[llvm] r204021 - [X86] New and improved VZeroUpperInserter optimization.

Lang Hames lhames at gmail.com
Sun Mar 16 18:22:54 PDT 2014


Author: lhames
Date: Sun Mar 16 20:22:54 2014
New Revision: 204021

URL: http://llvm.org/viewvc/llvm-project?rev=204021&view=rev
Log:
[X86] New and improved VZeroUpperInserter optimization.

- Adds support for inserting vzerouppers before tail-calls.
  This is enabled implicitly by having MachineInstr::copyImplicitOps preserve
  regmask operands, which allows VZeroUpperInserter to see where tail-calls use
  vector registers.

- Fixes a bug that caused the previous version of this optimization to miss some
  vzeroupper insertion points in loops. (Loops-with-vector-code that followed
  loops-without-vector-code were mistakenly overlooked by the previous version).

- New algorithm never revisits instructions.

Fixes <rdar://problem/16228798>


Modified:
    llvm/trunk/lib/CodeGen/MachineInstr.cpp
    llvm/trunk/lib/Target/X86/X86VZeroUpper.cpp
    llvm/trunk/test/CodeGen/X86/avx-vzeroupper.ll

Modified: llvm/trunk/lib/CodeGen/MachineInstr.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/MachineInstr.cpp?rev=204021&r1=204020&r2=204021&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/MachineInstr.cpp (original)
+++ llvm/trunk/lib/CodeGen/MachineInstr.cpp Sun Mar 16 20:22:54 2014
@@ -1434,7 +1434,7 @@ void MachineInstr::copyImplicitOps(Machi
   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
        i != e; ++i) {
     const MachineOperand &MO = MI->getOperand(i);
-    if (MO.isReg() && MO.isImplicit())
+    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
       addOperand(MF, MO);
   }
 }

Modified: llvm/trunk/lib/Target/X86/X86VZeroUpper.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86VZeroUpper.cpp?rev=204021&r1=204020&r2=204021&view=diff
==============================================================================
--- llvm/trunk/lib/Target/X86/X86VZeroUpper.cpp (original)
+++ llvm/trunk/lib/Target/X86/X86VZeroUpper.cpp Sun Mar 16 20:22:54 2014
@@ -31,73 +31,59 @@ using namespace llvm;
 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
 
 namespace {
-  struct VZeroUpperInserter : public MachineFunctionPass {
-    static char ID;
-    VZeroUpperInserter() : MachineFunctionPass(ID) {}
-
-    bool runOnMachineFunction(MachineFunction &MF) override;
 
-    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
+  class VZeroUpperInserter : public MachineFunctionPass {
+  public:
 
+    VZeroUpperInserter() : MachineFunctionPass(ID) {}
+    bool runOnMachineFunction(MachineFunction &MF) override;
     const char *getPassName() const override {return "X86 vzeroupper inserter";}
 
   private:
-    const TargetInstrInfo *TII; // Machine instruction info.
 
-    // Any YMM register live-in to this function?
-    bool FnHasLiveInYmm;
-
-    // BBState - Contains the state of each MBB: unknown, clean, dirty
-    SmallVector<uint8_t, 8> BBState;
-
-    // BBSolved - Keep track of all MBB which had been already analyzed
-    // and there is no further processing required.
-    BitVector BBSolved;
-
-    // Machine Basic Blocks are classified according this pass:
-    //
-    //  ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
-    //    until the MBB exit there isn't a instruction using YMM to change
-    //    the state to dirty, or one of the incoming predecessors is unknown
-    //    and there's not a dirty predecessor between them.
-    //
-    //  ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
-    //    instructions using YMM and be marked ST_CLEAN, as long as the state
-    //    is cleaned by a vzeroupper before any call.
+    void processBasicBlock(MachineBasicBlock &MBB);
+    void insertVZeroUpper(MachineBasicBlock::iterator I,
+                          MachineBasicBlock &MBB);
+    void addDirtySuccessor(MachineBasicBlock &MBB);
+
+    typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
+    static const char* getBlockExitStateName(BlockExitState ST);
+
+    // Core algorithm state:
+    // BlockState - Each block is either:
+    //   - PASS_THROUGH: There are neither YMM dirtying instructions nor
+    //                   vzeroupper instructions in this block.
+    //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
+    //                  block that will ensure that YMM is clean on exit.
+    //   - EXITS_DIRTY: An instruction in the block dirties YMM and no
+    //                  subsequent vzeroupper in the block clears it.
     //
-    //  ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
-    //    vzeroupper instruction.
+    // AddedToDirtySuccessors - This flag is raised when a block is added to the
+    //                          DirtySuccessors list to ensure that it's not
+    //                          added multiple times.
     //
-    //  ST_INIT - Placeholder for an empty state set
-    //
-    enum {
-      ST_UNKNOWN = 0,
-      ST_CLEAN   = 1,
-      ST_DIRTY   = 2,
-      ST_INIT    = 3
+    // FirstUnguardedCall - Records the location of the first unguarded call in
+    //                      each basic block that may need to be guarded by a
+    //                      vzeroupper. We won't know whether it actually needs
+    //                      to be guarded until we discover a predecessor that
+    //                      is DIRTY_OUT.
+    struct BlockState {
+      BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
+      BlockExitState ExitState;
+      bool AddedToDirtySuccessors;
+      MachineBasicBlock::iterator FirstUnguardedCall;
     };
+    typedef SmallVector<BlockState, 8> BlockStateMap;
+    typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
 
-    // computeState - Given two states, compute the resulting state, in
-    // the following way
-    //
-    //  1) One dirty state yields another dirty state
-    //  2) All states must be clean for the result to be clean
-    //  3) If none above and one unknown, the result state is also unknown
-    //
-    static unsigned computeState(unsigned PrevState, unsigned CurState) {
-      if (PrevState == ST_INIT)
-        return CurState;
-
-      if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
-        return ST_DIRTY;
-
-      if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
-        return ST_CLEAN;
-
-      return ST_UNKNOWN;
-    }
+    BlockStateMap BlockStates;
+    DirtySuccessorsWorkList DirtySuccessors;
+    bool EverMadeChange;
+    const TargetInstrInfo *TII;
 
+    static char ID;
   };
+
   char VZeroUpperInserter::ID = 0;
 }
 
@@ -105,6 +91,15 @@ FunctionPass *llvm::createX86IssueVZeroU
   return new VZeroUpperInserter();
 }
 
+const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
+  switch (ST) {
+    case PASS_THROUGH: return "Pass-through";
+    case EXITS_DIRTY: return "Exits-dirty";
+    case EXITS_CLEAN: return "Exits-clean";
+  }
+  llvm_unreachable("Invalid block exit state.");
+}
+
 static bool isYmmReg(unsigned Reg) {
   return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
 }
@@ -143,7 +138,8 @@ static bool hasYmmReg(MachineInstr *MI)
 
 /// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
 /// instruction.
-static bool clobbersAnyYmmReg(MachineInstr *MI) {
+static bool callClobbersAnyYmmReg(MachineInstr *MI) {
+  assert(MI->isCall() && "Can only be called on call instructions.");
   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
     const MachineOperand &MO = MI->getOperand(i);
     if (!MO.isRegMask())
@@ -156,104 +152,44 @@ static bool clobbersAnyYmmReg(MachineIns
   return false;
 }
 
-/// runOnMachineFunction - Loop over all of the basic blocks, inserting
-/// vzero upper instructions before function calls.
-bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
-  if (MF.getTarget().getSubtarget<X86Subtarget>().hasAVX512())
-    return false;
-  TII = MF.getTarget().getInstrInfo();
-  MachineRegisterInfo &MRI = MF.getRegInfo();
-  bool EverMadeChange = false;
-
-  // Fast check: if the function doesn't use any ymm registers, we don't need
-  // to insert any VZEROUPPER instructions.  This is constant-time, so it is
-  // cheap in the common case of no ymm use.
-  bool YMMUsed = false;
-  const TargetRegisterClass *RC = &X86::VR256RegClass;
-  for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
-       i != e; i++) {
-    if (!MRI.reg_nodbg_empty(*i)) {
-      YMMUsed = true;
-      break;
-    }
-  }
-  if (!YMMUsed)
-    return EverMadeChange;
-
-  // Pre-compute the existence of any live-in YMM registers to this function
-  FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
+// Insert a vzeroupper instruction before I.
+void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
+                                              MachineBasicBlock &MBB) {
+  DebugLoc dl = I->getDebugLoc();
+  BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
+  ++NumVZU;
+  EverMadeChange = true;
+}
 
-  assert(BBState.empty());
-  BBState.resize(MF.getNumBlockIDs(), 0);
-  BBSolved.resize(MF.getNumBlockIDs(), 0);
-
-  // Each BB state depends on all predecessors, loop over until everything
-  // converges.  (Once we converge, we can implicitly mark everything that is
-  // still ST_UNKNOWN as ST_CLEAN.)
-  while (1) {
-    bool MadeChange = false;
-
-    // Process all basic blocks.
-    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
-      MadeChange |= processBasicBlock(MF, *I);
-
-    // If this iteration over the code changed anything, keep iterating.
-    if (!MadeChange) break;
-    EverMadeChange = true;
+// Add MBB to the DirtySuccessors list if it hasn't already been added.
+void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
+  if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
+    DirtySuccessors.push_back(&MBB);
+    BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
   }
-
-  BBState.clear();
-  BBSolved.clear();
-  return EverMadeChange;
 }
 
 /// processBasicBlock - Loop over all of the instructions in the basic block,
 /// inserting vzero upper instructions before function calls.
-bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
-                                           MachineBasicBlock &BB) {
-  bool Changed = false;
-  unsigned BBNum = BB.getNumber();
-
-  // Don't process already solved BBs
-  if (BBSolved[BBNum])
-    return false; // No changes
-
-  // Check the state of all predecessors
-  unsigned EntryState = ST_INIT;
-  for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
-       PE = BB.pred_end(); PI != PE; ++PI) {
-    EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
-    if (EntryState == ST_DIRTY)
-      break;
-  }
-
+void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
 
-  // The entry MBB for the function may set the initial state to dirty if
-  // the function receives any YMM incoming arguments
-  if (&BB == MF.begin()) {
-    EntryState = ST_CLEAN;
-    if (FnHasLiveInYmm)
-      EntryState = ST_DIRTY;
-  }
+  // Start by assuming that the block PASS_THROUGH, which implies no unguarded
+  // calls.
+  BlockExitState CurState = PASS_THROUGH;
+  BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
 
-  // The current state is initialized according to the predecessors
-  unsigned CurState = EntryState;
-  bool BBHasCall = false;
-
-  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
-    DebugLoc dl = I->getDebugLoc();
+  for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
     MachineInstr *MI = I;
-
     bool isControlFlow = MI->isCall() || MI->isReturn();
 
     // Shortcut: don't need to check regular instructions in dirty state.
-    if (!isControlFlow && CurState == ST_DIRTY)
+    if (!isControlFlow && CurState == EXITS_DIRTY)
       continue;
 
     if (hasYmmReg(MI)) {
       // We found a ymm-using instruction; this could be an AVX instruction,
       // or it could be control flow.
-      CurState = ST_DIRTY;
+      CurState = EXITS_DIRTY;
       continue;
     }
 
@@ -267,11 +203,9 @@ bool VZeroUpperInserter::processBasicBlo
     // standard calling convention is not used (RegMask is not used to mark
     // register clobbered and register usage (def/imp-def/use) is well-dfined
     // and explicitly specified.
-    if (MI->isCall() && !clobbersAnyYmmReg(MI))
+    if (MI->isCall() && !callClobbersAnyYmmReg(MI))
       continue;
 
-    BBHasCall = true;
-
     // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
     // registers. This instruction has zero latency. In addition, the processor
     // changes back to Clean state, after which execution of Intel SSE
@@ -280,38 +214,101 @@ bool VZeroUpperInserter::processBasicBlo
     // execute SSE code.
     // FIXME: In some cases, we may want to move the VZEROUPPER into a
     // predecessor block.
-    if (CurState == ST_DIRTY) {
-      // Only insert the VZEROUPPER in case the entry state isn't unknown.
-      // When unknown, only compute the information within the block to have
-      // it available in the exit if possible, but don't change the block.
-      if (EntryState != ST_UNKNOWN) {
-        BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
-        ++NumVZU;
-      }
-
+    if (CurState == EXITS_DIRTY) {
       // After the inserted VZEROUPPER the state becomes clean again, but
       // other YMM may appear before other subsequent calls or even before
       // the end of the BB.
-      CurState = ST_CLEAN;
+      insertVZeroUpper(I, MBB);
+      CurState = EXITS_CLEAN;
+    } else if (CurState == PASS_THROUGH) {
+      // If this block is currently in pass-through state and we encounter a
+      // call then whether we need a vzeroupper or not depends on whether this
+      // block has successors that exit dirty. Record the location of the call,
+      // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
+      // It will be inserted later if necessary.
+      BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
+      CurState = EXITS_CLEAN;
     }
   }
 
-  DEBUG(dbgs() << "MBB #" << BBNum
-               << ", current state: " << CurState << '\n');
+  DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
+               << getBlockExitStateName(CurState) << '\n');
 
-  // A BB can only be considered solved when we both have done all the
-  // necessary transformations, and have computed the exit state.  This happens
-  // in two cases:
-  //  1) We know the entry state: this immediately implies the exit state and
-  //     all the necessary transformations.
-  //  2) There are no calls, and and a non-call instruction marks this block:
-  //     no transformations are necessary, and we know the exit state.
-  if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
-    BBSolved[BBNum] = true;
+  if (CurState == EXITS_DIRTY)
+    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+                                          SE = MBB.succ_end();
+         SI != SE; ++SI)
+      addDirtySuccessor(**SI);
 
-  if (CurState != BBState[BBNum])
-    Changed = true;
+  BlockStates[MBB.getNumber()].ExitState = CurState;
+}
 
-  BBState[BBNum] = CurState;
-  return Changed;
+/// runOnMachineFunction - Loop over all of the basic blocks, inserting
+/// vzero upper instructions before function calls.
+bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
+  if (MF.getTarget().getSubtarget<X86Subtarget>().hasAVX512())
+    return false;
+  TII = MF.getTarget().getInstrInfo();
+  MachineRegisterInfo &MRI = MF.getRegInfo();
+  EverMadeChange = false;
+
+  // Fast check: if the function doesn't use any ymm registers, we don't need
+  // to insert any VZEROUPPER instructions.  This is constant-time, so it is
+  // cheap in the common case of no ymm use.
+  bool YMMUsed = false;
+  const TargetRegisterClass *RC = &X86::VR256RegClass;
+  for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
+       i != e; i++) {
+    if (!MRI.reg_nodbg_empty(*i)) {
+      YMMUsed = true;
+      break;
+    }
+  }
+  if (!YMMUsed) {
+    return false;
+  }
+
+  assert(BlockStates.empty() && DirtySuccessors.empty() &&
+         "X86VZeroUpper state should be clear");
+  BlockStates.resize(MF.getNumBlockIDs());
+
+  // Process all blocks. This will compute block exit states, record the first
+  // unguarded call in each block, and add successors of dirty blocks to the
+  // DirtySuccessors list.
+  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+    processBasicBlock(*I);
+
+  // If any YMM regs are live in to this function, add the entry block to the
+  // DirtySuccessors list
+  if (checkFnHasLiveInYmm(MRI))
+    addDirtySuccessor(MF.front());
+
+  // Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
+  // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
+  // through PASS_THROUGH blocks.
+  while (!DirtySuccessors.empty()) {
+    MachineBasicBlock &MBB = *DirtySuccessors.back();
+    DirtySuccessors.pop_back();
+    BlockState &BBState = BlockStates[MBB.getNumber()];
+
+    // MBB is a successor of a dirty block, so its first call needs to be
+    // guarded.
+    if (BBState.FirstUnguardedCall != MBB.end())
+      insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
+
+    // If this successor was a pass-through block then it is now dirty, and its
+    // successors need to be added to the worklist (if they haven't been
+    // already).
+    if (BBState.ExitState == PASS_THROUGH) {
+      DEBUG(dbgs() << "MBB #" << MBB.getNumber()
+                   << " was Pass-through, is now Dirty-out.\n");
+      for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+                                            SE = MBB.succ_end();
+           SI != SE; ++SI)
+        addDirtySuccessor(**SI);
+    }
+  }
+
+  BlockStates.clear();
+  return EverMadeChange;
 }

Modified: llvm/trunk/test/CodeGen/X86/avx-vzeroupper.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/avx-vzeroupper.ll?rev=204021&r1=204020&r2=204021&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/X86/avx-vzeroupper.ll (original)
+++ llvm/trunk/test/CodeGen/X86/avx-vzeroupper.ll Sun Mar 16 20:22:54 2014
@@ -1,5 +1,6 @@
 ; RUN: llc < %s -x86-use-vzeroupper -mtriple=x86_64-apple-darwin -mcpu=corei7-avx -mattr=+avx | FileCheck %s
 
+declare i32 @foo()
 declare <4 x float> @do_sse(<4 x float>)
 declare <8 x float> @do_avx(<8 x float>)
 declare <4 x float> @llvm.x86.avx.vextractf128.ps.256(<8 x float>, i8) nounwind readnone
@@ -36,20 +37,38 @@ entry:
   ret <8 x float> %c
 }
 
+;; Check that vzeroupper is emitted for tail calls.
+
+; CHECK: _test02
+define <4 x float> @test02(<8 x float> %a, <8 x float> %b) nounwind uwtable ssp {
+entry:
+  %add.i = fadd <8 x float> %a, %b
+  %add.low = call <4 x float> @llvm.x86.avx.vextractf128.ps.256(<8 x float> %add.i, i8 0)
+  ; CHECK: vzeroupper
+  ; CHECK: jmp _do_sse
+  %call3 = tail call <4 x float> @do_sse(<4 x float> %add.low) nounwind
+  ret <4 x float> %call3
+}
+
 ;; Test the pass convergence and also that vzeroupper is only issued when necessary,
 ;; for this function it should be only once
 
-; CHECK: _test02
-define <4 x float> @test02(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
+; CHECK: _test03
+define <4 x float> @test03(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
 entry:
   %add.i = fadd <4 x float> %a, %b
-  br label %for.body
+  br label %while.cond
 
-for.body:                                         ; preds = %for.body, %entry
+while.cond: 
+  %call = tail call i32 @foo()
+  %tobool = icmp eq i32 %call, 0
+  br i1 %tobool, label %for.body, label %while.cond
+
+for.body:
   ; CHECK: LBB
   ; CHECK-NOT: vzeroupper
-  %i.018 = phi i32 [ 0, %entry ], [ %1, %for.body ]
-  %c.017 = phi <4 x float> [ %add.i, %entry ], [ %call14, %for.body ]
+  %i.018 = phi i32 [ 0, %while.cond ], [ %1, %for.body ]
+  %c.017 = phi <4 x float> [ %add.i, %while.cond ], [ %call14, %for.body ]
   ; CHECK: callq _do_sse
   %call5 = tail call <4 x float> @do_sse(<4 x float> %c.017) nounwind
   ; CHECK-NEXT: callq _do_sse
@@ -63,14 +82,14 @@ for.body:
   %exitcond = icmp eq i32 %1, 4
   br i1 %exitcond, label %for.end, label %for.body
 
-for.end:                                          ; preds = %for.body
+for.end:
   ret <4 x float> %call14
 }
 
 ;; Check that we also perform vzeroupper when we return from a function.
 
-; CHECK: _test03
-define <4 x float> @test03(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
+; CHECK: _test04
+define <4 x float> @test04(<4 x float> %a, <4 x float> %b) nounwind uwtable ssp {
 entry:
   %shuf = shufflevector <4 x float> %a, <4 x float> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
   ; CHECK-NOT: vzeroupper





More information about the llvm-commits mailing list