction()->getReturnType();
 
     MVT VT;
     if (!isTypeLegal(RetTy, VT))
@@ -2220,7 +2223,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     // movq (%rax), %rax
     // ...
     unsigned DestReg;
-    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
+    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
     while (Depth--) {
       DestReg = createResultReg(RC);
       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
@@ -2228,23 +2231,23 @@ bool X86FastISel::FastLowerIntrinsicCall
       SrcReg = DestReg;
     }
 
-    UpdateValueMap(II, SrcReg);
+    UpdateValueMap(&I, SrcReg);
     return true;
   }
   case Intrinsic::memcpy: {
-    const MemCpyInst *MCI = cast<MemCpyInst>(II);
+    const MemCpyInst &MCI = cast<MemCpyInst>(I);
     // Don't handle volatile or variable length memcpys.
-    if (MCI->isVolatile())
+    if (MCI.isVolatile())
       return false;
 
-    if (isa<ConstantInt>(MCI->getLength())) {
+    if (isa<ConstantInt>(MCI.getLength())) {
       // Small memcpy's are common enough that we want to do them
       // without a call if possible.
-      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
+      uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
       if (IsMemcpySmall(Len)) {
         X86AddressMode DestAM, SrcAM;
-        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
-            !X86SelectAddress(MCI->getRawSource(), SrcAM))
+        if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
+            !X86SelectAddress(MCI.getRawSource(), SrcAM))
           return false;
         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
         return true;
@@ -2252,35 +2255,35 @@ bool X86FastISel::FastLowerIntrinsicCall
     }
 
     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
-    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
+    if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
       return false;
 
-    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
+    if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
       return false;
 
-    return LowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
+    return DoSelectCall(&I, "memcpy");
   }
   case Intrinsic::memset: {
-    const MemSetInst *MSI = cast<MemSetInst>(II);
+    const MemSetInst &MSI = cast<MemSetInst>(I);
 
-    if (MSI->isVolatile())
+    if (MSI.isVolatile())
       return false;
 
     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
-    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
+    if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
       return false;
 
-    if (MSI->getDestAddressSpace() > 255)
+    if (MSI.getDestAddressSpace() > 255)
       return false;
 
-    return LowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+    return DoSelectCall(&I, "memset");
   }
   case Intrinsic::stackprotector: {
     // Emit code to store the stack guard onto the stack.
     EVT PtrTy = TLI.getPointerTy();
 
-    const Value *Op1 = II->getArgOperand(0); // The guard's value.
-    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
+    const Value *Op1 = I.getArgOperand(0); // The guard's value.
+    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
 
     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
 
@@ -2291,7 +2294,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     return true;
   }
   case Intrinsic::dbg_declare: {
-    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
+    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
     X86AddressMode AM;
     assert(DI->getAddress() && "Null address should be checked earlier!");
     if (!X86SelectAddress(DI->getAddress(), AM))
@@ -2311,7 +2314,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     if (!Subtarget->hasSSE1())
       return false;
 
-    Type *RetTy = II->getCalledFunction()->getReturnType();
+    Type *RetTy = I.getCalledFunction()->getReturnType();
 
     MVT VT;
     if (!isTypeLegal(RetTy, VT))
@@ -2333,7 +2336,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
     }
 
-    const Value *SrcVal = II->getArgOperand(0);
+    const Value *SrcVal = I.getArgOperand(0);
     unsigned SrcReg = getRegForValue(SrcVal);
 
     if (SrcReg == 0)
@@ -2356,7 +2359,7 @@ bool X86FastISel::FastLowerIntrinsicCall
 
     MIB.addReg(SrcReg);
 
-    UpdateValueMap(II, ResultReg);
+    UpdateValueMap(&I, ResultReg);
     return true;
   }
   case Intrinsic::sadd_with_overflow:
@@ -2367,7 +2370,7 @@ bool X86FastISel::FastLowerIntrinsicCall
   case Intrinsic::umul_with_overflow: {
     // This implements the basic lowering of the xalu with overflow intrinsics
     // into add/sub/mul followed by either seto or setb.
-    const Function *Callee = II->getCalledFunction();
+    const Function *Callee = I.getCalledFunction();
     auto *Ty = cast<StructType>(Callee->getReturnType());
     Type *RetTy = Ty->getTypeAtIndex(0U);
     Type *CondTy = Ty->getTypeAtIndex(1);
@@ -2379,16 +2382,16 @@ bool X86FastISel::FastLowerIntrinsicCall
     if (VT < MVT::i8 || VT > MVT::i64)
       return false;
 
-    const Value *LHS = II->getArgOperand(0);
-    const Value *RHS = II->getArgOperand(1);
+    const Value *LHS = I.getArgOperand(0);
+    const Value *RHS = I.getArgOperand(1);
 
     // Canonicalize immediate to the RHS.
     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
-        isCommutativeIntrinsic(II))
+        isCommutativeIntrinsic(I))
       std::swap(LHS, RHS);
 
     unsigned BaseOpc, CondOpc;
-    switch (II->getIntrinsicID()) {
+    switch (I.getIntrinsicID()) {
     default: llvm_unreachable("Unexpected intrinsic!");
     case Intrinsic::sadd_with_overflow:
       BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
@@ -2465,7 +2468,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
             ResultReg2);
 
-    UpdateValueMap(II, ResultReg, 2);
+    UpdateValueMap(&I, ResultReg, 2);
     return true;
   }
   case Intrinsic::x86_sse_cvttss2si:
@@ -2473,7 +2476,7 @@ bool X86FastISel::FastLowerIntrinsicCall
   case Intrinsic::x86_sse2_cvttsd2si:
   case Intrinsic::x86_sse2_cvttsd2si64: {
     bool IsInputDouble;
-    switch (II->getIntrinsicID()) {
+    switch (I.getIntrinsicID()) {
     default: llvm_unreachable("Unexpected intrinsic.");
     case Intrinsic::x86_sse_cvttss2si:
     case Intrinsic::x86_sse_cvttss2si64:
@@ -2489,7 +2492,7 @@ bool X86FastISel::FastLowerIntrinsicCall
       break;
     }
 
-    Type *RetTy = II->getCalledFunction()->getReturnType();
+    Type *RetTy = I.getCalledFunction()->getReturnType();
     MVT VT;
     if (!isTypeLegal(RetTy, VT))
       return false;
@@ -2509,7 +2512,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     }
 
     // Check if we can fold insertelement instructions into the convert.
-    const Value *Op = II->getArgOperand(0);
+    const Value *Op = I.getArgOperand(0);
     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
       const Value *Index = IE->getOperand(2);
       if (!isa<ConstantInt>(Index))
@@ -2531,7 +2534,7 @@ bool X86FastISel::FastLowerIntrinsicCall
     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
       .addReg(Reg);
 
-    UpdateValueMap(II, ResultReg);
+    UpdateValueMap(&I, ResultReg);
     return true;
   }
   }
@@ -2632,52 +2635,53 @@ bool X86FastISel::FastLowerArguments() {
   return true;
 }
 
-static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
-                                           CallingConv::ID CC,
-                                           ImmutableCallSite *CS) {
-  if (Subtarget->is64Bit())
+bool X86FastISel::X86SelectCall(const Instruction *I) {
+  const CallInst *CI = cast<CallInst>(I);
+  const Value *Callee = CI->getCalledValue();
+
+  // Can't handle inline asm yet.
+  if (isa<InlineAsm>(Callee))
+    return false;
+
+  // Handle intrinsic calls.
+  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
+    return X86VisitIntrinsicCall(*II);
+
+  // Allow SelectionDAG isel to handle tail calls.
+  if (cast<CallInst>(I)->isTailCall())
+    return false;
+
+  return DoSelectCall(I, nullptr);
+}
+
+static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
+                                           const ImmutableCallSite &CS) {
+  if (Subtarget.is64Bit())
     return 0;
-  if (Subtarget->getTargetTriple().isOSMSVCRT())
+  if (Subtarget.getTargetTriple().isOSMSVCRT())
     return 0;
-  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
-      CC == CallingConv::HiPE)
+  CallingConv::ID CC = CS.getCallingConv();
+  if (CC == CallingConv::Fast || CC == CallingConv::GHC)
     return 0;
-  if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
+  if (!CS.paramHasAttr(1, Attribute::StructRet))
     return 0;
-  if (CS && CS->paramHasAttr(1, Attribute::InReg))
+  if (CS.paramHasAttr(1, Attribute::InReg))
     return 0;
   return 4;
 }
 
-bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
-  auto &OutVals       = CLI.OutVals;
-  auto &OutFlags      = CLI.OutFlags;
-  auto &OutRegs       = CLI.OutRegs;
-  auto &Ins           = CLI.Ins;
-  auto &InRegs        = CLI.InRegs;
-  CallingConv::ID CC  = CLI.CallConv;
-  bool &IsTailCall    = CLI.IsTailCall;
-  bool IsVarArg       = CLI.IsVarArg;
-  const Value *Callee = CLI.Callee;
-  const char *SymName = CLI.SymName;
-
-  bool Is64Bit        = Subtarget->is64Bit();
-  bool IsWin64        = Subtarget->isCallingConvWin64(CC);
-
-  // Handle only C, fastcc, and webkit_js calling conventions for now.
-  switch (CC) {
-  default: return false;
-  case CallingConv::C:
-  case CallingConv::Fast:
-  case CallingConv::WebKit_JS:
-  case CallingConv::X86_FastCall:
-  case CallingConv::X86_64_Win64:
-  case CallingConv::X86_64_SysV:
-    break;
-  }
-
-  // Allow SelectionDAG isel to handle tail calls.
-  if (IsTailCall)
+// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
+bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
+  const CallInst *CI = cast<CallInst>(I);
+  const Value *Callee = CI->getCalledValue();
+
+  // Handle only C and fastcc calling conventions for now.
+  ImmutableCallSite CS(CI);
+  CallingConv::ID CC = CS.getCallingConv();
+  bool isWin64 = Subtarget->isCallingConvWin64(CC);
+  if (CC != CallingConv::C && CC != CallingConv::Fast &&
+      CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
+      CC != CallingConv::X86_64_SysV)
     return false;
 
   // fastcc with -tailcallopt is intended to provide a guaranteed
@@ -2685,78 +2689,150 @@ bool X86FastISel::FastLowerCall(CallLowe
   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
     return false;
 
+  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+  bool isVarArg = FTy->isVarArg();
+
   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
-  // x86-32. Special handling for x86-64 is implemented.
-  if (IsVarArg && IsWin64)
+  // x86-32.  Special handling for x86-64 is implemented.
+  if (isVarArg && isWin64)
     return false;
 
   // Don't know about inalloca yet.
-  if (CLI.CS && CLI.CS->hasInAllocaArgument())
+  if (CS.hasInAllocaArgument())
     return false;
 
   // Fast-isel doesn't know about callee-pop yet.
-  if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
+  if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
                        TM.Options.GuaranteedTailCallOpt))
     return false;
 
-  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
-  // instruction. This is safe because it is common to all FastISel supported
-  // calling conventions on x86.
-  for (int i = 0, e = OutVals.size(); i != e; ++i) {
-    Value *&Val = OutVals[i];
-    ISD::ArgFlagsTy Flags = OutFlags[i];
-    if (auto *CI = dyn_cast<ConstantInt>(Val)) {
-      if (CI->getBitWidth() < 32) {
+  // Check whether the function can return without sret-demotion.
+  SmallVector<ISD::OutputArg, 4> Outs;
+  GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
+  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
+                                           *FuncInfo.MF, FTy->isVarArg(),
+                                           Outs, FTy->getContext());
+  if (!CanLowerReturn)
+    return false;
+
+  // Materialize callee address in a register. FIXME: GV address can be
+  // handled with a CALLpcrel32 instead.
+  X86AddressMode CalleeAM;
+  if (!X86SelectCallAddress(Callee, CalleeAM))
+    return false;
+  unsigned CalleeOp = 0;
+  const GlobalValue *GV = nullptr;
+  if (CalleeAM.GV != nullptr) {
+    GV = CalleeAM.GV;
+  } else if (CalleeAM.Base.Reg != 0) {
+    CalleeOp = CalleeAM.Base.Reg;
+  } else
+    return false;
+
+  // Deal with call operands first.
+  SmallVector<const Value *, 8> ArgVals;
+  SmallVector<unsigned, 8> Args;
+  SmallVector<MVT, 8> ArgVTs;
+  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+  unsigned arg_size = CS.arg_size();
+  Args.reserve(arg_size);
+  ArgVals.reserve(arg_size);
+  ArgVTs.reserve(arg_size);
+  ArgFlags.reserve(arg_size);
+  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+       i != e; ++i) {
+    // If we're lowering a mem intrinsic instead of a regular call, skip the
+    // last two arguments, which should not passed to the underlying functions.
+    if (MemIntName && e-i <= 2)
+      break;
+    Value *ArgVal = *i;
+    ISD::ArgFlagsTy Flags;
+    unsigned AttrInd = i - CS.arg_begin() + 1;
+    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
+      Flags.setSExt();
+    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
+      Flags.setZExt();
+
+    if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
+      PointerType *Ty = cast<PointerType>(ArgVal->getType());
+      Type *ElementTy = Ty->getElementType();
+      unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
+      unsigned FrameAlign = CS.getParamAlignment(AttrInd);
+      if (!FrameAlign)
+        FrameAlign = TLI.getByValTypeAlignment(ElementTy);
+      Flags.setByVal();
+      Flags.setByValSize(FrameSize);
+      Flags.setByValAlign(FrameAlign);
+      if (!IsMemcpySmall(FrameSize))
+        return false;
+    }
+
+    if (CS.paramHasAttr(AttrInd, Attribute::InReg))
+      Flags.setInReg();
+    if (CS.paramHasAttr(AttrInd, Attribute::Nest))
+      Flags.setNest();
+
+    // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
+    // instruction.  This is safe because it is common to all fastisel supported
+    // calling conventions on x86.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
+      if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
+          CI->getBitWidth() == 16) {
         if (Flags.isSExt())
-          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
+          ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
         else
-          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
+          ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
       }
     }
 
+    unsigned ArgReg;
+
     // Passing bools around ends up doing a trunc to i1 and passing it.
     // Codegen this as an argument + "and 1".
-    if (auto *TI = dyn_cast<TruncInst>(Val)) {
-      if (TI->getType()->isIntegerTy(1) && CLI.CS &&
-          (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
-          TI->hasOneUse()) {
-        Val = cast<TruncInst>(Val)->getOperand(0);
-        unsigned ResultReg = getRegForValue(Val);
+    if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
+        cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
+        ArgVal->hasOneUse()) {
+      ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
+      ArgReg = getRegForValue(ArgVal);
+      if (ArgReg == 0) return false;
 
-        if (!ResultReg)
-          return false;
+      MVT ArgVT;
+      if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
 
-        MVT ArgVT;
-        if (!isTypeLegal(Val->getType(), ArgVT))
-          return false;
+      ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
+                           ArgVal->hasOneUse(), 1);
+    } else {
+      ArgReg = getRegForValue(ArgVal);
+    }
 
-        ResultReg =
-          FastEmit_ri(ArgVT, ArgVT, ISD::AND, ResultReg, Val->hasOneUse(), 1);
+    if (ArgReg == 0) return false;
 
-        if (!ResultReg)
-          return false;
-        UpdateValueMap(Val, ResultReg);
-      }
-    }
+    Type *ArgTy = ArgVal->getType();
+    MVT ArgVT;
+    if (!isTypeLegal(ArgTy, ArgVT))
+      return false;
+    if (ArgVT == MVT::x86mmx)
+      return false;
+    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+    Flags.setOrigAlign(OriginalAlignment);
+
+    Args.push_back(ArgReg);
+    ArgVals.push_back(ArgVal);
+    ArgVTs.push_back(ArgVT);
+    ArgFlags.push_back(Flags);
   }
 
   // Analyze operands of the call, assigning locations to each operand.
   SmallVector<CCValAssign, 16> ArgLocs;
-  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs,
-                 CLI.RetTy->getContext());
+  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
+                 I->getParent()->getContext());
 
   // Allocate shadow area for Win64
-  if (IsWin64)
+  if (isWin64)
     CCInfo.AllocateStack(32, 8);
 
-  SmallVector<MVT, 16> OutVTs;
-  for (auto *Val : OutVals) {
-    MVT VT;
-    if (!isTypeLegal(Val->getType(), VT, true))
-      return false;
-    OutVTs.push_back(VT);
-  }
-  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
+  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
 
   // Get a count of how many bytes are to be pushed on the stack.
   unsigned NumBytes = CCInfo.getNextStackOffset();
@@ -2766,20 +2842,13 @@ bool X86FastISel::FastLowerCall(CallLowe
   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
     .addImm(NumBytes);
 
-  // Walk the register/memloc assignments, inserting copies/loads.
-  const X86RegisterInfo *RegInfo =
-    static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
+  // Process argument: walk the register/memloc assignments, inserting
+  // copies / loads.
+  SmallVector<unsigned, 4> RegArgs;
   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
-    CCValAssign const &VA = ArgLocs[i];
-    const Value *ArgVal = OutVals[VA.getValNo()];
-    MVT ArgVT = OutVTs[VA.getValNo()];
-
-    if (ArgVT == MVT::x86mmx)
-      return false;
-
-    unsigned ArgReg = getRegForValue(ArgVal);
-    if (!ArgReg)
-      return false;
+    CCValAssign &VA = ArgLocs[i];
+    unsigned Arg = Args[VA.getValNo()];
+    EVT ArgVT = ArgVTs[VA.getValNo()];
 
     // Promote the value if needed.
     switch (VA.getLocInfo()) {
@@ -2787,8 +2856,8 @@ bool X86FastISel::FastLowerCall(CallLowe
     case CCValAssign::SExt: {
       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
              "Unexpected extend");
-      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
-                                       ArgVT, ArgReg);
+      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
+                                       Arg, ArgVT, Arg);
       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
       ArgVT = VA.getLocVT();
       break;
@@ -2796,8 +2865,8 @@ bool X86FastISel::FastLowerCall(CallLowe
     case CCValAssign::ZExt: {
       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
              "Unexpected extend");
-      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
-                                       ArgVT, ArgReg);
+      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
+                                       Arg, ArgVT, Arg);
       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
       ArgVT = VA.getLocVT();
       break;
@@ -2805,67 +2874,66 @@ bool X86FastISel::FastLowerCall(CallLowe
     case CCValAssign::AExt: {
       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
              "Unexpected extend");
-      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
-                                       ArgVT, ArgReg);
+      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
+                                       Arg, ArgVT, Arg);
       if (!Emitted)
-        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
-                                    ArgVT, ArgReg);
+        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
+                                    Arg, ArgVT, Arg);
       if (!Emitted)
-        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
-                                    ArgVT, ArgReg);
+        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
+                                    Arg, ArgVT, Arg);
 
       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
       ArgVT = VA.getLocVT();
       break;
     }
     case CCValAssign::BCvt: {
-      ArgReg = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
-                          /*TODO: Kill=*/false);
-      assert(ArgReg && "Failed to emit a bitcast!");
+      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
+                               ISD::BITCAST, Arg, /*TODO: Kill=*/false);
+      assert(BC != 0 && "Failed to emit a bitcast!");
+      Arg = BC;
       ArgVT = VA.getLocVT();
       break;
     }
-    case CCValAssign::VExt:
+    case CCValAssign::VExt: 
       // VExt has not been implemented, so this should be impossible to reach
       // for now.  However, fallback to Selection DAG isel once implemented.
       return false;
-    case CCValAssign::FPExt:
-      llvm_unreachable("Unexpected loc info!");
     case CCValAssign::Indirect:
       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
       // support this.
       return false;
+    case CCValAssign::FPExt:
+      llvm_unreachable("Unexpected loc info!");
     }
 
     if (VA.isRegLoc()) {
       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
-              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
-      OutRegs.push_back(VA.getLocReg());
+              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
+      RegArgs.push_back(VA.getLocReg());
     } else {
-      assert(VA.isMemLoc());
       unsigned LocMemOffset = VA.getLocMemOffset();
       X86AddressMode AM;
+      const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
+          getTargetMachine()->getRegisterInfo());
       AM.Base.Reg = RegInfo->getStackRegister();
       AM.Disp = LocMemOffset;
-      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
-      unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
-      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
-        MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,
-        ArgVT.getStoreSize(), Alignment);
+      const Value *ArgVal = ArgVals[VA.getValNo()];
+      ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
+
       if (Flags.isByVal()) {
         X86AddressMode SrcAM;
-        SrcAM.Base.Reg = ArgReg;
-        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
-          return false;
+        SrcAM.Base.Reg = Arg;
+        bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
+        assert(Res && "memcpy length already checked!"); (void)Res;
       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
         // If this is a really simple value, emit this with the Value* version
         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
         // as it can cause us to reevaluate the argument.
-        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
+        if (!X86FastEmitStore(ArgVT, ArgVal, AM))
           return false;
       } else {
-        bool ValIsKill = hasTrivialKill(ArgVal);
-        if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
+        if (!X86FastEmitStore(ArgVT, Arg, /*ValIsKill=*/false, AM))
           return false;
       }
     }
@@ -2879,53 +2947,37 @@ bool X86FastISel::FastLowerCall(CallLowe
             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
   }
 
-  if (Is64Bit && IsVarArg && !IsWin64) {
-    // From AMD64 ABI document:
-    // For calls that may call functions that use varargs or stdargs
-    // (prototype-less calls or calls to functions containing ellipsis (...) in
-    // the declaration) %al is used as hidden argument to specify the number
-    // of SSE registers used. The contents of %al do not need to match exactly
-    // the number of registers, but must be an ubound on the number of SSE
-    // registers used and is in the range 0 - 8 inclusive.
-
+  if (Subtarget->is64Bit() && isVarArg && !isWin64) {
     // Count the number of XMM registers allocated.
     static const MCPhysReg XMMArgRegs[] = {
       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
     };
     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
-    assert((Subtarget->hasSSE1() || !NumXMMRegs)
-           && "SSE registers cannot be used when SSE is disabled");
     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
             X86::AL).addImm(NumXMMRegs);
   }
 
-  // Materialize callee address in a register. FIXME: GV address can be
-  // handled with a CALLpcrel32 instead.
-  X86AddressMode CalleeAM;
-  if (!X86SelectCallAddress(Callee, CalleeAM))
-    return false;
-
-  unsigned CalleeOp = 0;
-  const GlobalValue *GV = nullptr;
-  if (CalleeAM.GV != nullptr) {
-    GV = CalleeAM.GV;
-  } else if (CalleeAM.Base.Reg != 0) {
-    CalleeOp = CalleeAM.Base.Reg;
-  } else
-    return false;
-
   // Issue the call.
   MachineInstrBuilder MIB;
   if (CalleeOp) {
     // Register-indirect call.
-    unsigned CallOpc = Is64Bit ? X86::CALL64r : CallOpc = X86::CALL32r;
+    unsigned CallOpc;
+    if (Subtarget->is64Bit())
+      CallOpc = X86::CALL64r;
+    else
+      CallOpc = X86::CALL32r;
     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
       .addReg(CalleeOp);
+
   } else {
     // Direct call.
     assert(GV && "Not a direct call");
-    unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+    unsigned CallOpc;
+    if (Subtarget->is64Bit())
+      CallOpc = X86::CALL64pcrel32;
+    else
+      CallOpc = X86::CALLpcrel32;
 
     // See if we need any target-specific flags on the GV operand.
     unsigned char OpFlags = 0;
@@ -2948,97 +3000,114 @@ bool X86FastISel::FastLowerCall(CallLowe
       OpFlags = X86II::MO_DARWIN_STUB;
     }
 
+
     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
-    if (SymName)
-      MIB.addExternalSymbol(SymName, OpFlags);
+    if (MemIntName)
+      MIB.addExternalSymbol(MemIntName, OpFlags);
     else
       MIB.addGlobalAddress(GV, 0, OpFlags);
   }
 
-  // Add a register mask operand representing the call-preserved registers.
+  // Add a register mask with the call-preserved registers.
   // Proper defs for return values will be added by setPhysRegsDeadExcept().
-  MIB.addRegMask(TRI.getCallPreservedMask(CC));
+  MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
 
   // Add an implicit use GOT pointer in EBX.
   if (Subtarget->isPICStyleGOT())
     MIB.addReg(X86::EBX, RegState::Implicit);
 
-  if (Is64Bit && IsVarArg && !IsWin64)
+  if (Subtarget->is64Bit() && isVarArg && !isWin64)
     MIB.addReg(X86::AL, RegState::Implicit);
 
   // Add implicit physical register uses to the call.
-  for (auto Reg : OutRegs)
-    MIB.addReg(Reg, RegState::Implicit);
+  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+    MIB.addReg(RegArgs[i], RegState::Implicit);
 
   // Issue CALLSEQ_END
-  unsigned NumBytesForCalleeToPop =
-    computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+  const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
-    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
+    .addImm(NumBytes).addImm(NumBytesCallee);
+
+  // Build info for return calling conv lowering code.
+  // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
+  SmallVector<ISD::InputArg, 32> Ins;
+  SmallVector<EVT, 4> RetTys;
+  ComputeValueVTs(TLI, I->getType(), RetTys);
+  for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
+    EVT VT = RetTys[i];
+    MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
+    unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
+    for (unsigned j = 0; j != NumRegs; ++j) {
+      ISD::InputArg MyFlags;
+      MyFlags.VT = RegisterVT;
+      MyFlags.Used = !CS.getInstruction()->use_empty();
+      if (CS.paramHasAttr(0, Attribute::SExt))
+        MyFlags.Flags.setSExt();
+      if (CS.paramHasAttr(0, Attribute::ZExt))
+        MyFlags.Flags.setZExt();
+      if (CS.paramHasAttr(0, Attribute::InReg))
+        MyFlags.Flags.setInReg();
+      Ins.push_back(MyFlags);
+    }
+  }
 
   // Now handle call return values.
+  SmallVector<unsigned, 4> UsedRegs;
   SmallVector<CCValAssign, 16> RVLocs;
-  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs,
-                    CLI.RetTy->getContext());
+  CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
+                    I->getParent()->getContext());
+  unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
-
-  // Copy all of the result registers out of their specified physreg.
-  unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
   for (unsigned i = 0; i != RVLocs.size(); ++i) {
-    CCValAssign &VA = RVLocs[i];
-    EVT CopyVT = VA.getValVT();
+    EVT CopyVT = RVLocs[i].getValVT();
     unsigned CopyReg = ResultReg + i;
 
-    // If this is x86-64, and we disabled SSE, we can't return FP values
-    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
-        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
-      report_fatal_error("SSE register return with SSE disabled");
-    }
-
-    // If this is a call to a function that returns an fp value on the floating
-    // point stack, we must guarantee the value is popped from the stack, so
-    // a COPY is not good enough - the copy instruction may be eliminated if the
-    // return value is not used. We use the FpPOP_RETVAL instruction instead.
-    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
-      // If we prefer to use the value in xmm registers, copy it out as f80 and
-      // use a truncate to move it from fp stack reg to xmm reg.
-      if (isScalarFPTypeInSSEReg(VA.getValVT())) {
+    // If this is a call to a function that returns an fp value on the x87 fp
+    // stack, but where we prefer to use the value in xmm registers, copy it
+    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
+    if ((RVLocs[i].getLocReg() == X86::ST0 ||
+         RVLocs[i].getLocReg() == X86::ST1)) {
+      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
         CopyVT = MVT::f80;
         CopyReg = createResultReg(&X86::RFP80RegClass);
       }
       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
               TII.get(X86::FpPOP_RETVAL), CopyReg);
-
-      // Round the f80 to the right size, which also moves it to the appropriate
-      // xmm register. This is accomplished by storing the f80 value in memory
-      // and then loading it back.
-      if (CopyVT != VA.getValVT()) {
-        EVT ResVT = VA.getValVT();
-        unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
-        unsigned MemSize = ResVT.getSizeInBits()/8;
-        int FI = MFI.CreateStackObject(MemSize, MemSize, false);
-        addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
-                                  TII.get(Opc)), FI)
-          .addReg(CopyReg);
-        Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
-        addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
-                                  TII.get(Opc), ResultReg + i), FI);
-      }
     } else {
       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
-              TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
-      InRegs.push_back(VA.getLocReg());
+              TII.get(TargetOpcode::COPY),
+              CopyReg).addReg(RVLocs[i].getLocReg());
+      UsedRegs.push_back(RVLocs[i].getLocReg());
+    }
+
+    if (CopyVT != RVLocs[i].getValVT()) {
+      // Round the F80 the right size, which also moves to the appropriate xmm
+      // register. This is accomplished by storing the F80 value in memory and
+      // then loading it back. Ewww...
+      EVT ResVT = RVLocs[i].getValVT();
+      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
+      unsigned MemSize = ResVT.getSizeInBits()/8;
+      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
+      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                TII.get(Opc)), FI)
+        .addReg(CopyReg);
+      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
+      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                TII.get(Opc), ResultReg + i), FI);
     }
   }
 
-  CLI.ResultReg = ResultReg;
-  CLI.NumResultRegs = RVLocs.size();
-  CLI.Call = MIB;
+  if (RVLocs.size())
+    UpdateValueMap(I, ResultReg, RVLocs.size());
+
+  // Set all unused physreg defs as dead.
+  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
 
   return true;
 }
 
+
 bool
 X86FastISel::TargetSelectInstruction(const Instruction *I)  {
   switch (I->getOpcode()) {
@@ -3056,6 +3125,8 @@ X86FastISel::TargetSelectInstruction(con
     return X86SelectZExt(I);
   case Instruction::Br:
     return X86SelectBranch(I);
+  case Instruction::Call:
+    return X86SelectCall(I);
   case Instruction::LShr:
   case Instruction::AShr:
   case Instruction::Shl:





More information about the llvm-commits mailing list