[llvm] r201827 - Rename many DataLayout variables from TD to DL.

Rafael Espindola rafael.espindola at gmail.com
Thu Feb 20 16:06:32 PST 2014


Author: rafael
Date: Thu Feb 20 18:06:31 2014
New Revision: 201827

URL: http://llvm.org/viewvc/llvm-project?rev=201827&view=rev
Log:
Rename many DataLayout variables from TD to DL.

I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.

Modified:
    llvm/trunk/lib/Analysis/IPA/InlineCost.cpp
    llvm/trunk/lib/Analysis/InstructionSimplify.cpp
    llvm/trunk/lib/Analysis/Lint.cpp
    llvm/trunk/lib/Transforms/IPO/ConstantMerge.cpp
    llvm/trunk/lib/Transforms/IPO/GlobalOpt.cpp
    llvm/trunk/lib/Transforms/IPO/MergeFunctions.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombine.h
    llvm/trunk/lib/Transforms/InstCombine/InstCombineAddSub.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineCasts.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombinePHI.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineSelect.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
    llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
    llvm/trunk/lib/Transforms/Instrumentation/AddressSanitizer.cpp
    llvm/trunk/lib/Transforms/Instrumentation/BoundsChecking.cpp
    llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp
    llvm/trunk/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
    llvm/trunk/lib/Transforms/Scalar/EarlyCSE.cpp
    llvm/trunk/lib/Transforms/Scalar/GVN.cpp
    llvm/trunk/lib/Transforms/Scalar/GlobalMerge.cpp
    llvm/trunk/lib/Transforms/Scalar/IndVarSimplify.cpp
    llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp
    llvm/trunk/lib/Transforms/Scalar/LICM.cpp
    llvm/trunk/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
    llvm/trunk/lib/Transforms/Scalar/MemCpyOptimizer.cpp
    llvm/trunk/lib/Transforms/Scalar/SCCP.cpp
    llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp
    llvm/trunk/lib/Transforms/Utils/CloneFunction.cpp
    llvm/trunk/lib/Transforms/Utils/SimplifyCFG.cpp
    llvm/trunk/lib/Transforms/Utils/SimplifyIndVar.cpp
    llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
    llvm/trunk/lib/Transforms/Vectorize/BBVectorize.cpp

Modified: llvm/trunk/lib/Analysis/IPA/InlineCost.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/IPA/InlineCost.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/IPA/InlineCost.cpp (original)
+++ llvm/trunk/lib/Analysis/IPA/InlineCost.cpp Thu Feb 20 18:06:31 2014
@@ -43,7 +43,7 @@ class CallAnalyzer : public InstVisitor<
   friend class InstVisitor<CallAnalyzer, bool>;
 
   // DataLayout if available, or null.
-  const DataLayout *const TD;
+  const DataLayout *const DL;
 
   /// The TargetTransformInfo available for this compilation.
   const TargetTransformInfo &TTI;
@@ -142,9 +142,9 @@ class CallAnalyzer : public InstVisitor<
   bool visitUnreachableInst(UnreachableInst &I);
 
 public:
-  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
+  CallAnalyzer(const DataLayout *DL, const TargetTransformInfo &TTI,
                Function &Callee, int Threshold)
-      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
+      : DL(DL), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
         IsCallerRecursive(false), IsRecursiveCall(false),
         ExposesReturnsTwice(false), HasDynamicAlloca(false),
         ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
@@ -256,10 +256,10 @@ bool CallAnalyzer::isGEPOffsetConstant(G
 /// Returns false if unable to compute the offset for any reason. Respects any
 /// simplified values known during the analysis of this callsite.
 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
-  if (!TD)
+  if (!DL)
     return false;
 
-  unsigned IntPtrWidth = TD->getPointerSizeInBits();
+  unsigned IntPtrWidth = DL->getPointerSizeInBits();
   assert(IntPtrWidth == Offset.getBitWidth());
 
   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
@@ -275,12 +275,12 @@ bool CallAnalyzer::accumulateGEPOffset(G
     // Handle a struct index, which adds its field offset to the pointer.
     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
       unsigned ElementIdx = OpC->getZExtValue();
-      const StructLayout *SL = TD->getStructLayout(STy);
+      const StructLayout *SL = DL->getStructLayout(STy);
       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
       continue;
     }
 
-    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
+    APInt TypeSize(IntPtrWidth, DL->getTypeAllocSize(GTI.getIndexedType()));
     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
   }
   return true;
@@ -293,7 +293,7 @@ bool CallAnalyzer::visitAlloca(AllocaIns
   // Accumulate the allocated size.
   if (I.isStaticAlloca()) {
     Type *Ty = I.getAllocatedType();
-    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
+    AllocatedSize += (DL ? DL->getTypeAllocSize(Ty) :
                       Ty->getPrimitiveSizeInBits());
   }
 
@@ -330,7 +330,7 @@ bool CallAnalyzer::visitGetElementPtr(Ge
 
   // Try to fold GEPs of constant-offset call site argument pointers. This
   // requires target data and inbounds GEPs.
-  if (TD && I.isInBounds()) {
+  if (DL && I.isInBounds()) {
     // Check if we have a base + offset for the pointer.
     Value *Ptr = I.getPointerOperand();
     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
@@ -412,7 +412,7 @@ bool CallAnalyzer::visitPtrToInt(PtrToIn
   // Track base/offset pairs when converted to a plain integer provided the
   // integer is large enough to represent the pointer.
   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
-  if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
+  if (DL && IntegerSize >= DL->getPointerSizeInBits()) {
     std::pair<Value *, APInt> BaseAndOffset
       = ConstantOffsetPtrs.lookup(I.getOperand(0));
     if (BaseAndOffset.first)
@@ -449,7 +449,7 @@ bool CallAnalyzer::visitIntToPtr(IntToPt
   // modifications provided the integer is not too large.
   Value *Op = I.getOperand(0);
   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
-  if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
+  if (DL && IntegerSize <= DL->getPointerSizeInBits()) {
     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
     if (BaseAndOffset.first)
       ConstantOffsetPtrs[&I] = BaseAndOffset;
@@ -488,7 +488,7 @@ bool CallAnalyzer::visitUnaryInstruction
     COp = SimplifiedValues.lookup(Operand);
   if (COp)
     if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
-                                               COp, TD)) {
+                                               COp, DL)) {
       SimplifiedValues[&I] = C;
       return true;
     }
@@ -602,7 +602,7 @@ bool CallAnalyzer::visitBinaryOperator(B
   if (!isa<Constant>(RHS))
     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
       RHS = SimpleRHS;
-  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
+  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
     SimplifiedValues[&I] = C;
     return true;
@@ -784,7 +784,7 @@ bool CallAnalyzer::visitCallSite(CallSit
   // during devirtualization and so we want to give it a hefty bonus for
   // inlining, but cap that bonus in the event that inlining wouldn't pan
   // out. Pretend to inline the function, with a custom threshold.
-  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
+  CallAnalyzer CA(DL, TTI, *F, InlineConstants::IndirectCallThreshold);
   if (CA.analyzeCall(CS)) {
     // We were able to inline the indirect call! Subtract the cost from the
     // bonus we want to apply, but don't go below zero.
@@ -931,10 +931,10 @@ bool CallAnalyzer::analyzeBlock(BasicBlo
 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
 /// no constant offsets applied.
 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
-  if (!TD || !V->getType()->isPointerTy())
+  if (!DL || !V->getType()->isPointerTy())
     return 0;
 
-  unsigned IntPtrWidth = TD->getPointerSizeInBits();
+  unsigned IntPtrWidth = DL->getPointerSizeInBits();
   APInt Offset = APInt::getNullValue(IntPtrWidth);
 
   // Even though we don't look through PHI nodes, we could be called on an
@@ -958,7 +958,7 @@ ConstantInt *CallAnalyzer::stripAndCompu
     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
   } while (Visited.insert(V));
 
-  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
+  Type *IntPtrTy = DL->getIntPtrType(V->getContext());
   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
 }
 
@@ -993,12 +993,12 @@ bool CallAnalyzer::analyzeCall(CallSite
   // Give out bonuses per argument, as the instructions setting them up will
   // be gone after inlining.
   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
-    if (TD && CS.isByValArgument(I)) {
+    if (DL && CS.isByValArgument(I)) {
       // We approximate the number of loads and stores needed by dividing the
       // size of the byval type by the target's pointer size.
       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
-      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
-      unsigned PointerSize = TD->getPointerSizeInBits();
+      unsigned TypeSize = DL->getTypeSizeInBits(PTy->getElementType());
+      unsigned PointerSize = DL->getPointerSizeInBits();
       // Ceiling division.
       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
 

Modified: llvm/trunk/lib/Analysis/InstructionSimplify.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/InstructionSimplify.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/InstructionSimplify.cpp (original)
+++ llvm/trunk/lib/Analysis/InstructionSimplify.cpp Thu Feb 20 18:06:31 2014
@@ -42,12 +42,12 @@ STATISTIC(NumFactor , "Number of factori
 STATISTIC(NumReassoc, "Number of reassociations");
 
 struct Query {
-  const DataLayout *TD;
+  const DataLayout *DL;
   const TargetLibraryInfo *TLI;
   const DominatorTree *DT;
 
-  Query(const DataLayout *td, const TargetLibraryInfo *tli,
-        const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
+  Query(const DataLayout *DL, const TargetLibraryInfo *tli,
+        const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {}
 };
 
 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
@@ -595,7 +595,7 @@ static Value *SimplifyAddInst(Value *Op0
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
-                                      Q.TD, Q.TLI);
+                                      Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -651,9 +651,9 @@ static Value *SimplifyAddInst(Value *Op0
 }
 
 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
-                             const DataLayout *TD, const TargetLibraryInfo *TLI,
+                             const DataLayout *DL, const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
+  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
                            RecursionLimit);
 }
 
@@ -667,17 +667,17 @@ Value *llvm::SimplifyAddInst(Value *Op0,
 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
 /// folding.
-static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
+static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
                                                 Value *&V,
                                                 bool AllowNonInbounds = false) {
   assert(V->getType()->getScalarType()->isPointerTy());
 
   // Without DataLayout, just be conservative for now. Theoretically, more could
   // be done in this case.
-  if (!TD)
+  if (!DL)
     return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
 
-  Type *IntPtrTy = TD->getIntPtrType(V->getType())->getScalarType();
+  Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType();
   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
 
   // Even though we don't look through PHI nodes, we could be called on an
@@ -687,7 +687,7 @@ static Constant *stripAndComputeConstant
   do {
     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
-          !GEP->accumulateConstantOffset(*TD, Offset))
+          !GEP->accumulateConstantOffset(*DL, Offset))
         break;
       V = GEP->getPointerOperand();
     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
@@ -712,10 +712,10 @@ static Constant *stripAndComputeConstant
 
 /// \brief Compute the constant difference between two pointer values.
 /// If the difference is not a constant, returns zero.
-static Constant *computePointerDifference(const DataLayout *TD,
+static Constant *computePointerDifference(const DataLayout *DL,
                                           Value *LHS, Value *RHS) {
-  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
-  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
+  Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
+  Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 
   // If LHS and RHS are not related via constant offsets to the same base
   // value, there is nothing we can do here.
@@ -737,7 +737,7 @@ static Value *SimplifySubInst(Value *Op0
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
   // X - undef -> undef
@@ -831,7 +831,7 @@ static Value *SimplifySubInst(Value *Op0
   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
   if (match(Op0, m_PtrToInt(m_Value(X))) &&
       match(Op1, m_PtrToInt(m_Value(Y))))
-    if (Constant *Result = computePointerDifference(Q.TD, X, Y))
+    if (Constant *Result = computePointerDifference(Q.DL, X, Y))
       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
 
   // Mul distributes over Sub.  Try some generic simplifications based on this.
@@ -857,9 +857,9 @@ static Value *SimplifySubInst(Value *Op0
 }
 
 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
-                             const DataLayout *TD, const TargetLibraryInfo *TLI,
+                             const DataLayout *DL, const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
+  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
                            RecursionLimit);
 }
 
@@ -871,7 +871,7 @@ static Value *SimplifyFAddInst(Value *Op
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -913,7 +913,7 @@ static Value *SimplifyFSubInst(Value *Op
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
   }
 
@@ -951,7 +951,7 @@ static Value *SimplifyFMulInst(Value *Op
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -977,7 +977,7 @@ static Value *SimplifyMulInst(Value *Op0
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -1035,29 +1035,29 @@ static Value *SimplifyMulInst(Value *Op0
 }
 
 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
-                             const DataLayout *TD, const TargetLibraryInfo *TLI,
+                             const DataLayout *DL, const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
 }
 
 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
-                             const DataLayout *TD, const TargetLibraryInfo *TLI,
+                             const DataLayout *DL, const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
 }
 
 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
                               FastMathFlags FMF,
-                              const DataLayout *TD,
+                              const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
 }
 
-Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
@@ -1067,7 +1067,7 @@ static Value *SimplifyDiv(Instruction::B
   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { C0, C1 };
-      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
+      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
     }
   }
 
@@ -1142,10 +1142,10 @@ static Value *SimplifySDivInst(Value *Op
   return 0;
 }
 
-Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
@@ -1158,10 +1158,10 @@ static Value *SimplifyUDivInst(Value *Op
   return 0;
 }
 
-Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1177,10 +1177,10 @@ static Value *SimplifyFDivInst(Value *Op
   return 0;
 }
 
-Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyRem - Given operands for an SRem or URem, see if we can
@@ -1190,7 +1190,7 @@ static Value *SimplifyRem(Instruction::B
   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { C0, C1 };
-      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
+      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
     }
   }
 
@@ -1247,10 +1247,10 @@ static Value *SimplifySRemInst(Value *Op
   return 0;
 }
 
-Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyURemInst - Given operands for a URem, see if we can
@@ -1263,10 +1263,10 @@ static Value *SimplifyURemInst(Value *Op
   return 0;
 }
 
-Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
@@ -1282,10 +1282,10 @@ static Value *SimplifyFRemInst(Value *Op
   return 0;
 }
 
-Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
@@ -1322,7 +1322,7 @@ static Value *SimplifyShift(unsigned Opc
   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { C0, C1 };
-      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
+      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
     }
   }
 
@@ -1372,9 +1372,9 @@ static Value *SimplifyShlInst(Value *Op0
 }
 
 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
-                             const DataLayout *TD, const TargetLibraryInfo *TLI,
+                             const DataLayout *DL, const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
+  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
                            RecursionLimit);
 }
 
@@ -1403,10 +1403,10 @@ static Value *SimplifyLShrInst(Value *Op
 }
 
 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
-                              const DataLayout *TD,
+                              const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
+  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
                             RecursionLimit);
 }
 
@@ -1439,10 +1439,10 @@ static Value *SimplifyAShrInst(Value *Op
 }
 
 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
-                              const DataLayout *TD,
+                              const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
+  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
                             RecursionLimit);
 }
 
@@ -1454,7 +1454,7 @@ static Value *SimplifyAndInst(Value *Op0
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -1539,10 +1539,10 @@ static Value *SimplifyAndInst(Value *Op0
   return 0;
 }
 
-Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyOrInst - Given operands for an Or, see if we can
@@ -1553,7 +1553,7 @@ static Value *SimplifyOrInst(Value *Op0,
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -1633,10 +1633,10 @@ static Value *SimplifyOrInst(Value *Op0,
   return 0;
 }
 
-Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
                             const TargetLibraryInfo *TLI,
                             const DominatorTree *DT) {
-  return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyXorInst - Given operands for a Xor, see if we can
@@ -1647,7 +1647,7 @@ static Value *SimplifyXorInst(Value *Op0
     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
       Constant *Ops[] = { CLHS, CRHS };
       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
-                                      Ops, Q.TD, Q.TLI);
+                                      Ops, Q.DL, Q.TLI);
     }
 
     // Canonicalize the constant to the RHS.
@@ -1693,10 +1693,10 @@ static Value *SimplifyXorInst(Value *Op0
   return 0;
 }
 
-Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
 }
 
 static Type *GetCompareTy(Value *Op) {
@@ -1751,7 +1751,7 @@ static Value *ExtractEquivalentCondition
 // If the C and C++ standards are ever made sufficiently restrictive in this
 // area, it may be possible to update LLVM's semantics accordingly and reinstate
 // this optimization.
-static Constant *computePointerICmp(const DataLayout *TD,
+static Constant *computePointerICmp(const DataLayout *DL,
                                     const TargetLibraryInfo *TLI,
                                     CmpInst::Predicate Pred,
                                     Value *LHS, Value *RHS) {
@@ -1793,8 +1793,8 @@ static Constant *computePointerICmp(cons
   // numerous hazards. AliasAnalysis and its utilities rely on special rules
   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
   // doesn't need to guarantee pointer inequality when it says NoAlias.
-  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
-  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
+  Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
+  Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 
   // If LHS and RHS are related via constant offsets to the same base
   // value, we can replace it with an icmp which just compares the offsets.
@@ -1838,8 +1838,8 @@ static Constant *computePointerICmp(cons
       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
       uint64_t LHSSize, RHSSize;
       if (LHSOffsetCI && RHSOffsetCI &&
-          getObjectSize(LHS, LHSSize, TD, TLI) &&
-          getObjectSize(RHS, RHSSize, TD, TLI)) {
+          getObjectSize(LHS, LHSSize, DL, TLI) &&
+          getObjectSize(RHS, RHSSize, DL, TLI)) {
         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
         if (!LHSOffsetValue.isNegative() &&
@@ -1865,8 +1865,8 @@ static Constant *computePointerICmp(cons
     // equality comparisons concerning the result. We avoid walking the whole
     // chain again by starting where the last calls to
     // stripAndComputeConstantOffsets left off and accumulate the offsets.
-    Constant *LHSNoBound = stripAndComputeConstantOffsets(TD, LHS, true);
-    Constant *RHSNoBound = stripAndComputeConstantOffsets(TD, RHS, true);
+    Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
+    Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
     if (LHS == RHS)
       return ConstantExpr::getICmp(Pred,
                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
@@ -1886,7 +1886,7 @@ static Value *SimplifyICmpInst(unsigned
 
   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
     if (Constant *CRHS = dyn_cast<Constant>(RHS))
-      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
+      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 
     // If we have a constant, make sure it is on the RHS.
     std::swap(LHS, RHS);
@@ -1950,40 +1950,40 @@ static Value *SimplifyICmpInst(unsigned
       return getTrue(ITy);
     case ICmpInst::ICMP_EQ:
     case ICmpInst::ICMP_ULE:
-      if (isKnownNonZero(LHS, Q.TD))
+      if (isKnownNonZero(LHS, Q.DL))
         return getFalse(ITy);
       break;
     case ICmpInst::ICMP_NE:
     case ICmpInst::ICMP_UGT:
-      if (isKnownNonZero(LHS, Q.TD))
+      if (isKnownNonZero(LHS, Q.DL))
         return getTrue(ITy);
       break;
     case ICmpInst::ICMP_SLT:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
       if (LHSKnownNegative)
         return getTrue(ITy);
       if (LHSKnownNonNegative)
         return getFalse(ITy);
       break;
     case ICmpInst::ICMP_SLE:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
       if (LHSKnownNegative)
         return getTrue(ITy);
-      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
+      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
         return getFalse(ITy);
       break;
     case ICmpInst::ICMP_SGE:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
       if (LHSKnownNegative)
         return getFalse(ITy);
       if (LHSKnownNonNegative)
         return getTrue(ITy);
       break;
     case ICmpInst::ICMP_SGT:
-      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
       if (LHSKnownNegative)
         return getFalse(ITy);
-      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
+      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
         return getTrue(ITy);
       break;
     }
@@ -2066,8 +2066,8 @@ static Value *SimplifyICmpInst(unsigned
 
     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
     // if the integer type is the same size as the pointer type.
-    if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
-        Q.TD->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
+    if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) &&
+        Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
         // Transfer the cast to the constant.
         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
@@ -2287,7 +2287,7 @@ static Value *SimplifyICmpInst(unsigned
       break;
     case ICmpInst::ICMP_SGT:
     case ICmpInst::ICMP_SGE:
-      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
+      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2297,7 +2297,7 @@ static Value *SimplifyICmpInst(unsigned
       return getFalse(ITy);
     case ICmpInst::ICMP_SLT:
     case ICmpInst::ICMP_SLE:
-      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
+      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2316,7 +2316,7 @@ static Value *SimplifyICmpInst(unsigned
       break;
     case ICmpInst::ICMP_SGT:
     case ICmpInst::ICMP_SGE:
-      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
+      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2326,7 +2326,7 @@ static Value *SimplifyICmpInst(unsigned
       return getTrue(ITy);
     case ICmpInst::ICMP_SLT:
     case ICmpInst::ICMP_SLE:
-      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
+      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
       if (!KnownNonNegative)
         break;
       // fall-through
@@ -2569,7 +2569,7 @@ static Value *SimplifyICmpInst(unsigned
   // Simplify comparisons of related pointers using a powerful, recursive
   // GEP-walk when we have target data available..
   if (LHS->getType()->isPointerTy())
-    if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
+    if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
       return C;
 
   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
@@ -2609,10 +2609,10 @@ static Value *SimplifyICmpInst(unsigned
 }
 
 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
-                              const DataLayout *TD,
+                              const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
+  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
                             RecursionLimit);
 }
 
@@ -2625,7 +2625,7 @@ static Value *SimplifyFCmpInst(unsigned
 
   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
     if (Constant *CRHS = dyn_cast<Constant>(RHS))
-      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
+      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 
     // If we have a constant, make sure it is on the RHS.
     std::swap(LHS, RHS);
@@ -2706,10 +2706,10 @@ static Value *SimplifyFCmpInst(unsigned
 }
 
 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
-                              const DataLayout *TD,
+                              const DataLayout *DL,
                               const TargetLibraryInfo *TLI,
                               const DominatorTree *DT) {
-  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
+  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
                             RecursionLimit);
 }
 
@@ -2745,10 +2745,10 @@ static Value *SimplifySelectInst(Value *
 }
 
 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
-                                const DataLayout *TD,
+                                const DataLayout *DL,
                                 const TargetLibraryInfo *TLI,
                                 const DominatorTree *DT) {
-  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
+  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT),
                               RecursionLimit);
 }
 
@@ -2776,9 +2776,9 @@ static Value *SimplifyGEPInst(ArrayRef<V
     if (match(Ops[1], m_Zero()))
       return Ops[0];
     // getelementptr P, N -> P if P points to a type of zero size.
-    if (Q.TD) {
+    if (Q.DL) {
       Type *Ty = PtrTy->getElementType();
-      if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
+      if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0)
         return Ops[0];
     }
   }
@@ -2791,10 +2791,10 @@ static Value *SimplifyGEPInst(ArrayRef<V
   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
 }
 
-Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
+Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
                              const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
@@ -2828,10 +2828,10 @@ static Value *SimplifyInsertValueInst(Va
 
 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
                                      ArrayRef<unsigned> Idxs,
-                                     const DataLayout *TD,
+                                     const DataLayout *DL,
                                      const TargetLibraryInfo *TLI,
                                      const DominatorTree *DT) {
-  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
+  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT),
                                    RecursionLimit);
 }
 
@@ -2871,15 +2871,15 @@ static Value *SimplifyPHINode(PHINode *P
 
 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
   if (Constant *C = dyn_cast<Constant>(Op))
-    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
+    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
 
   return 0;
 }
 
-Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
+Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
                                const TargetLibraryInfo *TLI,
                                const DominatorTree *DT) {
-  return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit);
 }
 
 //=== Helper functions for higher up the class hierarchy.
@@ -2924,7 +2924,7 @@ static Value *SimplifyBinOp(unsigned Opc
     if (Constant *CLHS = dyn_cast<Constant>(LHS))
       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
         Constant *COps[] = {CLHS, CRHS};
-        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
+        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
                                         Q.TLI);
       }
 
@@ -2950,9 +2950,9 @@ static Value *SimplifyBinOp(unsigned Opc
 }
 
 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
-                           const DataLayout *TD, const TargetLibraryInfo *TLI,
+                           const DataLayout *DL, const TargetLibraryInfo *TLI,
                            const DominatorTree *DT) {
-  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
+  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit);
 }
 
 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
@@ -2965,9 +2965,9 @@ static Value *SimplifyCmpInst(unsigned P
 }
 
 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
-                             const DataLayout *TD, const TargetLibraryInfo *TLI,
+                             const DataLayout *DL, const TargetLibraryInfo *TLI,
                              const DominatorTree *DT) {
-  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
+  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
                            RecursionLimit);
 }
 
@@ -3040,136 +3040,136 @@ static Value *SimplifyCall(Value *V, Ite
 }
 
 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
-                          User::op_iterator ArgEnd, const DataLayout *TD,
+                          User::op_iterator ArgEnd, const DataLayout *DL,
                           const TargetLibraryInfo *TLI,
                           const DominatorTree *DT) {
-  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
+  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT),
                         RecursionLimit);
 }
 
 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
-                          const DataLayout *TD, const TargetLibraryInfo *TLI,
+                          const DataLayout *DL, const TargetLibraryInfo *TLI,
                           const DominatorTree *DT) {
-  return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
+  return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT),
                         RecursionLimit);
 }
 
 /// SimplifyInstruction - See if we can compute a simplified version of this
 /// instruction.  If not, this returns null.
-Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
+Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
                                  const TargetLibraryInfo *TLI,
                                  const DominatorTree *DT) {
   Value *Result;
 
   switch (I->getOpcode()) {
   default:
-    Result = ConstantFoldInstruction(I, TD, TLI);
+    Result = ConstantFoldInstruction(I, DL, TLI);
     break;
   case Instruction::FAdd:
     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
-                              I->getFastMathFlags(), TD, TLI, DT);
+                              I->getFastMathFlags(), DL, TLI, DT);
     break;
   case Instruction::Add:
     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
-                             TD, TLI, DT);
+                             DL, TLI, DT);
     break;
   case Instruction::FSub:
     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
-                              I->getFastMathFlags(), TD, TLI, DT);
+                              I->getFastMathFlags(), DL, TLI, DT);
     break;
   case Instruction::Sub:
     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
-                             TD, TLI, DT);
+                             DL, TLI, DT);
     break;
   case Instruction::FMul:
     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
-                              I->getFastMathFlags(), TD, TLI, DT);
+                              I->getFastMathFlags(), DL, TLI, DT);
     break;
   case Instruction::Mul:
-    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::SDiv:
-    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::UDiv:
-    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::FDiv:
-    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::SRem:
-    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::URem:
-    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::FRem:
-    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::Shl:
     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
-                             TD, TLI, DT);
+                             DL, TLI, DT);
     break;
   case Instruction::LShr:
     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
                               cast<BinaryOperator>(I)->isExact(),
-                              TD, TLI, DT);
+                              DL, TLI, DT);
     break;
   case Instruction::AShr:
     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
                               cast<BinaryOperator>(I)->isExact(),
-                              TD, TLI, DT);
+                              DL, TLI, DT);
     break;
   case Instruction::And:
-    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::Or:
-    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::Xor:
-    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::ICmp:
     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
-                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+                              I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::FCmp:
     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
-                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+                              I->getOperand(0), I->getOperand(1), DL, TLI, DT);
     break;
   case Instruction::Select:
     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
-                                I->getOperand(2), TD, TLI, DT);
+                                I->getOperand(2), DL, TLI, DT);
     break;
   case Instruction::GetElementPtr: {
     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
-    Result = SimplifyGEPInst(Ops, TD, TLI, DT);
+    Result = SimplifyGEPInst(Ops, DL, TLI, DT);
     break;
   }
   case Instruction::InsertValue: {
     InsertValueInst *IV = cast<InsertValueInst>(I);
     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
                                      IV->getInsertedValueOperand(),
-                                     IV->getIndices(), TD, TLI, DT);
+                                     IV->getIndices(), DL, TLI, DT);
     break;
   }
   case Instruction::PHI:
-    Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
+    Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT));
     break;
   case Instruction::Call: {
     CallSite CS(cast<CallInst>(I));
     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
-                          TD, TLI, DT);
+                          DL, TLI, DT);
     break;
   }
   case Instruction::Trunc:
-    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
+    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT);
     break;
   }
 
@@ -3191,7 +3191,7 @@ Value *llvm::SimplifyInstruction(Instruc
 /// This routine returns 'true' only when *it* simplifies something. The passed
 /// in simplified value does not count toward this.
 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
-                                              const DataLayout *TD,
+                                              const DataLayout *DL,
                                               const TargetLibraryInfo *TLI,
                                               const DominatorTree *DT) {
   bool Simplified = false;
@@ -3221,7 +3221,7 @@ static bool replaceAndRecursivelySimplif
     I = Worklist[Idx];
 
     // See if this instruction simplifies.
-    SimpleV = SimplifyInstruction(I, TD, TLI, DT);
+    SimpleV = SimplifyInstruction(I, DL, TLI, DT);
     if (!SimpleV)
       continue;
 
@@ -3246,17 +3246,17 @@ static bool replaceAndRecursivelySimplif
 }
 
 bool llvm::recursivelySimplifyInstruction(Instruction *I,
-                                          const DataLayout *TD,
+                                          const DataLayout *DL,
                                           const TargetLibraryInfo *TLI,
                                           const DominatorTree *DT) {
-  return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
+  return replaceAndRecursivelySimplifyImpl(I, 0, DL, TLI, DT);
 }
 
 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
-                                         const DataLayout *TD,
+                                         const DataLayout *DL,
                                          const TargetLibraryInfo *TLI,
                                          const DominatorTree *DT) {
   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   assert(SimpleV && "Must provide a simplified value.");
-  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
+  return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT);
 }

Modified: llvm/trunk/lib/Analysis/Lint.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/Lint.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/Lint.cpp (original)
+++ llvm/trunk/lib/Analysis/Lint.cpp Thu Feb 20 18:06:31 2014
@@ -102,7 +102,7 @@ namespace {
     Module *Mod;
     AliasAnalysis *AA;
     DominatorTree *DT;
-    DataLayout *TD;
+    DataLayout *DL;
     TargetLibraryInfo *TLI;
 
     std::string Messages;
@@ -176,7 +176,7 @@ bool Lint::runOnFunction(Function &F) {
   Mod = F.getParent();
   AA = &getAnalysis<AliasAnalysis>();
   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
   visit(F);
   dbgs() << MessagesStr.str();
@@ -247,7 +247,7 @@ void Lint::visitCallSite(CallSite CS) {
           Type *Ty =
             cast<PointerType>(Formal->getType())->getElementType();
           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
-                               TD ? TD->getABITypeAlignment(Ty) : 0,
+                               DL ? DL->getABITypeAlignment(Ty) : 0,
                                Ty, MemRef::Read | MemRef::Write);
         }
       }
@@ -414,7 +414,7 @@ void Lint::visitMemoryReference(Instruct
   // Only handles memory references that read/write something simple like an
   // alloca instruction or a global variable.
   int64_t Offset = 0;
-  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
+  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
     // something we can handle and if so extract the size of this base object
     // along with its alignment.
@@ -423,21 +423,21 @@ void Lint::visitMemoryReference(Instruct
 
     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
       Type *ATy = AI->getAllocatedType();
-      if (TD && !AI->isArrayAllocation() && ATy->isSized())
-        BaseSize = TD->getTypeAllocSize(ATy);
+      if (DL && !AI->isArrayAllocation() && ATy->isSized())
+        BaseSize = DL->getTypeAllocSize(ATy);
       BaseAlign = AI->getAlignment();
-      if (TD && BaseAlign == 0 && ATy->isSized())
-        BaseAlign = TD->getABITypeAlignment(ATy);
+      if (DL && BaseAlign == 0 && ATy->isSized())
+        BaseAlign = DL->getABITypeAlignment(ATy);
     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
       // If the global may be defined differently in another compilation unit
       // then don't warn about funky memory accesses.
       if (GV->hasDefinitiveInitializer()) {
         Type *GTy = GV->getType()->getElementType();
-        if (TD && GTy->isSized())
-          BaseSize = TD->getTypeAllocSize(GTy);
+        if (DL && GTy->isSized())
+          BaseSize = DL->getTypeAllocSize(GTy);
         BaseAlign = GV->getAlignment();
-        if (TD && BaseAlign == 0 && GTy->isSized())
-          BaseAlign = TD->getABITypeAlignment(GTy);
+        if (DL && BaseAlign == 0 && GTy->isSized())
+          BaseAlign = DL->getABITypeAlignment(GTy);
       }
     }
 
@@ -450,8 +450,8 @@ void Lint::visitMemoryReference(Instruct
 
     // Accesses that say that the memory is more aligned than it is are not
     // defined.
-    if (TD && Align == 0 && Ty && Ty->isSized())
-      Align = TD->getABITypeAlignment(Ty);
+    if (DL && Align == 0 && Ty && Ty->isSized())
+      Align = DL->getABITypeAlignment(Ty);
     Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
             "Undefined behavior: Memory reference address is misaligned", &I);
   }
@@ -542,22 +542,22 @@ static bool isZero(Value *V, DataLayout
 }
 
 void Lint::visitSDiv(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL),
           "Undefined behavior: Division by zero", &I);
 }
 
 void Lint::visitUDiv(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL),
           "Undefined behavior: Division by zero", &I);
 }
 
 void Lint::visitSRem(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL),
           "Undefined behavior: Division by zero", &I);
 }
 
 void Lint::visitURem(BinaryOperator &I) {
-  Assert1(!isZero(I.getOperand(1), TD),
+  Assert1(!isZero(I.getOperand(1), DL),
           "Undefined behavior: Division by zero", &I);
 }
 
@@ -631,7 +631,7 @@ Value *Lint::findValueImpl(Value *V, boo
   // TODO: Look through eliminable cast pairs.
   // TODO: Look through calls with unique return values.
   // TODO: Look through vector insert/extract/shuffle.
-  V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
+  V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
     BasicBlock::iterator BBI = L;
     BasicBlock *BB = L->getParent();
@@ -651,7 +651,7 @@ Value *Lint::findValueImpl(Value *V, boo
       if (W != V)
         return findValueImpl(W, OffsetOk, Visited);
   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
-    if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
+    if (CI->isNoopCast(DL ? DL->getIntPtrType(V->getContext()) :
                             Type::getInt64Ty(V->getContext())))
       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
@@ -665,7 +665,7 @@ Value *Lint::findValueImpl(Value *V, boo
       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
                                CE->getOperand(0)->getType(),
                                CE->getType(),
-                               TD ? TD->getIntPtrType(V->getContext()) :
+                               DL ? DL->getIntPtrType(V->getContext()) :
                                     Type::getInt64Ty(V->getContext())))
         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
     } else if (CE->getOpcode() == Instruction::ExtractValue) {
@@ -678,10 +678,10 @@ Value *Lint::findValueImpl(Value *V, boo
 
   // As a last resort, try SimplifyInstruction or constant folding.
   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
-    if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
+    if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT))
       return findValueImpl(W, OffsetOk, Visited);
   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
-    if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
+    if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
       if (W != V)
         return findValueImpl(W, OffsetOk, Visited);
   }

Modified: llvm/trunk/lib/Transforms/IPO/ConstantMerge.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/IPO/ConstantMerge.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/IPO/ConstantMerge.cpp (original)
+++ llvm/trunk/lib/Transforms/IPO/ConstantMerge.cpp Thu Feb 20 18:06:31 2014
@@ -51,7 +51,7 @@ namespace {
     // alignment to a concrete value.
     unsigned getAlignment(GlobalVariable *GV) const;
 
-    const DataLayout *TD;
+    const DataLayout *DL;
   };
 }
 
@@ -89,20 +89,20 @@ static bool IsBetterCanonical(const Glob
 }
 
 bool ConstantMerge::hasKnownAlignment(GlobalVariable *GV) const {
-  return TD || GV->getAlignment() != 0;
+  return DL || GV->getAlignment() != 0;
 }
 
 unsigned ConstantMerge::getAlignment(GlobalVariable *GV) const {
   unsigned Align = GV->getAlignment();
   if (Align)
     return Align;
-  if (TD)
-    return TD->getPreferredAlignment(GV);
+  if (DL)
+    return DL->getPreferredAlignment(GV);
   return 0;
 }
 
 bool ConstantMerge::runOnModule(Module &M) {
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
 
   // Find all the globals that are marked "used".  These cannot be merged.
   SmallPtrSet<const GlobalValue*, 8> UsedGlobals;

Modified: llvm/trunk/lib/Transforms/IPO/GlobalOpt.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/IPO/GlobalOpt.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/IPO/GlobalOpt.cpp (original)
+++ llvm/trunk/lib/Transforms/IPO/GlobalOpt.cpp Thu Feb 20 18:06:31 2014
@@ -84,7 +84,7 @@ namespace {
                                const GlobalStatus &GS);
     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
 
-    DataLayout *TD;
+    DataLayout *DL;
     TargetLibraryInfo *TLI;
   };
 }
@@ -266,7 +266,7 @@ static bool CleanupPointerRootUsers(Glob
 /// quick scan over the use list to clean up the easy and obvious cruft.  This
 /// returns true if it made a change.
 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
-                                       DataLayout *TD, TargetLibraryInfo *TLI) {
+                                       DataLayout *DL, TargetLibraryInfo *TLI) {
   bool Changed = false;
   // Note that we need to use a weak value handle for the worklist items. When
   // we delete a constant array, we may also be holding pointer to one of its
@@ -296,12 +296,12 @@ static bool CleanupConstantGlobalUsers(V
         Constant *SubInit = 0;
         if (Init)
           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
-        Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
+        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
       } else if ((CE->getOpcode() == Instruction::BitCast &&
                   CE->getType()->isPointerTy()) ||
                  CE->getOpcode() == Instruction::AddrSpaceCast) {
         // Pointer cast, delete any stores and memsets to the global.
-        Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
+        Changed |= CleanupConstantGlobalUsers(CE, 0, DL, TLI);
       }
 
       if (CE->use_empty()) {
@@ -315,7 +315,7 @@ static bool CleanupConstantGlobalUsers(V
       Constant *SubInit = 0;
       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
         ConstantExpr *CE =
-          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
+          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, DL, TLI));
         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
 
@@ -325,7 +325,7 @@ static bool CleanupConstantGlobalUsers(V
         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
           SubInit = Constant::getNullValue(GEP->getType()->getElementType());
       }
-      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
+      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
 
       if (GEP->use_empty()) {
         GEP->eraseFromParent();
@@ -342,7 +342,7 @@ static bool CleanupConstantGlobalUsers(V
       // us, and if they are all dead, nuke them without remorse.
       if (isSafeToDestroyConstant(C)) {
         C->destroyConstant();
-        CleanupConstantGlobalUsers(V, Init, TD, TLI);
+        CleanupConstantGlobalUsers(V, Init, DL, TLI);
         return true;
       }
     }
@@ -467,7 +467,7 @@ static bool GlobalUsersSafeToSRA(GlobalV
 /// behavior of the program in a more fine-grained way.  We have determined that
 /// this transformation is safe already.  We return the first global variable we
 /// insert so that the caller can reprocess it.
-static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) {
+static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
   // Make sure this global only has simple uses that we can SRA.
   if (!GlobalUsersSafeToSRA(GV))
     return 0;
@@ -482,11 +482,11 @@ static GlobalVariable *SRAGlobal(GlobalV
   // Get the alignment of the global, either explicit or target-specific.
   unsigned StartAlignment = GV->getAlignment();
   if (StartAlignment == 0)
-    StartAlignment = TD.getABITypeAlignment(GV->getType());
+    StartAlignment = DL.getABITypeAlignment(GV->getType());
 
   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     NewGlobals.reserve(STy->getNumElements());
-    const StructLayout &Layout = *TD.getStructLayout(STy);
+    const StructLayout &Layout = *DL.getStructLayout(STy);
     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
       Constant *In = Init->getAggregateElement(i);
       assert(In && "Couldn't get element of initializer?");
@@ -503,7 +503,7 @@ static GlobalVariable *SRAGlobal(GlobalV
       // propagate info to each field.
       uint64_t FieldOffset = Layout.getElementOffset(i);
       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
-      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
+      if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
         NGV->setAlignment(NewAlign);
     }
   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
@@ -517,8 +517,8 @@ static GlobalVariable *SRAGlobal(GlobalV
       return 0; // It's not worth it.
     NewGlobals.reserve(NumElements);
 
-    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
-    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
+    uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
+    unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
     for (unsigned i = 0, e = NumElements; i != e; ++i) {
       Constant *In = Init->getAggregateElement(i);
       assert(In && "Couldn't get element of initializer?");
@@ -743,7 +743,7 @@ static bool OptimizeAwayTrappingUsesOfVa
 /// if the loaded value is dynamically null, then we know that they cannot be
 /// reachable with a null optimize away the load.
 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
-                                            DataLayout *TD,
+                                            DataLayout *DL,
                                             TargetLibraryInfo *TLI) {
   bool Changed = false;
 
@@ -792,7 +792,7 @@ static bool OptimizeAwayTrappingUsesOfLo
       Changed |= CleanupPointerRootUsers(GV, TLI);
     } else {
       Changed = true;
-      CleanupConstantGlobalUsers(GV, 0, TD, TLI);
+      CleanupConstantGlobalUsers(GV, 0, DL, TLI);
     }
     if (GV->use_empty()) {
       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
@@ -807,10 +807,10 @@ static bool OptimizeAwayTrappingUsesOfLo
 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
 /// instructions that are foldable.
 static void ConstantPropUsersOf(Value *V,
-                                DataLayout *TD, TargetLibraryInfo *TLI) {
+                                DataLayout *DL, TargetLibraryInfo *TLI) {
   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
     if (Instruction *I = dyn_cast<Instruction>(*UI++))
-      if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
+      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
         I->replaceAllUsesWith(NewC);
 
         // Advance UI to the next non-I use to avoid invalidating it!
@@ -830,7 +830,7 @@ static GlobalVariable *OptimizeGlobalAdd
                                                      CallInst *CI,
                                                      Type *AllocTy,
                                                      ConstantInt *NElements,
-                                                     DataLayout *TD,
+                                                     DataLayout *DL,
                                                      TargetLibraryInfo *TLI) {
   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
 
@@ -949,9 +949,9 @@ static GlobalVariable *OptimizeGlobalAdd
   // To further other optimizations, loop over all users of NewGV and try to
   // constant prop them.  This will promote GEP instructions with constant
   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
-  ConstantPropUsersOf(NewGV, TD, TLI);
+  ConstantPropUsersOf(NewGV, DL, TLI);
   if (RepValue != NewGV)
-    ConstantPropUsersOf(RepValue, TD, TLI);
+    ConstantPropUsersOf(RepValue, DL, TLI);
 
   return NewGV;
 }
@@ -1278,7 +1278,7 @@ static void RewriteUsesOfLoadForHeapSRoA
 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
 /// it up into multiple allocations of arrays of the fields.
 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
-                                            Value *NElems, DataLayout *TD,
+                                            Value *NElems, DataLayout *DL,
                                             const TargetLibraryInfo *TLI) {
   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
   Type *MAT = getMallocAllocatedType(CI, TLI);
@@ -1307,10 +1307,10 @@ static GlobalVariable *PerformHeapAllocS
                          GV->getThreadLocalMode());
     FieldGlobals.push_back(NGV);
 
-    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
+    unsigned TypeSize = DL->getTypeAllocSize(FieldTy);
     if (StructType *ST = dyn_cast<StructType>(FieldTy))
-      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
-    Type *IntPtrTy = TD->getIntPtrType(CI->getType());
+      TypeSize = DL->getStructLayout(ST)->getSizeInBytes();
+    Type *IntPtrTy = DL->getIntPtrType(CI->getType());
     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
                                         ConstantInt::get(IntPtrTy, TypeSize),
                                         NElems, 0,
@@ -1470,9 +1470,9 @@ static bool TryToOptimizeStoreOfMallocTo
                                                Type *AllocTy,
                                                AtomicOrdering Ordering,
                                                Module::global_iterator &GVI,
-                                               DataLayout *TD,
+                                               DataLayout *DL,
                                                TargetLibraryInfo *TLI) {
-  if (!TD)
+  if (!DL)
     return false;
 
   // If this is a malloc of an abstract type, don't touch it.
@@ -1502,7 +1502,7 @@ static bool TryToOptimizeStoreOfMallocTo
   // This eliminates dynamic allocation, avoids an indirection accessing the
   // data, and exposes the resultant global to further GlobalOpt.
   // We cannot optimize the malloc if we cannot determine malloc array size.
-  Value *NElems = getMallocArraySize(CI, TD, TLI, true);
+  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
   if (!NElems)
     return false;
 
@@ -1510,8 +1510,8 @@ static bool TryToOptimizeStoreOfMallocTo
     // Restrict this transformation to only working on small allocations
     // (2048 bytes currently), as we don't want to introduce a 16M global or
     // something.
-    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
-      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
+    if (NElements->getZExtValue() * DL->getTypeAllocSize(AllocTy) < 2048) {
+      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
       return true;
     }
 
@@ -1540,8 +1540,8 @@ static bool TryToOptimizeStoreOfMallocTo
     // If this is a fixed size array, transform the Malloc to be an alloc of
     // structs.  malloc [100 x struct],1 -> malloc struct, 100
     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
-      Type *IntPtrTy = TD->getIntPtrType(CI->getType());
-      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
+      Type *IntPtrTy = DL->getIntPtrType(CI->getType());
+      unsigned TypeSize = DL->getStructLayout(AllocSTy)->getSizeInBytes();
       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
@@ -1556,8 +1556,8 @@ static bool TryToOptimizeStoreOfMallocTo
         CI = cast<CallInst>(Malloc);
     }
 
-    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true),
-                               TD, TLI);
+    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
+                               DL, TLI);
     return true;
   }
 
@@ -1569,7 +1569,7 @@ static bool TryToOptimizeStoreOfMallocTo
 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
                                      AtomicOrdering Ordering,
                                      Module::global_iterator &GVI,
-                                     DataLayout *TD, TargetLibraryInfo *TLI) {
+                                     DataLayout *DL, TargetLibraryInfo *TLI) {
   // Ignore no-op GEPs and bitcasts.
   StoredOnceVal = StoredOnceVal->stripPointerCasts();
 
@@ -1584,13 +1584,13 @@ static bool OptimizeOnceStoredGlobal(Glo
         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
 
       // Optimize away any trapping uses of the loaded value.
-      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
+      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
         return true;
     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
       Type *MallocType = getMallocAllocatedType(CI, TLI);
       if (MallocType &&
           TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
-                                             TD, TLI))
+                                             DL, TLI))
         return true;
     }
   }
@@ -1784,7 +1784,7 @@ bool GlobalOpt::ProcessInternalGlobal(Gl
     } else {
       // Delete any stores we can find to the global.  We may not be able to
       // make it completely dead though.
-      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
+      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
     }
 
     // If the global is dead now, delete it.
@@ -1800,7 +1800,7 @@ bool GlobalOpt::ProcessInternalGlobal(Gl
     GV->setConstant(true);
 
     // Clean up any obviously simplifiable users now.
-    CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
+    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
 
     // If the global is dead now, just nuke it.
     if (GV->use_empty()) {
@@ -1813,8 +1813,8 @@ bool GlobalOpt::ProcessInternalGlobal(Gl
     ++NumMarked;
     return true;
   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
-    if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>())
-      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
+    if (DataLayout *DL = getAnalysisIfAvailable<DataLayout>())
+      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *DL)) {
         GVI = FirstNewGV;  // Don't skip the newly produced globals!
         return true;
       }
@@ -1829,7 +1829,7 @@ bool GlobalOpt::ProcessInternalGlobal(Gl
         GV->setInitializer(SOVConstant);
 
         // Clean up any obviously simplifiable users now.
-        CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
+        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
 
         if (GV->use_empty()) {
           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
@@ -1846,7 +1846,7 @@ bool GlobalOpt::ProcessInternalGlobal(Gl
     // Try to optimize globals based on the knowledge that only one value
     // (besides its initializer) is ever stored to the global.
     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
-                                 TD, TLI))
+                                 DL, TLI))
       return true;
 
     // Otherwise, if the global was not a boolean, we can shrink it to be a
@@ -1947,7 +1947,7 @@ bool GlobalOpt::OptimizeGlobalVars(Modul
     // Simplify the initializer.
     if (GV->hasInitializer())
       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
-        Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
+        Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
         if (New && New != CE)
           GV->setInitializer(New);
       }
@@ -2070,7 +2070,7 @@ static GlobalVariable *InstallGlobalCtor
 static inline bool
 isSimpleEnoughValueToCommit(Constant *C,
                             SmallPtrSet<Constant*, 8> &SimpleConstants,
-                            const DataLayout *TD);
+                            const DataLayout *DL);
 
 
 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
@@ -2083,7 +2083,7 @@ isSimpleEnoughValueToCommit(Constant *C,
 /// time.
 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
                                    SmallPtrSet<Constant*, 8> &SimpleConstants,
-                                   const DataLayout *TD) {
+                                   const DataLayout *DL) {
   // Simple integer, undef, constant aggregate zero, global addresses, etc are
   // all supported.
   if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
@@ -2095,7 +2095,7 @@ static bool isSimpleEnoughValueToCommitH
       isa<ConstantVector>(C)) {
     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
       Constant *Op = cast<Constant>(C->getOperand(i));
-      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
+      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
         return false;
     }
     return true;
@@ -2108,29 +2108,29 @@ static bool isSimpleEnoughValueToCommitH
   switch (CE->getOpcode()) {
   case Instruction::BitCast:
     // Bitcast is fine if the casted value is fine.
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 
   case Instruction::IntToPtr:
   case Instruction::PtrToInt:
     // int <=> ptr is fine if the int type is the same size as the
     // pointer type.
-    if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
-               TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
+    if (!DL || DL->getTypeSizeInBits(CE->getType()) !=
+               DL->getTypeSizeInBits(CE->getOperand(0)->getType()))
       return false;
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 
   // GEP is fine if it is simple + constant offset.
   case Instruction::GetElementPtr:
     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
       if (!isa<ConstantInt>(CE->getOperand(i)))
         return false;
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 
   case Instruction::Add:
     // We allow simple+cst.
     if (!isa<ConstantInt>(CE->getOperand(1)))
       return false;
-    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
+    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   }
   return false;
 }
@@ -2138,11 +2138,11 @@ static bool isSimpleEnoughValueToCommitH
 static inline bool
 isSimpleEnoughValueToCommit(Constant *C,
                             SmallPtrSet<Constant*, 8> &SimpleConstants,
-                            const DataLayout *TD) {
+                            const DataLayout *DL) {
   // If we already checked this constant, we win.
   if (!SimpleConstants.insert(C)) return true;
   // Check the constant.
-  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
+  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
 }
 
 
@@ -2269,8 +2269,8 @@ namespace {
 /// Once an evaluation call fails, the evaluation object should not be reused.
 class Evaluator {
 public:
-  Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI)
-    : TD(TD), TLI(TLI) {
+  Evaluator(const DataLayout *DL, const TargetLibraryInfo *TLI)
+    : DL(DL), TLI(TLI) {
     ValueStack.push_back(new DenseMap<Value*, Constant*>);
   }
 
@@ -2350,7 +2350,7 @@ private:
   /// simple enough to live in a static initializer of a global.
   SmallPtrSet<Constant*, 8> SimpleConstants;
 
-  const DataLayout *TD;
+  const DataLayout *DL;
   const TargetLibraryInfo *TLI;
 };
 
@@ -2403,7 +2403,7 @@ bool Evaluator::EvaluateBlock(BasicBlock
       Constant *Ptr = getVal(SI->getOperand(1));
       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
         DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
-        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
+        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
         DEBUG(dbgs() << "; To: " << *Ptr << "\n");
       }
       if (!isSimpleEnoughPointerToCommit(Ptr)) {
@@ -2416,7 +2416,7 @@ bool Evaluator::EvaluateBlock(BasicBlock
 
       // If this might be too difficult for the backend to handle (e.g. the addr
       // of one global variable divided by another) then we can't commit it.
-      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
+      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
         DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
               << "\n");
         return false;
@@ -2448,7 +2448,7 @@ bool Evaluator::EvaluateBlock(BasicBlock
 
               Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
               if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
-                Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
+                Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
 
             // If we can't improve the situation by introspecting NewTy,
             // we have to give up.
@@ -2512,7 +2512,7 @@ bool Evaluator::EvaluateBlock(BasicBlock
 
       Constant *Ptr = getVal(LI->getOperand(0));
       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
-        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
+        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
         DEBUG(dbgs() << "Found a constant pointer expression, constant "
               "folding: " << *Ptr << "\n");
       }
@@ -2589,9 +2589,9 @@ bool Evaluator::EvaluateBlock(BasicBlock
           Value *Ptr = PtrArg->stripPointerCasts();
           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
             Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
-            if (TD && !Size->isAllOnesValue() &&
+            if (DL && !Size->isAllOnesValue() &&
                 Size->getValue().getLimitedValue() >=
-                TD->getTypeStoreSize(ElemTy)) {
+                DL->getTypeStoreSize(ElemTy)) {
               Invariants.insert(GV);
               DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
                     << "\n");
@@ -2697,7 +2697,7 @@ bool Evaluator::EvaluateBlock(BasicBlock
 
     if (!CurInst->use_empty()) {
       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
-        InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
+        InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
 
       setVal(CurInst, InstResult);
     }
@@ -2780,10 +2780,10 @@ bool Evaluator::EvaluateFunction(Functio
 
 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
 /// we can.  Return true if we can, false otherwise.
-static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
+static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL,
                                       const TargetLibraryInfo *TLI) {
   // Call the function.
-  Evaluator Eval(TD, TLI);
+  Evaluator Eval(DL, TLI);
   Constant *RetValDummy;
   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
                                            SmallVector<Constant*, 0>());
@@ -2831,7 +2831,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(
     if (F->empty()) continue;
 
     // If we can evaluate the ctor at compile time, do.
-    if (EvaluateStaticConstructor(F, TD, TLI)) {
+    if (EvaluateStaticConstructor(F, DL, TLI)) {
       Ctors.erase(Ctors.begin()+i);
       MadeChange = true;
       --i;
@@ -3159,7 +3159,7 @@ bool GlobalOpt::OptimizeEmptyGlobalCXXDt
 bool GlobalOpt::runOnModule(Module &M) {
   bool Changed = false;
 
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
 
   // Try to find the llvm.globalctors list.

Modified: llvm/trunk/lib/Transforms/IPO/MergeFunctions.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/IPO/MergeFunctions.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/IPO/MergeFunctions.cpp (original)
+++ llvm/trunk/lib/Transforms/IPO/MergeFunctions.cpp Thu Feb 20 18:06:31 2014
@@ -108,12 +108,12 @@ public:
   static const ComparableFunction TombstoneKey;
   static DataLayout * const LookupOnly;
 
-  ComparableFunction(Function *Func, DataLayout *TD)
-    : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
+  ComparableFunction(Function *Func, DataLayout *DL)
+    : Func(Func), Hash(profileFunction(Func)), DL(DL) {}
 
   Function *getFunc() const { return Func; }
   unsigned getHash() const { return Hash; }
-  DataLayout *getTD() const { return TD; }
+  DataLayout *getDataLayout() const { return DL; }
 
   // Drops AssertingVH reference to the function. Outside of debug mode, this
   // does nothing.
@@ -125,11 +125,11 @@ public:
 
 private:
   explicit ComparableFunction(unsigned Hash)
-    : Func(NULL), Hash(Hash), TD(NULL) {}
+    : Func(NULL), Hash(Hash), DL(NULL) {}
 
   AssertingVH<Function> Func;
   unsigned Hash;
-  DataLayout *TD;
+  DataLayout *DL;
 };
 
 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
@@ -164,9 +164,9 @@ namespace {
 /// side of claiming that two functions are different).
 class FunctionComparator {
 public:
-  FunctionComparator(const DataLayout *TD, const Function *F1,
+  FunctionComparator(const DataLayout *DL, const Function *F1,
                      const Function *F2)
-    : F1(F1), F2(F2), TD(TD) {}
+    : F1(F1), F2(F2), DL(DL) {}
 
   /// Test whether the two functions have equivalent behaviour.
   bool compare();
@@ -199,7 +199,7 @@ private:
   // The two functions undergoing comparison.
   const Function *F1, *F2;
 
-  const DataLayout *TD;
+  const DataLayout *DL;
 
   DenseMap<const Value *, const Value *> id_map;
   DenseSet<const Value *> seen_values;
@@ -214,9 +214,9 @@ bool FunctionComparator::isEquivalentTyp
   PointerType *PTy1 = dyn_cast<PointerType>(Ty1);
   PointerType *PTy2 = dyn_cast<PointerType>(Ty2);
 
-  if (TD) {
-    if (PTy1 && PTy1->getAddressSpace() == 0) Ty1 = TD->getIntPtrType(Ty1);
-    if (PTy2 && PTy2->getAddressSpace() == 0) Ty2 = TD->getIntPtrType(Ty2);
+  if (DL) {
+    if (PTy1 && PTy1->getAddressSpace() == 0) Ty1 = DL->getIntPtrType(Ty1);
+    if (PTy2 && PTy2->getAddressSpace() == 0) Ty2 = DL->getIntPtrType(Ty2);
   }
 
   if (Ty1 == Ty2)
@@ -359,13 +359,13 @@ bool FunctionComparator::isEquivalentGEP
   if (AS != GEP2->getPointerAddressSpace())
     return false;
 
-  if (TD) {
+  if (DL) {
     // When we have target data, we can reduce the GEP down to the value in bytes
     // added to the address.
-    unsigned BitWidth = TD ? TD->getPointerSizeInBits(AS) : 1;
+    unsigned BitWidth = DL ? DL->getPointerSizeInBits(AS) : 1;
     APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
-    if (GEP1->accumulateConstantOffset(*TD, Offset1) &&
-        GEP2->accumulateConstantOffset(*TD, Offset2)) {
+    if (GEP1->accumulateConstantOffset(*DL, Offset1) &&
+        GEP2->accumulateConstantOffset(*DL, Offset2)) {
       return Offset1 == Offset2;
     }
   }
@@ -606,7 +606,7 @@ private:
   FnSetType FnSet;
 
   /// DataLayout for more accurate GEP comparisons. May be NULL.
-  DataLayout *TD;
+  DataLayout *DL;
 
   /// Whether or not the target supports global aliases.
   bool HasGlobalAliases;
@@ -623,7 +623,7 @@ ModulePass *llvm::createMergeFunctionsPa
 
 bool MergeFunctions::runOnModule(Module &M) {
   bool Changed = false;
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
 
   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
@@ -646,7 +646,7 @@ bool MergeFunctions::runOnModule(Module
       Function *F = cast<Function>(*I);
       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
           !F->mayBeOverridden()) {
-        ComparableFunction CF = ComparableFunction(F, TD);
+        ComparableFunction CF = ComparableFunction(F, DL);
         Changed |= insert(CF);
       }
     }
@@ -661,7 +661,7 @@ bool MergeFunctions::runOnModule(Module
       Function *F = cast<Function>(*I);
       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
           F->mayBeOverridden()) {
-        ComparableFunction CF = ComparableFunction(F, TD);
+        ComparableFunction CF = ComparableFunction(F, DL);
         Changed |= insert(CF);
       }
     }
@@ -682,14 +682,14 @@ bool DenseMapInfo<ComparableFunction>::i
     return false;
 
   // One of these is a special "underlying pointer comparison only" object.
-  if (LHS.getTD() == ComparableFunction::LookupOnly ||
-      RHS.getTD() == ComparableFunction::LookupOnly)
+  if (LHS.getDataLayout() == ComparableFunction::LookupOnly ||
+      RHS.getDataLayout() == ComparableFunction::LookupOnly)
     return false;
 
-  assert(LHS.getTD() == RHS.getTD() &&
+  assert(LHS.getDataLayout() == RHS.getDataLayout() &&
          "Comparing functions for different targets");
 
-  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
+  return FunctionComparator(LHS.getDataLayout(), LHS.getFunc(),
                             RHS.getFunc()).compare();
 }
 

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombine.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombine.h?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombine.h (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombine.h Thu Feb 20 18:06:31 2014
@@ -81,7 +81,7 @@ public:
 class LLVM_LIBRARY_VISIBILITY InstCombiner
                              : public FunctionPass,
                                public InstVisitor<InstCombiner, Instruction*> {
-  DataLayout *TD;
+  DataLayout *DL;
   TargetLibraryInfo *TLI;
   bool MadeIRChange;
   LibCallSimplifier *Simplifier;
@@ -96,7 +96,7 @@ public:
   BuilderTy *Builder;
 
   static char ID; // Pass identification, replacement for typeid
-  InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
+  InstCombiner() : FunctionPass(ID), DL(0), Builder(0) {
     MinimizeSize = false;
     initializeInstCombinerPass(*PassRegistry::getPassRegistry());
   }
@@ -108,7 +108,7 @@ public:
 
   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 
-  DataLayout *getDataLayout() const { return TD; }
+  DataLayout *getDataLayout() const { return DL; }
 
   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
 
@@ -234,7 +234,7 @@ private:
                           Type *Ty);
 
   Instruction *visitCallSite(CallSite CS);
-  Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *TD);
+  Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL);
   bool transformConstExprCastCall(CallSite CS);
   Instruction *transformCallThroughTrampoline(CallSite CS,
                                               IntrinsicInst *Tramp);
@@ -311,15 +311,15 @@ public:
 
   void ComputeMaskedBits(Value *V, APInt &KnownZero,
                          APInt &KnownOne, unsigned Depth = 0) const {
-    return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
+    return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, DL, Depth);
   }
 
   bool MaskedValueIsZero(Value *V, const APInt &Mask,
                          unsigned Depth = 0) const {
-    return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
+    return llvm::MaskedValueIsZero(V, Mask, DL, Depth);
   }
   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
-    return llvm::ComputeNumSignBits(Op, TD, Depth);
+    return llvm::ComputeNumSignBits(Op, DL, Depth);
   }
 
 private:

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineAddSub.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineAddSub.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineAddSub.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineAddSub.cpp Thu Feb 20 18:06:31 2014
@@ -919,7 +919,7 @@ Instruction *InstCombiner::visitAdd(Bina
   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 
   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
-                                 I.hasNoUnsignedWrap(), TD))
+                                 I.hasNoUnsignedWrap(), DL))
     return ReplaceInstUsesWith(I, V);
 
   // (A*B)+(A*C) -> A*(B+C) etc
@@ -1193,7 +1193,7 @@ Instruction *InstCombiner::visitFAdd(Bin
   bool Changed = SimplifyAssociativeOrCommutative(I);
   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 
-  if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
+  if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL))
     return ReplaceInstUsesWith(I, V);
 
   if (isa<Constant>(RHS)) {
@@ -1300,7 +1300,7 @@ Instruction *InstCombiner::visitFAdd(Bin
 ///
 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
                                                Type *Ty) {
-  assert(TD && "Must have target data info for this");
+  assert(DL && "Must have target data info for this");
 
   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
   // this.
@@ -1369,7 +1369,7 @@ Instruction *InstCombiner::visitSub(Bina
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
-                                 I.hasNoUnsignedWrap(), TD))
+                                 I.hasNoUnsignedWrap(), DL))
     return ReplaceInstUsesWith(I, V);
 
   // (A*B)-(A*C) -> A*(B-C) etc
@@ -1518,7 +1518,7 @@ Instruction *InstCombiner::visitSub(Bina
 
   // Optimize pointer differences into the same array into a size.  Consider:
   //  &A[10] - &A[0]: we should compile this to "10".
-  if (TD) {
+  if (DL) {
     Value *LHSOp, *RHSOp;
     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
         match(Op1, m_PtrToInt(m_Value(RHSOp))))
@@ -1538,7 +1538,7 @@ Instruction *InstCombiner::visitSub(Bina
 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
+  if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL))
     return ReplaceInstUsesWith(I, V);
 
   if (isa<Constant>(Op0))

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp Thu Feb 20 18:06:31 2014
@@ -1104,7 +1104,7 @@ Instruction *InstCombiner::visitAnd(Bina
   bool Changed = SimplifyAssociativeOrCommutative(I);
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyAndInst(Op0, Op1, TD))
+  if (Value *V = SimplifyAndInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // (A|B)&(A|C) -> A|(B&C) etc
@@ -1905,7 +1905,7 @@ Instruction *InstCombiner::visitOr(Binar
   bool Changed = SimplifyAssociativeOrCommutative(I);
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyOrInst(Op0, Op1, TD))
+  if (Value *V = SimplifyOrInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // (A&B)|(A&C) -> A&(B|C) etc
@@ -2237,7 +2237,7 @@ Instruction *InstCombiner::visitXor(Bina
   bool Changed = SimplifyAssociativeOrCommutative(I);
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyXorInst(Op0, Op1, TD))
+  if (Value *V = SimplifyXorInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // (A&B)^(A&C) -> A&(B^C) etc

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp Thu Feb 20 18:06:31 2014
@@ -56,8 +56,8 @@ static Type *reduceToSingleValueType(Typ
 }
 
 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
-  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
-  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
+  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL);
+  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL);
   unsigned MinAlign = std::min(DstAlign, SrcAlign);
   unsigned CopyAlign = MI->getAlignment();
 
@@ -103,7 +103,7 @@ Instruction *InstCombiner::SimplifyMemTr
   if (StrippedDest != MI->getArgOperand(0)) {
     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
                                     ->getElementType();
-    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+    if (DL && SrcETy->isSized() && DL->getTypeStoreSize(SrcETy) == Size) {
       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
       // down through these levels if so.
       SrcETy = reduceToSingleValueType(SrcETy);
@@ -152,7 +152,7 @@ Instruction *InstCombiner::SimplifyMemTr
 }
 
 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
-  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
+  unsigned Alignment = getKnownAlignment(MI->getDest(), DL);
   if (MI->getAlignment() < Alignment) {
     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
                                              Alignment, false));
@@ -274,7 +274,7 @@ Instruction *InstCombiner::visitCallInst
   default: break;
   case Intrinsic::objectsize: {
     uint64_t Size;
-    if (getObjectSize(II->getArgOperand(0), Size, TD, TLI))
+    if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
     return 0;
   }
@@ -504,7 +504,7 @@ Instruction *InstCombiner::visitCallInst
   case Intrinsic::ppc_altivec_lvx:
   case Intrinsic::ppc_altivec_lvxl:
     // Turn PPC lvx -> load if the pointer is known aligned.
-    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
+    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL) >= 16) {
       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
                                          PointerType::getUnqual(II->getType()));
       return new LoadInst(Ptr);
@@ -513,7 +513,7 @@ Instruction *InstCombiner::visitCallInst
   case Intrinsic::ppc_altivec_stvx:
   case Intrinsic::ppc_altivec_stvxl:
     // Turn stvx -> store if the pointer is known aligned.
-    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
+    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL) >= 16) {
       Type *OpPtrTy =
         PointerType::getUnqual(II->getArgOperand(0)->getType());
       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
@@ -524,7 +524,7 @@ Instruction *InstCombiner::visitCallInst
   case Intrinsic::x86_sse2_storeu_pd:
   case Intrinsic::x86_sse2_storeu_dq:
     // Turn X86 storeu -> store if the pointer is known aligned.
-    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
+    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL) >= 16) {
       Type *OpPtrTy =
         PointerType::getUnqual(II->getArgOperand(1)->getType());
       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
@@ -641,7 +641,7 @@ Instruction *InstCombiner::visitCallInst
   case Intrinsic::arm_neon_vst2lane:
   case Intrinsic::arm_neon_vst3lane:
   case Intrinsic::arm_neon_vst4lane: {
-    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
+    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL);
     unsigned AlignArg = II->getNumArgOperands() - 1;
     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
@@ -747,7 +747,7 @@ Instruction *InstCombiner::visitInvokeIn
 /// passed through the varargs area, we can eliminate the use of the cast.
 static bool isSafeToEliminateVarargsCast(const CallSite CS,
                                          const CastInst * const CI,
-                                         const DataLayout * const TD,
+                                         const DataLayout * const DL,
                                          const int ix) {
   if (!CI->isLosslessCast())
     return false;
@@ -763,7 +763,7 @@ static bool isSafeToEliminateVarargsCast
   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
   if (!SrcTy->isSized() || !DstTy->isSized())
     return false;
-  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+  if (!DL || DL->getTypeAllocSize(SrcTy) != DL->getTypeAllocSize(DstTy))
     return false;
   return true;
 }
@@ -772,7 +772,7 @@ static bool isSafeToEliminateVarargsCast
 // Currently we're only working with the checking functions, memcpy_chk,
 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
 // strcat_chk and strncat_chk.
-Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *TD) {
+Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *DL) {
   if (CI->getCalledFunction() == 0) return 0;
 
   if (Value *With = Simplifier->optimizeCall(CI)) {
@@ -934,7 +934,7 @@ Instruction *InstCombiner::visitCallSite
     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
            E = CS.arg_end(); I != E; ++I, ++ix) {
       CastInst *CI = dyn_cast<CastInst>(*I);
-      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
+      if (CI && isSafeToEliminateVarargsCast(CS, CI, DL, ix)) {
         *I = CI->getOperand(0);
         Changed = true;
       }
@@ -951,7 +951,7 @@ Instruction *InstCombiner::visitCallSite
   // this.  None of these calls are seen as possibly dead so go ahead and
   // delete the instruction now.
   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
-    Instruction *I = tryOptimizeCall(CI, TD);
+    Instruction *I = tryOptimizeCall(CI, DL);
     // If we changed something return the result, etc. Otherwise let
     // the fallthrough check.
     if (I) return EraseInstFromFunction(*I);
@@ -1043,12 +1043,12 @@ bool InstCombiner::transformConstExprCas
         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
                                                          Attribute::ByVal)) {
       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
-      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
+      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || DL == 0)
         return false;
 
       Type *CurElTy = ActTy->getPointerElementType();
-      if (TD->getTypeAllocSize(CurElTy) !=
-          TD->getTypeAllocSize(ParamPTy->getElementType()))
+      if (DL->getTypeAllocSize(CurElTy) !=
+          DL->getTypeAllocSize(ParamPTy->getElementType()))
         return false;
     }
   }

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineCasts.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineCasts.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineCasts.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineCasts.cpp Thu Feb 20 18:06:31 2014
@@ -79,7 +79,7 @@ static Value *DecomposeSimpleLinearExpr(
 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
                                                    AllocaInst &AI) {
   // This requires DataLayout to get the alloca alignment and size information.
-  if (!TD) return 0;
+  if (!DL) return 0;
 
   PointerType *PTy = cast<PointerType>(CI.getType());
 
@@ -91,8 +91,8 @@ Instruction *InstCombiner::PromoteCastOf
   Type *CastElTy = PTy->getElementType();
   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
 
-  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
-  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
+  unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
+  unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
   if (CastElTyAlign < AllocElTyAlign) return 0;
 
   // If the allocation has multiple uses, only promote it if we are strictly
@@ -100,14 +100,14 @@ Instruction *InstCombiner::PromoteCastOf
   // same, we open the door to infinite loops of various kinds.
   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
 
-  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
-  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
+  uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
+  uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
 
   // If the allocation has multiple uses, only promote it if we're not
   // shrinking the amount of memory being allocated.
-  uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy);
-  uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy);
+  uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
+  uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
 
   // See if we can satisfy the modulus by pulling a scale out of the array
@@ -161,9 +161,9 @@ Value *InstCombiner::EvaluateInDifferent
                                              bool isSigned) {
   if (Constant *C = dyn_cast<Constant>(V)) {
     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
-    // If we got a constantexpr back, try to simplify it with TD info.
+    // If we got a constantexpr back, try to simplify it with DL info.
     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
-      C = ConstantFoldConstantExpression(CE, TD, TLI);
+      C = ConstantFoldConstantExpression(CE, DL, TLI);
     return C;
   }
 
@@ -235,7 +235,7 @@ isEliminableCastPair(
   const CastInst *CI, ///< The first cast instruction
   unsigned opcode,       ///< The opcode of the second cast instruction
   Type *DstTy,     ///< The target type for the second cast instruction
-  DataLayout *TD         ///< The target data for pointer size
+  DataLayout *DL         ///< The target data for pointer size
 ) {
 
   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
@@ -244,12 +244,12 @@ isEliminableCastPair(
   // Get the opcodes of the two Cast instructions
   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
-  Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
-    TD->getIntPtrType(SrcTy) : 0;
-  Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
-    TD->getIntPtrType(MidTy) : 0;
-  Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
-    TD->getIntPtrType(DstTy) : 0;
+  Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
+    DL->getIntPtrType(SrcTy) : 0;
+  Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
+    DL->getIntPtrType(MidTy) : 0;
+  Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
+    DL->getIntPtrType(DstTy) : 0;
   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
                                                 DstIntPtrTy);
@@ -275,7 +275,7 @@ bool InstCombiner::ShouldOptimizeCast(In
   // If this is another cast that can be eliminated, we prefer to have it
   // eliminated.
   if (const CastInst *CI = dyn_cast<CastInst>(V))
-    if (isEliminableCastPair(CI, opc, Ty, TD))
+    if (isEliminableCastPair(CI, opc, Ty, DL))
       return false;
 
   // If this is a vector sext from a compare, then we don't want to break the
@@ -295,7 +295,7 @@ Instruction *InstCombiner::commonCastTra
   // eliminate it now.
   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
     if (Instruction::CastOps opc =
-        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
+        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
       // The first cast (CSrc) is eliminable so we need to fix up or replace
       // the second cast (CI). CSrc will then have a good chance of being dead.
       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
@@ -1405,11 +1405,11 @@ Instruction *InstCombiner::visitIntToPtr
   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   // cast to be exposed to other transforms.
 
-  if (TD) {
+  if (DL) {
     unsigned AS = CI.getAddressSpace();
     if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
-        TD->getPointerSizeInBits(AS)) {
-      Type *Ty = TD->getIntPtrType(CI.getContext(), AS);
+        DL->getPointerSizeInBits(AS)) {
+      Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
       if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
         Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
 
@@ -1440,7 +1440,7 @@ Instruction *InstCombiner::commonPointer
       return &CI;
     }
 
-    if (!TD)
+    if (!DL)
       return commonCastTransforms(CI);
 
     // If the GEP has a single use, and the base pointer is a bitcast, and the
@@ -1448,12 +1448,12 @@ Instruction *InstCombiner::commonPointer
     // instructions into fewer.  This typically happens with unions and other
     // non-type-safe code.
     unsigned AS = GEP->getPointerAddressSpace();
-    unsigned OffsetBits = TD->getPointerSizeInBits(AS);
+    unsigned OffsetBits = DL->getPointerSizeInBits(AS);
     APInt Offset(OffsetBits, 0);
     BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
     if (GEP->hasOneUse() &&
         BCI &&
-        GEP->accumulateConstantOffset(*TD, Offset)) {
+        GEP->accumulateConstantOffset(*DL, Offset)) {
       // Get the base pointer input of the bitcast, and the type it points to.
       Value *OrigBase = BCI->getOperand(0);
       SmallVector<Value*, 8> NewIndices;
@@ -1484,16 +1484,16 @@ Instruction *InstCombiner::visitPtrToInt
   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   // to be exposed to other transforms.
 
-  if (!TD)
+  if (!DL)
     return commonPointerCastTransforms(CI);
 
   Type *Ty = CI.getType();
   unsigned AS = CI.getPointerAddressSpace();
 
-  if (Ty->getScalarSizeInBits() == TD->getPointerSizeInBits(AS))
+  if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
     return commonPointerCastTransforms(CI);
 
-  Type *PtrTy = TD->getIntPtrType(CI.getContext(), AS);
+  Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
   if (Ty->isVectorTy()) // Handle vectors of pointers.
     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
 

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineCompares.cpp Thu Feb 20 18:06:31 2014
@@ -218,7 +218,7 @@ Instruction *InstCombiner::
 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
                              CmpInst &ICI, ConstantInt *AndCst) {
   // We need TD information to know the pointer size unless this is inbounds.
-  if (!GEP->isInBounds() && TD == 0)
+  if (!GEP->isInBounds() && DL == 0)
     return 0;
 
   Constant *Init = GV->getInitializer();
@@ -307,7 +307,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementP
 
     // Find out if the comparison would be true or false for the i'th element.
     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
-                                                  CompareRHS, TD, TLI);
+                                                  CompareRHS, DL, TLI);
     // If the result is undef for this element, ignore it.
     if (isa<UndefValue>(C)) {
       // Extend range state machines to cover this element in case there is an
@@ -386,7 +386,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementP
   // index down like the GEP would do implicitly.  We don't have to do this for
   // an inbounds GEP because the index can't be out of range.
   if (!GEP->isInBounds()) {
-    Type *IntPtrTy = TD->getIntPtrType(GEP->getType());
+    Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
@@ -475,8 +475,8 @@ FoldCmpLoadFromIndexedGlobal(GetElementP
     // - Default to i32
     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
       Ty = Idx->getType();
-    else if (TD)
-      Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
+    else if (DL)
+      Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
     else if (ArrayElementCount <= 32)
       Ty = Type::getInt32Ty(Init->getContext());
 
@@ -503,7 +503,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementP
 /// If we can't emit an optimized form for this expression, this returns null.
 ///
 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
-  DataLayout &TD = *IC.getDataLayout();
+  DataLayout &DL = *IC.getDataLayout();
   gep_type_iterator GTI = gep_type_begin(GEP);
 
   // Check to see if this gep only has a single variable index.  If so, and if
@@ -520,9 +520,9 @@ static Value *EvaluateGEPOffsetExpressio
 
       // Handle a struct index, which adds its field offset to the pointer.
       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
-        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
       } else {
-        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
         Offset += Size*CI->getSExtValue();
       }
     } else {
@@ -538,7 +538,7 @@ static Value *EvaluateGEPOffsetExpressio
   Value *VariableIdx = GEP->getOperand(i);
   // Determine the scale factor of the variable element.  For example, this is
   // 4 if the variable index is into an array of i32.
-  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
+  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
 
   // Verify that there are no other variable indices.  If so, emit the hard way.
   for (++i, ++GTI; i != e; ++i, ++GTI) {
@@ -550,9 +550,9 @@ static Value *EvaluateGEPOffsetExpressio
 
     // Handle a struct index, which adds its field offset to the pointer.
     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
-      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
     } else {
-      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
       Offset += Size*CI->getSExtValue();
     }
   }
@@ -562,7 +562,7 @@ static Value *EvaluateGEPOffsetExpressio
   // Okay, we know we have a single variable index, which must be a
   // pointer/array/vector index.  If there is no offset, life is simple, return
   // the index.
-  Type *IntPtrTy = TD.getIntPtrType(GEP->getOperand(0)->getType());
+  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
   if (Offset == 0) {
     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
@@ -615,7 +615,7 @@ Instruction *InstCombiner::FoldGEPICmp(G
     RHS = BCI->getOperand(0);
 
   Value *PtrBase = GEPLHS->getOperand(0);
-  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
+  if (DL && PtrBase == RHS && GEPLHS->isInBounds()) {
     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
     // This transformation (ignoring the base and scales) is valid because we
     // know pointers can't overflow since the gep is inbounds.  See if we can
@@ -648,7 +648,7 @@ Instruction *InstCombiner::FoldGEPICmp(G
       // If we're comparing GEPs with two base pointers that only differ in type
       // and both GEPs have only constant indices or just one use, then fold
       // the compare with the adjusted indices.
-      if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
+      if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
           PtrBase->stripPointerCasts() ==
@@ -719,7 +719,7 @@ Instruction *InstCombiner::FoldGEPICmp(G
 
     // Only lower this if the icmp is the only user of the GEP or if we expect
     // the result to fold to a constant!
-    if (TD &&
+    if (DL &&
         GEPsInBounds &&
         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
@@ -1792,8 +1792,8 @@ Instruction *InstCombiner::visitICmpInst
 
   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   // integer type is the same size as the pointer type.
-  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
-      TD->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
+  if (DL && LHSCI->getOpcode() == Instruction::PtrToInt &&
+      DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
     Value *RHSOp = 0;
     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
@@ -2104,7 +2104,7 @@ Instruction *InstCombiner::visitICmpInst
     Changed = true;
   }
 
-  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
+  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // comparing -val or val with non-zero is the same as just comparing val
@@ -2172,8 +2172,8 @@ Instruction *InstCombiner::visitICmpInst
   unsigned BitWidth = 0;
   if (Ty->isIntOrIntVectorTy())
     BitWidth = Ty->getScalarSizeInBits();
-  else if (TD)  // Pointers require TD info to get their size.
-    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
+  else if (DL)  // Pointers require DL info to get their size.
+    BitWidth = DL->getTypeSizeInBits(Ty->getScalarType());
 
   bool isSignBit = false;
 
@@ -2532,8 +2532,8 @@ Instruction *InstCombiner::visitICmpInst
       }
       case Instruction::IntToPtr:
         // icmp pred inttoptr(X), null -> icmp pred X, 0
-        if (RHSC->isNullValue() && TD &&
-            TD->getIntPtrType(RHSC->getType()) ==
+        if (RHSC->isNullValue() && DL &&
+            DL->getIntPtrType(RHSC->getType()) ==
                LHSI->getOperand(0)->getType())
           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
@@ -3229,7 +3229,7 @@ Instruction *InstCombiner::visitFCmpInst
 
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
+  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // Simplify 'fcmp pred X, X'

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp Thu Feb 20 18:06:31 2014
@@ -157,8 +157,8 @@ isOnlyCopiedFromConstantGlobal(AllocaIns
 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
   // Ensure that the alloca array size argument has type intptr_t, so that
   // any casting is exposed early.
-  if (TD) {
-    Type *IntPtrTy = TD->getIntPtrType(AI.getType());
+  if (DL) {
+    Type *IntPtrTy = DL->getIntPtrType(AI.getType());
     if (AI.getArraySize()->getType() != IntPtrTy) {
       Value *V = Builder->CreateIntCast(AI.getArraySize(),
                                         IntPtrTy, false);
@@ -184,8 +184,8 @@ Instruction *InstCombiner::visitAllocaIn
       // Now that I is pointing to the first non-allocation-inst in the block,
       // insert our getelementptr instruction...
       //
-      Type *IdxTy = TD
-                  ? TD->getIntPtrType(AI.getType())
+      Type *IdxTy = DL
+                  ? DL->getIntPtrType(AI.getType())
                   : Type::getInt64Ty(AI.getContext());
       Value *NullIdx = Constant::getNullValue(IdxTy);
       Value *Idx[2] = { NullIdx, NullIdx };
@@ -201,15 +201,15 @@ Instruction *InstCombiner::visitAllocaIn
     }
   }
 
-  if (TD && AI.getAllocatedType()->isSized()) {
+  if (DL && AI.getAllocatedType()->isSized()) {
     // If the alignment is 0 (unspecified), assign it the preferred alignment.
     if (AI.getAlignment() == 0)
-      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
+      AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
 
     // Move all alloca's of zero byte objects to the entry block and merge them
     // together.  Note that we only do this for alloca's, because malloc should
     // allocate and return a unique pointer, even for a zero byte allocation.
-    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
+    if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
       // For a zero sized alloca there is no point in doing an array allocation.
       // This is helpful if the array size is a complicated expression not used
       // elsewhere.
@@ -227,7 +227,7 @@ Instruction *InstCombiner::visitAllocaIn
         // dominance as the array size was forced to a constant earlier already.
         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
-            TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
+            DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
           AI.moveBefore(FirstInst);
           return &AI;
         }
@@ -236,7 +236,7 @@ Instruction *InstCombiner::visitAllocaIn
         // assign it the preferred alignment.
         if (EntryAI->getAlignment() == 0)
           EntryAI->setAlignment(
-            TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
+            DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
         // Replace this zero-sized alloca with the one at the start of the entry
         // block after ensuring that the address will be aligned enough for both
         // types.
@@ -260,7 +260,7 @@ Instruction *InstCombiner::visitAllocaIn
     SmallVector<Instruction *, 4> ToDelete;
     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
       unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
-                                                        AI.getAlignment(), TD);
+                                                        AI.getAlignment(), DL);
       if (AI.getAlignment() <= SourceAlign) {
         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
@@ -285,7 +285,7 @@ Instruction *InstCombiner::visitAllocaIn
 
 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
-                                        const DataLayout *TD) {
+                                        const DataLayout *DL) {
   User *CI = cast<User>(LI.getOperand(0));
   Value *CastOp = CI->getOperand(0);
 
@@ -307,8 +307,8 @@ static Instruction *InstCombineLoadCast(
       if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
           if (ASrcTy->getNumElements() != 0) {
-            Type *IdxTy = TD
-                        ? TD->getIntPtrType(SrcTy)
+            Type *IdxTy = DL
+                        ? DL->getIntPtrType(SrcTy)
                         : Type::getInt64Ty(SrcTy->getContext());
             Value *Idx = Constant::getNullValue(IdxTy);
             Value *Idxs[2] = { Idx, Idx };
@@ -346,12 +346,12 @@ Instruction *InstCombiner::visitLoadInst
   Value *Op = LI.getOperand(0);
 
   // Attempt to improve the alignment.
-  if (TD) {
+  if (DL) {
     unsigned KnownAlign =
-      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
+      getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()),DL);
     unsigned LoadAlign = LI.getAlignment();
     unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
-      TD->getABITypeAlignment(LI.getType());
+      DL->getABITypeAlignment(LI.getType());
 
     if (KnownAlign > EffectiveLoadAlign)
       LI.setAlignment(KnownAlign);
@@ -361,7 +361,7 @@ Instruction *InstCombiner::visitLoadInst
 
   // load (cast X) --> cast (load X) iff safe.
   if (isa<CastInst>(Op))
-    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+    if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
       return Res;
 
   // None of the following transforms are legal for volatile/atomic loads.
@@ -405,7 +405,7 @@ Instruction *InstCombiner::visitLoadInst
   // Instcombine load (constantexpr_cast global) -> cast (load global)
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
     if (CE->isCast())
-      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+      if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
         return Res;
 
   if (Op->hasOneUse()) {
@@ -422,8 +422,8 @@ Instruction *InstCombiner::visitLoadInst
     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
       unsigned Align = LI.getAlignment();
-      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
-          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
+      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
+          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
                                            SI->getOperand(1)->getName()+".val");
         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
@@ -572,13 +572,13 @@ Instruction *InstCombiner::visitStoreIns
   Value *Ptr = SI.getOperand(1);
 
   // Attempt to improve the alignment.
-  if (TD) {
+  if (DL) {
     unsigned KnownAlign =
-      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
-                                 TD);
+      getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()),
+                                 DL);
     unsigned StoreAlign = SI.getAlignment();
     unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
-      TD->getABITypeAlignment(Val->getType());
+      DL->getABITypeAlignment(Val->getType());
 
     if (KnownAlign > EffectiveStoreAlign)
       SI.setAlignment(KnownAlign);

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp Thu Feb 20 18:06:31 2014
@@ -118,7 +118,7 @@ Instruction *InstCombiner::visitMul(Bina
   bool Changed = SimplifyAssociativeOrCommutative(I);
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyMulInst(Op0, Op1, TD))
+  if (Value *V = SimplifyMulInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   if (Value *V = SimplifyUsingDistributiveLaws(I))
@@ -429,7 +429,7 @@ Instruction *InstCombiner::visitFMul(Bin
   if (isa<Constant>(Op0))
     std::swap(Op0, Op1);
 
-  if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
+  if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL))
     return ReplaceInstUsesWith(I, V);
 
   bool AllowReassociate = I.hasUnsafeAlgebra();
@@ -875,7 +875,7 @@ static size_t visitUDivOperand(Value *Op
 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
+  if (Value *V = SimplifyUDivInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // Handle the integer div common cases
@@ -934,7 +934,7 @@ Instruction *InstCombiner::visitUDiv(Bin
 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifySDivInst(Op0, Op1, TD))
+  if (Value *V = SimplifySDivInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // Handle the integer div common cases
@@ -1020,7 +1020,7 @@ static Instruction *CvtFDivConstToRecipr
 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
+  if (Value *V = SimplifyFDivInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   if (isa<Constant>(Op0))
@@ -1182,7 +1182,7 @@ Instruction *InstCombiner::commonIRemTra
 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyURemInst(Op0, Op1, TD))
+  if (Value *V = SimplifyURemInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   if (Instruction *common = commonIRemTransforms(I))
@@ -1214,7 +1214,7 @@ Instruction *InstCombiner::visitURem(Bin
 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifySRemInst(Op0, Op1, TD))
+  if (Value *V = SimplifySRemInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // Handle the integer rem common cases
@@ -1285,7 +1285,7 @@ Instruction *InstCombiner::visitSRem(Bin
 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
+  if (Value *V = SimplifyFRemInst(Op0, Op1, DL))
     return ReplaceInstUsesWith(I, V);
 
   // Handle cases involving: rem X, (select Cond, Y, Z)

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombinePHI.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombinePHI.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombinePHI.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombinePHI.cpp Thu Feb 20 18:06:31 2014
@@ -790,7 +790,7 @@ Instruction *InstCombiner::SliceUpIllega
 // PHINode simplification
 //
 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
-  if (Value *V = SimplifyInstruction(&PN, TD, TLI))
+  if (Value *V = SimplifyInstruction(&PN, DL, TLI))
     return ReplaceInstUsesWith(PN, V);
 
   // If all PHI operands are the same operation, pull them through the PHI,
@@ -893,8 +893,8 @@ Instruction *InstCombiner::visitPHINode(
   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
   // PHI into the various pieces being extracted.  This sort of thing is
   // introduced when SROA promotes an aggregate to a single large integer type.
-  if (PN.getType()->isIntegerTy() && TD &&
-      !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
+  if (PN.getType()->isIntegerTy() && DL &&
+      !DL->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
       return Res;
 

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineSelect.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineSelect.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineSelect.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineSelect.cpp Thu Feb 20 18:06:31 2014
@@ -554,18 +554,18 @@ Instruction *InstCombiner::visitSelectIn
   // arms of the select. See if substituting this value into the arm and
   // simplifying the result yields the same value as the other arm.
   if (Pred == ICmpInst::ICMP_EQ) {
-    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
-        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
+    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
+        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
       return ReplaceInstUsesWith(SI, FalseVal);
-    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
-        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
+    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
+        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
       return ReplaceInstUsesWith(SI, FalseVal);
   } else if (Pred == ICmpInst::ICMP_NE) {
-    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
-        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
+    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
+        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
       return ReplaceInstUsesWith(SI, TrueVal);
-    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
-        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
+    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
+        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
       return ReplaceInstUsesWith(SI, TrueVal);
   }
 
@@ -734,7 +734,7 @@ Instruction *InstCombiner::visitSelectIn
   Value *TrueVal = SI.getTrueValue();
   Value *FalseVal = SI.getFalseValue();
 
-  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
+  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, DL))
     return ReplaceInstUsesWith(SI, V);
 
   if (SI.getType()->isIntegerTy(1)) {

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp Thu Feb 20 18:06:31 2014
@@ -677,7 +677,7 @@ Instruction *InstCombiner::FoldShiftByCo
 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
-                                 TD))
+                                 DL))
     return ReplaceInstUsesWith(I, V);
 
   if (Instruction *V = commonShiftTransforms(I))
@@ -714,7 +714,7 @@ Instruction *InstCombiner::visitShl(Bina
 
 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
-                                  I.isExact(), TD))
+                                  I.isExact(), DL))
     return ReplaceInstUsesWith(I, V);
 
   if (Instruction *R = commonShiftTransforms(I))
@@ -754,7 +754,7 @@ Instruction *InstCombiner::visitLShr(Bin
 
 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
-                                  I.isExact(), TD))
+                                  I.isExact(), DL))
     return ReplaceInstUsesWith(I, V);
 
   if (Instruction *R = commonShiftTransforms(I))

Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp Thu Feb 20 18:06:31 2014
@@ -105,9 +105,9 @@ Value *InstCombiner::SimplifyDemandedUse
   assert(Depth <= 6 && "Limit Search Depth");
   uint32_t BitWidth = DemandedMask.getBitWidth();
   Type *VTy = V->getType();
-  assert((TD || !VTy->isPointerTy()) &&
+  assert((DL || !VTy->isPointerTy()) &&
          "SimplifyDemandedBits needs to know bit widths!");
-  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
+  assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
          (!VTy->isIntOrIntVectorTy() ||
           VTy->getScalarSizeInBits() == BitWidth) &&
          KnownZero.getBitWidth() == BitWidth &&

Modified: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp Thu Feb 20 18:06:31 2014
@@ -103,13 +103,13 @@ Value *InstCombiner::EmitGEPOffset(User
 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
   assert(From->isIntegerTy() && To->isIntegerTy());
 
-  // If we don't have TD, we don't know if the source/dest are legal.
-  if (!TD) return false;
+  // If we don't have DL, we don't know if the source/dest are legal.
+  if (!DL) return false;
 
   unsigned FromWidth = From->getPrimitiveSizeInBits();
   unsigned ToWidth = To->getPrimitiveSizeInBits();
-  bool FromLegal = TD->isLegalInteger(FromWidth);
-  bool ToLegal = TD->isLegalInteger(ToWidth);
+  bool FromLegal = DL->isLegalInteger(FromWidth);
+  bool ToLegal = DL->isLegalInteger(ToWidth);
 
   // If this is a legal integer from type, and the result would be an illegal
   // type, don't do the transformation.
@@ -221,7 +221,7 @@ bool InstCombiner::SimplifyAssociativeOr
         Value *C = I.getOperand(1);
 
         // Does "B op C" simplify?
-        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
+        if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
           // It simplifies to V.  Form "A op V".
           I.setOperand(0, A);
           I.setOperand(1, V);
@@ -250,7 +250,7 @@ bool InstCombiner::SimplifyAssociativeOr
         Value *C = Op1->getOperand(1);
 
         // Does "A op B" simplify?
-        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
+        if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
           // It simplifies to V.  Form "V op C".
           I.setOperand(0, V);
           I.setOperand(1, C);
@@ -272,7 +272,7 @@ bool InstCombiner::SimplifyAssociativeOr
         Value *C = I.getOperand(1);
 
         // Does "C op A" simplify?
-        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
+        if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
           // It simplifies to V.  Form "V op B".
           I.setOperand(0, V);
           I.setOperand(1, B);
@@ -292,7 +292,7 @@ bool InstCombiner::SimplifyAssociativeOr
         Value *C = Op1->getOperand(1);
 
         // Does "C op A" simplify?
-        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
+        if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
           // It simplifies to V.  Form "B op V".
           I.setOperand(0, B);
           I.setOperand(1, V);
@@ -425,7 +425,7 @@ Value *InstCombiner::SimplifyUsingDistri
           std::swap(C, D);
         // Consider forming "A op' (B op D)".
         // If "B op D" simplifies then it can be formed with no cost.
-        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
+        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
         // If "B op D" doesn't simplify then only go on if both of the existing
         // operations "A op' B" and "C op' D" will be zapped as no longer used.
         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
@@ -447,7 +447,7 @@ Value *InstCombiner::SimplifyUsingDistri
           std::swap(C, D);
         // Consider forming "(A op C) op' B".
         // If "A op C" simplifies then it can be formed with no cost.
-        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
+        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
         // If "A op C" doesn't simplify then only go on if both of the existing
         // operations "A op' B" and "C op' D" will be zapped as no longer used.
         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
@@ -469,8 +469,8 @@ Value *InstCombiner::SimplifyUsingDistri
     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 
     // Do "A op C" and "B op C" both simplify?
-    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
-      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
+    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
+      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
         // They do! Return "L op' R".
         ++NumExpand;
         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
@@ -478,7 +478,7 @@ Value *InstCombiner::SimplifyUsingDistri
             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
           return Op0;
         // Otherwise return "L op' R" if it simplifies.
-        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
+        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
           return V;
         // Otherwise, create a new instruction.
         C = Builder->CreateBinOp(InnerOpcode, L, R);
@@ -494,8 +494,8 @@ Value *InstCombiner::SimplifyUsingDistri
     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
 
     // Do "A op B" and "A op C" both simplify?
-    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
-      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
+    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
+      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
         // They do! Return "L op' R".
         ++NumExpand;
         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
@@ -503,7 +503,7 @@ Value *InstCombiner::SimplifyUsingDistri
             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
           return Op1;
         // Otherwise return "L op' R" if it simplifies.
-        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
+        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
           return V;
         // Otherwise, create a new instruction.
         A = Builder->CreateBinOp(InnerOpcode, L, R);
@@ -777,7 +777,7 @@ Type *InstCombiner::FindElementAtOffset(
                                         SmallVectorImpl<Value*> &NewIndices) {
   assert(PtrTy->isPtrOrPtrVectorTy());
 
-  if (!TD)
+  if (!DL)
     return 0;
 
   Type *Ty = PtrTy->getPointerElementType();
@@ -787,9 +787,9 @@ Type *InstCombiner::FindElementAtOffset(
   // Start with the index over the outer type.  Note that the type size
   // might be zero (even if the offset isn't zero) if the indexed type
   // is something like [0 x {int, int}]
-  Type *IntPtrTy = TD->getIntPtrType(PtrTy);
+  Type *IntPtrTy = DL->getIntPtrType(PtrTy);
   int64_t FirstIdx = 0;
-  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
+  if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
     FirstIdx = Offset/TySize;
     Offset -= FirstIdx*TySize;
 
@@ -807,11 +807,11 @@ Type *InstCombiner::FindElementAtOffset(
   // Index into the types.  If we fail, set OrigBase to null.
   while (Offset) {
     // Indexing into tail padding between struct/array elements.
-    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
+    if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
       return 0;
 
     if (StructType *STy = dyn_cast<StructType>(Ty)) {
-      const StructLayout *SL = TD->getStructLayout(STy);
+      const StructLayout *SL = DL->getStructLayout(STy);
       assert(Offset < (int64_t)SL->getSizeInBytes() &&
              "Offset must stay within the indexed type");
 
@@ -822,7 +822,7 @@ Type *InstCombiner::FindElementAtOffset(
       Offset -= SL->getElementOffset(Elt);
       Ty = STy->getElementType(Elt);
     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
-      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
+      uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
       assert(EltSize && "Cannot index into a zero-sized array");
       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
       Offset %= EltSize;
@@ -1087,16 +1087,16 @@ Value *InstCombiner::Descale(Value *Val,
 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 
-  if (Value *V = SimplifyGEPInst(Ops, TD))
+  if (Value *V = SimplifyGEPInst(Ops, DL))
     return ReplaceInstUsesWith(GEP, V);
 
   Value *PtrOp = GEP.getOperand(0);
 
   // Eliminate unneeded casts for indices, and replace indices which displace
   // by multiples of a zero size type with zero.
-  if (TD) {
+  if (DL) {
     bool MadeChange = false;
-    Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
+    Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
 
     gep_type_iterator GTI = gep_type_begin(GEP);
     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
@@ -1108,7 +1108,7 @@ Instruction *InstCombiner::visitGetEleme
       // If the element type has zero size then any index over it is equivalent
       // to an index of zero, so replace it with zero if it is not zero already.
       if (SeqTy->getElementType()->isSized() &&
-          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
+          DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
           *I = Constant::getNullValue(IntPtrTy);
           MadeChange = true;
@@ -1199,12 +1199,12 @@ Instruction *InstCombiner::visitGetEleme
   // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
   // The GEP pattern is emitted by the SCEV expander for certain kinds of
   // pointer arithmetic.
-  if (TD && GEP.getNumIndices() == 1 &&
+  if (DL && GEP.getNumIndices() == 1 &&
       match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
     unsigned AS = GEP.getPointerAddressSpace();
     if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
         GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
-        TD->getPointerSizeInBits(AS)) {
+        DL->getPointerSizeInBits(AS)) {
       Operator *Index = cast<Operator>(GEP.getOperand(1));
       Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
       Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
@@ -1266,10 +1266,10 @@ Instruction *InstCombiner::visitGetEleme
       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
       Type *SrcElTy = StrippedPtrTy->getElementType();
       Type *ResElTy = PtrOp->getType()->getPointerElementType();
-      if (TD && SrcElTy->isArrayTy() &&
-          TD->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
-          TD->getTypeAllocSize(ResElTy)) {
-        Type *IdxType = TD->getIntPtrType(GEP.getType());
+      if (DL && SrcElTy->isArrayTy() &&
+          DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
+          DL->getTypeAllocSize(ResElTy)) {
+        Type *IdxType = DL->getIntPtrType(GEP.getType());
         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
         Value *NewGEP = GEP.isInBounds() ?
           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
@@ -1285,11 +1285,11 @@ Instruction *InstCombiner::visitGetEleme
       // %V = mul i64 %N, 4
       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
-      if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
+      if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
         // Check that changing the type amounts to dividing the index by a scale
         // factor.
-        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
-        uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
+        uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
+        uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
         if (ResSize && SrcSize % ResSize == 0) {
           Value *Idx = GEP.getOperand(1);
           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
@@ -1297,7 +1297,7 @@ Instruction *InstCombiner::visitGetEleme
 
           // Earlier transforms ensure that the index has type IntPtrType, which
           // considerably simplifies the logic by eliminating implicit casts.
-          assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
+          assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
                  "Index not cast to pointer width?");
 
           bool NSW;
@@ -1321,13 +1321,13 @@ Instruction *InstCombiner::visitGetEleme
       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
       //   (where tmp = 8*tmp2) into:
       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
-      if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
+      if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
           SrcElTy->isArrayTy()) {
         // Check that changing to the array element type amounts to dividing the
         // index by a scale factor.
-        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
+        uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
         uint64_t ArrayEltSize
-          = TD->getTypeAllocSize(SrcElTy->getArrayElementType());
+          = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
         if (ResSize && ArrayEltSize % ResSize == 0) {
           Value *Idx = GEP.getOperand(1);
           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
@@ -1335,7 +1335,7 @@ Instruction *InstCombiner::visitGetEleme
 
           // Earlier transforms ensure that the index has type IntPtrType, which
           // considerably simplifies the logic by eliminating implicit casts.
-          assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
+          assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
                  "Index not cast to pointer width?");
 
           bool NSW;
@@ -1344,7 +1344,7 @@ Instruction *InstCombiner::visitGetEleme
             // If the multiplication NewIdx * Scale may overflow then the new
             // GEP may not be "inbounds".
             Value *Off[2] = {
-              Constant::getNullValue(TD->getIntPtrType(GEP.getType())),
+              Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
               NewIdx
             };
 
@@ -1361,7 +1361,7 @@ Instruction *InstCombiner::visitGetEleme
     }
   }
 
-  if (!TD)
+  if (!DL)
     return 0;
 
   /// See if we can simplify:
@@ -1372,10 +1372,10 @@ Instruction *InstCombiner::visitGetEleme
   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
     Value *Operand = BCI->getOperand(0);
     PointerType *OpType = cast<PointerType>(Operand->getType());
-    unsigned OffsetBits = TD->getPointerTypeSizeInBits(OpType);
+    unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
     APInt Offset(OffsetBits, 0);
     if (!isa<BitCastInst>(Operand) &&
-        GEP.accumulateConstantOffset(*TD, Offset) &&
+        GEP.accumulateConstantOffset(*DL, Offset) &&
         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
 
       // If this GEP instruction doesn't move the pointer, just replace the GEP
@@ -2231,7 +2231,7 @@ static bool TryToSinkInstruction(Instruc
 static bool AddReachableCodeToWorklist(BasicBlock *BB,
                                        SmallPtrSet<BasicBlock*, 64> &Visited,
                                        InstCombiner &IC,
-                                       const DataLayout *TD,
+                                       const DataLayout *DL,
                                        const TargetLibraryInfo *TLI) {
   bool MadeIRChange = false;
   SmallVector<BasicBlock*, 256> Worklist;
@@ -2259,7 +2259,7 @@ static bool AddReachableCodeToWorklist(B
 
       // ConstantProp instruction if trivially constant.
       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
-        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
+        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
                        << *Inst << '\n');
           Inst->replaceAllUsesWith(C);
@@ -2268,7 +2268,7 @@ static bool AddReachableCodeToWorklist(B
           continue;
         }
 
-      if (TD) {
+      if (DL) {
         // See if we can constant fold its operands.
         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
              i != e; ++i) {
@@ -2277,7 +2277,7 @@ static bool AddReachableCodeToWorklist(B
 
           Constant*& FoldRes = FoldedConstants[CE];
           if (!FoldRes)
-            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
+            FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
           if (!FoldRes)
             FoldRes = CE;
 
@@ -2344,7 +2344,7 @@ bool InstCombiner::DoOneIteration(Functi
     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
     // track of which blocks we visit.
     SmallPtrSet<BasicBlock*, 64> Visited;
-    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
+    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
                                                TLI);
 
     // Do a quick scan over the function.  If we find any blocks that are
@@ -2390,7 +2390,7 @@ bool InstCombiner::DoOneIteration(Functi
 
     // Instruction isn't dead, see if we can constant propagate it.
     if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
-      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
+      if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
 
         // Add operands to the worklist.
@@ -2499,10 +2499,10 @@ namespace {
 class InstCombinerLibCallSimplifier : public LibCallSimplifier {
   InstCombiner *IC;
 public:
-  InstCombinerLibCallSimplifier(const DataLayout *TD,
+  InstCombinerLibCallSimplifier(const DataLayout *DL,
                                 const TargetLibraryInfo *TLI,
                                 InstCombiner *IC)
-    : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
+    : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
     this->IC = IC;
   }
 
@@ -2518,7 +2518,7 @@ bool InstCombiner::runOnFunction(Functio
   if (skipOptnoneFunction(F))
     return false;
 
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
   // Minimizing size?
   MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
@@ -2527,11 +2527,11 @@ bool InstCombiner::runOnFunction(Functio
   /// Builder - This is an IRBuilder that automatically inserts new
   /// instructions into the worklist when they are created.
   IRBuilder<true, TargetFolder, InstCombineIRInserter>
-    TheBuilder(F.getContext(), TargetFolder(TD),
+    TheBuilder(F.getContext(), TargetFolder(DL),
                InstCombineIRInserter(Worklist));
   Builder = &TheBuilder;
 
-  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
+  InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
   Simplifier = &TheSimplifier;
 
   bool EverMadeChange = false;

Modified: llvm/trunk/lib/Transforms/Instrumentation/AddressSanitizer.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/AddressSanitizer.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Instrumentation/AddressSanitizer.cpp (original)
+++ llvm/trunk/lib/Transforms/Instrumentation/AddressSanitizer.cpp Thu Feb 20 18:06:31 2014
@@ -336,7 +336,7 @@ struct AddressSanitizer : public Functio
   SmallString<64> BlacklistFile;
 
   LLVMContext *C;
-  DataLayout *TD;
+  DataLayout *DL;
   int LongSize;
   Type *IntptrTy;
   ShadowMapping Mapping;
@@ -385,7 +385,7 @@ class AddressSanitizerModule : public Mo
   SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
   Type *IntptrTy;
   LLVMContext *C;
-  DataLayout *TD;
+  DataLayout *DL;
   ShadowMapping Mapping;
   Function *AsanPoisonGlobals;
   Function *AsanUnpoisonGlobals;
@@ -516,7 +516,7 @@ struct FunctionStackPoisoner : public In
 
   uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
     Type *Ty = AI->getAllocatedType();
-    uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
+    uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty);
     return SizeInBytes;
   }
   /// Finds alloca where the value comes from.
@@ -691,7 +691,7 @@ void AddressSanitizer::instrumentMop(Ins
   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
 
   assert(OrigTy->isSized());
-  uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
+  uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
 
   assert((TypeSize % 8) == 0);
 
@@ -912,13 +912,13 @@ void AddressSanitizerModule::initializeC
 // redzones and inserts this function into llvm.global_ctors.
 bool AddressSanitizerModule::runOnModule(Module &M) {
   if (!ClGlobals) return false;
-  TD = getAnalysisIfAvailable<DataLayout>();
-  if (!TD)
+  DL = getAnalysisIfAvailable<DataLayout>();
+  if (!DL)
     return false;
   BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
   if (BL->isIn(M)) return false;
   C = &(M.getContext());
-  int LongSize = TD->getPointerSizeInBits();
+  int LongSize = DL->getPointerSizeInBits();
   IntptrTy = Type::getIntNTy(*C, LongSize);
   Mapping = getShadowMapping(M, LongSize);
   initializeCallbacks(M);
@@ -964,7 +964,7 @@ bool AddressSanitizerModule::runOnModule
     GlobalVariable *G = GlobalsToChange[i];
     PointerType *PtrTy = cast<PointerType>(G->getType());
     Type *Ty = PtrTy->getElementType();
-    uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
+    uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
     uint64_t MinRZ = MinRedzoneSizeForGlobal();
     // MinRZ <= RZ <= kMaxGlobalRedzone
     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
@@ -1105,15 +1105,15 @@ void AddressSanitizer::emitShadowMapping
 // virtual
 bool AddressSanitizer::doInitialization(Module &M) {
   // Initialize the private fields. No one has accessed them before.
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
 
-  if (!TD)
+  if (!DL)
     return false;
   BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
   DynamicallyInitializedGlobals.Init(M);
 
   C = &(M.getContext());
-  LongSize = TD->getPointerSizeInBits();
+  LongSize = DL->getPointerSizeInBits();
   IntptrTy = Type::getIntNTy(*C, LongSize);
 
   AsanCtorFunction = Function::Create(
@@ -1378,7 +1378,7 @@ FunctionStackPoisoner::poisonRedZones(co
     for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
       uint64_t Val = 0;
       for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
-        if (ASan.TD->isLittleEndian())
+        if (ASan.DL->isLittleEndian())
           Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
         else
           Val = (Val << 8) | ShadowBytes[i + j];

Modified: llvm/trunk/lib/Transforms/Instrumentation/BoundsChecking.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/BoundsChecking.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Instrumentation/BoundsChecking.cpp (original)
+++ llvm/trunk/lib/Transforms/Instrumentation/BoundsChecking.cpp Thu Feb 20 18:06:31 2014
@@ -53,7 +53,7 @@ namespace {
     }
 
   private:
-    const DataLayout *TD;
+    const DataLayout *DL;
     const TargetLibraryInfo *TLI;
     ObjectSizeOffsetEvaluator *ObjSizeEval;
     BuilderTy *Builder;
@@ -127,7 +127,7 @@ void BoundsChecking::emitBranchToTrap(Va
 /// size of memory block that is touched.
 /// Returns true if any change was made to the IR, false otherwise.
 bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
-  uint64_t NeededSize = TD->getTypeStoreSize(InstVal->getType());
+  uint64_t NeededSize = DL->getTypeStoreSize(InstVal->getType());
   DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
               << " bytes\n");
 
@@ -142,7 +142,7 @@ bool BoundsChecking::instrument(Value *P
   Value *Offset = SizeOffset.second;
   ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
 
-  Type *IntTy = TD->getIntPtrType(Ptr->getType());
+  Type *IntTy = DL->getIntPtrType(Ptr->getType());
   Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
 
   // three checks are required to ensure safety:
@@ -166,13 +166,13 @@ bool BoundsChecking::instrument(Value *P
 }
 
 bool BoundsChecking::runOnFunction(Function &F) {
-  TD = &getAnalysis<DataLayout>();
+  DL = &getAnalysis<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
 
   TrapBB = 0;
-  BuilderTy TheBuilder(F.getContext(), TargetFolder(TD));
+  BuilderTy TheBuilder(F.getContext(), TargetFolder(DL));
   Builder = &TheBuilder;
-  ObjectSizeOffsetEvaluator TheObjSizeEval(TD, TLI, F.getContext(),
+  ObjectSizeOffsetEvaluator TheObjSizeEval(DL, TLI, F.getContext(),
                                            /*RoundToAlign=*/true);
   ObjSizeEval = &TheObjSizeEval;
 

Modified: llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp (original)
+++ llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp Thu Feb 20 18:06:31 2014
@@ -207,7 +207,7 @@ class MemorySanitizer : public FunctionP
                   StringRef BlacklistFile = StringRef())
       : FunctionPass(ID),
         TrackOrigins(TrackOrigins || ClTrackOrigins),
-        TD(0),
+        DL(0),
         WarningFn(0),
         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
         WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
@@ -222,7 +222,7 @@ class MemorySanitizer : public FunctionP
   /// \brief Track origins (allocation points) of uninitialized values.
   bool TrackOrigins;
 
-  DataLayout *TD;
+  DataLayout *DL;
   LLVMContext *C;
   Type *IntptrTy;
   Type *OriginTy;
@@ -399,12 +399,12 @@ void MemorySanitizer::initializeCallback
 ///
 /// inserts a call to __msan_init to the module's constructor list.
 bool MemorySanitizer::doInitialization(Module &M) {
-  TD = getAnalysisIfAvailable<DataLayout>();
-  if (!TD)
+  DL = getAnalysisIfAvailable<DataLayout>();
+  if (!DL)
     return false;
   BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
   C = &(M.getContext());
-  unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
+  unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
   switch (PtrSize) {
     case 64:
       ShadowMask = kShadowMask64;
@@ -420,7 +420,7 @@ bool MemorySanitizer::doInitialization(M
   }
 
   IRBuilder<> IRB(*C);
-  IntptrTy = IRB.getIntPtrTy(TD);
+  IntptrTy = IRB.getIntPtrTy(DL);
   OriginTy = IRB.getInt32Ty();
 
   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
@@ -650,7 +650,7 @@ struct MemorySanitizerVisitor : public I
   /// \brief Add MemorySanitizer instrumentation to a function.
   bool runOnFunction() {
     MS.initializeCallbacks(*F.getParent());
-    if (!MS.TD) return false;
+    if (!MS.DL) return false;
 
     // In the presence of unreachable blocks, we may see Phi nodes with
     // incoming nodes from such blocks. Since InstVisitor skips unreachable
@@ -710,7 +710,7 @@ struct MemorySanitizerVisitor : public I
     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
       return IT;
     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
-      uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
+      uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
       return VectorType::get(IntegerType::get(*MS.C, EltSize),
                              VT->getNumElements());
     }
@@ -722,7 +722,7 @@ struct MemorySanitizerVisitor : public I
       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
       return Res;
     }
-    uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
+    uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
     return IntegerType::get(*MS.C, TypeSize);
   }
 
@@ -889,8 +889,8 @@ struct MemorySanitizerVisitor : public I
           continue;
         }
         unsigned Size = AI->hasByValAttr()
-          ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
-          : MS.TD->getTypeAllocSize(AI->getType());
+          ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
+          : MS.DL->getTypeAllocSize(AI->getType());
         if (A == AI) {
           Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
           if (AI->hasByValAttr()) {
@@ -900,7 +900,7 @@ struct MemorySanitizerVisitor : public I
             unsigned ArgAlign = AI->getParamAlignment();
             if (ArgAlign == 0) {
               Type *EltType = A->getType()->getPointerElementType();
-              ArgAlign = MS.TD->getABITypeAlignment(EltType);
+              ArgAlign = MS.DL->getABITypeAlignment(EltType);
             }
             unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
             Value *Cpy = EntryIRB.CreateMemCpy(
@@ -1935,13 +1935,13 @@ struct MemorySanitizerVisitor : public I
       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
         assert(A->getType()->isPointerTy() &&
                "ByVal argument is not a pointer!");
-        Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
+        Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
         unsigned Alignment = CS.getParamAlignment(i + 1);
         Store = IRB.CreateMemCpy(ArgShadowBase,
                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
                                  Size, Alignment);
       } else {
-        Size = MS.TD->getTypeAllocSize(A->getType());
+        Size = MS.DL->getTypeAllocSize(A->getType());
         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
                                        kShadowTLSAlignment);
       }
@@ -2024,7 +2024,7 @@ struct MemorySanitizerVisitor : public I
   void visitAllocaInst(AllocaInst &I) {
     setShadow(&I, getCleanShadow(&I));
     IRBuilder<> IRB(I.getNextNode());
-    uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
+    uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
     if (PoisonStack && ClPoisonStackWithCall) {
       IRB.CreateCall2(MS.MsanPoisonStackFn,
                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
@@ -2223,7 +2223,7 @@ struct VarArgAMD64Helper : public VarArg
         FpOffset += 16;
         break;
       case AK_Memory:
-        uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
+        uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
         Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
         OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
       }

Modified: llvm/trunk/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/ThreadSanitizer.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Instrumentation/ThreadSanitizer.cpp (original)
+++ llvm/trunk/lib/Transforms/Instrumentation/ThreadSanitizer.cpp Thu Feb 20 18:06:31 2014
@@ -78,7 +78,7 @@ namespace {
 struct ThreadSanitizer : public FunctionPass {
   ThreadSanitizer(StringRef BlacklistFile = StringRef())
       : FunctionPass(ID),
-        TD(0),
+        DL(0),
         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
                                             : BlacklistFile) { }
   const char *getPassName() const;
@@ -96,7 +96,7 @@ struct ThreadSanitizer : public Function
   bool addrPointsToConstantData(Value *Addr);
   int getMemoryAccessFuncIndex(Value *Addr);
 
-  DataLayout *TD;
+  DataLayout *DL;
   Type *IntptrTy;
   SmallString<64> BlacklistFile;
   OwningPtr<SpecialCaseList> BL;
@@ -224,14 +224,14 @@ void ThreadSanitizer::initializeCallback
 }
 
 bool ThreadSanitizer::doInitialization(Module &M) {
-  TD = getAnalysisIfAvailable<DataLayout>();
-  if (!TD)
+  DL = getAnalysisIfAvailable<DataLayout>();
+  if (!DL)
     return false;
   BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
 
   // Always insert a call to __tsan_init into the module's CTORs.
   IRBuilder<> IRB(M.getContext());
-  IntptrTy = IRB.getIntPtrTy(TD);
+  IntptrTy = IRB.getIntPtrTy(DL);
   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
                                           IRB.getVoidTy(), NULL);
   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
@@ -320,7 +320,7 @@ static bool isAtomic(Instruction *I) {
 }
 
 bool ThreadSanitizer::runOnFunction(Function &F) {
-  if (!TD) return false;
+  if (!DL) return false;
   if (BL->isIn(F)) return false;
   initializeCallbacks(*F.getParent());
   SmallVector<Instruction*, 8> RetVec;
@@ -573,7 +573,7 @@ int ThreadSanitizer::getMemoryAccessFunc
   Type *OrigPtrTy = Addr->getType();
   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
   assert(OrigTy->isSized());
-  uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
+  uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
   if (TypeSize != 8  && TypeSize != 16 &&
       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
     NumAccessesWithBadSize++;

Modified: llvm/trunk/lib/Transforms/Scalar/EarlyCSE.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/EarlyCSE.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/EarlyCSE.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/EarlyCSE.cpp Thu Feb 20 18:06:31 2014
@@ -262,7 +262,7 @@ namespace {
 /// cases.
 class EarlyCSE : public FunctionPass {
 public:
-  const DataLayout *TD;
+  const DataLayout *DL;
   const TargetLibraryInfo *TLI;
   DominatorTree *DT;
   typedef RecyclingAllocator<BumpPtrAllocator,
@@ -432,7 +432,7 @@ bool EarlyCSE::processNode(DomTreeNode *
 
     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
     // its simpler value.
-    if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) {
+    if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT)) {
       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
       Inst->replaceAllUsesWith(V);
       Inst->eraseFromParent();
@@ -557,7 +557,7 @@ bool EarlyCSE::runOnFunction(Function &F
 
   std::vector<StackNode *> nodesToProcess;
 
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 

Modified: llvm/trunk/lib/Transforms/Scalar/GVN.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/GVN.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/GVN.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/GVN.cpp Thu Feb 20 18:06:31 2014
@@ -586,7 +586,7 @@ namespace {
     bool NoLoads;
     MemoryDependenceAnalysis *MD;
     DominatorTree *DT;
-    const DataLayout *TD;
+    const DataLayout *DL;
     const TargetLibraryInfo *TLI;
     SetVector<BasicBlock *> DeadBlocks;
 
@@ -624,7 +624,7 @@ namespace {
       InstrsToErase.push_back(I);
     }
 
-    const DataLayout *getDataLayout() const { return TD; }
+    const DataLayout *getDataLayout() const { return DL; }
     DominatorTree &getDominatorTree() const { return *DT; }
     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
@@ -828,7 +828,7 @@ SpeculationFailure:
 /// CoerceAvailableValueToLoadType will succeed.
 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
                                             Type *LoadTy,
-                                            const DataLayout &TD) {
+                                            const DataLayout &DL) {
   // If the loaded or stored value is an first class array or struct, don't try
   // to transform them.  We need to be able to bitcast to integer.
   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
@@ -837,8 +837,8 @@ static bool CanCoerceMustAliasedValueToL
     return false;
 
   // The store has to be at least as big as the load.
-  if (TD.getTypeSizeInBits(StoredVal->getType()) <
-        TD.getTypeSizeInBits(LoadTy))
+  if (DL.getTypeSizeInBits(StoredVal->getType()) <
+        DL.getTypeSizeInBits(LoadTy))
     return false;
 
   return true;
@@ -853,15 +853,15 @@ static bool CanCoerceMustAliasedValueToL
 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
                                              Type *LoadedTy,
                                              Instruction *InsertPt,
-                                             const DataLayout &TD) {
-  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
+                                             const DataLayout &DL) {
+  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
     return 0;
 
   // If this is already the right type, just return it.
   Type *StoredValTy = StoredVal->getType();
 
-  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
-  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
+  uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
+  uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
 
   // If the store and reload are the same size, we can always reuse it.
   if (StoreSize == LoadSize) {
@@ -872,13 +872,13 @@ static Value *CoerceAvailableValueToLoad
 
     // Convert source pointers to integers, which can be bitcast.
     if (StoredValTy->getScalarType()->isPointerTy()) {
-      StoredValTy = TD.getIntPtrType(StoredValTy);
+      StoredValTy = DL.getIntPtrType(StoredValTy);
       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
     }
 
     Type *TypeToCastTo = LoadedTy;
     if (TypeToCastTo->getScalarType()->isPointerTy())
-      TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
+      TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
 
     if (StoredValTy != TypeToCastTo)
       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
@@ -897,7 +897,7 @@ static Value *CoerceAvailableValueToLoad
 
   // Convert source pointers to integers, which can be manipulated.
   if (StoredValTy->getScalarType()->isPointerTy()) {
-    StoredValTy = TD.getIntPtrType(StoredValTy);
+    StoredValTy = DL.getIntPtrType(StoredValTy);
     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
   }
 
@@ -909,7 +909,7 @@ static Value *CoerceAvailableValueToLoad
 
   // If this is a big-endian system, we need to shift the value down to the low
   // bits so that a truncate will work.
-  if (TD.isBigEndian()) {
+  if (DL.isBigEndian()) {
     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
   }
@@ -940,15 +940,15 @@ static Value *CoerceAvailableValueToLoad
 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
                                           Value *WritePtr,
                                           uint64_t WriteSizeInBits,
-                                          const DataLayout &TD) {
+                                          const DataLayout &DL) {
   // If the loaded or stored value is a first class array or struct, don't try
   // to transform them.  We need to be able to bitcast to integer.
   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
     return -1;
 
   int64_t StoreOffset = 0, LoadOffset = 0;
-  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
-  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
+  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
+  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
   if (StoreBase != LoadBase)
     return -1;
 
@@ -970,7 +970,7 @@ static int AnalyzeLoadFromClobberingWrit
   // If the load and store don't overlap at all, the store doesn't provide
   // anything to the load.  In this case, they really don't alias at all, AA
   // must have gotten confused.
-  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
+  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
 
   if ((WriteSizeInBits & 7) | (LoadSize & 7))
     return -1;
@@ -1013,51 +1013,51 @@ static int AnalyzeLoadFromClobberingWrit
 /// memdep query of a load that ends up being a clobbering store.
 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
                                           StoreInst *DepSI,
-                                          const DataLayout &TD) {
+                                          const DataLayout &DL) {
   // Cannot handle reading from store of first-class aggregate yet.
   if (DepSI->getValueOperand()->getType()->isStructTy() ||
       DepSI->getValueOperand()->getType()->isArrayTy())
     return -1;
 
   Value *StorePtr = DepSI->getPointerOperand();
-  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
+  uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
-                                        StorePtr, StoreSize, TD);
+                                        StorePtr, StoreSize, DL);
 }
 
 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
 /// memdep query of a load that ends up being clobbered by another load.  See if
 /// the other load can feed into the second load.
 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
-                                         LoadInst *DepLI, const DataLayout &TD){
+                                         LoadInst *DepLI, const DataLayout &DL){
   // Cannot handle reading from store of first-class aggregate yet.
   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
     return -1;
 
   Value *DepPtr = DepLI->getPointerOperand();
-  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
-  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
+  uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
+  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
   if (R != -1) return R;
 
   // If we have a load/load clobber an DepLI can be widened to cover this load,
   // then we should widen it!
   int64_t LoadOffs = 0;
   const Value *LoadBase =
-    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
-  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
+    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
+  unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
 
   unsigned Size = MemoryDependenceAnalysis::
-    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
+    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
   if (Size == 0) return -1;
 
-  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
+  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
 }
 
 
 
 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
                                             MemIntrinsic *MI,
-                                            const DataLayout &TD) {
+                                            const DataLayout &DL) {
   // If the mem operation is a non-constant size, we can't handle it.
   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
   if (SizeCst == 0) return -1;
@@ -1067,7 +1067,7 @@ static int AnalyzeLoadFromClobberingMemI
   // of the memset..
   if (MI->getIntrinsicID() == Intrinsic::memset)
     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
-                                          MemSizeInBits, TD);
+                                          MemSizeInBits, DL);
 
   // If we have a memcpy/memmove, the only case we can handle is if this is a
   // copy from constant memory.  In that case, we can read directly from the
@@ -1077,12 +1077,12 @@ static int AnalyzeLoadFromClobberingMemI
   Constant *Src = dyn_cast<Constant>(MTI->getSource());
   if (Src == 0) return -1;
 
-  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
+  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
   if (GV == 0 || !GV->isConstant()) return -1;
 
   // See if the access is within the bounds of the transfer.
   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
-                                              MI->getDest(), MemSizeInBits, TD);
+                                              MI->getDest(), MemSizeInBits, DL);
   if (Offset == -1)
     return Offset;
 
@@ -1095,7 +1095,7 @@ static int AnalyzeLoadFromClobberingMemI
     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
-  if (ConstantFoldLoadFromConstPtr(Src, &TD))
+  if (ConstantFoldLoadFromConstPtr(Src, &DL))
     return Offset;
   return -1;
 }
@@ -1108,11 +1108,11 @@ static int AnalyzeLoadFromClobberingMemI
 /// before we give up.
 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
                                    Type *LoadTy,
-                                   Instruction *InsertPt, const DataLayout &TD){
+                                   Instruction *InsertPt, const DataLayout &DL){
   LLVMContext &Ctx = SrcVal->getType()->getContext();
 
-  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
-  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
+  uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
+  uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
 
   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 
@@ -1120,13 +1120,13 @@ static Value *GetStoreValueForLoad(Value
   // to an integer type to start with.
   if (SrcVal->getType()->getScalarType()->isPointerTy())
     SrcVal = Builder.CreatePtrToInt(SrcVal,
-        TD.getIntPtrType(SrcVal->getType()));
+        DL.getIntPtrType(SrcVal->getType()));
   if (!SrcVal->getType()->isIntegerTy())
     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
 
   // Shift the bits to the least significant depending on endianness.
   unsigned ShiftAmt;
-  if (TD.isLittleEndian())
+  if (DL.isLittleEndian())
     ShiftAmt = Offset*8;
   else
     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
@@ -1137,7 +1137,7 @@ static Value *GetStoreValueForLoad(Value
   if (LoadSize != StoreSize)
     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
 
-  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
+  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, DL);
 }
 
 /// GetLoadValueForLoad - This function is called when we have a
@@ -1148,11 +1148,11 @@ static Value *GetStoreValueForLoad(Value
 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
                                   Type *LoadTy, Instruction *InsertPt,
                                   GVN &gvn) {
-  const DataLayout &TD = *gvn.getDataLayout();
+  const DataLayout &DL = *gvn.getDataLayout();
   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   // widen SrcVal out to a larger load.
-  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
-  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
+  unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
+  unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
   if (Offset+LoadSize > SrcValSize) {
     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
@@ -1184,7 +1184,7 @@ static Value *GetLoadValueForLoad(LoadIn
     // Replace uses of the original load with the wider load.  On a big endian
     // system, we need to shift down to get the relevant bits.
     Value *RV = NewLoad;
-    if (TD.isBigEndian())
+    if (DL.isBigEndian())
       RV = Builder.CreateLShr(RV,
                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
     RV = Builder.CreateTrunc(RV, SrcVal->getType());
@@ -1199,7 +1199,7 @@ static Value *GetLoadValueForLoad(LoadIn
     SrcVal = NewLoad;
   }
 
-  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
+  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
 }
 
 
@@ -1207,9 +1207,9 @@ static Value *GetLoadValueForLoad(LoadIn
 /// memdep query of a load that ends up being a clobbering mem intrinsic.
 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
                                      Type *LoadTy, Instruction *InsertPt,
-                                     const DataLayout &TD){
+                                     const DataLayout &DL){
   LLVMContext &Ctx = LoadTy->getContext();
-  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
+  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
 
   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 
@@ -1240,7 +1240,7 @@ static Value *GetMemInstValueForLoad(Mem
       ++NumBytesSet;
     }
 
-    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
+    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, DL);
   }
 
   // Otherwise, this is a memcpy/memmove from a constant global.
@@ -1256,7 +1256,7 @@ static Value *GetMemInstValueForLoad(Mem
     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
-  return ConstantFoldLoadFromConstPtr(Src, &TD);
+  return ConstantFoldLoadFromConstPtr(Src, &DL);
 }
 
 
@@ -1322,10 +1322,10 @@ Value *AvailableValueInBlock::Materializ
   if (isSimpleValue()) {
     Res = getSimpleValue();
     if (Res->getType() != LoadTy) {
-      const DataLayout *TD = gvn.getDataLayout();
-      assert(TD && "Need target data to handle type mismatch case");
+      const DataLayout *DL = gvn.getDataLayout();
+      assert(DL && "Need target data to handle type mismatch case");
       Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
-                                 *TD);
+                                 *DL);
   
       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
                    << *getSimpleValue() << '\n'
@@ -1344,10 +1344,10 @@ Value *AvailableValueInBlock::Materializ
                    << *Res << '\n' << "\n\n\n");
     }
   } else if (isMemIntrinValue()) {
-    const DataLayout *TD = gvn.getDataLayout();
-    assert(TD && "Need target data to handle type mismatch case");
+    const DataLayout *DL = gvn.getDataLayout();
+    assert(DL && "Need target data to handle type mismatch case");
     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
-                                 LoadTy, BB->getTerminator(), *TD);
+                                 LoadTy, BB->getTerminator(), *DL);
     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
                  << "  " << *getMemIntrinValue() << '\n'
                  << *Res << '\n' << "\n\n\n");
@@ -1400,9 +1400,9 @@ void GVN::AnalyzeLoadAvailability(LoadIn
       // read by the load, we can extract the bits we need for the load from the
       // stored value.
       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
-        if (TD && Address) {
+        if (DL && Address) {
           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
-                                                      DepSI, *TD);
+                                                      DepSI, *DL);
           if (Offset != -1) {
             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
                                                        DepSI->getValueOperand(),
@@ -1419,10 +1419,10 @@ void GVN::AnalyzeLoadAvailability(LoadIn
       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
         // If this is a clobber and L is the first instruction in its block, then
         // we have the first instruction in the entry block.
-        if (DepLI != LI && Address && TD) {
+        if (DepLI != LI && Address && DL) {
           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
                                                      LI->getPointerOperand(),
-                                                     DepLI, *TD);
+                                                     DepLI, *DL);
 
           if (Offset != -1) {
             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
@@ -1435,9 +1435,9 @@ void GVN::AnalyzeLoadAvailability(LoadIn
       // If the clobbering value is a memset/memcpy/memmove, see if we can
       // forward a value on from it.
       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
-        if (TD && Address) {
+        if (DL && Address) {
           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
-                                                        DepMI, *TD);
+                                                        DepMI, *DL);
           if (Offset != -1) {
             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
                                                                   Offset));
@@ -1469,8 +1469,8 @@ void GVN::AnalyzeLoadAvailability(LoadIn
       if (S->getValueOperand()->getType() != LI->getType()) {
         // If the stored value is larger or equal to the loaded value, we can
         // reuse it.
-        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
-                                                        LI->getType(), *TD)) {
+        if (DL == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
+                                                        LI->getType(), *DL)) {
           UnavailableBlocks.push_back(DepBB);
           continue;
         }
@@ -1486,7 +1486,7 @@ void GVN::AnalyzeLoadAvailability(LoadIn
       if (LD->getType() != LI->getType()) {
         // If the stored value is larger or equal to the loaded value, we can
         // reuse it.
-        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
+        if (DL == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)){
           UnavailableBlocks.push_back(DepBB);
           continue;
         }
@@ -1609,7 +1609,7 @@ bool GVN::PerformLoadPRE(LoadInst *LI, A
     // If all preds have a single successor, then we know it is safe to insert
     // the load on the pred (?!?), so we can insert code to materialize the
     // pointer if it is not available.
-    PHITransAddr Address(LI->getPointerOperand(), TD);
+    PHITransAddr Address(LI->getPointerOperand(), DL);
     Value *LoadPtr = 0;
     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
                                                 *DT, NewInsts);
@@ -1821,7 +1821,7 @@ bool GVN::processLoad(LoadInst *L) {
 
   // If we have a clobber and target data is around, see if this is a clobber
   // that we can fix up through code synthesis.
-  if (Dep.isClobber() && TD) {
+  if (Dep.isClobber() && DL) {
     // Check to see if we have something like this:
     //   store i32 123, i32* %P
     //   %A = bitcast i32* %P to i8*
@@ -1836,10 +1836,10 @@ bool GVN::processLoad(LoadInst *L) {
     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
                                                   L->getPointerOperand(),
-                                                  DepSI, *TD);
+                                                  DepSI, *DL);
       if (Offset != -1)
         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
-                                        L->getType(), L, *TD);
+                                        L->getType(), L, *DL);
     }
 
     // Check to see if we have something like this:
@@ -1854,7 +1854,7 @@ bool GVN::processLoad(LoadInst *L) {
 
       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
                                                  L->getPointerOperand(),
-                                                 DepLI, *TD);
+                                                 DepLI, *DL);
       if (Offset != -1)
         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
     }
@@ -1864,9 +1864,9 @@ bool GVN::processLoad(LoadInst *L) {
     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
                                                     L->getPointerOperand(),
-                                                    DepMI, *TD);
+                                                    DepMI, *DL);
       if (Offset != -1)
-        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
+        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
     }
 
     if (AvailVal) {
@@ -1917,9 +1917,9 @@ bool GVN::processLoad(LoadInst *L) {
     // actually have the same type.  See if we know how to reuse the stored
     // value (depending on its type).
     if (StoredVal->getType() != L->getType()) {
-      if (TD) {
+      if (DL) {
         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
-                                                   L, *TD);
+                                                   L, *DL);
         if (StoredVal == 0)
           return false;
 
@@ -1946,9 +1946,9 @@ bool GVN::processLoad(LoadInst *L) {
     // the same type.  See if we know how to reuse the previously loaded value
     // (depending on its type).
     if (DepLI->getType() != L->getType()) {
-      if (TD) {
+      if (DL) {
         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
-                                                      L, *TD);
+                                                      L, *DL);
         if (AvailableVal == 0)
           return false;
 
@@ -2200,7 +2200,7 @@ bool GVN::processInstruction(Instruction
   // to value numbering it.  Value numbering often exposes redundancies, for
   // example if it determines that %y is equal to %x then the instruction
   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
-  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
+  if (Value *V = SimplifyInstruction(I, DL, TLI, DT)) {
     I->replaceAllUsesWith(V);
     if (MD && V->getType()->getScalarType()->isPointerTy())
       MD->invalidateCachedPointerInfo(V);
@@ -2318,7 +2318,7 @@ bool GVN::runOnFunction(Function& F) {
   if (!NoLoads)
     MD = &getAnalysis<MemoryDependenceAnalysis>();
   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   VN.setMemDep(MD);

Modified: llvm/trunk/lib/Transforms/Scalar/GlobalMerge.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/GlobalMerge.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/GlobalMerge.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/GlobalMerge.cpp Thu Feb 20 18:06:31 2014
@@ -126,15 +126,15 @@ namespace {
     }
 
     struct GlobalCmp {
-      const DataLayout *TD;
+      const DataLayout *DL;
 
-      GlobalCmp(const DataLayout *td) : TD(td) { }
+      GlobalCmp(const DataLayout *DL) : DL(DL) { }
 
       bool operator()(const GlobalVariable *GV1, const GlobalVariable *GV2) {
         Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
         Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType();
 
-        return (TD->getTypeAllocSize(Ty1) < TD->getTypeAllocSize(Ty2));
+        return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2));
       }
     };
   };
@@ -148,7 +148,7 @@ INITIALIZE_PASS(GlobalMerge, "global-mer
 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
                           Module &M, bool isConst, unsigned AddrSpace) const {
   const TargetLowering *TLI = TM->getTargetLowering();
-  const DataLayout *TD = TLI->getDataLayout();
+  const DataLayout *DL = TLI->getDataLayout();
 
   // FIXME: Infer the maximum possible offset depending on the actual users
   // (these max offsets are different for the users inside Thumb or ARM
@@ -156,7 +156,7 @@ bool GlobalMerge::doMerge(SmallVectorImp
   unsigned MaxOffset = TLI->getMaximalGlobalOffset();
 
   // FIXME: Find better heuristics
-  std::stable_sort(Globals.begin(), Globals.end(), GlobalCmp(TD));
+  std::stable_sort(Globals.begin(), Globals.end(), GlobalCmp(DL));
 
   Type *Int32Ty = Type::getInt32Ty(M.getContext());
 
@@ -167,7 +167,7 @@ bool GlobalMerge::doMerge(SmallVectorImp
     std::vector<Constant*> Inits;
     for (j = i; j != e; ++j) {
       Type *Ty = Globals[j]->getType()->getElementType();
-      MergedSize += TD->getTypeAllocSize(Ty);
+      MergedSize += DL->getTypeAllocSize(Ty);
       if (MergedSize > MaxOffset) {
         break;
       }
@@ -242,7 +242,7 @@ bool GlobalMerge::doInitialization(Modul
   DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
                                                         BSSGlobals;
   const TargetLowering *TLI = TM->getTargetLowering();
-  const DataLayout *TD = TLI->getDataLayout();
+  const DataLayout *DL = TLI->getDataLayout();
   unsigned MaxOffset = TLI->getMaximalGlobalOffset();
   bool Changed = false;
   setMustKeepGlobalVariables(M);
@@ -260,9 +260,9 @@ bool GlobalMerge::doInitialization(Modul
     unsigned AddressSpace = PT->getAddressSpace();
 
     // Ignore fancy-aligned globals for now.
-    unsigned Alignment = TD->getPreferredAlignment(I);
+    unsigned Alignment = DL->getPreferredAlignment(I);
     Type *Ty = I->getType()->getElementType();
-    if (Alignment > TD->getABITypeAlignment(Ty))
+    if (Alignment > DL->getABITypeAlignment(Ty))
       continue;
 
     // Ignore all 'special' globals.
@@ -274,7 +274,7 @@ bool GlobalMerge::doInitialization(Modul
     if (isMustKeepGlobalVariable(I))
       continue;
 
-    if (TD->getTypeAllocSize(Ty) < MaxOffset) {
+    if (DL->getTypeAllocSize(Ty) < MaxOffset) {
       if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine())
           .isBSSLocal())
         BSSGlobals[AddressSpace].push_back(I);

Modified: llvm/trunk/lib/Transforms/Scalar/IndVarSimplify.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/IndVarSimplify.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/IndVarSimplify.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/IndVarSimplify.cpp Thu Feb 20 18:06:31 2014
@@ -71,7 +71,7 @@ namespace {
     LoopInfo        *LI;
     ScalarEvolution *SE;
     DominatorTree   *DT;
-    DataLayout      *TD;
+    DataLayout      *DL;
     TargetLibraryInfo *TLI;
 
     SmallVector<WeakVH, 16> DeadInsts;
@@ -79,7 +79,7 @@ namespace {
   public:
 
     static char ID; // Pass identification, replacement for typeid
-    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
+    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), DL(0),
                        Changed(false) {
       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
     }
@@ -659,14 +659,14 @@ namespace {
 /// extended by this sign or zero extend operation. This is used to determine
 /// the final width of the IV before actually widening it.
 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
-                        const DataLayout *TD) {
+                        const DataLayout *DL) {
   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
     return;
 
   Type *Ty = Cast->getType();
   uint64_t Width = SE->getTypeSizeInBits(Ty);
-  if (TD && !TD->isLegalInteger(Width))
+  if (DL && !DL->isLegalInteger(Width))
     return;
 
   if (!WI.WidestNativeType) {
@@ -1122,15 +1122,15 @@ PHINode *WidenIV::CreateWideIV(SCEVExpan
 namespace {
   class IndVarSimplifyVisitor : public IVVisitor {
     ScalarEvolution *SE;
-    const DataLayout *TD;
+    const DataLayout *DL;
     PHINode *IVPhi;
 
   public:
     WideIVInfo WI;
 
     IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
-                          const DataLayout *TData, const DominatorTree *DTree):
-      SE(SCEV), TD(TData), IVPhi(IV) {
+                          const DataLayout *DL, const DominatorTree *DTree):
+      SE(SCEV), DL(DL), IVPhi(IV) {
       DT = DTree;
       WI.NarrowIV = IVPhi;
       if (ReduceLiveIVs)
@@ -1138,7 +1138,7 @@ namespace {
     }
 
     // Implement the interface used by simplifyUsersOfIV.
-    virtual void visitCast(CastInst *Cast) { visitIVCast(Cast, WI, SE, TD); }
+    virtual void visitCast(CastInst *Cast) { visitIVCast(Cast, WI, SE, DL); }
   };
 }
 
@@ -1172,7 +1172,7 @@ void IndVarSimplify::SimplifyAndExtend(L
       PHINode *CurrIV = LoopPhis.pop_back_val();
 
       // Information about sign/zero extensions of CurrIV.
-      IndVarSimplifyVisitor Visitor(CurrIV, SE, TD, DT);
+      IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
 
       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
 
@@ -1444,7 +1444,7 @@ static bool AlmostDeadIV(PHINode *Phi, B
 /// could at least handle constant BECounts.
 static PHINode *
 FindLoopCounter(Loop *L, const SCEV *BECount,
-                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
+                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
 
   Value *Cond =
@@ -1473,7 +1473,7 @@ FindLoopCounter(Loop *L, const SCEV *BEC
     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
     // AR may not be a narrower type, or we may never exit.
     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
-    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
+    if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
       continue;
 
     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
@@ -1818,7 +1818,7 @@ bool IndVarSimplify::runOnLoop(Loop *L,
   LI = &getAnalysis<LoopInfo>();
   SE = &getAnalysis<ScalarEvolution>();
   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
 
   DeadInsts.clear();
@@ -1860,7 +1860,7 @@ bool IndVarSimplify::runOnLoop(Loop *L,
   // If we have a trip count expression, rewrite the loop's exit condition
   // using it.  We can currently only handle loops with a single exit.
   if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
-    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
+    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
     if (IndVar) {
       // Check preconditions for proper SCEVExpander operation. SCEV does not
       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any

Modified: llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp Thu Feb 20 18:06:31 2014
@@ -76,7 +76,7 @@ namespace {
   /// revectored to the false side of the second if.
   ///
   class JumpThreading : public FunctionPass {
-    DataLayout *TD;
+    DataLayout *DL;
     TargetLibraryInfo *TLI;
     LazyValueInfo *LVI;
 #ifdef NDEBUG
@@ -152,7 +152,7 @@ bool JumpThreading::runOnFunction(Functi
     return false;
 
   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
   LVI = &getAnalysis<LazyValueInfo>();
 
@@ -493,7 +493,7 @@ ComputeValueKnownInPredecessors(Value *V
         Value *LHS = PN->getIncomingValue(i);
         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
 
-        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
+        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
         if (Res == 0) {
           if (!isa<Constant>(RHS))
             continue;
@@ -695,7 +695,7 @@ bool JumpThreading::ProcessBlock(BasicBl
   // Run constant folding to see if we can reduce the condition to a simple
   // constant.
   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
-    Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
+    Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
     if (SimpleVal) {
       I->replaceAllUsesWith(SimpleVal);
       I->eraseFromParent();
@@ -1478,7 +1478,7 @@ bool JumpThreading::ThreadEdge(BasicBloc
   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   // over the new instructions and zap any that are constants or dead.  This
   // frequently happens because of phi translation.
-  SimplifyInstructionsInBlock(NewBB, TD, TLI);
+  SimplifyInstructionsInBlock(NewBB, DL, TLI);
 
   // Threaded an edge!
   ++NumThreads;
@@ -1560,7 +1560,7 @@ bool JumpThreading::DuplicateCondBranchO
     // If this instruction can be simplified after the operands are updated,
     // just use the simplified value instead.  This frequently happens due to
     // phi translation.
-    if (Value *IV = SimplifyInstruction(New, TD)) {
+    if (Value *IV = SimplifyInstruction(New, DL)) {
       delete New;
       ValueMapping[BI] = IV;
     } else {

Modified: llvm/trunk/lib/Transforms/Scalar/LICM.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LICM.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/LICM.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/LICM.cpp Thu Feb 20 18:06:31 2014
@@ -108,7 +108,7 @@ namespace {
     LoopInfo      *LI;       // Current LoopInfo
     DominatorTree *DT;       // Dominator Tree for the current Loop.
 
-    DataLayout *TD;          // DataLayout for constant folding.
+    DataLayout *DL;          // DataLayout for constant folding.
     TargetLibraryInfo *TLI;  // TargetLibraryInfo for constant folding.
 
     // State that is updated as we process loops.
@@ -221,7 +221,7 @@ bool LICM::runOnLoop(Loop *L, LPPassMana
   AA = &getAnalysis<AliasAnalysis>();
   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
 
   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
@@ -394,7 +394,7 @@ void LICM::HoistRegion(DomTreeNode *N) {
       // Try constant folding this instruction.  If all the operands are
       // constants, it is technically hoistable, but it would be better to just
       // fold it.
-      if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
+      if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
         DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
         CurAST->copyValue(&I, C);
         CurAST->deleteValue(&I);

Modified: llvm/trunk/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopIdiomRecognize.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/LoopIdiomRecognize.cpp Thu Feb 20 18:06:31 2014
@@ -132,7 +132,7 @@ namespace {
 
   class LoopIdiomRecognize : public LoopPass {
     Loop *CurLoop;
-    const DataLayout *TD;
+    const DataLayout *DL;
     DominatorTree *DT;
     ScalarEvolution *SE;
     TargetLibraryInfo *TLI;
@@ -141,7 +141,7 @@ namespace {
     static char ID;
     explicit LoopIdiomRecognize() : LoopPass(ID) {
       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
-      TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
+      DL = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
     }
 
     bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -182,7 +182,7 @@ namespace {
     }
 
     const DataLayout *getDataLayout() {
-      return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
+      return DL ? DL : DL=getAnalysisIfAvailable<DataLayout>();
     }
 
     DominatorTree *getDominatorTree() {
@@ -782,7 +782,7 @@ bool LoopIdiomRecognize::processLoopStor
   Value *StorePtr = SI->getPointerOperand();
 
   // Reject stores that are so large that they overflow an unsigned.
-  uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
+  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
     return false;
 
@@ -910,7 +910,7 @@ static bool mayLoopAccessLocation(Value
 ///
 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
 /// just replicate their input array and then pass on to memset_pattern16.
-static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
+static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
   // If the value isn't a constant, we can't promote it to being in a constant
   // array.  We could theoretically do a store to an alloca or something, but
   // that doesn't seem worthwhile.
@@ -918,12 +918,12 @@ static Constant *getMemSetPatternValue(V
   if (C == 0) return 0;
 
   // Only handle simple values that are a power of two bytes in size.
-  uint64_t Size = TD.getTypeSizeInBits(V->getType());
+  uint64_t Size = DL.getTypeSizeInBits(V->getType());
   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
     return 0;
 
   // Don't care enough about darwin/ppc to implement this.
-  if (TD.isBigEndian())
+  if (DL.isBigEndian())
     return 0;
 
   // Convert to size in bytes.
@@ -970,7 +970,7 @@ processLoopStridedStore(Value *DestPtr,
     PatternValue = 0;
   } else if (DestAS == 0 &&
              TLI->has(LibFunc::memset_pattern16) &&
-             (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
+             (PatternValue = getMemSetPatternValue(StoredVal, *DL))) {
     // Don't create memset_pattern16s with address spaces.
     // It looks like we can use PatternValue!
     SplatValue = 0;
@@ -1011,7 +1011,7 @@ processLoopStridedStore(Value *DestPtr,
 
   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
   // pointer size if it isn't already.
-  Type *IntPtr = Builder.getIntPtrTy(TD, DestAS);
+  Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
 
   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
@@ -1125,7 +1125,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI
 
   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
   // pointer size if it isn't already.
-  Type *IntPtrTy = Builder.getIntPtrTy(TD, SI->getPointerAddressSpace());
+  Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
 
   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),

Modified: llvm/trunk/lib/Transforms/Scalar/MemCpyOptimizer.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/MemCpyOptimizer.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/MemCpyOptimizer.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/MemCpyOptimizer.cpp Thu Feb 20 18:06:31 2014
@@ -195,9 +195,9 @@ class MemsetRanges {
   /// because each element is relatively large and expensive to copy.
   std::list<MemsetRange> Ranges;
   typedef std::list<MemsetRange>::iterator range_iterator;
-  const DataLayout &TD;
+  const DataLayout &DL;
 public:
-  MemsetRanges(const DataLayout &td) : TD(td) {}
+  MemsetRanges(const DataLayout &DL) : DL(DL) {}
 
   typedef std::list<MemsetRange>::const_iterator const_iterator;
   const_iterator begin() const { return Ranges.begin(); }
@@ -212,7 +212,7 @@ public:
   }
 
   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
-    int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
+    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
 
     addRange(OffsetFromFirst, StoreSize,
              SI->getPointerOperand(), SI->getAlignment(), SI);
@@ -305,14 +305,14 @@ namespace {
   class MemCpyOpt : public FunctionPass {
     MemoryDependenceAnalysis *MD;
     TargetLibraryInfo *TLI;
-    const DataLayout *TD;
+    const DataLayout *DL;
   public:
     static char ID; // Pass identification, replacement for typeid
     MemCpyOpt() : FunctionPass(ID) {
       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
       MD = 0;
       TLI = 0;
-      TD = 0;
+      DL = 0;
     }
 
     bool runOnFunction(Function &F);
@@ -366,13 +366,13 @@ INITIALIZE_PASS_END(MemCpyOpt, "memcpyop
 /// attempts to merge them together into a memcpy/memset.
 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
                                              Value *StartPtr, Value *ByteVal) {
-  if (TD == 0) return 0;
+  if (DL == 0) return 0;
 
   // Okay, so we now have a single store that can be splatable.  Scan to find
   // all subsequent stores of the same value to offset from the same pointer.
   // Join these together into ranges, so we can decide whether contiguous blocks
   // are stored.
-  MemsetRanges Ranges(*TD);
+  MemsetRanges Ranges(*DL);
 
   BasicBlock::iterator BI = StartInst;
   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
@@ -396,7 +396,7 @@ Instruction *MemCpyOpt::tryMergingIntoMe
       // Check to see if this store is to a constant offset from the start ptr.
       int64_t Offset;
       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
-                           Offset, *TD))
+                           Offset, *DL))
         break;
 
       Ranges.addStore(Offset, NextStore);
@@ -409,7 +409,7 @@ Instruction *MemCpyOpt::tryMergingIntoMe
 
       // Check to see if this store is to a constant offset from the start ptr.
       int64_t Offset;
-      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
+      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
         break;
 
       Ranges.addMemSet(Offset, MSI);
@@ -441,7 +441,7 @@ Instruction *MemCpyOpt::tryMergingIntoMe
     if (Range.TheStores.size() == 1) continue;
 
     // If it is profitable to lower this range to memset, do so now.
-    if (!Range.isProfitableToUseMemset(*TD))
+    if (!Range.isProfitableToUseMemset(*DL))
       continue;
 
     // Otherwise, we do want to transform this!  Create a new memset.
@@ -453,7 +453,7 @@ Instruction *MemCpyOpt::tryMergingIntoMe
     if (Alignment == 0) {
       Type *EltType =
         cast<PointerType>(StartPtr->getType())->getElementType();
-      Alignment = TD->getABITypeAlignment(EltType);
+      Alignment = DL->getABITypeAlignment(EltType);
     }
 
     AMemSet =
@@ -484,7 +484,7 @@ Instruction *MemCpyOpt::tryMergingIntoMe
 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
   if (!SI->isSimple()) return false;
 
-  if (TD == 0) return false;
+  if (DL == 0) return false;
 
   // Detect cases where we're performing call slot forwarding, but
   // happen to be using a load-store pair to implement it, rather than
@@ -514,15 +514,15 @@ bool MemCpyOpt::processStore(StoreInst *
       if (C) {
         unsigned storeAlign = SI->getAlignment();
         if (!storeAlign)
-          storeAlign = TD->getABITypeAlignment(SI->getOperand(0)->getType());
+          storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
         unsigned loadAlign = LI->getAlignment();
         if (!loadAlign)
-          loadAlign = TD->getABITypeAlignment(LI->getType());
+          loadAlign = DL->getABITypeAlignment(LI->getType());
 
         bool changed = performCallSlotOptzn(LI,
                         SI->getPointerOperand()->stripPointerCasts(),
                         LI->getPointerOperand()->stripPointerCasts(),
-                        TD->getTypeStoreSize(SI->getOperand(0)->getType()),
+                        DL->getTypeStoreSize(SI->getOperand(0)->getType()),
                         std::min(storeAlign, loadAlign), C);
         if (changed) {
           MD->removeInstruction(SI);
@@ -596,13 +596,13 @@ bool MemCpyOpt::performCallSlotOptzn(Ins
     return false;
 
   // Check that all of src is copied to dest.
-  if (TD == 0) return false;
+  if (DL == 0) return false;
 
   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
   if (!srcArraySize)
     return false;
 
-  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
+  uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
     srcArraySize->getZExtValue();
 
   if (cpyLen < srcSize)
@@ -617,7 +617,7 @@ bool MemCpyOpt::performCallSlotOptzn(Ins
     if (!destArraySize)
       return false;
 
-    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
+    uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
       destArraySize->getZExtValue();
 
     if (destSize < srcSize)
@@ -636,7 +636,7 @@ bool MemCpyOpt::performCallSlotOptzn(Ins
       return false;
     }
 
-    uint64_t destSize = TD->getTypeAllocSize(StructTy);
+    uint64_t destSize = DL->getTypeAllocSize(StructTy);
     if (destSize < srcSize)
       return false;
   } else {
@@ -646,7 +646,7 @@ bool MemCpyOpt::performCallSlotOptzn(Ins
   // Check that dest points to memory that is at least as aligned as src.
   unsigned srcAlign = srcAlloca->getAlignment();
   if (!srcAlign)
-    srcAlign = TD->getABITypeAlignment(srcAlloca->getAllocatedType());
+    srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
   // If dest is not aligned enough and we can't increase its alignment then
   // bail out.
@@ -912,12 +912,12 @@ bool MemCpyOpt::processMemMove(MemMoveIn
 
 /// processByValArgument - This is called on every byval argument in call sites.
 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
-  if (TD == 0) return false;
+  if (DL == 0) return false;
 
   // Find out what feeds this byval argument.
   Value *ByValArg = CS.getArgument(ArgNo);
   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
-  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
+  uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
   MemDepResult DepInfo =
     MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
                                  true, CS.getInstruction(),
@@ -946,7 +946,7 @@ bool MemCpyOpt::processByValArgument(Cal
   // If it is greater than the memcpy, then we check to see if we can force the
   // source of the memcpy to the alignment we need.  If we fail, we bail out.
   if (MDep->getAlignment() < ByValAlign &&
-      getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
+      getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, DL) < ByValAlign)
     return false;
 
   // Verify that the copied-from memory doesn't change in between the memcpy and
@@ -1025,7 +1025,7 @@ bool MemCpyOpt::runOnFunction(Function &
 
   bool MadeChange = false;
   MD = &getAnalysis<MemoryDependenceAnalysis>();
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
   TLI = &getAnalysis<TargetLibraryInfo>();
 
   // If we don't have at least memset and memcpy, there is little point of doing

Modified: llvm/trunk/lib/Transforms/Scalar/SCCP.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/SCCP.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/SCCP.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/SCCP.cpp Thu Feb 20 18:06:31 2014
@@ -153,7 +153,7 @@ namespace {
 /// Constant Propagation.
 ///
 class SCCPSolver : public InstVisitor<SCCPSolver> {
-  const DataLayout *TD;
+  const DataLayout *DL;
   const TargetLibraryInfo *TLI;
   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
@@ -205,8 +205,8 @@ class SCCPSolver : public InstVisitor<SC
   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
   DenseSet<Edge> KnownFeasibleEdges;
 public:
-  SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli)
-    : TD(td), TLI(tli) {}
+  SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
+    : DL(DL), TLI(tli) {}
 
   /// MarkBlockExecutable - This method can be used by clients to mark all of
   /// the blocks that are known to be intrinsically live in the processed unit.
@@ -1067,7 +1067,7 @@ void SCCPSolver::visitLoadInst(LoadInst
   }
 
   // Transform load from a constant into a constant if possible.
-  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
+  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
     return markConstant(IV, &I, C);
 
   // Otherwise we cannot say for certain what value this load will produce.
@@ -1557,9 +1557,9 @@ bool SCCP::runOnFunction(Function &F) {
     return false;
 
   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
-  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
+  const DataLayout *DL = getAnalysisIfAvailable<DataLayout>();
   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
-  SCCPSolver Solver(TD, TLI);
+  SCCPSolver Solver(DL, TLI);
 
   // Mark the first block of the function as being executable.
   Solver.MarkBlockExecutable(F.begin());
@@ -1686,9 +1686,9 @@ static bool AddressIsTaken(const GlobalV
 }
 
 bool IPSCCP::runOnModule(Module &M) {
-  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
+  const DataLayout *DL = getAnalysisIfAvailable<DataLayout>();
   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
-  SCCPSolver Solver(TD, TLI);
+  SCCPSolver Solver(DL, TLI);
 
   // AddressTakenFunctions - This set keeps track of the address-taken functions
   // that are in the input.  As IPSCCP runs through and simplifies code,

Modified: llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp Thu Feb 20 18:06:31 2014
@@ -87,7 +87,7 @@ namespace {
 
   private:
     bool HasDomTree;
-    DataLayout *TD;
+    DataLayout *DL;
 
     /// DeadInsts - Keep track of instructions we have made dead, so that
     /// we can remove them after we are done working.
@@ -258,7 +258,7 @@ namespace {
 class ConvertToScalarInfo {
   /// AllocaSize - The size of the alloca being considered in bytes.
   unsigned AllocaSize;
-  const DataLayout &TD;
+  const DataLayout &DL;
   unsigned ScalarLoadThreshold;
 
   /// IsNotTrivial - This is set to true if there is some access to the object
@@ -301,9 +301,9 @@ class ConvertToScalarInfo {
   bool HadDynamicAccess;
 
 public:
-  explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
+  explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
                                unsigned SLT)
-    : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
+    : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
     ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
     HadDynamicAccess(false) { }
 
@@ -364,7 +364,7 @@ AllocaInst *ConvertToScalarInfo::TryConv
       return 0;
 
     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
-        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
+        !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
       return 0;
     // Dynamic accesses on integers aren't yet supported.  They need us to shift
     // by a dynamic amount which could be difficult to work out as we might not
@@ -520,7 +520,7 @@ bool ConvertToScalarInfo::CanConvertToSc
         HadDynamicAccess = true;
       } else
         GEPNonConstantIdx = NonConstantIdx;
-      uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
+      uint64_t GEPOffset = DL.getIndexedOffset(PtrTy,
                                                Indices);
       // See if all uses can be converted.
       if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
@@ -615,7 +615,7 @@ void ConvertToScalarInfo::ConvertUsesToS
         GEPNonConstantIdx = Indices.pop_back_val();
       } else
         GEPNonConstantIdx = NonConstantIdx;
-      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
+      uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(),
                                                Indices);
       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
       GEP->eraseFromParent();
@@ -692,9 +692,9 @@ void ConvertToScalarInfo::ConvertUsesToS
       // If the source and destination are both to the same alloca, then this is
       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
       // as appropriate.
-      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
+      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &DL, 0));
 
-      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
+      if (GetUnderlyingObject(MTI->getSource(), &DL, 0) != OrigAI) {
         // Dest must be OrigAI, change this to be a load from the original
         // pointer (bitcasted), then a store to our new alloca.
         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
@@ -710,7 +710,7 @@ void ConvertToScalarInfo::ConvertUsesToS
         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
         SrcVal->setAlignment(MTI->getAlignment());
         Builder.CreateStore(SrcVal, NewAI);
-      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
+      } else if (GetUnderlyingObject(MTI->getDest(), &DL, 0) != OrigAI) {
         // Src must be OrigAI, change this to be a load from NewAI then a store
         // through the original dest pointer (bitcasted).
         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
@@ -770,15 +770,15 @@ ConvertScalar_ExtractValue(Value *FromVa
   // If the result alloca is a vector type, this is either an element
   // access or a bitcast to another vector type of the same size.
   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
-    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
-    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
+    unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
+    unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
     if (FromTypeSize == ToTypeSize)
         return Builder.CreateBitCast(FromVal, ToType);
 
     // Otherwise it must be an element access.
     unsigned Elt = 0;
     if (Offset) {
-      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+      unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
       Elt = Offset/EltSize;
       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
     }
@@ -804,7 +804,7 @@ ConvertScalar_ExtractValue(Value *FromVa
   if (StructType *ST = dyn_cast<StructType>(ToType)) {
     assert(!NonConstantIdx &&
            "Dynamic indexing into struct types not supported");
-    const StructLayout &Layout = *TD.getStructLayout(ST);
+    const StructLayout &Layout = *DL.getStructLayout(ST);
     Value *Res = UndefValue::get(ST);
     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
@@ -818,7 +818,7 @@ ConvertScalar_ExtractValue(Value *FromVa
   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
     assert(!NonConstantIdx &&
            "Dynamic indexing into array types not supported");
-    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+    uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
     Value *Res = UndefValue::get(AT);
     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
@@ -834,12 +834,12 @@ ConvertScalar_ExtractValue(Value *FromVa
   // If this is a big-endian system and the load is narrower than the
   // full alloca type, we need to do a shift to get the right bits.
   int ShAmt = 0;
-  if (TD.isBigEndian()) {
+  if (DL.isBigEndian()) {
     // On big-endian machines, the lowest bit is stored at the bit offset
     // from the pointer given by getTypeStoreSizeInBits.  This matters for
     // integers with a bitwidth that is not a multiple of 8.
-    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
-            TD.getTypeStoreSizeInBits(ToType) - Offset;
+    ShAmt = DL.getTypeStoreSizeInBits(NTy) -
+            DL.getTypeStoreSizeInBits(ToType) - Offset;
   } else {
     ShAmt = Offset;
   }
@@ -855,7 +855,7 @@ ConvertScalar_ExtractValue(Value *FromVa
                                 ConstantInt::get(FromVal->getType(), -ShAmt));
 
   // Finally, unconditionally truncate the integer to the right width.
-  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
+  unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
   if (LIBitWidth < NTy->getBitWidth())
     FromVal =
       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
@@ -902,8 +902,8 @@ ConvertScalar_InsertValue(Value *SV, Val
   LLVMContext &Context = Old->getContext();
 
   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
-    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
-    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
+    uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
+    uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
 
     // Changing the whole vector with memset or with an access of a different
     // vector type?
@@ -914,7 +914,7 @@ ConvertScalar_InsertValue(Value *SV, Val
     Type *EltTy = VTy->getElementType();
     if (SV->getType() != EltTy)
       SV = Builder.CreateBitCast(SV, EltTy);
-    uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
+    uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
     unsigned Elt = Offset/EltSize;
     Value *Idx;
     if (NonConstantIdx) {
@@ -933,7 +933,7 @@ ConvertScalar_InsertValue(Value *SV, Val
   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
     assert(!NonConstantIdx &&
            "Dynamic indexing into struct types not supported");
-    const StructLayout &Layout = *TD.getStructLayout(ST);
+    const StructLayout &Layout = *DL.getStructLayout(ST);
     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
       Value *Elt = Builder.CreateExtractValue(SV, i);
       Old = ConvertScalar_InsertValue(Elt, Old,
@@ -946,7 +946,7 @@ ConvertScalar_InsertValue(Value *SV, Val
   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
     assert(!NonConstantIdx &&
            "Dynamic indexing into array types not supported");
-    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+    uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
       Value *Elt = Builder.CreateExtractValue(SV, i);
       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
@@ -956,14 +956,14 @@ ConvertScalar_InsertValue(Value *SV, Val
 
   // If SV is a float, convert it to the appropriate integer type.
   // If it is a pointer, do the same.
-  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
-  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
-  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
-  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
+  unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
+  unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
+  unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
+  unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
   else if (SV->getType()->isPointerTy())
-    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getType()));
+    SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
 
   // Zero extend or truncate the value if needed.
   if (SV->getType() != AllocaType) {
@@ -982,7 +982,7 @@ ConvertScalar_InsertValue(Value *SV, Val
   // If this is a big-endian system and the store is narrower than the
   // full alloca type, we need to do a shift to get the right bits.
   int ShAmt = 0;
-  if (TD.isBigEndian()) {
+  if (DL.isBigEndian()) {
     // On big-endian machines, the lowest bit is stored at the bit offset
     // from the pointer given by getTypeStoreSizeInBits.  This matters for
     // integers with a bitwidth that is not a multiple of 8.
@@ -1023,7 +1023,7 @@ bool SROA::runOnFunction(Function &F) {
   if (skipOptnoneFunction(F))
     return false;
 
-  TD = getAnalysisIfAvailable<DataLayout>();
+  DL = getAnalysisIfAvailable<DataLayout>();
 
   bool Changed = performPromotion(F);
 
@@ -1031,7 +1031,7 @@ bool SROA::runOnFunction(Function &F) {
   // theoretically needs to. It should be refactored in order to support
   // target-independent IR. Until this is done, just skip the actual
   // scalar-replacement portion of this pass.
-  if (!TD) return Changed;
+  if (!DL) return Changed;
 
   while (1) {
     bool LocalChange = performScalarRepl(F);
@@ -1137,7 +1137,7 @@ public:
 ///
 /// We can do this to a select if its only uses are loads and if the operand to
 /// the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
+static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
   bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
   bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
 
@@ -1149,10 +1149,10 @@ static bool isSafeSelectToSpeculate(Sele
     // Both operands to the select need to be dereferencable, either absolutely
     // (e.g. allocas) or at this point because we can see other accesses to it.
     if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
-                                                    LI->getAlignment(), TD))
+                                                    LI->getAlignment(), DL))
       return false;
     if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
-                                                    LI->getAlignment(), TD))
+                                                    LI->getAlignment(), DL))
       return false;
   }
 
@@ -1175,7 +1175,7 @@ static bool isSafeSelectToSpeculate(Sele
 ///
 /// We can do this to a select if its only uses are loads and if the operand to
 /// the select can be loaded unconditionally.
-static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
+static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
   // For now, we can only do this promotion if the load is in the same block as
   // the PHI, and if there are no stores between the phi and load.
   // TODO: Allow recursive phi users.
@@ -1225,7 +1225,7 @@ static bool isSafePHIToSpeculate(PHINode
     // If this pointer is always safe to load, or if we can prove that there is
     // already a load in the block, then we can move the load to the pred block.
     if (InVal->isDereferenceablePointer() ||
-        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
+        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, DL))
       continue;
 
     return false;
@@ -1239,7 +1239,7 @@ static bool isSafePHIToSpeculate(PHINode
 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
 /// not quite there, this will transform the code to allow promotion.  As such,
 /// it is a non-pure predicate.
-static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
+static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
   SetVector<Instruction*, SmallVector<Instruction*, 4>,
             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
 
@@ -1268,12 +1268,12 @@ static bool tryToMakeAllocaBePromotable(
 
         // This is very rare and we just scrambled the use list of AI, start
         // over completely.
-        return tryToMakeAllocaBePromotable(AI, TD);
+        return tryToMakeAllocaBePromotable(AI, DL);
       }
 
       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
       // loads, then we can transform this by rewriting the select.
-      if (!isSafeSelectToSpeculate(SI, TD))
+      if (!isSafeSelectToSpeculate(SI, DL))
         return false;
 
       InstsToRewrite.insert(SI);
@@ -1288,7 +1288,7 @@ static bool tryToMakeAllocaBePromotable(
 
       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
       // in the pred blocks, then we can transform this by rewriting the PHI.
-      if (!isSafePHIToSpeculate(PN, TD))
+      if (!isSafePHIToSpeculate(PN, DL))
         return false;
 
       InstsToRewrite.insert(PN);
@@ -1423,7 +1423,7 @@ bool SROA::performPromotion(Function &F)
     // the entry node
     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
-        if (tryToMakeAllocaBePromotable(AI, TD))
+        if (tryToMakeAllocaBePromotable(AI, DL))
           Allocas.push_back(AI);
 
     if (Allocas.empty()) break;
@@ -1499,7 +1499,7 @@ bool SROA::performScalarRepl(Function &F
     // transform the allocation instruction if it is an array allocation
     // (allocations OF arrays are ok though), and an allocation of a scalar
     // value cannot be decomposed at all.
-    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
+    uint64_t AllocaSize = DL->getTypeAllocSize(AI->getAllocatedType());
 
     // Do not promote [0 x %struct].
     if (AllocaSize == 0) continue;
@@ -1523,7 +1523,7 @@ bool SROA::performScalarRepl(Function &F
     // that we can't just check based on the type: the alloca may be of an i32
     // but that has pointer arithmetic to set byte 3 of it or something.
     if (AllocaInst *NewAI = ConvertToScalarInfo(
-              (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
+              (unsigned)AllocaSize, *DL, ScalarLoadThreshold).TryConvert(AI)) {
       NewAI->takeName(AI);
       AI->eraseFromParent();
       ++NumConverted;
@@ -1625,7 +1625,7 @@ void SROA::isSafeForScalarRepl(Instructi
       if (!LI->isSimple())
         return MarkUnsafe(Info, User);
       Type *LIType = LI->getType();
-      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
+      isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
                       LIType, false, Info, LI, true /*AllowWholeAccess*/);
       Info.hasALoadOrStore = true;
 
@@ -1635,7 +1635,7 @@ void SROA::isSafeForScalarRepl(Instructi
         return MarkUnsafe(Info, User);
 
       Type *SIType = SI->getOperand(0)->getType();
-      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
+      isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
                       SIType, true, Info, SI, true /*AllowWholeAccess*/);
       Info.hasALoadOrStore = true;
     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
@@ -1684,7 +1684,7 @@ void SROA::isSafePHISelectUseForScalarRe
       if (!LI->isSimple())
         return MarkUnsafe(Info, User);
       Type *LIType = LI->getType();
-      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
+      isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
                       LIType, false, Info, LI, false /*AllowWholeAccess*/);
       Info.hasALoadOrStore = true;
 
@@ -1694,7 +1694,7 @@ void SROA::isSafePHISelectUseForScalarRe
         return MarkUnsafe(Info, User);
 
       Type *SIType = SI->getOperand(0)->getType();
-      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
+      isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
                       SIType, true, Info, SI, false /*AllowWholeAccess*/);
       Info.hasALoadOrStore = true;
     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
@@ -1739,7 +1739,7 @@ void SROA::isSafeGEP(GetElementPtrInst *
   // constant part of the offset.
   if (NonConstant)
     Indices.pop_back();
-  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+  Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
                         NonConstantIdxSize))
     MarkUnsafe(Info, GEPI);
@@ -1798,7 +1798,7 @@ void SROA::isSafeMemAccess(uint64_t Offs
                            bool AllowWholeAccess) {
   // Check if this is a load/store of the entire alloca.
   if (Offset == 0 && AllowWholeAccess &&
-      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
+      MemSize == DL->getTypeAllocSize(Info.AI->getAllocatedType())) {
     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
     // loads/stores (which are essentially the same as the MemIntrinsics with
     // regard to copying padding between elements).  But, if an alloca is
@@ -1835,20 +1835,20 @@ bool SROA::TypeHasComponent(Type *T, uin
   Type *EltTy;
   uint64_t EltSize;
   if (StructType *ST = dyn_cast<StructType>(T)) {
-    const StructLayout *Layout = TD->getStructLayout(ST);
+    const StructLayout *Layout = DL->getStructLayout(ST);
     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
     EltTy = ST->getContainedType(EltIdx);
-    EltSize = TD->getTypeAllocSize(EltTy);
+    EltSize = DL->getTypeAllocSize(EltTy);
     Offset -= Layout->getElementOffset(EltIdx);
   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
     EltTy = AT->getElementType();
-    EltSize = TD->getTypeAllocSize(EltTy);
+    EltSize = DL->getTypeAllocSize(EltTy);
     if (Offset >= AT->getNumElements() * EltSize)
       return false;
     Offset %= EltSize;
   } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
     EltTy = VT->getElementType();
-    EltSize = TD->getTypeAllocSize(EltTy);
+    EltSize = DL->getTypeAllocSize(EltTy);
     if (Offset >= VT->getNumElements() * EltSize)
       return false;
     Offset %= EltSize;
@@ -1887,7 +1887,7 @@ void SROA::RewriteForScalarRepl(Instruct
       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
       uint64_t MemSize = Length->getZExtValue();
       if (Offset == 0 &&
-          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
+          MemSize == DL->getTypeAllocSize(AI->getAllocatedType()))
         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
       // Otherwise the intrinsic can only touch a single element and the
       // address operand will be updated, so nothing else needs to be done.
@@ -1923,8 +1923,8 @@ void SROA::RewriteForScalarRepl(Instruct
         LI->replaceAllUsesWith(Insert);
         DeadInsts.push_back(LI);
       } else if (LIType->isIntegerTy() &&
-                 TD->getTypeAllocSize(LIType) ==
-                 TD->getTypeAllocSize(AI->getAllocatedType())) {
+                 DL->getTypeAllocSize(LIType) ==
+                 DL->getTypeAllocSize(AI->getAllocatedType())) {
         // If this is a load of the entire alloca to an integer, rewrite it.
         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
       }
@@ -1950,8 +1950,8 @@ void SROA::RewriteForScalarRepl(Instruct
         }
         DeadInsts.push_back(SI);
       } else if (SIType->isIntegerTy() &&
-                 TD->getTypeAllocSize(SIType) ==
-                 TD->getTypeAllocSize(AI->getAllocatedType())) {
+                 DL->getTypeAllocSize(SIType) ==
+                 DL->getTypeAllocSize(AI->getAllocatedType())) {
         // If this is a store of the entire alloca from an integer, rewrite it.
         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
       }
@@ -2013,7 +2013,7 @@ uint64_t SROA::FindElementAndOffset(Type
                                     Type *&IdxTy) {
   uint64_t Idx = 0;
   if (StructType *ST = dyn_cast<StructType>(T)) {
-    const StructLayout *Layout = TD->getStructLayout(ST);
+    const StructLayout *Layout = DL->getStructLayout(ST);
     Idx = Layout->getElementContainingOffset(Offset);
     T = ST->getContainedType(Idx);
     Offset -= Layout->getElementOffset(Idx);
@@ -2021,7 +2021,7 @@ uint64_t SROA::FindElementAndOffset(Type
     return Idx;
   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
     T = AT->getElementType();
-    uint64_t EltSize = TD->getTypeAllocSize(T);
+    uint64_t EltSize = DL->getTypeAllocSize(T);
     Idx = Offset / EltSize;
     Offset -= Idx * EltSize;
     IdxTy = Type::getInt64Ty(T->getContext());
@@ -2029,7 +2029,7 @@ uint64_t SROA::FindElementAndOffset(Type
   }
   VectorType *VT = cast<VectorType>(T);
   T = VT->getElementType();
-  uint64_t EltSize = TD->getTypeAllocSize(T);
+  uint64_t EltSize = DL->getTypeAllocSize(T);
   Idx = Offset / EltSize;
   Offset -= Idx * EltSize;
   IdxTy = Type::getInt64Ty(T->getContext());
@@ -2050,7 +2050,7 @@ void SROA::RewriteGEP(GetElementPtrInst
   Value* NonConstantIdx = 0;
   if (!GEPI->hasAllConstantIndices())
     NonConstantIdx = Indices.pop_back_val();
-  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+  Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
 
   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
 
@@ -2121,7 +2121,7 @@ void SROA::RewriteLifetimeIntrinsic(Intr
     V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
 
     IdxTy = NewElts[Idx]->getAllocatedType();
-    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
+    uint64_t EltSize = DL->getTypeAllocSize(IdxTy) - NewOffset;
     if (EltSize > Size) {
       EltSize = Size;
       Size = 0;
@@ -2137,7 +2137,7 @@ void SROA::RewriteLifetimeIntrinsic(Intr
 
   for (; Idx != NewElts.size() && Size; ++Idx) {
     IdxTy = NewElts[Idx]->getAllocatedType();
-    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
+    uint64_t EltSize = DL->getTypeAllocSize(IdxTy);
     if (EltSize > Size) {
       EltSize = Size;
       Size = 0;
@@ -2229,10 +2229,10 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIn
       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
       Type *OtherTy = OtherPtrTy->getElementType();
       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
-        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
+        EltOffset = DL->getStructLayout(ST)->getElementOffset(i);
       } else {
         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
-        EltOffset = TD->getTypeAllocSize(EltTy)*i;
+        EltOffset = DL->getTypeAllocSize(EltTy)*i;
       }
 
       // The alignment of the other pointer is the guaranteed alignment of the
@@ -2273,7 +2273,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIn
           Type *ValTy = EltTy->getScalarType();
 
           // Construct an integer with the right value.
-          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
+          unsigned EltSize = DL->getTypeSizeInBits(ValTy);
           APInt OneVal(EltSize, CI->getZExtValue());
           APInt TotalVal(OneVal);
           // Set each byte.
@@ -2303,7 +2303,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIn
       // this element.
     }
 
-    unsigned EltSize = TD->getTypeAllocSize(EltTy);
+    unsigned EltSize = DL->getTypeAllocSize(EltTy);
     if (!EltSize)
       continue;
 
@@ -2337,12 +2337,12 @@ SROA::RewriteStoreUserOfWholeAlloca(Stor
   // and store the element value to the individual alloca.
   Value *SrcVal = SI->getOperand(0);
   Type *AllocaEltTy = AI->getAllocatedType();
-  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+  uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
 
   IRBuilder<> Builder(SI);
 
   // Handle tail padding by extending the operand
-  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+  if (DL->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
     SrcVal = Builder.CreateZExt(SrcVal,
                             IntegerType::get(SI->getContext(), AllocaSizeBits));
 
@@ -2352,15 +2352,15 @@ SROA::RewriteStoreUserOfWholeAlloca(Stor
   // There are two forms here: AI could be an array or struct.  Both cases
   // have different ways to compute the element offset.
   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
-    const StructLayout *Layout = TD->getStructLayout(EltSTy);
+    const StructLayout *Layout = DL->getStructLayout(EltSTy);
 
     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
       // Get the number of bits to shift SrcVal to get the value.
       Type *FieldTy = EltSTy->getElementType(i);
       uint64_t Shift = Layout->getElementOffsetInBits(i);
 
-      if (TD->isBigEndian())
-        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
+      if (DL->isBigEndian())
+        Shift = AllocaSizeBits-Shift-DL->getTypeAllocSizeInBits(FieldTy);
 
       Value *EltVal = SrcVal;
       if (Shift) {
@@ -2369,7 +2369,7 @@ SROA::RewriteStoreUserOfWholeAlloca(Stor
       }
 
       // Truncate down to an integer of the right size.
-      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+      uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
 
       // Ignore zero sized fields like {}, they obviously contain no data.
       if (FieldSizeBits == 0) continue;
@@ -2394,12 +2394,12 @@ SROA::RewriteStoreUserOfWholeAlloca(Stor
   } else {
     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
     Type *ArrayEltTy = ATy->getElementType();
-    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
-    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
+    uint64_t ElementOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
+    uint64_t ElementSizeBits = DL->getTypeSizeInBits(ArrayEltTy);
 
     uint64_t Shift;
 
-    if (TD->isBigEndian())
+    if (DL->isBigEndian())
       Shift = AllocaSizeBits-ElementOffset;
     else
       Shift = 0;
@@ -2433,7 +2433,7 @@ SROA::RewriteStoreUserOfWholeAlloca(Stor
       }
       new StoreInst(EltVal, DestField, SI);
 
-      if (TD->isBigEndian())
+      if (DL->isBigEndian())
         Shift -= ElementOffset;
       else
         Shift += ElementOffset;
@@ -2451,7 +2451,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadI
   // Extract each element out of the NewElts according to its structure offset
   // and form the result value.
   Type *AllocaEltTy = AI->getAllocatedType();
-  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+  uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
 
   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
                << '\n');
@@ -2461,10 +2461,10 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadI
   const StructLayout *Layout = 0;
   uint64_t ArrayEltBitOffset = 0;
   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
-    Layout = TD->getStructLayout(EltSTy);
+    Layout = DL->getStructLayout(EltSTy);
   } else {
     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
-    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
+    ArrayEltBitOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
   }
 
   Value *ResultVal =
@@ -2476,7 +2476,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadI
     Value *SrcField = NewElts[i];
     Type *FieldTy =
       cast<PointerType>(SrcField->getType())->getElementType();
-    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+    uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
 
     // Ignore zero sized fields like {}, they obviously contain no data.
     if (FieldSizeBits == 0) continue;
@@ -2507,7 +2507,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadI
     else  // Array case.
       Shift = i*ArrayEltBitOffset;
 
-    if (TD->isBigEndian())
+    if (DL->isBigEndian())
       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
 
     if (Shift) {
@@ -2524,7 +2524,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadI
   }
 
   // Handle tail padding by truncating the result
-  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
+  if (DL->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 
   LI->replaceAllUsesWith(ResultVal);
@@ -2534,15 +2534,15 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadI
 /// HasPadding - Return true if the specified type has any structure or
 /// alignment padding in between the elements that would be split apart
 /// by SROA; return false otherwise.
-static bool HasPadding(Type *Ty, const DataLayout &TD) {
+static bool HasPadding(Type *Ty, const DataLayout &DL) {
   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     Ty = ATy->getElementType();
-    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
+    return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
   }
 
   // SROA currently handles only Arrays and Structs.
   StructType *STy = cast<StructType>(Ty);
-  const StructLayout *SL = TD.getStructLayout(STy);
+  const StructLayout *SL = DL.getStructLayout(STy);
   unsigned PrevFieldBitOffset = 0;
   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
@@ -2551,7 +2551,7 @@ static bool HasPadding(Type *Ty, const D
     // previous one.
     if (i) {
       unsigned PrevFieldEnd =
-        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
+        PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
       if (PrevFieldEnd < FieldBitOffset)
         return true;
     }
@@ -2560,7 +2560,7 @@ static bool HasPadding(Type *Ty, const D
   // Check for tail padding.
   if (unsigned EltCount = STy->getNumElements()) {
     unsigned PrevFieldEnd = PrevFieldBitOffset +
-      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
+      DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
     if (PrevFieldEnd < SL->getSizeInBits())
       return true;
   }
@@ -2587,7 +2587,7 @@ bool SROA::isSafeAllocaToScalarRepl(Allo
   // types, but may actually be used.  In these cases, we refuse to promote the
   // struct.
   if (Info.isMemCpySrc && Info.isMemCpyDst &&
-      HasPadding(AI->getAllocatedType(), *TD))
+      HasPadding(AI->getAllocatedType(), *DL))
     return false;
 
   // If the alloca never has an access to just *part* of it, but is accessed

Modified: llvm/trunk/lib/Transforms/Utils/CloneFunction.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/CloneFunction.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Utils/CloneFunction.cpp (original)
+++ llvm/trunk/lib/Transforms/Utils/CloneFunction.cpp Thu Feb 20 18:06:31 2014
@@ -205,17 +205,17 @@ namespace {
     bool ModuleLevelChanges;
     const char *NameSuffix;
     ClonedCodeInfo *CodeInfo;
-    const DataLayout *TD;
+    const DataLayout *DL;
   public:
     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
                           ValueToValueMapTy &valueMap,
                           bool moduleLevelChanges,
                           const char *nameSuffix, 
                           ClonedCodeInfo *codeInfo,
-                          const DataLayout *td)
+                          const DataLayout *DL)
     : NewFunc(newFunc), OldFunc(oldFunc),
       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
-      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
+      NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL) {
     }
 
     /// CloneBlock - The specified block is found to be reachable, clone it and
@@ -272,7 +272,7 @@ void PruningFunctionCloner::CloneBlock(c
       // If we can simplify this instruction to some other value, simply add
       // a mapping to that value rather than inserting a new instruction into
       // the basic block.
-      if (Value *V = SimplifyInstruction(NewInst, TD)) {
+      if (Value *V = SimplifyInstruction(NewInst, DL)) {
         // On the off-chance that this simplifies to an instruction in the old
         // function, map it back into the new function.
         if (Value *MappedV = VMap.lookup(V))
@@ -368,7 +368,7 @@ void llvm::CloneAndPruneFunctionInto(Fun
                                      SmallVectorImpl<ReturnInst*> &Returns,
                                      const char *NameSuffix, 
                                      ClonedCodeInfo *CodeInfo,
-                                     const DataLayout *TD,
+                                     const DataLayout *DL,
                                      Instruction *TheCall) {
   assert(NameSuffix && "NameSuffix cannot be null!");
   
@@ -379,7 +379,7 @@ void llvm::CloneAndPruneFunctionInto(Fun
 #endif
 
   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
-                            NameSuffix, CodeInfo, TD);
+                            NameSuffix, CodeInfo, DL);
 
   // Clone the entry block, and anything recursively reachable from it.
   std::vector<const BasicBlock*> CloneWorklist;
@@ -509,7 +509,7 @@ void llvm::CloneAndPruneFunctionInto(Fun
   // node).
   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
-      recursivelySimplifyInstruction(PN, TD);
+      recursivelySimplifyInstruction(PN, DL);
 
   // Now that the inlined function body has been fully constructed, go through
   // and zap unconditional fall-through branches.  This happen all the time when

Modified: llvm/trunk/lib/Transforms/Utils/SimplifyCFG.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyCFG.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Utils/SimplifyCFG.cpp (original)
+++ llvm/trunk/lib/Transforms/Utils/SimplifyCFG.cpp Thu Feb 20 18:06:31 2014
@@ -90,7 +90,7 @@ namespace {
 
 class SimplifyCFGOpt {
   const TargetTransformInfo &TTI;
-  const DataLayout *const TD;
+  const DataLayout *const DL;
   Value *isValueEqualityComparison(TerminatorInst *TI);
   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
                                std::vector<ValueEqualityComparisonCase> &Cases);
@@ -109,8 +109,8 @@ class SimplifyCFGOpt {
   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
 
 public:
-  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
-      : TTI(TTI), TD(TD) {}
+  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL)
+      : TTI(TTI), DL(DL) {}
   bool run(BasicBlock *BB);
 };
 }
@@ -306,15 +306,15 @@ static bool DominatesMergePoint(Value *V
 
 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
 /// and PointerNullValue. Return NULL if value is not a constant int.
-static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
+static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
   // Normal constant int.
   ConstantInt *CI = dyn_cast<ConstantInt>(V);
-  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
+  if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
     return CI;
 
   // This is some kind of pointer constant. Turn it into a pointer-sized
   // ConstantInt if possible.
-  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
+  IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
 
   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
   if (isa<ConstantPointerNull>(V))
@@ -340,13 +340,13 @@ static ConstantInt *GetConstantInt(Value
 /// Values vector.
 static Value *
 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
-                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
+                       const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
   Instruction *I = dyn_cast<Instruction>(V);
   if (I == 0) return 0;
 
   // If this is an icmp against a constant, handle this as one of the cases.
   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
-    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
+    if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
       Value *RHSVal;
       ConstantInt *RHSC;
 
@@ -405,11 +405,11 @@ GatherConstantCompares(Value *V, std::ve
 
   unsigned NumValsBeforeLHS = Vals.size();
   unsigned UsedICmpsBeforeLHS = UsedICmps;
-  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
+  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
                                           isEQ, UsedICmps)) {
     unsigned NumVals = Vals.size();
     unsigned UsedICmpsBeforeRHS = UsedICmps;
-    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
+    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
                                             isEQ, UsedICmps)) {
       if (LHS == RHS)
         return LHS;
@@ -434,7 +434,7 @@ GatherConstantCompares(Value *V, std::ve
   if (Extra == 0 || Extra == I->getOperand(0)) {
     Value *OldExtra = Extra;
     Extra = I->getOperand(0);
-    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
+    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
                                             isEQ, UsedICmps))
       return RHS;
     assert(Vals.size() == NumValsBeforeLHS);
@@ -472,14 +472,14 @@ Value *SimplifyCFGOpt::isValueEqualityCo
   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
     if (BI->isConditional() && BI->getCondition()->hasOneUse())
       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
-        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD))
+        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
           CV = ICI->getOperand(0);
 
   // Unwrap any lossless ptrtoint cast.
-  if (TD && CV) {
+  if (DL && CV) {
     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
       Value *Ptr = PTII->getPointerOperand();
-      if (PTII->getType() == TD->getIntPtrType(Ptr->getType()))
+      if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
         CV = Ptr;
     }
   }
@@ -504,7 +504,7 @@ GetValueEqualityComparisonCases(Terminat
   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
-                                                             TD),
+                                                             DL),
                                               Succ));
   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
 }
@@ -930,8 +930,8 @@ bool SimplifyCFGOpt::FoldValueComparison
       Builder.SetInsertPoint(PTI);
       // Convert pointer to int before we switch.
       if (CV->getType()->isPointerTy()) {
-        assert(TD && "Cannot switch on pointer without DataLayout");
-        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()),
+        assert(DL && "Cannot switch on pointer without DataLayout");
+        CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
                                     "magicptr");
       }
 
@@ -1606,7 +1606,7 @@ static bool BlockIsSimpleEnoughToThreadT
 /// that is defined in the same block as the branch and if any PHI entries are
 /// constants, thread edges corresponding to that entry to be branches to their
 /// ultimate destination.
-static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
+static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
   BasicBlock *BB = BI->getParent();
   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   // NOTE: we currently cannot transform this case if the PHI node is used
@@ -1675,7 +1675,7 @@ static bool FoldCondBranchOnPHI(BranchIn
       }
 
       // Check for trivial simplification.
-      if (Value *V = SimplifyInstruction(N, TD)) {
+      if (Value *V = SimplifyInstruction(N, DL)) {
         TranslateMap[BBI] = V;
         delete N;   // Instruction folded away, don't need actual inst
       } else {
@@ -1696,7 +1696,7 @@ static bool FoldCondBranchOnPHI(BranchIn
       }
 
     // Recurse, simplifying any other constants.
-    return FoldCondBranchOnPHI(BI, TD) | true;
+    return FoldCondBranchOnPHI(BI, DL) | true;
   }
 
   return false;
@@ -1704,7 +1704,7 @@ static bool FoldCondBranchOnPHI(BranchIn
 
 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
 /// PHI node, see if we can eliminate it.
-static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
+static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   // statement", which has a very simple dominance structure.  Basically, we
   // are trying to find the condition that is being branched on, which
@@ -1738,7 +1738,7 @@ static bool FoldTwoEntryPHINode(PHINode
 
   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
     PHINode *PN = cast<PHINode>(II++);
-    if (Value *V = SimplifyInstruction(PN, TD)) {
+    if (Value *V = SimplifyInstruction(PN, DL)) {
       PN->replaceAllUsesWith(V);
       PN->eraseFromParent();
       continue;
@@ -2634,7 +2634,7 @@ static bool SimplifyIndirectBrOnSelect(I
 /// the PHI, merging the third icmp into the switch.
 static bool TryToSimplifyUncondBranchWithICmpInIt(
     ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
-    const DataLayout *TD) {
+    const DataLayout *DL) {
   BasicBlock *BB = ICI->getParent();
 
   // If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2662,12 +2662,12 @@ static bool TryToSimplifyUncondBranchWit
     assert(VVal && "Should have a unique destination value");
     ICI->setOperand(0, VVal);
 
-    if (Value *V = SimplifyInstruction(ICI, TD)) {
+    if (Value *V = SimplifyInstruction(ICI, DL)) {
       ICI->replaceAllUsesWith(V);
       ICI->eraseFromParent();
     }
     // BB is now empty, so it is likely to simplify away.
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
   }
 
   // Ok, the block is reachable from the default dest.  If the constant we're
@@ -2683,7 +2683,7 @@ static bool TryToSimplifyUncondBranchWit
     ICI->replaceAllUsesWith(V);
     ICI->eraseFromParent();
     // BB is now empty, so it is likely to simplify away.
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
   }
 
   // The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -2739,7 +2739,7 @@ static bool TryToSimplifyUncondBranchWit
 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
 /// Check to see if it is branching on an or/and chain of icmp instructions, and
 /// fold it into a switch instruction if so.
-static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
                                       IRBuilder<> &Builder) {
   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   if (Cond == 0) return false;
@@ -2755,10 +2755,10 @@ static bool SimplifyBranchOnICmpChain(Br
   unsigned UsedICmps = 0;
 
   if (Cond->getOpcode() == Instruction::Or) {
-    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
+    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
                                      UsedICmps);
   } else if (Cond->getOpcode() == Instruction::And) {
-    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
+    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
                                      UsedICmps);
     TrueWhenEqual = false;
   }
@@ -2820,9 +2820,9 @@ static bool SimplifyBranchOnICmpChain(Br
   Builder.SetInsertPoint(BI);
   // Convert pointer to int before we switch.
   if (CompVal->getType()->isPointerTy()) {
-    assert(TD && "Cannot switch on pointer without DataLayout");
+    assert(DL && "Cannot switch on pointer without DataLayout");
     CompVal = Builder.CreatePtrToInt(CompVal,
-                                     TD->getIntPtrType(CompVal->getType()),
+                                     DL->getIntPtrType(CompVal->getType()),
                                      "magicptr");
   }
 
@@ -3453,7 +3453,7 @@ namespace {
                       ConstantInt *Offset,
              const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
                       Constant *DefaultValue,
-                      const DataLayout *TD);
+                      const DataLayout *DL);
 
     /// BuildLookup - Build instructions with Builder to retrieve the value at
     /// the position given by Index in the lookup table.
@@ -3461,7 +3461,7 @@ namespace {
 
     /// WouldFitInRegister - Return true if a table with TableSize elements of
     /// type ElementType would fit in a target-legal register.
-    static bool WouldFitInRegister(const DataLayout *TD,
+    static bool WouldFitInRegister(const DataLayout *DL,
                                    uint64_t TableSize,
                                    const Type *ElementType);
 
@@ -3500,7 +3500,7 @@ SwitchLookupTable::SwitchLookupTable(Mod
                                      ConstantInt *Offset,
              const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
                                      Constant *DefaultValue,
-                                     const DataLayout *TD)
+                                     const DataLayout *DL)
     : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
   assert(Values.size() && "Can't build lookup table without values!");
   assert(TableSize >= Values.size() && "Can't fit values in table!");
@@ -3546,7 +3546,7 @@ SwitchLookupTable::SwitchLookupTable(Mod
   }
 
   // If the type is integer and the table fits in a register, build a bitmap.
-  if (WouldFitInRegister(TD, TableSize, ValueType)) {
+  if (WouldFitInRegister(DL, TableSize, ValueType)) {
     IntegerType *IT = cast<IntegerType>(ValueType);
     APInt TableInt(TableSize * IT->getBitWidth(), 0);
     for (uint64_t I = TableSize; I > 0; --I) {
@@ -3611,10 +3611,10 @@ Value *SwitchLookupTable::BuildLookup(Va
   llvm_unreachable("Unknown lookup table kind!");
 }
 
-bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
+bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
                                            uint64_t TableSize,
                                            const Type *ElementType) {
-  if (!TD)
+  if (!DL)
     return false;
   const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
   if (!IT)
@@ -3625,7 +3625,7 @@ bool SwitchLookupTable::WouldFitInRegist
   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   if (TableSize >= UINT_MAX/IT->getBitWidth())
     return false;
-  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
+  return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
 }
 
 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
@@ -3634,7 +3634,7 @@ bool SwitchLookupTable::WouldFitInRegist
 static bool ShouldBuildLookupTable(SwitchInst *SI,
                                    uint64_t TableSize,
                                    const TargetTransformInfo &TTI,
-                                   const DataLayout *TD,
+                                   const DataLayout *DL,
                             const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
     return false; // TableSize overflowed, or mul below might overflow.
@@ -3650,7 +3650,7 @@ static bool ShouldBuildLookupTable(Switc
 
     // Saturate this flag to false.
     AllTablesFitInRegister = AllTablesFitInRegister &&
-      SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
+      SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
 
     // If both flags saturate, we're done. NOTE: This *only* works with
     // saturating flags, and all flags have to saturate first due to the
@@ -3679,7 +3679,7 @@ static bool ShouldBuildLookupTable(Switc
 static bool SwitchToLookupTable(SwitchInst *SI,
                                 IRBuilder<> &Builder,
                                 const TargetTransformInfo &TTI,
-                                const DataLayout* TD) {
+                                const DataLayout* DL) {
   assert(SI->getNumCases() > 1 && "Degenerate switch?");
 
   // Only build lookup table when we have a target that supports it.
@@ -3723,7 +3723,7 @@ static bool SwitchToLookupTable(SwitchIn
     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
     ResultsTy Results;
     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
-                        Results, TD))
+                        Results, DL))
       return false;
 
     // Append the result from this case to the list for each phi.
@@ -3748,7 +3748,7 @@ static bool SwitchToLookupTable(SwitchIn
   // If the table has holes, we need a constant result for the default case.
   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
   if (TableHasHoles && !GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
-                                       DefaultResultsList, TD))
+                                       DefaultResultsList, DL))
     return false;
 
   for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
@@ -3757,7 +3757,7 @@ static bool SwitchToLookupTable(SwitchIn
     DefaultResults[PHI] = Result;
   }
 
-  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
+  if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
     return false;
 
   // Create the BB that does the lookups.
@@ -3801,7 +3801,7 @@ static bool SwitchToLookupTable(SwitchIn
     PHINode *PHI = PHIs[I];
 
     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
-                            DefaultResults[PHI], TD);
+                            DefaultResults[PHI], DL);
 
     Value *Result = Table.BuildLookup(TableIndex, Builder);
 
@@ -3842,12 +3842,12 @@ bool SimplifyCFGOpt::SimplifySwitch(Swit
     // see if that predecessor totally determines the outcome of this switch.
     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
 
     Value *Cond = SI->getCondition();
     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
       if (SimplifySwitchOnSelect(SI, Select))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
 
     // If the block only contains the switch, see if we can fold the block
     // away into any preds.
@@ -3857,22 +3857,22 @@ bool SimplifyCFGOpt::SimplifySwitch(Swit
       ++BBI;
     if (SI == &*BBI)
       if (FoldValueComparisonIntoPredecessors(SI, Builder))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
   }
 
   // Try to transform the switch into an icmp and a branch.
   if (TurnSwitchRangeIntoICmp(SI, Builder))
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
 
   // Remove unreachable cases.
   if (EliminateDeadSwitchCases(SI))
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
 
   if (ForwardSwitchConditionToPHI(SI))
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
 
-  if (SwitchToLookupTable(SI, Builder, TTI, TD))
-    return SimplifyCFG(BB, TTI, TD) | true;
+  if (SwitchToLookupTable(SI, Builder, TTI, DL))
+    return SimplifyCFG(BB, TTI, DL) | true;
 
   return false;
 }
@@ -3909,7 +3909,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(
 
   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
     if (SimplifyIndirectBrOnSelect(IBI, SI))
-      return SimplifyCFG(BB, TTI, TD) | true;
+      return SimplifyCFG(BB, TTI, DL) | true;
   }
   return Changed;
 }
@@ -3933,7 +3933,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranc
       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
         ;
       if (I->isTerminator() &&
-          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
+          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL))
         return true;
     }
 
@@ -3942,7 +3942,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranc
   // predecessor and use logical operations to update the incoming value
   // for PHI nodes in common successor.
   if (FoldBranchToCommonDest(BI))
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
   return false;
 }
 
@@ -3957,7 +3957,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(
     // switch.
     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
 
     // This block must be empty, except for the setcond inst, if it exists.
     // Ignore dbg intrinsics.
@@ -3967,26 +3967,26 @@ bool SimplifyCFGOpt::SimplifyCondBranch(
       ++I;
     if (&*I == BI) {
       if (FoldValueComparisonIntoPredecessors(BI, Builder))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
     } else if (&*I == cast<Instruction>(BI->getCondition())){
       ++I;
       // Ignore dbg intrinsics.
       while (isa<DbgInfoIntrinsic>(I))
         ++I;
       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
     }
   }
 
   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
-  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
+  if (SimplifyBranchOnICmpChain(BI, DL, Builder))
     return true;
 
   // If this basic block is ONLY a compare and a branch, and if a predecessor
   // branches to us and one of our successors, fold the comparison into the
   // predecessor and use logical operations to pick the right destination.
   if (FoldBranchToCommonDest(BI))
-    return SimplifyCFG(BB, TTI, TD) | true;
+    return SimplifyCFG(BB, TTI, DL) | true;
 
   // We have a conditional branch to two blocks that are only reachable
   // from BI.  We know that the condbr dominates the two blocks, so see if
@@ -3995,7 +3995,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(
   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
       if (HoistThenElseCodeToIf(BI))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
     } else {
       // If Successor #1 has multiple preds, we may be able to conditionally
       // execute Successor #0 if it branches to successor #1.
@@ -4003,7 +4003,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(
       if (Succ0TI->getNumSuccessors() == 1 &&
           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
-          return SimplifyCFG(BB, TTI, TD) | true;
+          return SimplifyCFG(BB, TTI, DL) | true;
     }
   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
     // If Successor #0 has multiple preds, we may be able to conditionally
@@ -4012,22 +4012,22 @@ bool SimplifyCFGOpt::SimplifyCondBranch(
     if (Succ1TI->getNumSuccessors() == 1 &&
         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
-        return SimplifyCFG(BB, TTI, TD) | true;
+        return SimplifyCFG(BB, TTI, DL) | true;
   }
 
   // If this is a branch on a phi node in the current block, thread control
   // through this block if any PHI node entries are constants.
   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
     if (PN->getParent() == BI->getParent())
-      if (FoldCondBranchOnPHI(BI, TD))
-        return SimplifyCFG(BB, TTI, TD) | true;
+      if (FoldCondBranchOnPHI(BI, DL))
+        return SimplifyCFG(BB, TTI, DL) | true;
 
   // Scan predecessor blocks for conditional branches.
   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
       if (PBI != BI && PBI->isConditional())
         if (SimplifyCondBranchToCondBranch(PBI, BI))
-          return SimplifyCFG(BB, TTI, TD) | true;
+          return SimplifyCFG(BB, TTI, DL) | true;
 
   return false;
 }
@@ -4139,7 +4139,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB)
   // eliminate it, do so now.
   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
     if (PN->getNumIncomingValues() == 2)
-      Changed |= FoldTwoEntryPHINode(PN, TD);
+      Changed |= FoldTwoEntryPHINode(PN, DL);
 
   Builder.SetInsertPoint(BB->getTerminator());
   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
@@ -4171,6 +4171,6 @@ bool SimplifyCFGOpt::run(BasicBlock *BB)
 /// of the CFG.  It returns true if a modification was made.
 ///
 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
-                       const DataLayout *TD) {
-  return SimplifyCFGOpt(TTI, TD).run(BB);
+                       const DataLayout *DL) {
+  return SimplifyCFGOpt(TTI, DL).run(BB);
 }

Modified: llvm/trunk/lib/Transforms/Utils/SimplifyIndVar.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyIndVar.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Utils/SimplifyIndVar.cpp (original)
+++ llvm/trunk/lib/Transforms/Utils/SimplifyIndVar.cpp Thu Feb 20 18:06:31 2014
@@ -48,7 +48,7 @@ namespace {
     Loop             *L;
     LoopInfo         *LI;
     ScalarEvolution  *SE;
-    const DataLayout *TD; // May be NULL
+    const DataLayout *DL; // May be NULL
 
     SmallVectorImpl<WeakVH> &DeadInsts;
 
@@ -60,7 +60,7 @@ namespace {
       L(Loop),
       LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
       SE(SE),
-      TD(LPM->getAnalysisIfAvailable<DataLayout>()),
+      DL(LPM->getAnalysisIfAvailable<DataLayout>()),
       DeadInsts(Dead),
       Changed(false) {
       assert(LI && "IV simplification requires LoopInfo");

Modified: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp (original)
+++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp Thu Feb 20 18:06:31 2014
@@ -43,7 +43,7 @@ namespace {
 class LibCallOptimization {
 protected:
   Function *Caller;
-  const DataLayout *TD;
+  const DataLayout *DL;
   const TargetLibraryInfo *TLI;
   const LibCallSimplifier *LCS;
   LLVMContext* Context;
@@ -63,11 +63,11 @@ public:
   /// change the calling convention.
   virtual bool ignoreCallingConv() { return false; }
 
-  Value *optimizeCall(CallInst *CI, const DataLayout *TD,
+  Value *optimizeCall(CallInst *CI, const DataLayout *DL,
                       const TargetLibraryInfo *TLI,
                       const LibCallSimplifier *LCS, IRBuilder<> &B) {
     Caller = CI->getParent()->getParent();
-    this->TD = TD;
+    this->DL = DL;
     this->TLI = TLI;
     this->LCS = LCS;
     if (CI->getCalledFunction())
@@ -184,8 +184,8 @@ struct MemCpyChkOpt : public InstFortifi
     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isPointerTy() ||
         !FT->getParamType(1)->isPointerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(Context) ||
-        FT->getParamType(3) != TD->getIntPtrType(Context))
+        FT->getParamType(2) != DL->getIntPtrType(Context) ||
+        FT->getParamType(3) != DL->getIntPtrType(Context))
       return 0;
 
     if (isFoldable(3, 2, false)) {
@@ -207,8 +207,8 @@ struct MemMoveChkOpt : public InstFortif
     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isPointerTy() ||
         !FT->getParamType(1)->isPointerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(Context) ||
-        FT->getParamType(3) != TD->getIntPtrType(Context))
+        FT->getParamType(2) != DL->getIntPtrType(Context) ||
+        FT->getParamType(3) != DL->getIntPtrType(Context))
       return 0;
 
     if (isFoldable(3, 2, false)) {
@@ -230,8 +230,8 @@ struct MemSetChkOpt : public InstFortifi
     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isPointerTy() ||
         !FT->getParamType(1)->isIntegerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(Context) ||
-        FT->getParamType(3) != TD->getIntPtrType(Context))
+        FT->getParamType(2) != DL->getIntPtrType(Context) ||
+        FT->getParamType(3) != DL->getIntPtrType(Context))
       return 0;
 
     if (isFoldable(3, 2, false)) {
@@ -256,7 +256,7 @@ struct StrCpyChkOpt : public InstFortifi
         FT->getReturnType() != FT->getParamType(0) ||
         FT->getParamType(0) != FT->getParamType(1) ||
         FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
-        FT->getParamType(2) != TD->getIntPtrType(Context))
+        FT->getParamType(2) != DL->getIntPtrType(Context))
       return 0;
 
     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
@@ -269,7 +269,7 @@ struct StrCpyChkOpt : public InstFortifi
     // TODO: It might be nice to get a maximum length out of the possible
     // string lengths for varying.
     if (isFoldable(2, 1, true)) {
-      Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
+      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
       return Ret;
     } else {
       // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
@@ -277,12 +277,12 @@ struct StrCpyChkOpt : public InstFortifi
       if (Len == 0) return 0;
 
       // This optimization require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       Value *Ret =
 	EmitMemCpyChk(Dst, Src,
-                      ConstantInt::get(TD->getIntPtrType(Context), Len),
-                      CI->getArgOperand(2), B, TD, TLI);
+                      ConstantInt::get(DL->getIntPtrType(Context), Len),
+                      CI->getArgOperand(2), B, DL, TLI);
       return Ret;
     }
     return 0;
@@ -301,12 +301,12 @@ struct StpCpyChkOpt : public InstFortifi
         FT->getReturnType() != FT->getParamType(0) ||
         FT->getParamType(0) != FT->getParamType(1) ||
         FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
-        FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
+        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
       return 0;
 
     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
     if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
-      Value *StrLen = EmitStrLen(Src, B, TD, TLI);
+      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
       return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
     }
 
@@ -316,7 +316,7 @@ struct StpCpyChkOpt : public InstFortifi
     // TODO: It might be nice to get a maximum length out of the possible
     // string lengths for varying.
     if (isFoldable(2, 1, true)) {
-      Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
+      Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
       return Ret;
     } else {
       // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
@@ -324,14 +324,14 @@ struct StpCpyChkOpt : public InstFortifi
       if (Len == 0) return 0;
 
       // This optimization require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       Type *PT = FT->getParamType(0);
-      Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
+      Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
       Value *DstEnd = B.CreateGEP(Dst,
-                                  ConstantInt::get(TD->getIntPtrType(PT),
+                                  ConstantInt::get(DL->getIntPtrType(PT),
                                                    Len - 1));
-      if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI))
+      if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
         return 0;
       return DstEnd;
     }
@@ -351,12 +351,12 @@ struct StrNCpyChkOpt : public InstFortif
         FT->getParamType(0) != FT->getParamType(1) ||
         FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
         !FT->getParamType(2)->isIntegerTy() ||
-        FT->getParamType(3) != TD->getIntPtrType(Context))
+        FT->getParamType(3) != DL->getIntPtrType(Context))
       return 0;
 
     if (isFoldable(3, 2, false)) {
       Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
-                               CI->getArgOperand(2), B, TD, TLI,
+                               CI->getArgOperand(2), B, DL, TLI,
                                Name.substr(2, 7));
       return Ret;
     }
@@ -392,7 +392,7 @@ struct StrCatOpt : public LibCallOptimiz
       return Dst;
 
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     return emitStrLenMemCpy(Src, Dst, Len, B);
   }
@@ -401,7 +401,7 @@ struct StrCatOpt : public LibCallOptimiz
                           IRBuilder<> &B) {
     // We need to find the end of the destination string.  That's where the
     // memory is to be moved to. We just generate a call to strlen.
-    Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
+    Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
     if (!DstLen)
       return 0;
 
@@ -413,7 +413,7 @@ struct StrCatOpt : public LibCallOptimiz
     // We have enough information to now generate the memcpy call to do the
     // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
     B.CreateMemCpy(CpyDst, Src,
-                   ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
+                   ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
     return Dst;
   }
 };
@@ -451,7 +451,7 @@ struct StrNCatOpt : public StrCatOpt {
     if (SrcLen == 0 || Len == 0) return Dst;
 
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     // We don't optimize this case
     if (Len < SrcLen) return 0;
@@ -479,23 +479,23 @@ struct StrChrOpt : public LibCallOptimiz
     ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
     if (CharC == 0) {
       // These optimizations require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       uint64_t Len = GetStringLength(SrcStr);
       if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
         return 0;
 
       return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
-                        ConstantInt::get(TD->getIntPtrType(*Context), Len),
-                        B, TD, TLI);
+                        ConstantInt::get(DL->getIntPtrType(*Context), Len),
+                        B, DL, TLI);
     }
 
     // Otherwise, the character is a constant, see if the first argument is
     // a string literal.  If so, we can constant fold.
     StringRef Str;
     if (!getConstantStringInfo(SrcStr, Str)) {
-      if (TD && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
-        return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, TD, TLI), "strchr");
+      if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+        return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
       return 0;
     }
 
@@ -531,8 +531,8 @@ struct StrRChrOpt : public LibCallOptimi
     StringRef Str;
     if (!getConstantStringInfo(SrcStr, Str)) {
       // strrchr(s, 0) -> strchr(s, 0)
-      if (TD && CharC->isZero())
-        return EmitStrChr(SrcStr, '\0', B, TD, TLI);
+      if (DL && CharC->isZero())
+        return EmitStrChr(SrcStr, '\0', B, DL, TLI);
       return 0;
     }
 
@@ -581,11 +581,11 @@ struct StrCmpOpt : public LibCallOptimiz
     uint64_t Len2 = GetStringLength(Str2P);
     if (Len1 && Len2) {
       // These optimizations require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       return EmitMemCmp(Str1P, Str2P,
-                        ConstantInt::get(TD->getIntPtrType(*Context),
-                        std::min(Len1, Len2)), B, TD, TLI);
+                        ConstantInt::get(DL->getIntPtrType(*Context),
+                        std::min(Len1, Len2)), B, DL, TLI);
     }
 
     return 0;
@@ -617,8 +617,8 @@ struct StrNCmpOpt : public LibCallOptimi
     if (Length == 0) // strncmp(x,y,0)   -> 0
       return ConstantInt::get(CI->getType(), 0);
 
-    if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
-      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
+    if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+      return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
 
     StringRef Str1, Str2;
     bool HasStr1 = getConstantStringInfo(Str1P, Str1);
@@ -657,7 +657,7 @@ struct StrCpyOpt : public LibCallOptimiz
       return Src;
 
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     // See if we can get the length of the input string.
     uint64_t Len = GetStringLength(Src);
@@ -666,7 +666,7 @@ struct StrCpyOpt : public LibCallOptimiz
     // We have enough information to now generate the memcpy call to do the
     // copy for us.  Make a memcpy to copy the nul byte with align = 1.
     B.CreateMemCpy(Dst, Src,
-		   ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
+		   ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
     return Dst;
   }
 };
@@ -682,11 +682,11 @@ struct StpCpyOpt: public LibCallOptimiza
       return 0;
 
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
     if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
-      Value *StrLen = EmitStrLen(Src, B, TD, TLI);
+      Value *StrLen = EmitStrLen(Src, B, DL, TLI);
       return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
     }
 
@@ -695,9 +695,9 @@ struct StpCpyOpt: public LibCallOptimiza
     if (Len == 0) return 0;
 
     Type *PT = FT->getParamType(0);
-    Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
+    Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
     Value *DstEnd = B.CreateGEP(Dst,
-                                ConstantInt::get(TD->getIntPtrType(PT),
+                                ConstantInt::get(DL->getIntPtrType(PT),
                                                  Len - 1));
 
     // We have enough information to now generate the memcpy call to do the
@@ -740,7 +740,7 @@ struct StrNCpyOpt : public LibCallOptimi
     if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
 
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     // Let strncpy handle the zero padding
     if (Len > SrcLen+1) return 0;
@@ -748,7 +748,7 @@ struct StrNCpyOpt : public LibCallOptimi
     Type *PT = FT->getParamType(0);
     // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
     B.CreateMemCpy(Dst, Src,
-                   ConstantInt::get(TD->getIntPtrType(PT), Len), 1);
+                   ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
 
     return Dst;
   }
@@ -805,8 +805,8 @@ struct StrPBrkOpt : public LibCallOptimi
     }
 
     // strpbrk(s, "a") -> strchr(s, 'a')
-    if (TD && HasS2 && S2.size() == 1)
-      return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
+    if (DL && HasS2 && S2.size() == 1)
+      return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
 
     return 0;
   }
@@ -885,8 +885,8 @@ struct StrCSpnOpt : public LibCallOptimi
     }
 
     // strcspn(s, "") -> strlen(s)
-    if (TD && HasS2 && S2.empty())
-      return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
+    if (DL && HasS2 && S2.empty())
+      return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
 
     return 0;
   }
@@ -906,12 +906,12 @@ struct StrStrOpt : public LibCallOptimiz
       return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 
     // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
-    if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
-      Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI);
+    if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+      Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
       if (!StrLen)
         return 0;
       Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
-                                   StrLen, B, TD, TLI);
+                                   StrLen, B, DL, TLI);
       if (!StrNCmp)
         return 0;
       for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
@@ -949,7 +949,7 @@ struct StrStrOpt : public LibCallOptimiz
 
     // fold strstr(x, "y") -> strchr(x, 'y').
     if (HasStr2 && ToFindStr.size() == 1) {
-      Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI);
+      Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
       return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0;
     }
     return 0;
@@ -1011,13 +1011,13 @@ struct MemCmpOpt : public LibCallOptimiz
 struct MemCpyOpt : public LibCallOptimization {
   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     FunctionType *FT = Callee->getFunctionType();
     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isPointerTy() ||
         !FT->getParamType(1)->isPointerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(*Context))
+        FT->getParamType(2) != DL->getIntPtrType(*Context))
       return 0;
 
     // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
@@ -1030,13 +1030,13 @@ struct MemCpyOpt : public LibCallOptimiz
 struct MemMoveOpt : public LibCallOptimization {
   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     FunctionType *FT = Callee->getFunctionType();
     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isPointerTy() ||
         !FT->getParamType(1)->isPointerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(*Context))
+        FT->getParamType(2) != DL->getIntPtrType(*Context))
       return 0;
 
     // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
@@ -1049,13 +1049,13 @@ struct MemMoveOpt : public LibCallOptimi
 struct MemSetOpt : public LibCallOptimization {
   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     FunctionType *FT = Callee->getFunctionType();
     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isPointerTy() ||
         !FT->getParamType(1)->isIntegerTy() ||
-        FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
+        FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
       return 0;
 
     // memset(p, v, n) -> llvm.memset(p, v, n, 1)
@@ -1632,7 +1632,7 @@ struct PrintFOpt : public LibCallOptimiz
 
     // printf("x") -> putchar('x'), even for '%'.
     if (FormatStr.size() == 1) {
-      Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
+      Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
       if (CI->use_empty() || !Res) return Res;
       return B.CreateIntCast(Res, CI->getType(), true);
     }
@@ -1644,7 +1644,7 @@ struct PrintFOpt : public LibCallOptimiz
       // pass to be run after this pass, to merge duplicate strings.
       FormatStr = FormatStr.drop_back();
       Value *GV = B.CreateGlobalString(FormatStr, "str");
-      Value *NewCI = EmitPutS(GV, B, TD, TLI);
+      Value *NewCI = EmitPutS(GV, B, DL, TLI);
       return (CI->use_empty() || !NewCI) ?
               NewCI :
               ConstantInt::get(CI->getType(), FormatStr.size()+1);
@@ -1654,7 +1654,7 @@ struct PrintFOpt : public LibCallOptimiz
     // printf("%c", chr) --> putchar(chr)
     if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
         CI->getArgOperand(1)->getType()->isIntegerTy()) {
-      Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
+      Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
 
       if (CI->use_empty() || !Res) return Res;
       return B.CreateIntCast(Res, CI->getType(), true);
@@ -1663,7 +1663,7 @@ struct PrintFOpt : public LibCallOptimiz
     // printf("%s\n", str) --> puts(str)
     if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
         CI->getArgOperand(1)->getType()->isPointerTy()) {
-      return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
+      return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
     }
     return 0;
   }
@@ -1712,11 +1712,11 @@ struct SPrintFOpt : public LibCallOptimi
           return 0; // we found a format specifier, bail out.
 
       // These optimizations require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
       B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
-                     ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
+                     ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
                                       FormatStr.size() + 1), 1);   // nul byte.
       return ConstantInt::get(CI->getType(), FormatStr.size());
     }
@@ -1742,12 +1742,12 @@ struct SPrintFOpt : public LibCallOptimi
 
     if (FormatStr[1] == 's') {
       // These optimizations require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
       if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
 
-      Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
+      Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
       if (!Len)
         return 0;
       Value *IncLen = B.CreateAdd(Len,
@@ -1812,12 +1812,12 @@ struct FPrintFOpt : public LibCallOptimi
           return 0; // We found a format specifier.
 
       // These optimizations require DataLayout.
-      if (!TD) return 0;
+      if (!DL) return 0;
 
       return EmitFWrite(CI->getArgOperand(1),
-                        ConstantInt::get(TD->getIntPtrType(*Context),
+                        ConstantInt::get(DL->getIntPtrType(*Context),
                                          FormatStr.size()),
-                        CI->getArgOperand(0), B, TD, TLI);
+                        CI->getArgOperand(0), B, DL, TLI);
     }
 
     // The remaining optimizations require the format string to be "%s" or "%c"
@@ -1830,14 +1830,14 @@ struct FPrintFOpt : public LibCallOptimi
     if (FormatStr[1] == 'c') {
       // fprintf(F, "%c", chr) --> fputc(chr, F)
       if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
-      return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
+      return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
     }
 
     if (FormatStr[1] == 's') {
       // fprintf(F, "%s", str) --> fputs(str, F)
       if (!CI->getArgOperand(2)->getType()->isPointerTy())
         return 0;
-      return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
+      return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
     }
     return 0;
   }
@@ -1897,7 +1897,7 @@ struct FWriteOpt : public LibCallOptimiz
     // This optimisation is only valid, if the return value is unused.
     if (Bytes == 1 && CI->use_empty()) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
       Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
-      Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
+      Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
       return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
     }
 
@@ -1911,7 +1911,7 @@ struct FPutsOpt : public LibCallOptimiza
     (void) ER.callOptimizer(Callee, CI, B);
 
     // These optimizations require DataLayout.
-    if (!TD) return 0;
+    if (!DL) return 0;
 
     // Require two pointers.  Also, we can't optimize if return value is used.
     FunctionType *FT = Callee->getFunctionType();
@@ -1925,8 +1925,8 @@ struct FPutsOpt : public LibCallOptimiza
     if (!Len) return 0;
     // Known to have no uses (see above).
     return EmitFWrite(CI->getArgOperand(0),
-                      ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
-                      CI->getArgOperand(1), B, TD, TLI);
+                      ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
+                      CI->getArgOperand(1), B, DL, TLI);
   }
 };
 
@@ -1946,7 +1946,7 @@ struct PutsOpt : public LibCallOptimizat
 
     if (Str.empty() && CI->use_empty()) {
       // puts("") -> putchar('\n')
-      Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
+      Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
       if (CI->use_empty() || !Res) return Res;
       return B.CreateIntCast(Res, CI->getType(), true);
     }
@@ -1960,7 +1960,7 @@ struct PutsOpt : public LibCallOptimizat
 namespace llvm {
 
 class LibCallSimplifierImpl {
-  const DataLayout *TD;
+  const DataLayout *DL;
   const TargetLibraryInfo *TLI;
   const LibCallSimplifier *LCS;
   bool UnsafeFPShrink;
@@ -1970,11 +1970,11 @@ class LibCallSimplifierImpl {
   PowOpt Pow;
   Exp2Opt Exp2;
 public:
-  LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
+  LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
                         const LibCallSimplifier *LCS,
                         bool UnsafeFPShrink = false)
     : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
-    this->TD = TD;
+    this->DL = DL;
     this->TLI = TLI;
     this->LCS = LCS;
     this->UnsafeFPShrink = UnsafeFPShrink;
@@ -2233,15 +2233,15 @@ Value *LibCallSimplifierImpl::optimizeCa
   LibCallOptimization *LCO = lookupOptimization(CI);
   if (LCO) {
     IRBuilder<> Builder(CI);
-    return LCO->optimizeCall(CI, TD, TLI, LCS, Builder);
+    return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
   }
   return 0;
 }
 
-LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
+LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
                                      const TargetLibraryInfo *TLI,
                                      bool UnsafeFPShrink) {
-  Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
+  Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
 }
 
 LibCallSimplifier::~LibCallSimplifier() {

Modified: llvm/trunk/lib/Transforms/Vectorize/BBVectorize.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/BBVectorize.cpp?rev=201827&r1=201826&r2=201827&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Vectorize/BBVectorize.cpp (original)
+++ llvm/trunk/lib/Transforms/Vectorize/BBVectorize.cpp Thu Feb 20 18:06:31 2014
@@ -201,7 +201,7 @@ namespace {
       AA = &P->getAnalysis<AliasAnalysis>();
       DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
       SE = &P->getAnalysis<ScalarEvolution>();
-      TD = P->getAnalysisIfAvailable<DataLayout>();
+      DL = P->getAnalysisIfAvailable<DataLayout>();
       TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
     }
 
@@ -214,7 +214,7 @@ namespace {
     AliasAnalysis *AA;
     DominatorTree *DT;
     ScalarEvolution *SE;
-    DataLayout *TD;
+    DataLayout *DL;
     const TargetTransformInfo *TTI;
 
     // FIXME: const correct?
@@ -436,7 +436,7 @@ namespace {
       AA = &getAnalysis<AliasAnalysis>();
       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
       SE = &getAnalysis<ScalarEvolution>();
-      TD = getAnalysisIfAvailable<DataLayout>();
+      DL = getAnalysisIfAvailable<DataLayout>();
       TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
 
       return vectorizeBB(BB);
@@ -634,11 +634,11 @@ namespace {
         int64_t Offset = IntOff->getSExtValue();
 
         Type *VTy = IPtr->getType()->getPointerElementType();
-        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
+        int64_t VTyTSS = (int64_t) DL->getTypeStoreSize(VTy);
 
         Type *VTy2 = JPtr->getType()->getPointerElementType();
         if (VTy != VTy2 && Offset < 0) {
-          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
+          int64_t VTy2TSS = (int64_t) DL->getTypeStoreSize(VTy2);
           OffsetInElmts = Offset/VTy2TSS;
           return (abs64(Offset) % VTy2TSS) == 0;
         }
@@ -821,7 +821,7 @@ namespace {
 
     // It is important to cleanup here so that future iterations of this
     // function have less work to do.
-    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
+    (void) SimplifyInstructionsInBlock(&BB, DL, AA->getTargetLibraryInfo());
     return true;
   }
 
@@ -876,7 +876,7 @@ namespace {
     }
 
     // We can't vectorize memory operations without target data
-    if (TD == 0 && IsSimpleLoadStore)
+    if (DL == 0 && IsSimpleLoadStore)
       return false;
 
     Type *T1, *T2;
@@ -913,7 +913,7 @@ namespace {
     if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
       return false;
 
-    if ((!Config.VectorizePointers || TD == 0) &&
+    if ((!Config.VectorizePointers || DL == 0) &&
         (T1->getScalarType()->isPointerTy() ||
          T2->getScalarType()->isPointerTy()))
       return false;
@@ -977,7 +977,7 @@ namespace {
           // with the lower offset has an alignment suitable for the
           // vector type.
 
-          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
+          unsigned VecAlignment = DL->getPrefTypeAlignment(VType);
           if (BottomAlignment < VecAlignment)
             return false;
         }





More information about the llvm-commits mailing list