[llvm] r186316 - Reimplement SROA yet again. Same fundamental principle, but a totally

Benjamin Kramer benny.kra at gmail.com
Mon Jul 15 07:56:01 PDT 2013


On 15.07.2013, at 12:30, Chandler Carruth <chandlerc at gmail.com> wrote:

> Author: chandlerc
> Date: Mon Jul 15 05:30:19 2013
> New Revision: 186316
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=186316&view=rev
> Log:
> Reimplement SROA yet again. Same fundamental principle, but a totally
> different core implementation strategy.
> 
> Previously, SROA would build a relatively elaborate partitioning of an
> alloca, associate uses with each partition, and then rewrite the uses of
> each partition in an attempt to break apart the alloca into chunks that
> could be promoted. This was very wasteful in terms of memory and compile
> time because regardless of how complex the alloca or how much we're able
> to do in breaking it up, all of the datastructure work to analyze the
> partitioning was done up front.
> 
> The new implementation attempts to form partitions of the alloca lazily
> and on the fly, rewriting the uses that make up that partition as it
> goes. This has a few significant effects:
> 1) Much simpler data structures are used throughout.
> 2) No more double walk of the recursive use graph of the alloca, only
>   walk it once.
> 3) No more complex algorithms for associating a particular use with
>   a particular partition.
> 4) PHI and Select speculation is simplified and happens lazily.
> 5) More precise information is available about a specific use of the
>   alloca, removing the need for some side datastructures.
> 
> Ultimately, I think this is a much better implementation. It removes
> about 300 lines of code, but arguably removes more like 500 considering
> that some code grew in the process of being factored apart and cleaned
> up for this all to work.
> 
> I've re-used as much of the old implementation as possible, which
> includes the lion's share of code in the form of the rewriting logic.
> The interesting new logic centers around how the uses of a partition are
> sorted, and split into actual partitions.
> 
> Each instruction using a pointer derived from the alloca gets
> a 'Partition' entry. This name is totally wrong, but I'll do a rename in
> a follow-up commit as there is already enough churn here. The entry
> describes the offset range accessed and the nature of the access. Once
> we have all of these entries we sort them in a very specific way:
> increasing order of begin offset, followed by whether they are
> splittable uses (memcpy, etc), followed by the end offset or whatever.
> Sorting by splittability is important as it simplifies the collection of
> uses into a partition.
> 
> Once we have these uses sorted, we walk from the beginning to the end
> building up a range of uses that form a partition of the alloca.
> Overlapping unsplittable uses are merged into a single partition while
> splittable uses are broken apart and carried from one partition to the
> next. A partition is also introduced to bridge splittable uses between
> the unsplittable regions when necessary.
> 
> I've looked at the performance PRs fairly closely. PR15471 no longer
> will even load (the module is invalid). Not sure what is up there.
> PR15412 improves by between 5% and 10%, however it is nearly impossible
> to know what is holding it up as SROA (the entire pass) takes less time
> than reading the IR for that test case. The analysis takes the same time
> as running mem2reg on the final allocas. I suspect (without much
> evidence) that the new implementation will scale much better however,
> and it is just the small nature of the test cases that makes the changes
> small and noisy. Either way, it is still simpler and cleaner I think.

The buildbot is behaving a bit weirdly but this seems to have broken bullet in the nightly tester:

http://lab.llvm.org:8011/builders/clang-x86_64-darwin12-nt-O3/builds/602

Assertion failed: (CanSROA), function visit, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/llvm.src/lib/Transforms/Scalar/SROA.cpp, line 1954.

Stack dump:
0.      Program arguments: /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/llvm.install.1/bin/clang -cc1 -triple x86_64-apple-macosx10.8.0 -emit-obj -disable-free -main-file-name btGImpactCollisionAlgorithm.cpp -mrelocation-model dynamic-no-pic -pic-level 2 -masm-verbose -munwind-tables -target-cpu core2 -target-linker-version 136 -coverage-file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/tests/nt/build/sample-0/MultiSource/Benchmarks/Bullet/Output/btGImpactCollisionAlgorithm.llvm.o -resource-dir /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/llvm.install.1/bin/../lib/clang/3.4 -D NO_TIME -D _GNU_SOURCE -D __STDC_LIMIT_MACROS -D NDEBUG -I /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/test-suite/MultiSource/Benchmarks/Bullet/include -I /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/tests/nt/build/sample-0/MultiSource/Benchmarks/Bullet -I /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/test-suite/MultiSource/Benchmarks/Bullet -I /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/test-suite/include -I ../../..//include -O3 -fdeprecated-macro -fdebug-compilation-dir /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/tests/nt/build/sample-0/MultiSource/Benchmarks/Bullet -ferror-limit 19 -fmessage-length 0 -stack-protector 1 -mstackrealign -fblocks -fobjc-runtime=macosx-10.8.0 -fobjc-dispatch-method=mixed -fobjc-default-synthesize-properties -fencode-extended-block-signature -fcxx-exceptions -fexceptions -fdiagnostics-show-option -vectorize-loops -o Output/btGImpactCollisionAlgorithm.llvm.o -x c++ /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/clang-x86_64-darwin12-nt-O3/test-suite/MultiSource/Benchmarks/Bullet/btGImpactCollisionAlgorithm.cpp

- Ben

> Modified:
>    llvm/trunk/lib/Transforms/Scalar/SROA.cpp
>    llvm/trunk/test/Transforms/SROA/basictest.ll
> 
> Modified: llvm/trunk/lib/Transforms/Scalar/SROA.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/SROA.cpp?rev=186316&r1=186315&r2=186316&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Scalar/SROA.cpp (original)
> +++ llvm/trunk/lib/Transforms/Scalar/SROA.cpp Mon Jul 15 05:30:19 2013
> @@ -47,6 +47,7 @@
> #include "llvm/InstVisitor.h"
> #include "llvm/Pass.h"
> #include "llvm/Support/CommandLine.h"
> +#include "llvm/Support/Compiler.h"
> #include "llvm/Support/Debug.h"
> #include "llvm/Support/ErrorHandling.h"
> #include "llvm/Support/MathExtras.h"
> @@ -110,17 +111,40 @@ typedef llvm::IRBuilder<false, ConstantF
> }
> 
> namespace {
> -/// \brief A common base class for representing a half-open byte range.
> -struct ByteRange {
> +/// \brief A partition of an alloca.
> +///
> +/// This structure represents a contiguous partition of the alloca. These are
> +/// formed by examining the uses of the alloca. During formation, they may
> +/// overlap but once an AllocaPartitioning is built, the Partitions within it
> +/// are all disjoint. The partition also contains a chain of uses of that
> +/// partition.
> +class Partition {
>   /// \brief The beginning offset of the range.
>   uint64_t BeginOffset;
> 
>   /// \brief The ending offset, not included in the range.
>   uint64_t EndOffset;
> 
> -  ByteRange() : BeginOffset(), EndOffset() {}
> -  ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
> -      : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
> +  /// \brief Storage for both the use of this partition and whether it can be
> +  /// split.
> +  PointerIntPair<Use *, 1, bool> PartitionUseAndIsSplittable;
> +
> +public:
> +  Partition() : BeginOffset(), EndOffset() {}
> +  Partition(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
> +      : BeginOffset(BeginOffset), EndOffset(EndOffset),
> +        PartitionUseAndIsSplittable(U, IsSplittable) {}
> +
> +  uint64_t beginOffset() const { return BeginOffset; }
> +  uint64_t endOffset() const { return EndOffset; }
> +
> +  bool isSplittable() const { return PartitionUseAndIsSplittable.getInt(); }
> +  void makeUnsplittable() { PartitionUseAndIsSplittable.setInt(false); }
> +
> +  Use *getUse() const { return PartitionUseAndIsSplittable.getPointer(); }
> +
> +  bool isDead() const { return getUse() == 0; }
> +  void kill() { PartitionUseAndIsSplittable.setPointer(0); }
> 
>   /// \brief Support for ordering ranges.
>   ///
> @@ -128,99 +152,37 @@ struct ByteRange {
>   /// always increasing, and within equal start offsets, the end offsets are
>   /// decreasing. Thus the spanning range comes first in a cluster with the
>   /// same start position.
> -  bool operator<(const ByteRange &RHS) const {
> -    if (BeginOffset < RHS.BeginOffset) return true;
> -    if (BeginOffset > RHS.BeginOffset) return false;
> -    if (EndOffset > RHS.EndOffset) return true;
> +  bool operator<(const Partition &RHS) const {
> +    if (beginOffset() < RHS.beginOffset()) return true;
> +    if (beginOffset() > RHS.beginOffset()) return false;
> +    if (isSplittable() != RHS.isSplittable()) return !isSplittable();
> +    if (endOffset() > RHS.endOffset()) return true;
>     return false;
>   }
> 
>   /// \brief Support comparison with a single offset to allow binary searches.
> -  friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
> -    return LHS.BeginOffset < RHSOffset;
> +  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Partition &LHS,
> +                                              uint64_t RHSOffset) {
> +    return LHS.beginOffset() < RHSOffset;
>   }
> -
>   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
> -                                              const ByteRange &RHS) {
> -    return LHSOffset < RHS.BeginOffset;
> +                                              const Partition &RHS) {
> +    return LHSOffset < RHS.beginOffset();
>   }
> 
> -  bool operator==(const ByteRange &RHS) const {
> -    return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
> +  bool operator==(const Partition &RHS) const {
> +    return isSplittable() == RHS.isSplittable() &&
> +           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
>   }
> -  bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
> +  bool operator!=(const Partition &RHS) const { return !operator==(RHS); }
> };
> -
> -/// \brief A partition of an alloca.
> -///
> -/// This structure represents a contiguous partition of the alloca. These are
> -/// formed by examining the uses of the alloca. During formation, they may
> -/// overlap but once an AllocaPartitioning is built, the Partitions within it
> -/// are all disjoint.
> -struct Partition : public ByteRange {
> -  /// \brief Whether this partition is splittable into smaller partitions.
> -  ///
> -  /// We flag partitions as splittable when they are formed entirely due to
> -  /// accesses by trivially splittable operations such as memset and memcpy.
> -  bool IsSplittable;
> -
> -  /// \brief Test whether a partition has been marked as dead.
> -  bool isDead() const {
> -    if (BeginOffset == UINT64_MAX) {
> -      assert(EndOffset == UINT64_MAX);
> -      return true;
> -    }
> -    return false;
> -  }
> -
> -  /// \brief Kill a partition.
> -  /// This is accomplished by setting both its beginning and end offset to
> -  /// the maximum possible value.
> -  void kill() {
> -    assert(!isDead() && "He's Dead, Jim!");
> -    BeginOffset = EndOffset = UINT64_MAX;
> -  }
> -
> -  Partition() : ByteRange(), IsSplittable() {}
> -  Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
> -      : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
> -};
> -
> -/// \brief A particular use of a partition of the alloca.
> -///
> -/// This structure is used to associate uses of a partition with it. They
> -/// mark the range of bytes which are referenced by a particular instruction,
> -/// and includes a handle to the user itself and the pointer value in use.
> -/// The bounds of these uses are determined by intersecting the bounds of the
> -/// memory use itself with a particular partition. As a consequence there is
> -/// intentionally overlap between various uses of the same partition.
> -class PartitionUse : public ByteRange {
> -  /// \brief Combined storage for both the Use* and split state.
> -  PointerIntPair<Use*, 1, bool> UsePtrAndIsSplit;
> -
> -public:
> -  PartitionUse() : ByteRange(), UsePtrAndIsSplit() {}
> -  PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U,
> -               bool IsSplit)
> -      : ByteRange(BeginOffset, EndOffset), UsePtrAndIsSplit(U, IsSplit) {}
> -
> -  /// \brief The use in question. Provides access to both user and used value.
> -  ///
> -  /// Note that this may be null if the partition use is *dead*, that is, it
> -  /// should be ignored.
> -  Use *getUse() const { return UsePtrAndIsSplit.getPointer(); }
> -
> -  /// \brief Set the use for this partition use range.
> -  void setUse(Use *U) { UsePtrAndIsSplit.setPointer(U); }
> -
> -  /// \brief Whether this use is split across multiple partitions.
> -  bool isSplit() const { return UsePtrAndIsSplit.getInt(); }
> -};
> -}
> +} // end anonymous namespace
> 
> namespace llvm {
> -template <> struct isPodLike<Partition> : llvm::true_type {};
> -template <> struct isPodLike<PartitionUse> : llvm::true_type {};
> +template <typename T> struct isPodLike;
> +template <> struct isPodLike<Partition> {
> +   static const bool value = true;
> +};
> }
> 
> namespace {
> @@ -257,46 +219,6 @@ public:
>   const_iterator end() const { return Partitions.end(); }
>   /// @}
> 
> -  /// \brief Support for iterating over and manipulating a particular
> -  /// partition's uses.
> -  ///
> -  /// The iteration support provided for uses is more limited, but also
> -  /// includes some manipulation routines to support rewriting the uses of
> -  /// partitions during SROA.
> -  /// @{
> -  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
> -  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
> -  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
> -  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
> -  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
> -
> -  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
> -  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
> -  const_use_iterator use_begin(const_iterator I) const {
> -    return Uses[I - begin()].begin();
> -  }
> -  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
> -  const_use_iterator use_end(const_iterator I) const {
> -    return Uses[I - begin()].end();
> -  }
> -
> -  unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
> -  unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
> -  const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
> -    return Uses[PIdx][UIdx];
> -  }
> -  const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
> -    return Uses[I - begin()][UIdx];
> -  }
> -
> -  void use_push_back(unsigned Idx, const PartitionUse &PU) {
> -    Uses[Idx].push_back(PU);
> -  }
> -  void use_push_back(const_iterator I, const PartitionUse &PU) {
> -    Uses[I - begin()].push_back(PU);
> -  }
> -  /// @}
> -
>   /// \brief Allow iterating the dead users for this alloca.
>   ///
>   /// These are instructions which will never actually use the alloca as they
> @@ -320,66 +242,12 @@ public:
>   dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
>   /// @}
> 
> -  /// \brief MemTransferInst auxiliary data.
> -  /// This struct provides some auxiliary data about memory transfer
> -  /// intrinsics such as memcpy and memmove. These intrinsics can use two
> -  /// different ranges within the same alloca, and provide other challenges to
> -  /// correctly represent. We stash extra data to help us untangle this
> -  /// after the partitioning is complete.
> -  struct MemTransferOffsets {
> -    /// The destination begin and end offsets when the destination is within
> -    /// this alloca. If the end offset is zero the destination is not within
> -    /// this alloca.
> -    uint64_t DestBegin, DestEnd;
> -
> -    /// The source begin and end offsets when the source is within this alloca.
> -    /// If the end offset is zero, the source is not within this alloca.
> -    uint64_t SourceBegin, SourceEnd;
> -
> -    /// Flag for whether an alloca is splittable.
> -    bool IsSplittable;
> -  };
> -  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
> -    return MemTransferInstData.lookup(&II);
> -  }
> -
> -  /// \brief Map from a PHI or select operand back to a partition.
> -  ///
> -  /// When manipulating PHI nodes or selects, they can use more than one
> -  /// partition of an alloca. We store a special mapping to allow finding the
> -  /// partition referenced by each of these operands, if any.
> -  iterator findPartitionForPHIOrSelectOperand(Use *U) {
> -    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
> -      = PHIOrSelectOpMap.find(U);
> -    if (MapIt == PHIOrSelectOpMap.end())
> -      return end();
> -
> -    return begin() + MapIt->second.first;
> -  }
> -
> -  /// \brief Map from a PHI or select operand back to the specific use of
> -  /// a partition.
> -  ///
> -  /// Similar to mapping these operands back to the partitions, this maps
> -  /// directly to the use structure of that partition.
> -  use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
> -    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
> -      = PHIOrSelectOpMap.find(U);
> -    assert(MapIt != PHIOrSelectOpMap.end());
> -    return Uses[MapIt->second.first].begin() + MapIt->second.second;
> -  }
> -
> -  /// \brief Compute a common type among the uses of a particular partition.
> -  ///
> -  /// This routines walks all of the uses of a particular partition and tries
> -  /// to find a common type between them. Untyped operations such as memset and
> -  /// memcpy are ignored.
> -  Type *getCommonType(iterator I) const;
> -
> #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
>   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
> -  void printUsers(raw_ostream &OS, const_iterator I,
> -                  StringRef Indent = "  ") const;
> +  void printPartition(raw_ostream &OS, const_iterator I,
> +                      StringRef Indent = "  ") const;
> +  void printUse(raw_ostream &OS, const_iterator I,
> +                StringRef Indent = "  ") const;
>   void print(raw_ostream &OS) const;
>   void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
>   void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
> @@ -389,8 +257,6 @@ private:
>   template <typename DerivedT, typename RetT = void> class BuilderBase;
>   class PartitionBuilder;
>   friend class AllocaPartitioning::PartitionBuilder;
> -  class UseBuilder;
> -  friend class AllocaPartitioning::UseBuilder;
> 
> #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
>   /// \brief Handle to alloca instruction to simplify method interfaces.
> @@ -414,14 +280,6 @@ private:
>   /// expected to always have this as a disjoint space.
>   SmallVector<Partition, 8> Partitions;
> 
> -  /// \brief The uses of the partitions.
> -  ///
> -  /// This is essentially a mapping from each partition to a list of uses of
> -  /// that partition. The mapping is done with a Uses vector that has the exact
> -  /// same number of entries as the partition vector. Each entry is itself
> -  /// a vector of the uses.
> -  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
> -
>   /// \brief Instructions which will become dead if we rewrite the alloca.
>   ///
>   /// Note that these are not separated by partition. This is because we expect
> @@ -439,26 +297,6 @@ private:
>   /// want to swap this particular input for undef to simplify the use lists of
>   /// the alloca.
>   SmallVector<Use *, 8> DeadOperands;
> -
> -  /// \brief The underlying storage for auxiliary memcpy and memset info.
> -  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
> -
> -  /// \brief A side datastructure used when building up the partitions and uses.
> -  ///
> -  /// This mapping is only really used during the initial building of the
> -  /// partitioning so that we can retain information about PHI and select nodes
> -  /// processed.
> -  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
> -
> -  /// \brief Auxiliary information for particular PHI or select operands.
> -  SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
> -
> -  /// \brief A utility routine called from the constructor.
> -  ///
> -  /// This does what it says on the tin. It is the key of the alloca partition
> -  /// splitting and merging. After it is called we have the desired disjoint
> -  /// collection of partitions.
> -  void splitAndMergePartitions();
> };
> }
> 
> @@ -489,6 +327,10 @@ class AllocaPartitioning::PartitionBuild
>   AllocaPartitioning &P;
> 
>   SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
> +  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
> +
> +  /// \brief Set to de-duplicate dead instructions found in the use walk.
> +  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
> 
> public:
>   PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
> @@ -497,6 +339,11 @@ public:
>         P(P) {}
> 
> private:
> +  void markAsDead(Instruction &I) {
> +    if (VisitedDeadInsts.insert(&I))
> +      P.DeadUsers.push_back(&I);
> +  }
> +
>   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
>                  bool IsSplittable = false) {
>     // Completely skip uses which have a zero size or start either before or
> @@ -507,7 +354,7 @@ private:
>                    << AllocSize << " byte alloca:\n"
>                    << "    alloca: " << P.AI << "\n"
>                    << "       use: " << I << "\n");
> -      return;
> +      return markAsDead(I);
>     }
> 
>     uint64_t BeginOffset = Offset.getZExtValue();
> @@ -528,8 +375,21 @@ private:
>       EndOffset = AllocSize;
>     }
> 
> -    Partition New(BeginOffset, EndOffset, IsSplittable);
> -    P.Partitions.push_back(New);
> +    P.Partitions.push_back(Partition(BeginOffset, EndOffset, U, IsSplittable));
> +  }
> +
> +  void visitBitCastInst(BitCastInst &BC) {
> +    if (BC.use_empty())
> +      return markAsDead(BC);
> +
> +    return Base::visitBitCastInst(BC);
> +  }
> +
> +  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
> +    if (GEPI.use_empty())
> +      return markAsDead(GEPI);
> +
> +    return Base::visitGetElementPtrInst(GEPI);
>   }
> 
>   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
> @@ -582,7 +442,7 @@ private:
>                    << " byte alloca:\n"
>                    << "    alloca: " << P.AI << "\n"
>                    << "       use: " << SI << "\n");
> -      return;
> +      return markAsDead(SI);
>     }
> 
>     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
> @@ -597,7 +457,7 @@ private:
>     if ((Length && Length->getValue() == 0) ||
>         (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
>       // Zero-length mem transfer intrinsics can be ignored entirely.
> -      return;
> +      return markAsDead(II);
> 
>     if (!IsOffsetKnown)
>       return PI.setAborted(&II);
> @@ -613,7 +473,7 @@ private:
>     if ((Length && Length->getValue() == 0) ||
>         (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
>       // Zero-length mem transfer intrinsics can be ignored entirely.
> -      return;
> +      return markAsDead(II);
> 
>     if (!IsOffsetKnown)
>       return PI.setAborted(&II);
> @@ -622,63 +482,44 @@ private:
>     uint64_t Size = Length ? Length->getLimitedValue()
>                            : AllocSize - RawOffset;
> 
> -    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
> -
> -    // Only intrinsics with a constant length can be split.
> -    Offsets.IsSplittable = Length;
> +    // Check for the special case where the same exact value is used for both
> +    // source and dest.
> +    if (*U == II.getRawDest() && *U == II.getRawSource()) {
> +      // For non-volatile transfers this is a no-op.
> +      if (!II.isVolatile())
> +        return markAsDead(II);
> 
> -    if (*U == II.getRawDest()) {
> -      Offsets.DestBegin = RawOffset;
> -      Offsets.DestEnd = RawOffset + Size;
> -    }
> -    if (*U == II.getRawSource()) {
> -      Offsets.SourceBegin = RawOffset;
> -      Offsets.SourceEnd = RawOffset + Size;
> +      return insertUse(II, Offset, Size, /*IsSplittable=*/false);;
>     }
> 
> -    // If we have set up end offsets for both the source and the destination,
> -    // we have found both sides of this transfer pointing at the same alloca.
> -    bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
> -    if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
> -      unsigned PrevIdx = MemTransferPartitionMap[&II];
> +    // If we have seen both source and destination for a mem transfer, then
> +    // they both point to the same alloca.
> +    bool Inserted;
> +    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
> +    llvm::tie(MTPI, Inserted) =
> +        MemTransferPartitionMap.insert(std::make_pair(&II, P.Partitions.size()));
> +    unsigned PrevIdx = MTPI->second;
> +    if (!Inserted) {
> +      Partition &PrevP = P.Partitions[PrevIdx];
> 
>       // Check if the begin offsets match and this is a non-volatile transfer.
>       // In that case, we can completely elide the transfer.
> -      if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
> -        P.Partitions[PrevIdx].kill();
> -        return;
> +      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
> +        PrevP.kill();
> +        return markAsDead(II);
>       }
> 
>       // Otherwise we have an offset transfer within the same alloca. We can't
>       // split those.
> -      P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
> -    } else if (SeenBothEnds) {
> -      // Handle the case where this exact use provides both ends of the
> -      // operation.
> -      assert(II.getRawDest() == II.getRawSource());
> -
> -      // For non-volatile transfers this is a no-op.
> -      if (!II.isVolatile())
> -        return;
> -
> -      // Otherwise just suppress splitting.
> -      Offsets.IsSplittable = false;
> +      PrevP.makeUnsplittable();
>     }
> 
> -
>     // Insert the use now that we've fixed up the splittable nature.
> -    insertUse(II, Offset, Size, Offsets.IsSplittable);
> +    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
> 
> -    // Setup the mapping from intrinsic to partition of we've not seen both
> -    // ends of this transfer.
> -    if (!SeenBothEnds) {
> -      unsigned NewIdx = P.Partitions.size() - 1;
> -      bool Inserted
> -        = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
> -      assert(Inserted &&
> -             "Already have intrinsic in map but haven't seen both ends");
> -      (void)Inserted;
> -    }
> +    // Check that we ended up with a valid index in the map.
> +    assert(P.Partitions[PrevIdx].getUse()->getUser() == &II &&
> +           "Map index doesn't point back to a partition with this user.");
>   }
> 
>   // Disable SRoA for any intrinsics except for lifetime invariants.
> @@ -747,33 +588,45 @@ private:
> 
>   void visitPHINode(PHINode &PN) {
>     if (PN.use_empty())
> -      return;
> +      return markAsDead(PN);
>     if (!IsOffsetKnown)
>       return PI.setAborted(&PN);
> 
>     // See if we already have computed info on this node.
> -    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
> -    if (PHIInfo.first) {
> -      PHIInfo.second = true;
> -      insertUse(PN, Offset, PHIInfo.first);
> -      return;
> +    uint64_t &PHISize = PHIOrSelectSizes[&PN];
> +    if (!PHISize) {
> +      // This is a new PHI node, check for an unsafe use of the PHI node.
> +      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
> +        return PI.setAborted(UnsafeI);
>     }
> 
> -    // Check for an unsafe use of the PHI node.
> -    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
> -      return PI.setAborted(UnsafeI);
> +    // For PHI and select operands outside the alloca, we can't nuke the entire
> +    // phi or select -- the other side might still be relevant, so we special
> +    // case them here and use a separate structure to track the operands
> +    // themselves which should be replaced with undef.
> +    // FIXME: This should instead be escaped in the event we're instrumenting
> +    // for address sanitization.
> +    if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
> +        (!Offset.isNegative() && Offset.uge(AllocSize))) {
> +      P.DeadOperands.push_back(U);
> +      return;
> +    }
> 
> -    insertUse(PN, Offset, PHIInfo.first);
> +    insertUse(PN, Offset, PHISize);
>   }
> 
>   void visitSelectInst(SelectInst &SI) {
>     if (SI.use_empty())
> -      return;
> +      return markAsDead(SI);
>     if (Value *Result = foldSelectInst(SI)) {
>       if (Result == *U)
>         // If the result of the constant fold will be the pointer, recurse
>         // through the select as if we had RAUW'ed it.
>         enqueueUsers(SI);
> +      else
> +        // Otherwise the operand to the select is dead, and we can replace it
> +        // with undef.
> +        P.DeadOperands.push_back(U);
> 
>       return;
>     }
> @@ -781,316 +634,38 @@ private:
>       return PI.setAborted(&SI);
> 
>     // See if we already have computed info on this node.
> -    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
> -    if (SelectInfo.first) {
> -      SelectInfo.second = true;
> -      insertUse(SI, Offset, SelectInfo.first);
> -      return;
> -    }
> -
> -    // Check for an unsafe use of the PHI node.
> -    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
> -      return PI.setAborted(UnsafeI);
> -
> -    insertUse(SI, Offset, SelectInfo.first);
> -  }
> -
> -  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
> -  void visitInstruction(Instruction &I) {
> -    PI.setAborted(&I);
> -  }
> -};
> -
> -/// \brief Use adder for the alloca partitioning.
> -///
> -/// This class adds the uses of an alloca to all of the partitions which they
> -/// use. For splittable partitions, this can end up doing essentially a linear
> -/// walk of the partitions, but the number of steps remains bounded by the
> -/// total result instruction size:
> -/// - The number of partitions is a result of the number unsplittable
> -///   instructions using the alloca.
> -/// - The number of users of each partition is at worst the total number of
> -///   splittable instructions using the alloca.
> -/// Thus we will produce N * M instructions in the end, where N are the number
> -/// of unsplittable uses and M are the number of splittable. This visitor does
> -/// the exact same number of updates to the partitioning.
> -///
> -/// In the more common case, this visitor will leverage the fact that the
> -/// partition space is pre-sorted, and do a logarithmic search for the
> -/// partition needed, making the total visit a classical ((N + M) * log(N))
> -/// complexity operation.
> -class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
> -  friend class PtrUseVisitor<UseBuilder>;
> -  friend class InstVisitor<UseBuilder>;
> -  typedef PtrUseVisitor<UseBuilder> Base;
> -
> -  const uint64_t AllocSize;
> -  AllocaPartitioning &P;
> -
> -  /// \brief Set to de-duplicate dead instructions found in the use walk.
> -  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
> -
> -public:
> -  UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
> -      : PtrUseVisitor<UseBuilder>(TD),
> -        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
> -        P(P) {}
> -
> -private:
> -  void markAsDead(Instruction &I) {
> -    if (VisitedDeadInsts.insert(&I))
> -      P.DeadUsers.push_back(&I);
> -  }
> -
> -  void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
> -    // If the use has a zero size or extends outside of the allocation, record
> -    // it as a dead use for elimination later.
> -    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
> -      return markAsDead(User);
> -
> -    uint64_t BeginOffset = Offset.getZExtValue();
> -    uint64_t EndOffset = BeginOffset + Size;
> -
> -    // Clamp the end offset to the end of the allocation. Note that this is
> -    // formulated to handle even the case where "BeginOffset + Size" overflows.
> -    assert(AllocSize >= BeginOffset); // Established above.
> -    if (Size > AllocSize - BeginOffset)
> -      EndOffset = AllocSize;
> -
> -    // NB: This only works if we have zero overlapping partitions.
> -    iterator I = std::lower_bound(P.begin(), P.end(), BeginOffset);
> -    if (I != P.begin() && llvm::prior(I)->EndOffset > BeginOffset)
> -      I = llvm::prior(I);
> -    iterator E = P.end();
> -    bool IsSplit = llvm::next(I) != E && llvm::next(I)->BeginOffset < EndOffset;
> -    for (; I != E && I->BeginOffset < EndOffset; ++I) {
> -      PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
> -                         std::min(I->EndOffset, EndOffset), U, IsSplit);
> -      P.use_push_back(I, NewPU);
> -      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
> -        P.PHIOrSelectOpMap[U]
> -          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
> +    uint64_t &SelectSize = PHIOrSelectSizes[&SI];
> +    if (!SelectSize) {
> +      // This is a new Select, check for an unsafe use of it.
> +      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
> +        return PI.setAborted(UnsafeI);
>     }
> -  }
> -
> -  void visitBitCastInst(BitCastInst &BC) {
> -    if (BC.use_empty())
> -      return markAsDead(BC);
> -
> -    return Base::visitBitCastInst(BC);
> -  }
> -
> -  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
> -    if (GEPI.use_empty())
> -      return markAsDead(GEPI);
> -
> -    return Base::visitGetElementPtrInst(GEPI);
> -  }
> -
> -  void visitLoadInst(LoadInst &LI) {
> -    assert(IsOffsetKnown);
> -    uint64_t Size = DL.getTypeStoreSize(LI.getType());
> -    insertUse(LI, Offset, Size);
> -  }
> -
> -  void visitStoreInst(StoreInst &SI) {
> -    assert(IsOffsetKnown);
> -    uint64_t Size = DL.getTypeStoreSize(SI.getOperand(0)->getType());
> -
> -    // If this memory access can be shown to *statically* extend outside the
> -    // bounds of of the allocation, it's behavior is undefined, so simply
> -    // ignore it. Note that this is more strict than the generic clamping
> -    // behavior of insertUse.
> -    if (Offset.isNegative() || Size > AllocSize ||
> -        Offset.ugt(AllocSize - Size))
> -      return markAsDead(SI);
> -
> -    insertUse(SI, Offset, Size);
> -  }
> -
> -  void visitMemSetInst(MemSetInst &II) {
> -    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
> -    if ((Length && Length->getValue() == 0) ||
> -        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
> -      return markAsDead(II);
> -
> -    assert(IsOffsetKnown);
> -    insertUse(II, Offset, Length ? Length->getLimitedValue()
> -                                 : AllocSize - Offset.getLimitedValue());
> -  }
> -
> -  void visitMemTransferInst(MemTransferInst &II) {
> -    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
> -    if ((Length && Length->getValue() == 0) ||
> -        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
> -      return markAsDead(II);
> -
> -    assert(IsOffsetKnown);
> -    uint64_t Size = Length ? Length->getLimitedValue()
> -                           : AllocSize - Offset.getLimitedValue();
> -
> -    const MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
> -    if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
> -        Offsets.DestBegin == Offsets.SourceBegin)
> -      return markAsDead(II); // Skip identity transfers without side-effects.
> -
> -    insertUse(II, Offset, Size);
> -  }
> -
> -  void visitIntrinsicInst(IntrinsicInst &II) {
> -    assert(IsOffsetKnown);
> -    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
> -           II.getIntrinsicID() == Intrinsic::lifetime_end);
> -
> -    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
> -    insertUse(II, Offset, std::min(Length->getLimitedValue(),
> -                                   AllocSize - Offset.getLimitedValue()));
> -  }
> -
> -  void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
> -    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
> 
>     // For PHI and select operands outside the alloca, we can't nuke the entire
>     // phi or select -- the other side might still be relevant, so we special
>     // case them here and use a separate structure to track the operands
>     // themselves which should be replaced with undef.
> -    if ((Offset.isNegative() && Offset.uge(Size)) ||
> +    // FIXME: This should instead be escaped in the event we're instrumenting
> +    // for address sanitization.
> +    if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
>         (!Offset.isNegative() && Offset.uge(AllocSize))) {
>       P.DeadOperands.push_back(U);
>       return;
>     }
> 
> -    insertUse(User, Offset, Size);
> +    insertUse(SI, Offset, SelectSize);
>   }
> 
> -  void visitPHINode(PHINode &PN) {
> -    if (PN.use_empty())
> -      return markAsDead(PN);
> -
> -    assert(IsOffsetKnown);
> -    insertPHIOrSelect(PN, Offset);
> -  }
> -
> -  void visitSelectInst(SelectInst &SI) {
> -    if (SI.use_empty())
> -      return markAsDead(SI);
> -
> -    if (Value *Result = foldSelectInst(SI)) {
> -      if (Result == *U)
> -        // If the result of the constant fold will be the pointer, recurse
> -        // through the select as if we had RAUW'ed it.
> -        enqueueUsers(SI);
> -      else
> -        // Otherwise the operand to the select is dead, and we can replace it
> -        // with undef.
> -        P.DeadOperands.push_back(U);
> -
> -      return;
> -    }
> -
> -    assert(IsOffsetKnown);
> -    insertPHIOrSelect(SI, Offset);
> -  }
> -
> -  /// \brief Unreachable, we've already visited the alloca once.
> +  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
>   void visitInstruction(Instruction &I) {
> -    llvm_unreachable("Unhandled instruction in use builder.");
> +    PI.setAborted(&I);
>   }
> };
> 
> -void AllocaPartitioning::splitAndMergePartitions() {
> -  size_t NumDeadPartitions = 0;
> -
> -  // Track the range of splittable partitions that we pass when accumulating
> -  // overlapping unsplittable partitions.
> -  uint64_t SplitEndOffset = 0ull;
> -
> -  Partition New(0ull, 0ull, false);
> -
> -  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
> -    ++j;
> -
> -    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
> -      assert(New.BeginOffset == New.EndOffset);
> -      New = Partitions[i];
> -    } else {
> -      assert(New.IsSplittable);
> -      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
> -    }
> -    assert(New.BeginOffset != New.EndOffset);
> -
> -    // Scan the overlapping partitions.
> -    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
> -      // If the new partition we are forming is splittable, stop at the first
> -      // unsplittable partition.
> -      if (New.IsSplittable && !Partitions[j].IsSplittable)
> -        break;
> -
> -      // Grow the new partition to include any equally splittable range. 'j' is
> -      // always equally splittable when New is splittable, but when New is not
> -      // splittable, we may subsume some (or part of some) splitable partition
> -      // without growing the new one.
> -      if (New.IsSplittable == Partitions[j].IsSplittable) {
> -        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
> -      } else {
> -        assert(!New.IsSplittable);
> -        assert(Partitions[j].IsSplittable);
> -        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
> -      }
> -
> -      Partitions[j].kill();
> -      ++NumDeadPartitions;
> -      ++j;
> -    }
> -
> -    // If the new partition is splittable, chop off the end as soon as the
> -    // unsplittable subsequent partition starts and ensure we eventually cover
> -    // the splittable area.
> -    if (j != e && New.IsSplittable) {
> -      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
> -      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
> -    }
> -
> -    // Add the new partition if it differs from the original one and is
> -    // non-empty. We can end up with an empty partition here if it was
> -    // splittable but there is an unsplittable one that starts at the same
> -    // offset.
> -    if (New != Partitions[i]) {
> -      if (New.BeginOffset != New.EndOffset)
> -        Partitions.push_back(New);
> -      // Mark the old one for removal.
> -      Partitions[i].kill();
> -      ++NumDeadPartitions;
> -    }
> -
> -    New.BeginOffset = New.EndOffset;
> -    if (!New.IsSplittable) {
> -      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
> -      if (j != e && !Partitions[j].IsSplittable)
> -        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
> -      New.IsSplittable = true;
> -      // If there is a trailing splittable partition which won't be fused into
> -      // the next splittable partition go ahead and add it onto the partitions
> -      // list.
> -      if (New.BeginOffset < New.EndOffset &&
> -          (j == e || !Partitions[j].IsSplittable ||
> -           New.EndOffset < Partitions[j].BeginOffset)) {
> -        Partitions.push_back(New);
> -        New.BeginOffset = New.EndOffset = 0ull;
> -      }
> -    }
> -  }
> -
> -  // Re-sort the partitions now that they have been split and merged into
> -  // disjoint set of partitions. Also remove any of the dead partitions we've
> -  // replaced in the process.
> -  std::sort(Partitions.begin(), Partitions.end());
> -  if (NumDeadPartitions) {
> -    assert(Partitions.back().isDead());
> -    assert((ptrdiff_t)NumDeadPartitions ==
> -           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
> -  }
> -  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
> +namespace {
> +struct IsPartitionDead {
> +  bool operator()(const Partition &P) { return P.isDead(); }
> +};
> }
> 
> AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
> @@ -1114,122 +689,37 @@ AllocaPartitioning::AllocaPartitioning(c
>   // and the sizes to be in descending order.
>   std::sort(Partitions.begin(), Partitions.end());
> 
> -  // Remove any partitions from the back which are marked as dead.
> -  while (!Partitions.empty() && Partitions.back().isDead())
> -    Partitions.pop_back();
> -
> -  if (Partitions.size() > 1) {
> -    // Intersect splittability for all partitions with equal offsets and sizes.
> -    // Then remove all but the first so that we have a sequence of non-equal but
> -    // potentially overlapping partitions.
> -    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
> -         I = J) {
> -      ++J;
> -      while (J != E && *I == *J) {
> -        I->IsSplittable &= J->IsSplittable;
> -        ++J;
> -      }
> -    }
> -    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
> -                     Partitions.end());
> -
> -    // Split splittable and merge unsplittable partitions into a disjoint set
> -    // of partitions over the used space of the allocation.
> -    splitAndMergePartitions();
> -  }
> -
> -  // Record how many partitions we end up with.
> -  NumAllocaPartitions += Partitions.size();
> -  MaxPartitionsPerAlloca = std::max<unsigned>(Partitions.size(), MaxPartitionsPerAlloca);
> -
> -  // Now build up the user lists for each of these disjoint partitions by
> -  // re-walking the recursive users of the alloca.
> -  Uses.resize(Partitions.size());
> -  UseBuilder UB(TD, AI, *this);
> -  PtrI = UB.visitPtr(AI);
> -  assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
> -  assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
> -
> -  unsigned NumUses = 0;
> -#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
> -  for (unsigned Idx = 0, Size = Uses.size(); Idx != Size; ++Idx)
> -    NumUses += Uses[Idx].size();
> -#endif
> -  NumAllocaPartitionUses += NumUses;
> -  MaxPartitionUsesPerAlloca = std::max<unsigned>(NumUses, MaxPartitionUsesPerAlloca);
> -}
> -
> -Type *AllocaPartitioning::getCommonType(iterator I) const {
> -  Type *Ty = 0;
> -  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
> -    Use *U = UI->getUse();
> -    if (!U)
> -      continue; // Skip dead uses.
> -    if (isa<IntrinsicInst>(*U->getUser()))
> -      continue;
> -    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
> -      continue;
> -
> -    Type *UserTy = 0;
> -    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
> -      UserTy = LI->getType();
> -    else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
> -      UserTy = SI->getValueOperand()->getType();
> -    else
> -      return 0; // Bail if we have weird uses.
> -
> -    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
> -      // If the type is larger than the partition, skip it. We only encounter
> -      // this for split integer operations where we want to use the type of the
> -      // entity causing the split.
> -      if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
> -        continue;
> -
> -      // If we have found an integer type use covering the alloca, use that
> -      // regardless of the other types, as integers are often used for a "bucket
> -      // of bits" type.
> -      return ITy;
> -    }
> -
> -    if (Ty && Ty != UserTy)
> -      return 0;
> +  Partitions.erase(
> +      std::remove_if(Partitions.begin(), Partitions.end(), IsPartitionDead()),
> +      Partitions.end());
> 
> -    Ty = UserTy;
> -  }
> -  return Ty;
> +  // Record how many partitions we end up with.
> +  NumAllocaPartitions += Partitions.size();
> +  MaxPartitionsPerAlloca = std::max<unsigned>(Partitions.size(), MaxPartitionsPerAlloca);
> +
> +  NumAllocaPartitionUses += Partitions.size();
> +  MaxPartitionUsesPerAlloca =
> +      std::max<unsigned>(Partitions.size(), MaxPartitionUsesPerAlloca);
> }
> 
> #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
> 
> void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
>                                StringRef Indent) const {
> -  OS << Indent << "partition #" << (I - begin())
> -     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
> -     << (I->IsSplittable ? " (splittable)" : "")
> -     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
> -     << "\n";
> -}
> -
> -void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
> -                                    StringRef Indent) const {
> -  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
> -    if (!UI->getUse())
> -      continue; // Skip dead uses.
> -    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
> -       << "used by: " << *UI->getUse()->getUser() << "\n";
> -    if (MemTransferInst *II =
> -            dyn_cast<MemTransferInst>(UI->getUse()->getUser())) {
> -      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
> -      bool IsDest;
> -      if (!MTO.IsSplittable)
> -        IsDest = UI->BeginOffset == MTO.DestBegin;
> -      else
> -        IsDest = MTO.DestBegin != 0u;
> -      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
> -         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
> -         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
> -    }
> -  }
> +  printPartition(OS, I, Indent);
> +  printUse(OS, I, Indent);
> +}
> +
> +void AllocaPartitioning::printPartition(raw_ostream &OS, const_iterator I,
> +                                        StringRef Indent) const {
> +  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
> +     << " partition #" << (I - begin())
> +     << (I->isSplittable() ? " (splittable)" : "") << "\n";
> +}
> +
> +void AllocaPartitioning::printUse(raw_ostream &OS, const_iterator I,
> +                                  StringRef Indent) const {
> +  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
> }
> 
> void AllocaPartitioning::print(raw_ostream &OS) const {
> @@ -1241,10 +731,8 @@ void AllocaPartitioning::print(raw_ostre
>   }
> 
>   OS << "Partitioning of alloca: " << AI << "\n";
> -  for (const_iterator I = begin(), E = end(); I != E; ++I) {
> +  for (const_iterator I = begin(), E = end(); I != E; ++I)
>     print(OS, I);
> -    printUsers(OS, I);
> -  }
> }
> 
> void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
> @@ -1252,7 +740,6 @@ void AllocaPartitioning::dump() const {
> 
> #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
> 
> -
> namespace {
> /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
> ///
> @@ -1390,6 +877,21 @@ class SROA : public FunctionPass {
>   /// \brief A collection of alloca instructions we can directly promote.
>   std::vector<AllocaInst *> PromotableAllocas;
> 
> +  /// \brief A worklist of PHIs to speculate prior to promoting allocas.
> +  ///
> +  /// All of these PHIs have been checked for the safety of speculation and by
> +  /// being speculated will allow promoting allocas currently in the promotable
> +  /// queue.
> +  SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
> +
> +  /// \brief A worklist of select instructions to speculate prior to promoting
> +  /// allocas.
> +  ///
> +  /// All of these select instructions have been checked for the safety of
> +  /// speculation and by being speculated will allow promoting allocas
> +  /// currently in the promotable queue.
> +  SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
> +
> public:
>   SROA(bool RequiresDomTree = true)
>       : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
> @@ -1407,9 +909,11 @@ private:
>   friend class AllocaPartitionRewriter;
>   friend class AllocaPartitionVectorRewriter;
> 
> -  bool rewriteAllocaPartition(AllocaInst &AI,
> -                              AllocaPartitioning &P,
> -                              AllocaPartitioning::iterator PI);
> +  bool rewritePartitions(AllocaInst &AI, AllocaPartitioning &P,
> +                         AllocaPartitioning::iterator B,
> +                         AllocaPartitioning::iterator E,
> +                         int64_t BeginOffset, int64_t EndOffset,
> +                         ArrayRef<AllocaPartitioning::iterator> SplitUses);
>   bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
>   bool runOnAlloca(AllocaInst &AI);
>   void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
> @@ -1429,286 +933,247 @@ INITIALIZE_PASS_DEPENDENCY(DominatorTree
> INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
>                     false, false)
> 
> -namespace {
> -/// \brief Visitor to speculate PHIs and Selects where possible.
> -class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
> -  // Befriend the base class so it can delegate to private visit methods.
> -  friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
> -
> -  const DataLayout &TD;
> -  AllocaPartitioning &P;
> -  SROA &Pass;
> +/// Walk a range of a partitioning looking for a common type to cover this
> +/// sequence of partition uses.
> +static Type *findCommonType(AllocaPartitioning::const_iterator B,
> +                            AllocaPartitioning::const_iterator E,
> +                            uint64_t EndOffset) {
> +  Type *Ty = 0;
> +  for (AllocaPartitioning::const_iterator I = B; I != E; ++I) {
> +    Use *U = I->getUse();
> +    if (isa<IntrinsicInst>(*U->getUser()))
> +      continue;
> +    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
> +      continue;
> 
> -public:
> -  PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
> -    : TD(TD), P(P), Pass(Pass) {}
> +    Type *UserTy = 0;
> +    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
> +      UserTy = LI->getType();
> +    else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
> +      UserTy = SI->getValueOperand()->getType();
> +    else
> +      return 0; // Bail if we have weird uses.
> 
> -  /// \brief Visit the users of an alloca partition and rewrite them.
> -  void visitUsers(AllocaPartitioning::const_iterator PI) {
> -    // Note that we need to use an index here as the underlying vector of uses
> -    // may be grown during speculation. However, we never need to re-visit the
> -    // new uses, and so we can use the initial size bound.
> -    for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
> -      const PartitionUse &PU = P.getUse(PI, Idx);
> -      if (!PU.getUse())
> -        continue; // Skip dead use.
> +    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
> +      // If the type is larger than the partition, skip it. We only encounter
> +      // this for split integer operations where we want to use the type of
> +      // the
> +      // entity causing the split.
> +      if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
> +        continue;
> 
> -      visit(cast<Instruction>(PU.getUse()->getUser()));
> +      // If we have found an integer type use covering the alloca, use that
> +      // regardless of the other types, as integers are often used for a
> +      // "bucket
> +      // of bits" type.
> +      return ITy;
>     }
> -  }
> -
> -private:
> -  // By default, skip this instruction.
> -  void visitInstruction(Instruction &I) {}
> 
> -  /// PHI instructions that use an alloca and are subsequently loaded can be
> -  /// rewritten to load both input pointers in the pred blocks and then PHI the
> -  /// results, allowing the load of the alloca to be promoted.
> -  /// From this:
> -  ///   %P2 = phi [i32* %Alloca, i32* %Other]
> -  ///   %V = load i32* %P2
> -  /// to:
> -  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
> -  ///   ...
> -  ///   %V2 = load i32* %Other
> -  ///   ...
> -  ///   %V = phi [i32 %V1, i32 %V2]
> -  ///
> -  /// We can do this to a select if its only uses are loads and if the operands
> -  /// to the select can be loaded unconditionally.
> -  ///
> -  /// FIXME: This should be hoisted into a generic utility, likely in
> -  /// Transforms/Util/Local.h
> -  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
> -    // For now, we can only do this promotion if the load is in the same block
> -    // as the PHI, and if there are no stores between the phi and load.
> -    // TODO: Allow recursive phi users.
> -    // TODO: Allow stores.
> -    BasicBlock *BB = PN.getParent();
> -    unsigned MaxAlign = 0;
> -    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
> -         UI != UE; ++UI) {
> -      LoadInst *LI = dyn_cast<LoadInst>(*UI);
> -      if (LI == 0 || !LI->isSimple()) return false;
> -
> -      // For now we only allow loads in the same block as the PHI.  This is
> -      // a common case that happens when instcombine merges two loads through
> -      // a PHI.
> -      if (LI->getParent() != BB) return false;
> -
> -      // Ensure that there are no instructions between the PHI and the load that
> -      // could store.
> -      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
> -        if (BBI->mayWriteToMemory())
> -          return false;
> -
> -      MaxAlign = std::max(MaxAlign, LI->getAlignment());
> -      Loads.push_back(LI);
> -    }
> -
> -    // We can only transform this if it is safe to push the loads into the
> -    // predecessor blocks. The only thing to watch out for is that we can't put
> -    // a possibly trapping load in the predecessor if it is a critical edge.
> -    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
> -      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
> -      Value *InVal = PN.getIncomingValue(Idx);
> -
> -      // If the value is produced by the terminator of the predecessor (an
> -      // invoke) or it has side-effects, there is no valid place to put a load
> -      // in the predecessor.
> -      if (TI == InVal || TI->mayHaveSideEffects())
> -        return false;
> +    if (Ty && Ty != UserTy)
> +      return 0;
> 
> -      // If the predecessor has a single successor, then the edge isn't
> -      // critical.
> -      if (TI->getNumSuccessors() == 1)
> -        continue;
> +    Ty = UserTy;
> +  }
> +  return Ty;
> +}
> 
> -      // If this pointer is always safe to load, or if we can prove that there
> -      // is already a load in the block, then we can move the load to the pred
> -      // block.
> -      if (InVal->isDereferenceablePointer() ||
> -          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
> -        continue;
> +/// PHI instructions that use an alloca and are subsequently loaded can be
> +/// rewritten to load both input pointers in the pred blocks and then PHI the
> +/// results, allowing the load of the alloca to be promoted.
> +/// From this:
> +///   %P2 = phi [i32* %Alloca, i32* %Other]
> +///   %V = load i32* %P2
> +/// to:
> +///   %V1 = load i32* %Alloca      -> will be mem2reg'd
> +///   ...
> +///   %V2 = load i32* %Other
> +///   ...
> +///   %V = phi [i32 %V1, i32 %V2]
> +///
> +/// We can do this to a select if its only uses are loads and if the operands
> +/// to the select can be loaded unconditionally.
> +///
> +/// FIXME: This should be hoisted into a generic utility, likely in
> +/// Transforms/Util/Local.h
> +static bool isSafePHIToSpeculate(PHINode &PN,
> +                                 const DataLayout *TD = 0) {
> +  // For now, we can only do this promotion if the load is in the same block
> +  // as the PHI, and if there are no stores between the phi and load.
> +  // TODO: Allow recursive phi users.
> +  // TODO: Allow stores.
> +  BasicBlock *BB = PN.getParent();
> +  unsigned MaxAlign = 0;
> +  bool HaveLoad = false;
> +  for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
> +       ++UI) {
> +    LoadInst *LI = dyn_cast<LoadInst>(*UI);
> +    if (LI == 0 || !LI->isSimple())
> +      return false;
> 
> +    // For now we only allow loads in the same block as the PHI.  This is
> +    // a common case that happens when instcombine merges two loads through
> +    // a PHI.
> +    if (LI->getParent() != BB)
>       return false;
> -    }
> 
> -    return true;
> +    // Ensure that there are no instructions between the PHI and the load that
> +    // could store.
> +    for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
> +      if (BBI->mayWriteToMemory())
> +        return false;
> +
> +    MaxAlign = std::max(MaxAlign, LI->getAlignment());
> +    HaveLoad = true;
>   }
> 
> -  void visitPHINode(PHINode &PN) {
> -    DEBUG(dbgs() << "    original: " << PN << "\n");
> +  if (!HaveLoad)
> +    return false;
> 
> -    SmallVector<LoadInst *, 4> Loads;
> -    if (!isSafePHIToSpeculate(PN, Loads))
> -      return;
> +  // We can only transform this if it is safe to push the loads into the
> +  // predecessor blocks. The only thing to watch out for is that we can't put
> +  // a possibly trapping load in the predecessor if it is a critical edge.
> +  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
> +    TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
> +    Value *InVal = PN.getIncomingValue(Idx);
> +
> +    // If the value is produced by the terminator of the predecessor (an
> +    // invoke) or it has side-effects, there is no valid place to put a load
> +    // in the predecessor.
> +    if (TI == InVal || TI->mayHaveSideEffects())
> +      return false;
> 
> -    assert(!Loads.empty());
> +    // If the predecessor has a single successor, then the edge isn't
> +    // critical.
> +    if (TI->getNumSuccessors() == 1)
> +      continue;
> 
> -    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
> -    IRBuilderTy PHIBuilder(&PN);
> -    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
> -                                          PN.getName() + ".sroa.speculated");
> -
> -    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
> -    // matter which one we get and if any differ.
> -    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
> -    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
> -    unsigned Align = SomeLoad->getAlignment();
> +    // If this pointer is always safe to load, or if we can prove that there
> +    // is already a load in the block, then we can move the load to the pred
> +    // block.
> +    if (InVal->isDereferenceablePointer() ||
> +        isSafeToLoadUnconditionally(InVal, TI, MaxAlign, TD))
> +      continue;
> 
> -    // Rewrite all loads of the PN to use the new PHI.
> -    do {
> -      LoadInst *LI = Loads.pop_back_val();
> -      LI->replaceAllUsesWith(NewPN);
> -      Pass.DeadInsts.insert(LI);
> -    } while (!Loads.empty());
> -
> -    // Inject loads into all of the pred blocks.
> -    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
> -      BasicBlock *Pred = PN.getIncomingBlock(Idx);
> -      TerminatorInst *TI = Pred->getTerminator();
> -      Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
> -      Value *InVal = PN.getIncomingValue(Idx);
> -      IRBuilderTy PredBuilder(TI);
> -
> -      LoadInst *Load
> -        = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
> -                                         Pred->getName()));
> -      ++NumLoadsSpeculated;
> -      Load->setAlignment(Align);
> -      if (TBAATag)
> -        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
> -      NewPN->addIncoming(Load, Pred);
> -
> -      Instruction *Ptr = dyn_cast<Instruction>(InVal);
> -      if (!Ptr)
> -        // No uses to rewrite.
> -        continue;
> +    return false;
> +  }
> 
> -      // Try to lookup and rewrite any partition uses corresponding to this phi
> -      // input.
> -      AllocaPartitioning::iterator PI
> -        = P.findPartitionForPHIOrSelectOperand(InUse);
> -      if (PI == P.end())
> -        continue;
> +  return true;
> +}
> 
> -      // Replace the Use in the PartitionUse for this operand with the Use
> -      // inside the load.
> -      AllocaPartitioning::use_iterator UI
> -        = P.findPartitionUseForPHIOrSelectOperand(InUse);
> -      assert(isa<PHINode>(*UI->getUse()->getUser()));
> -      UI->setUse(&Load->getOperandUse(Load->getPointerOperandIndex()));
> -    }
> -    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
> -  }
> -
> -  /// Select instructions that use an alloca and are subsequently loaded can be
> -  /// rewritten to load both input pointers and then select between the result,
> -  /// allowing the load of the alloca to be promoted.
> -  /// From this:
> -  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
> -  ///   %V = load i32* %P2
> -  /// to:
> -  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
> -  ///   %V2 = load i32* %Other
> -  ///   %V = select i1 %cond, i32 %V1, i32 %V2
> -  ///
> -  /// We can do this to a select if its only uses are loads and if the operand
> -  /// to the select can be loaded unconditionally.
> -  bool isSafeSelectToSpeculate(SelectInst &SI,
> -                               SmallVectorImpl<LoadInst *> &Loads) {
> -    Value *TValue = SI.getTrueValue();
> -    Value *FValue = SI.getFalseValue();
> -    bool TDerefable = TValue->isDereferenceablePointer();
> -    bool FDerefable = FValue->isDereferenceablePointer();
> -
> -    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
> -         UI != UE; ++UI) {
> -      LoadInst *LI = dyn_cast<LoadInst>(*UI);
> -      if (LI == 0 || !LI->isSimple()) return false;
> -
> -      // Both operands to the select need to be dereferencable, either
> -      // absolutely (e.g. allocas) or at this point because we can see other
> -      // accesses to it.
> -      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
> -                                                      LI->getAlignment(), &TD))
> -        return false;
> -      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
> -                                                      LI->getAlignment(), &TD))
> -        return false;
> -      Loads.push_back(LI);
> -    }
> +static void speculatePHINodeLoads(PHINode &PN) {
> +  DEBUG(dbgs() << "    original: " << PN << "\n");
> 
> -    return true;
> -  }
> +  Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
> +  IRBuilderTy PHIBuilder(&PN);
> +  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
> +                                        PN.getName() + ".sroa.speculated");
> +
> +  // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
> +  // matter which one we get and if any differ.
> +  LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
> +  MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
> +  unsigned Align = SomeLoad->getAlignment();
> +
> +  // Rewrite all loads of the PN to use the new PHI.
> +  while (!PN.use_empty()) {
> +    LoadInst *LI = cast<LoadInst>(*PN.use_begin());
> +    LI->replaceAllUsesWith(NewPN);
> +    LI->eraseFromParent();
> +  }
> +
> +  // Inject loads into all of the pred blocks.
> +  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
> +    BasicBlock *Pred = PN.getIncomingBlock(Idx);
> +    TerminatorInst *TI = Pred->getTerminator();
> +    Value *InVal = PN.getIncomingValue(Idx);
> +    IRBuilderTy PredBuilder(TI);
> +
> +    LoadInst *Load = PredBuilder.CreateLoad(
> +        InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
> +    ++NumLoadsSpeculated;
> +    Load->setAlignment(Align);
> +    if (TBAATag)
> +      Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
> +    NewPN->addIncoming(Load, Pred);
> +  }
> +
> +  DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
> +  PN.eraseFromParent();
> +}
> +
> +/// Select instructions that use an alloca and are subsequently loaded can be
> +/// rewritten to load both input pointers and then select between the result,
> +/// allowing the load of the alloca to be promoted.
> +/// From this:
> +///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
> +///   %V = load i32* %P2
> +/// to:
> +///   %V1 = load i32* %Alloca      -> will be mem2reg'd
> +///   %V2 = load i32* %Other
> +///   %V = select i1 %cond, i32 %V1, i32 %V2
> +///
> +/// We can do this to a select if its only uses are loads and if the operand
> +/// to the select can be loaded unconditionally.
> +static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *TD = 0) {
> +  Value *TValue = SI.getTrueValue();
> +  Value *FValue = SI.getFalseValue();
> +  bool TDerefable = TValue->isDereferenceablePointer();
> +  bool FDerefable = FValue->isDereferenceablePointer();
> +
> +  for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
> +       ++UI) {
> +    LoadInst *LI = dyn_cast<LoadInst>(*UI);
> +    if (LI == 0 || !LI->isSimple())
> +      return false;
> 
> -  void visitSelectInst(SelectInst &SI) {
> -    DEBUG(dbgs() << "    original: " << SI << "\n");
> +    // Both operands to the select need to be dereferencable, either
> +    // absolutely (e.g. allocas) or at this point because we can see other
> +    // accesses to it.
> +    if (!TDerefable &&
> +        !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), TD))
> +      return false;
> +    if (!FDerefable &&
> +        !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), TD))
> +      return false;
> +  }
> 
> -    // If the select isn't safe to speculate, just use simple logic to emit it.
> -    SmallVector<LoadInst *, 4> Loads;
> -    if (!isSafeSelectToSpeculate(SI, Loads))
> -      return;
> +  return true;
> +}
> 
> -    IRBuilderTy IRB(&SI);
> -    Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
> -    AllocaPartitioning::iterator PIs[2];
> -    PartitionUse PUs[2];
> -    for (unsigned i = 0, e = 2; i != e; ++i) {
> -      PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
> -      if (PIs[i] != P.end()) {
> -        // If the pointer is within the partitioning, remove the select from
> -        // its uses. We'll add in the new loads below.
> -        AllocaPartitioning::use_iterator UI
> -          = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
> -        PUs[i] = *UI;
> -        // Clear out the use here so that the offsets into the use list remain
> -        // stable but this use is ignored when rewriting.
> -        UI->setUse(0);
> -      }
> -    }
> +static void speculateSelectInstLoads(SelectInst &SI) {
> +  DEBUG(dbgs() << "    original: " << SI << "\n");
> 
> -    Value *TV = SI.getTrueValue();
> -    Value *FV = SI.getFalseValue();
> -    // Replace the loads of the select with a select of two loads.
> -    while (!Loads.empty()) {
> -      LoadInst *LI = Loads.pop_back_val();
> +  IRBuilderTy IRB(&SI);
> +  Value *TV = SI.getTrueValue();
> +  Value *FV = SI.getFalseValue();
> +  // Replace the loads of the select with a select of two loads.
> +  while (!SI.use_empty()) {
> +    LoadInst *LI = cast<LoadInst>(*SI.use_begin());
> +    assert(LI->isSimple() && "We only speculate simple loads");
> 
> -      IRB.SetInsertPoint(LI);
> -      LoadInst *TL =
> +    IRB.SetInsertPoint(LI);
> +    LoadInst *TL =
>         IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
> -      LoadInst *FL =
> +    LoadInst *FL =
>         IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
> -      NumLoadsSpeculated += 2;
> -
> -      // Transfer alignment and TBAA info if present.
> -      TL->setAlignment(LI->getAlignment());
> -      FL->setAlignment(LI->getAlignment());
> -      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
> -        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
> -        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
> -      }
> +    NumLoadsSpeculated += 2;
> 
> -      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
> -                                  LI->getName() + ".sroa.speculated");
> +    // Transfer alignment and TBAA info if present.
> +    TL->setAlignment(LI->getAlignment());
> +    FL->setAlignment(LI->getAlignment());
> +    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
> +      TL->setMetadata(LLVMContext::MD_tbaa, Tag);
> +      FL->setMetadata(LLVMContext::MD_tbaa, Tag);
> +    }
> 
> -      LoadInst *Loads[2] = { TL, FL };
> -      for (unsigned i = 0, e = 2; i != e; ++i) {
> -        if (PIs[i] != P.end()) {
> -          Use *LoadUse = &Loads[i]->getOperandUse(0);
> -          assert(PUs[i].getUse()->get() == LoadUse->get());
> -          PUs[i].setUse(LoadUse);
> -          P.use_push_back(PIs[i], PUs[i]);
> -        }
> -      }
> +    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
> +                                LI->getName() + ".sroa.speculated");
> 
> -      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
> -      LI->replaceAllUsesWith(V);
> -      Pass.DeadInsts.insert(LI);
> -    }
> +    DEBUG(dbgs() << "          speculated to: " << *V << "\n");
> +    LI->replaceAllUsesWith(V);
> +    LI->eraseFromParent();
>   }
> -};
> +  SI.eraseFromParent();
> }
> 
> /// \brief Build a GEP out of a base pointer and indices.
> @@ -2024,6 +1489,73 @@ static Value *convertValue(const DataLay
>   return IRB.CreateBitCast(V, Ty);
> }
> 
> +/// \brief Test whether the given partition use can be promoted to a vector.
> +///
> +/// This function is called to test each entry in a partioning which is slated
> +/// for a single partition.
> +static bool isVectorPromotionViableForPartitioning(
> +    const DataLayout &TD, AllocaPartitioning &P,
> +    uint64_t PartitionBeginOffset, uint64_t PartitionEndOffset, VectorType *Ty,
> +    uint64_t ElementSize, AllocaPartitioning::const_iterator I) {
> +  // First validate the partitioning offsets.
> +  uint64_t BeginOffset =
> +      std::max(I->beginOffset(), PartitionBeginOffset) - PartitionBeginOffset;
> +  uint64_t BeginIndex = BeginOffset / ElementSize;
> +  if (BeginIndex * ElementSize != BeginOffset ||
> +      BeginIndex >= Ty->getNumElements())
> +    return false;
> +  uint64_t EndOffset =
> +      std::min(I->endOffset(), PartitionEndOffset) - PartitionBeginOffset;
> +  uint64_t EndIndex = EndOffset / ElementSize;
> +  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
> +    return false;
> +
> +  assert(EndIndex > BeginIndex && "Empty vector!");
> +  uint64_t NumElements = EndIndex - BeginIndex;
> +  Type *PartitionTy =
> +      (NumElements == 1) ? Ty->getElementType()
> +                         : VectorType::get(Ty->getElementType(), NumElements);
> +
> +  Type *SplitIntTy =
> +      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
> +
> +  Use *U = I->getUse();
> +
> +  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
> +    if (MI->isVolatile())
> +      return false;
> +    if (!I->isSplittable())
> +      return false; // Skip any unsplittable intrinsics.
> +  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
> +    // Disable vector promotion when there are loads or stores of an FCA.
> +    return false;
> +  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
> +    if (LI->isVolatile())
> +      return false;
> +    Type *LTy = LI->getType();
> +    if (PartitionBeginOffset > I->beginOffset() ||
> +        PartitionEndOffset < I->endOffset()) {
> +      assert(LTy->isIntegerTy());
> +      LTy = SplitIntTy;
> +    }
> +    if (!canConvertValue(TD, PartitionTy, LTy))
> +      return false;
> +  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
> +    if (SI->isVolatile())
> +      return false;
> +    Type *STy = SI->getValueOperand()->getType();
> +    if (PartitionBeginOffset > I->beginOffset() ||
> +        PartitionEndOffset < I->endOffset()) {
> +      assert(STy->isIntegerTy());
> +      STy = SplitIntTy;
> +    }
> +    if (!canConvertValue(TD, STy, PartitionTy))
> +      return false;
> +  }
> +
> +  return true;
> +}
> +
> /// \brief Test whether the given alloca partition can be promoted to a vector.
> ///
> /// This is a quick test to check whether we can rewrite a particular alloca
> @@ -2032,13 +1564,11 @@ static Value *convertValue(const DataLay
> /// SSA value. We only can ensure this for a limited set of operations, and we
> /// don't want to do the rewrites unless we are confident that the result will
> /// be promotable, so we have an early test here.
> -static bool isVectorPromotionViable(const DataLayout &TD,
> -                                    Type *AllocaTy,
> -                                    AllocaPartitioning &P,
> -                                    uint64_t PartitionBeginOffset,
> -                                    uint64_t PartitionEndOffset,
> -                                    AllocaPartitioning::const_use_iterator I,
> -                                    AllocaPartitioning::const_use_iterator E) {
> +static bool isVectorPromotionViable(
> +    const DataLayout &TD, Type *AllocaTy, AllocaPartitioning &P,
> +    uint64_t PartitionBeginOffset, uint64_t PartitionEndOffset,
> +    AllocaPartitioning::const_iterator I, AllocaPartitioning::const_iterator E,
> +    ArrayRef<AllocaPartitioning::iterator> SplitUses) {
>   VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
>   if (!Ty)
>     return false;
> @@ -2053,54 +1583,85 @@ static bool isVectorPromotionViable(cons
>          "vector size not a multiple of element size?");
>   ElementSize /= 8;
> 
> -  for (; I != E; ++I) {
> -    Use *U = I->getUse();
> -    if (!U)
> -      continue; // Skip dead use.
> +  for (; I != E; ++I)
> +    if (!isVectorPromotionViableForPartitioning(
> +            TD, P, PartitionBeginOffset, PartitionEndOffset, Ty, ElementSize,
> +            I))
> +      return false;
> 
> -    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
> -    uint64_t BeginIndex = BeginOffset / ElementSize;
> -    if (BeginIndex * ElementSize != BeginOffset ||
> -        BeginIndex >= Ty->getNumElements())
> -      return false;
> -    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
> -    uint64_t EndIndex = EndOffset / ElementSize;
> -    if (EndIndex * ElementSize != EndOffset ||
> -        EndIndex > Ty->getNumElements())
> +  for (ArrayRef<AllocaPartitioning::iterator>::const_iterator
> +           SUI = SplitUses.begin(),
> +           SUE = SplitUses.end();
> +       SUI != SUE; ++SUI)
> +    if (!isVectorPromotionViableForPartitioning(
> +            TD, P, PartitionBeginOffset, PartitionEndOffset, Ty, ElementSize,
> +            *SUI))
>       return false;
> 
> -    assert(EndIndex > BeginIndex && "Empty vector!");
> -    uint64_t NumElements = EndIndex - BeginIndex;
> -    Type *PartitionTy
> -      = (NumElements == 1) ? Ty->getElementType()
> -                           : VectorType::get(Ty->getElementType(), NumElements);
> +  return true;
> +}
> 
> -    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
> -      if (MI->isVolatile())
> -        return false;
> -      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) {
> -        const AllocaPartitioning::MemTransferOffsets &MTO
> -          = P.getMemTransferOffsets(*MTI);
> -        if (!MTO.IsSplittable)
> -          return false;
> -      }
> -    } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
> -      // Disable vector promotion when there are loads or stores of an FCA.
> +/// \brief Test whether a partitioning slice of an alloca is a valid set of
> +/// operations for integer widening.
> +///
> +/// This implements the necessary checking for the \c isIntegerWideningViable
> +/// test below on a single partitioning slice of the alloca.
> +static bool isIntegerWideningViableForPartitioning(
> +    const DataLayout &TD, Type *AllocaTy, uint64_t AllocBeginOffset,
> +    uint64_t Size, AllocaPartitioning &P, AllocaPartitioning::const_iterator I,
> +    bool &WholeAllocaOp) {
> +  uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
> +  uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
> +
> +  // We can't reasonably handle cases where the load or store extends past
> +  // the end of the aloca's type and into its padding.
> +  if (RelEnd > Size)
> +    return false;
> +
> +  Use *U = I->getUse();
> +
> +  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
> +    if (LI->isVolatile())
>       return false;
> -    } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
> -      if (LI->isVolatile())
> +    if (RelBegin == 0 && RelEnd == Size)
> +      WholeAllocaOp = true;
> +    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
> +      if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
>         return false;
> -      if (!canConvertValue(TD, PartitionTy, LI->getType()))
> -        return false;
> -    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
> -      if (SI->isVolatile())
> -        return false;
> -      if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
> +    } else if (RelBegin != 0 || RelEnd != Size ||
> +               !canConvertValue(TD, AllocaTy, LI->getType())) {
> +      // Non-integer loads need to be convertible from the alloca type so that
> +      // they are promotable.
> +      return false;
> +    }
> +  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
> +    Type *ValueTy = SI->getValueOperand()->getType();
> +    if (SI->isVolatile())
> +      return false;
> +    if (RelBegin == 0 && RelEnd == Size)
> +      WholeAllocaOp = true;
> +    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
> +      if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
>         return false;
> -    } else {
> +    } else if (RelBegin != 0 || RelEnd != Size ||
> +               !canConvertValue(TD, ValueTy, AllocaTy)) {
> +      // Non-integer stores need to be convertible to the alloca type so that
> +      // they are promotable.
>       return false;
>     }
> +  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
> +    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
> +      return false;
> +    if (!I->isSplittable())
> +      return false; // Skip any unsplittable intrinsics.
> +  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
> +    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
> +        II->getIntrinsicID() != Intrinsic::lifetime_end)
> +      return false;
> +  } else {
> +    return false;
>   }
> +
>   return true;
> }
> 
> @@ -2110,12 +1671,12 @@ static bool isVectorPromotionViable(cons
> /// This is a quick test to check whether we can rewrite the integer loads and
> /// stores to a particular alloca into wider loads and stores and be able to
> /// promote the resulting alloca.
> -static bool isIntegerWideningViable(const DataLayout &TD,
> -                                    Type *AllocaTy,
> -                                    uint64_t AllocBeginOffset,
> -                                    AllocaPartitioning &P,
> -                                    AllocaPartitioning::const_use_iterator I,
> -                                    AllocaPartitioning::const_use_iterator E) {
> +static bool
> +isIntegerWideningViable(const DataLayout &TD, Type *AllocaTy,
> +                        uint64_t AllocBeginOffset, AllocaPartitioning &P,
> +                        AllocaPartitioning::const_iterator I,
> +                        AllocaPartitioning::const_iterator E,
> +                        ArrayRef<AllocaPartitioning::iterator> SplitUses) {
>   uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
>   // Don't create integer types larger than the maximum bitwidth.
>   if (SizeInBits > IntegerType::MAX_INT_BITS)
> @@ -2133,74 +1694,34 @@ static bool isIntegerWideningViable(cons
>       !canConvertValue(TD, IntTy, AllocaTy))
>     return false;
> 
> +  // If we have no actual uses of this partition, we're forming a fully
> +  // splittable partition. Assume all the operations are easy to widen (they
> +  // are if they're splittable), and just check that it's a good idea to form
> +  // a single integer.
> +  if (I == E)
> +    return TD.isLegalInteger(SizeInBits);
> +
>   uint64_t Size = TD.getTypeStoreSize(AllocaTy);
> 
> -  // Check the uses to ensure the uses are (likely) promotable integer uses.
> -  // Also ensure that the alloca has a covering load or store. We don't want
> -  // to widen the integer operations only to fail to promote due to some other
> -  // unsplittable entry (which we may make splittable later).
> +  // While examining uses, we ensure that the alloca has a covering load or
> +  // store. We don't want to widen the integer operations only to fail to
> +  // promote due to some other unsplittable entry (which we may make splittable
> +  // later).
>   bool WholeAllocaOp = false;
> -  for (; I != E; ++I) {
> -    Use *U = I->getUse();
> -    if (!U)
> -      continue; // Skip dead use.
> -
> -    uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
> -    uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
> 
> -    // We can't reasonably handle cases where the load or store extends past
> -    // the end of the aloca's type and into its padding.
> -    if (RelEnd > Size)
> +  for (; I != E; ++I)
> +    if (!isIntegerWideningViableForPartitioning(TD, AllocaTy, AllocBeginOffset,
> +                                                Size, P, I, WholeAllocaOp))
>       return false;
> 
> -    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
> -      if (LI->isVolatile())
> -        return false;
> -      if (RelBegin == 0 && RelEnd == Size)
> -        WholeAllocaOp = true;
> -      if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
> -        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
> -          return false;
> -        continue;
> -      }
> -      // Non-integer loads need to be convertible from the alloca type so that
> -      // they are promotable.
> -      if (RelBegin != 0 || RelEnd != Size ||
> -          !canConvertValue(TD, AllocaTy, LI->getType()))
> -        return false;
> -    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
> -      Type *ValueTy = SI->getValueOperand()->getType();
> -      if (SI->isVolatile())
> -        return false;
> -      if (RelBegin == 0 && RelEnd == Size)
> -        WholeAllocaOp = true;
> -      if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
> -        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
> -          return false;
> -        continue;
> -      }
> -      // Non-integer stores need to be convertible to the alloca type so that
> -      // they are promotable.
> -      if (RelBegin != 0 || RelEnd != Size ||
> -          !canConvertValue(TD, ValueTy, AllocaTy))
> -        return false;
> -    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
> -      if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
> -        return false;
> -      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) {
> -        const AllocaPartitioning::MemTransferOffsets &MTO
> -          = P.getMemTransferOffsets(*MTI);
> -        if (!MTO.IsSplittable)
> -          return false;
> -      }
> -    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
> -      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
> -          II->getIntrinsicID() != Intrinsic::lifetime_end)
> -        return false;
> -    } else {
> +  for (ArrayRef<AllocaPartitioning::iterator>::const_iterator
> +           SUI = SplitUses.begin(),
> +           SUE = SplitUses.end();
> +       SUI != SUE; ++SUI)
> +    if (!isIntegerWideningViableForPartitioning(TD, AllocaTy, AllocBeginOffset,
> +                                                Size, P, *SUI, WholeAllocaOp))
>       return false;
> -    }
> -  }
> +
>   return WholeAllocaOp;
> }
> 
> @@ -2345,6 +1866,7 @@ class AllocaPartitionRewriter : public I
>                                                    bool> {
>   // Befriend the base class so it can delegate to private visit methods.
>   friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
> +  typedef llvm::InstVisitor<AllocaPartitionRewriter, bool> Base;
> 
>   const DataLayout &TD;
>   AllocaPartitioning &P;
> @@ -2374,6 +1896,7 @@ class AllocaPartitionRewriter : public I
> 
>   // The offset of the partition user currently being rewritten.
>   uint64_t BeginOffset, EndOffset;
> +  bool IsSplittable;
>   bool IsSplit;
>   Use *OldUse;
>   Instruction *OldPtr;
> @@ -2384,78 +1907,70 @@ class AllocaPartitionRewriter : public I
> 
> public:
>   AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
> -                          AllocaPartitioning::iterator PI,
>                           SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
> -                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
> -    : TD(TD), P(P), Pass(Pass),
> -      OldAI(OldAI), NewAI(NewAI),
> -      NewAllocaBeginOffset(NewBeginOffset),
> -      NewAllocaEndOffset(NewEndOffset),
> -      NewAllocaTy(NewAI.getAllocatedType()),
> -      VecTy(), ElementTy(), ElementSize(), IntTy(),
> -      BeginOffset(), EndOffset(), IsSplit(), OldUse(), OldPtr(),
> -      IRB(NewAI.getContext(), ConstantFolder()) {
> -  }
> -
> -  /// \brief Visit the users of the alloca partition and rewrite them.
> -  bool visitUsers(AllocaPartitioning::const_use_iterator I,
> -                  AllocaPartitioning::const_use_iterator E) {
> -    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
> -                                NewAllocaBeginOffset, NewAllocaEndOffset,
> -                                I, E)) {
> -      ++NumVectorized;
> -      VecTy = cast<VectorType>(NewAI.getAllocatedType());
> -      ElementTy = VecTy->getElementType();
> -      assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
> +                          uint64_t NewBeginOffset, uint64_t NewEndOffset,
> +                          bool IsVectorPromotable = false,
> +                          bool IsIntegerPromotable = false)
> +      : TD(TD), P(P), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
> +        NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
> +        NewAllocaTy(NewAI.getAllocatedType()),
> +        VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
> +        ElementTy(VecTy ? VecTy->getElementType() : 0),
> +        ElementSize(VecTy ? TD.getTypeSizeInBits(ElementTy) / 8 : 0),
> +        IntTy(IsIntegerPromotable
> +                  ? Type::getIntNTy(
> +                        NewAI.getContext(),
> +                        TD.getTypeSizeInBits(NewAI.getAllocatedType()))
> +                  : 0),
> +        BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
> +        OldPtr(), IRB(NewAI.getContext(), ConstantFolder()) {
> +    if (VecTy) {
> +      assert((TD.getTypeSizeInBits(ElementTy) % 8) == 0 &&
>              "Only multiple-of-8 sized vector elements are viable");
> -      ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
> -    } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
> -                                       NewAllocaBeginOffset, P, I, E)) {
> -      IntTy = Type::getIntNTy(NewAI.getContext(),
> -                              TD.getTypeSizeInBits(NewAI.getAllocatedType()));
> +      ++NumVectorized;
>     }
> +    assert((!IsVectorPromotable && !IsIntegerPromotable) ||
> +           IsVectorPromotable != IsIntegerPromotable);
> +  }
> +
> +  bool visit(AllocaPartitioning::const_iterator I) {
>     bool CanSROA = true;
> -    for (; I != E; ++I) {
> -      if (!I->getUse())
> -        continue; // Skip dead uses.
> -      BeginOffset = I->BeginOffset;
> -      EndOffset = I->EndOffset;
> -      IsSplit = I->isSplit();
> -      OldUse = I->getUse();
> -      OldPtr = cast<Instruction>(OldUse->get());
> -
> -      Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
> -      IRB.SetInsertPoint(OldUserI);
> -      IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
> -      IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
> -                        ".");
> +    BeginOffset = I->beginOffset();
> +    EndOffset = I->endOffset();
> +    IsSplittable = I->isSplittable();
> +    IsSplit =
> +        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
> +
> +    OldUse = I->getUse();
> +    OldPtr = cast<Instruction>(OldUse->get());
> +
> +    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
> +    IRB.SetInsertPoint(OldUserI);
> +    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
> +    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
> 
> -      CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
> -    }
> -    if (VecTy) {
> -      assert(CanSROA);
> -      VecTy = 0;
> -      ElementTy = 0;
> -      ElementSize = 0;
> -    }
> -    if (IntTy) {
> +    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
> +    if (VecTy || IntTy)
>       assert(CanSROA);
> -      IntTy = 0;
> -    }
>     return CanSROA;
>   }
> 
> private:
> +  // Make sure the other visit overloads are visible.
> +  using Base::visit;
> +
>   // Every instruction which can end up as a user must have a rewrite rule.
>   bool visitInstruction(Instruction &I) {
>     DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
>     llvm_unreachable("No rewrite rule for this instruction!");
>   }
> 
> -  Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, Type *PointerTy) {
> -    assert(BeginOffset >= NewAllocaBeginOffset);
> -    APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
> -    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy);
> +  Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
> +                              Type *PointerTy) {
> +    assert(Offset >= NewAllocaBeginOffset);
> +    return getAdjustedPtr(IRB, TD, &NewAI, APInt(TD.getPointerSizeInBits(),
> +                                                 Offset - NewAllocaBeginOffset),
> +                          PointerTy);
>   }
> 
>   /// \brief Compute suitable alignment to access an offset into the new alloca.
> @@ -2466,12 +1981,6 @@ private:
>     return MinAlign(NewAIAlign, Offset);
>   }
> 
> -  /// \brief Compute suitable alignment to access this partition of the new
> -  /// alloca.
> -  unsigned getPartitionAlign() {
> -    return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
> -  }
> -
>   /// \brief Compute suitable alignment to access a type at an offset of the
>   /// new alloca.
>   ///
> @@ -2482,14 +1991,6 @@ private:
>     return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
>   }
> 
> -  /// \brief Compute suitable alignment to access a type at the beginning of
> -  /// this partition of the new alloca.
> -  ///
> -  /// See \c getOffsetTypeAlign for details; this routine delegates to it.
> -  unsigned getPartitionTypeAlign(Type *Ty) {
> -    return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
> -  }
> -
>   unsigned getIndex(uint64_t Offset) {
>     assert(VecTy && "Can only call getIndex when rewriting a vector");
>     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
> @@ -2505,9 +2006,10 @@ private:
>       Pass.DeadInsts.insert(I);
>   }
> 
> -  Value *rewriteVectorizedLoadInst() {
> -    unsigned BeginIndex = getIndex(BeginOffset);
> -    unsigned EndIndex = getIndex(EndOffset);
> +  Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
> +                                   uint64_t NewEndOffset) {
> +    unsigned BeginIndex = getIndex(NewBeginOffset);
> +    unsigned EndIndex = getIndex(NewEndOffset);
>     assert(EndIndex > BeginIndex && "Empty vector!");
> 
>     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
> @@ -2515,15 +2017,16 @@ private:
>     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
>   }
> 
> -  Value *rewriteIntegerLoad(LoadInst &LI) {
> +  Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
> +                            uint64_t NewEndOffset) {
>     assert(IntTy && "We cannot insert an integer to the alloca");
>     assert(!LI.isVolatile());
>     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
>                                      "load");
>     V = convertValue(TD, IRB, V, IntTy);
> -    assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
> -    uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
> -    if (Offset > 0 || EndOffset < NewAllocaEndOffset)
> +    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
> +    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
> +    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
>       V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
>                          "extract");
>     return V;
> @@ -2534,25 +2037,32 @@ private:
>     Value *OldOp = LI.getOperand(0);
>     assert(OldOp == OldPtr);
> 
> -    uint64_t Size = EndOffset - BeginOffset;
> +    // Compute the intersecting offset range.
> +    assert(BeginOffset < NewAllocaEndOffset);
> +    assert(EndOffset > NewAllocaBeginOffset);
> +    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
> +    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
> +
> +    uint64_t Size = NewEndOffset - NewBeginOffset;
> 
>     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
>                              : LI.getType();
>     bool IsPtrAdjusted = false;
>     Value *V;
>     if (VecTy) {
> -      V = rewriteVectorizedLoadInst();
> +      V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
>     } else if (IntTy && LI.getType()->isIntegerTy()) {
> -      V = rewriteIntegerLoad(LI);
> -    } else if (BeginOffset == NewAllocaBeginOffset &&
> +      V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
> +    } else if (NewBeginOffset == NewAllocaBeginOffset &&
>                canConvertValue(TD, NewAllocaTy, LI.getType())) {
>       V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
>                                 LI.isVolatile(), "load");
>     } else {
>       Type *LTy = TargetTy->getPointerTo();
> -      V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
> -                                getPartitionTypeAlign(TargetTy),
> -                                LI.isVolatile(), "load");
> +      V = IRB.CreateAlignedLoad(
> +          getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
> +          getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
> +          LI.isVolatile(), "load");
>       IsPtrAdjusted = true;
>     }
>     V = convertValue(TD, IRB, V, TargetTy);
> @@ -2574,7 +2084,7 @@ private:
>       // LI only used for this computation.
>       Value *Placeholder
>         = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
> -      V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
> +      V = insertInteger(TD, IRB, Placeholder, V, NewBeginOffset,
>                         "insert");
>       LI.replaceAllUsesWith(V);
>       Placeholder->replaceAllUsesWith(&LI);
> @@ -2589,11 +2099,12 @@ private:
>     return !LI.isVolatile() && !IsPtrAdjusted;
>   }
> 
> -  bool rewriteVectorizedStoreInst(Value *V,
> -                                  StoreInst &SI, Value *OldOp) {
> +  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
> +                                  uint64_t NewBeginOffset,
> +                                  uint64_t NewEndOffset) {
>     if (V->getType() != VecTy) {
> -      unsigned BeginIndex = getIndex(BeginOffset);
> -      unsigned EndIndex = getIndex(EndOffset);
> +      unsigned BeginIndex = getIndex(NewBeginOffset);
> +      unsigned EndIndex = getIndex(NewEndOffset);
>       assert(EndIndex > BeginIndex && "Empty vector!");
>       unsigned NumElements = EndIndex - BeginIndex;
>       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
> @@ -2616,7 +2127,8 @@ private:
>     return true;
>   }
> 
> -  bool rewriteIntegerStore(Value *V, StoreInst &SI) {
> +  bool rewriteIntegerStore(Value *V, StoreInst &SI,
> +                           uint64_t NewBeginOffset, uint64_t NewEndOffset) {
>     assert(IntTy && "We cannot extract an integer from the alloca");
>     assert(!SI.isVolatile());
>     if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
> @@ -2649,37 +2161,45 @@ private:
>       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
>         Pass.PostPromotionWorklist.insert(AI);
> 
> -    uint64_t Size = EndOffset - BeginOffset;
> +    // Compute the intersecting offset range.
> +    assert(BeginOffset < NewAllocaEndOffset);
> +    assert(EndOffset > NewAllocaBeginOffset);
> +    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
> +    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
> +
> +    uint64_t Size = NewEndOffset - NewBeginOffset;
>     if (Size < TD.getTypeStoreSize(V->getType())) {
>       assert(!SI.isVolatile());
> -      assert(IsSplit && "A seemingly split store isn't splittable");
>       assert(V->getType()->isIntegerTy() &&
>              "Only integer type loads and stores are split");
>       assert(V->getType()->getIntegerBitWidth() ==
>              TD.getTypeStoreSizeInBits(V->getType()) &&
>              "Non-byte-multiple bit width");
>       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
> -      V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
> +      V = extractInteger(TD, IRB, V, NarrowTy, NewBeginOffset,
>                          "extract");
>     }
> 
>     if (VecTy)
> -      return rewriteVectorizedStoreInst(V, SI, OldOp);
> +      return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
> +                                        NewEndOffset);
>     if (IntTy && V->getType()->isIntegerTy())
> -      return rewriteIntegerStore(V, SI);
> +      return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
> 
>     StoreInst *NewSI;
> -    if (BeginOffset == NewAllocaBeginOffset &&
> -        EndOffset == NewAllocaEndOffset &&
> +    if (NewBeginOffset == NewAllocaBeginOffset &&
> +        NewEndOffset == NewAllocaEndOffset &&
>         canConvertValue(TD, V->getType(), NewAllocaTy)) {
>       V = convertValue(TD, IRB, V, NewAllocaTy);
>       NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
>                                      SI.isVolatile());
>     } else {
> -      Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
> -      NewSI = IRB.CreateAlignedStore(V, NewPtr,
> -                                     getPartitionTypeAlign(V->getType()),
> -                                     SI.isVolatile());
> +      Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
> +                                           V->getType()->getPointerTo());
> +      NewSI = IRB.CreateAlignedStore(
> +          V, NewPtr, getOffsetTypeAlign(
> +                         V->getType(), NewBeginOffset - NewAllocaBeginOffset),
> +          SI.isVolatile());
>     }
>     (void)NewSI;
>     Pass.DeadInsts.insert(&SI);
> @@ -2730,9 +2250,12 @@ private:
>     // If the memset has a variable size, it cannot be split, just adjust the
>     // pointer to the new alloca.
>     if (!isa<Constant>(II.getLength())) {
> -      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
> +      assert(!IsSplit);
> +      assert(BeginOffset >= NewAllocaBeginOffset);
> +      II.setDest(
> +          getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
>       Type *CstTy = II.getAlignmentCst()->getType();
> -      II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
> +      II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
> 
>       deleteIfTriviallyDead(OldPtr);
>       return false;
> @@ -2744,21 +2267,27 @@ private:
>     Type *AllocaTy = NewAI.getAllocatedType();
>     Type *ScalarTy = AllocaTy->getScalarType();
> 
> +    // Compute the intersecting offset range.
> +    assert(BeginOffset < NewAllocaEndOffset);
> +    assert(EndOffset > NewAllocaBeginOffset);
> +    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
> +    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
> +    uint64_t PartitionOffset = NewBeginOffset - NewAllocaBeginOffset;
> +
>     // If this doesn't map cleanly onto the alloca type, and that type isn't
>     // a single value type, just emit a memset.
>     if (!VecTy && !IntTy &&
> -        (BeginOffset != NewAllocaBeginOffset ||
> -         EndOffset != NewAllocaEndOffset ||
> +        (BeginOffset > NewAllocaBeginOffset ||
> +         EndOffset < NewAllocaEndOffset ||
>          !AllocaTy->isSingleValueType() ||
>          !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
>          TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
>       Type *SizeTy = II.getLength()->getType();
> -      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
> -      CallInst *New
> -        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
> -                                                II.getRawDest()->getType()),
> -                           II.getValue(), Size, getPartitionAlign(),
> -                           II.isVolatile());
> +      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
> +      CallInst *New = IRB.CreateMemSet(
> +          getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
> +          II.getValue(), Size, getOffsetAlign(PartitionOffset),
> +          II.isVolatile());
>       (void)New;
>       DEBUG(dbgs() << "          to: " << *New << "\n");
>       return false;
> @@ -2775,8 +2304,8 @@ private:
>       // If this is a memset of a vectorized alloca, insert it.
>       assert(ElementTy == ScalarTy);
> 
> -      unsigned BeginIndex = getIndex(BeginOffset);
> -      unsigned EndIndex = getIndex(EndOffset);
> +      unsigned BeginIndex = getIndex(NewBeginOffset);
> +      unsigned EndIndex = getIndex(NewEndOffset);
>       assert(EndIndex > BeginIndex && "Empty vector!");
>       unsigned NumElements = EndIndex - BeginIndex;
>       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
> @@ -2795,7 +2324,7 @@ private:
>       // set integer.
>       assert(!II.isVolatile());
> 
> -      uint64_t Size = EndOffset - BeginOffset;
> +      uint64_t Size = NewEndOffset - NewBeginOffset;
>       V = getIntegerSplat(II.getValue(), Size);
> 
>       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
> @@ -2803,8 +2332,7 @@ private:
>         Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
>                                            "oldload");
>         Old = convertValue(TD, IRB, Old, IntTy);
> -        assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
> -        uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
> +        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
>         V = insertInteger(TD, IRB, Old, V, Offset, "insert");
>       } else {
>         assert(V->getType() == IntTy &&
> @@ -2813,8 +2341,8 @@ private:
>       V = convertValue(TD, IRB, V, AllocaTy);
>     } else {
>       // Established these invariants above.
> -      assert(BeginOffset == NewAllocaBeginOffset);
> -      assert(EndOffset == NewAllocaEndOffset);
> +      assert(NewBeginOffset == NewAllocaBeginOffset);
> +      assert(NewEndOffset == NewAllocaEndOffset);
> 
>       V = getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ScalarTy) / 8);
>       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
> @@ -2836,21 +2364,25 @@ private:
> 
>     DEBUG(dbgs() << "    original: " << II << "\n");
> 
> +    // Compute the intersecting offset range.
> +    assert(BeginOffset < NewAllocaEndOffset);
> +    assert(EndOffset > NewAllocaBeginOffset);
> +    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
> +    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
> +
>     assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
>     bool IsDest = II.getRawDest() == OldPtr;
> 
> -    const AllocaPartitioning::MemTransferOffsets &MTO
> -      = P.getMemTransferOffsets(II);
> -
>     // Compute the relative offset within the transfer.
>     unsigned IntPtrWidth = TD.getPointerSizeInBits();
> -    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
> -                                                       : MTO.SourceBegin));
> +    APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
> 
>     unsigned Align = II.getAlignment();
> +    uint64_t PartitionOffset = NewBeginOffset - NewAllocaBeginOffset;
>     if (Align > 1)
> -      Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
> -                       MinAlign(II.getAlignment(), getPartitionAlign()));
> +      Align = MinAlign(
> +          RelOffset.zextOrTrunc(64).getZExtValue(),
> +          MinAlign(II.getAlignment(), getOffsetAlign(PartitionOffset)));
> 
>     // For unsplit intrinsics, we simply modify the source and destination
>     // pointers in place. This isn't just an optimization, it is a matter of
> @@ -2859,12 +2391,14 @@ private:
>     // a variable length. We may also be dealing with memmove instead of
>     // memcpy, and so simply updating the pointers is the necessary for us to
>     // update both source and dest of a single call.
> -    if (!MTO.IsSplittable) {
> +    if (!IsSplittable) {
>       Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
>       if (IsDest)
> -        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
> +        II.setDest(
> +            getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
>       else
> -        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
> +        II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
> +                                          II.getRawSource()->getType()));
> 
>       Type *CstTy = II.getAlignmentCst()->getType();
>       II.setAlignment(ConstantInt::get(CstTy, Align));
> @@ -2882,24 +2416,21 @@ private:
>     // If this doesn't map cleanly onto the alloca type, and that type isn't
>     // a single value type, just emit a memcpy.
>     bool EmitMemCpy
> -      = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
> -                             EndOffset != NewAllocaEndOffset ||
> +      = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
> +                             EndOffset < NewAllocaEndOffset ||
>                              !NewAI.getAllocatedType()->isSingleValueType());
> 
>     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
>     // size hasn't been shrunk based on analysis of the viable range, this is
>     // a no-op.
>     if (EmitMemCpy && &OldAI == &NewAI) {
> -      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
> -      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
>       // Ensure the start lines up.
> -      assert(BeginOffset == OrigBegin);
> -      (void)OrigBegin;
> +      assert(NewBeginOffset == BeginOffset);
> 
>       // Rewrite the size as needed.
> -      if (EndOffset != OrigEnd)
> +      if (NewEndOffset != EndOffset)
>         II.setLength(ConstantInt::get(II.getLength()->getType(),
> -                                      EndOffset - BeginOffset));
> +                                      NewEndOffset - NewBeginOffset));
>       return false;
>     }
>     // Record this instruction for deletion.
> @@ -2920,11 +2451,11 @@ private:
>       // a single, simple GEP in most cases.
>       OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy);
> 
> -      Value *OurPtr
> -        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
> -                                           : II.getRawSource()->getType());
> +      Value *OurPtr = getAdjustedAllocaPtr(
> +          IRB, NewBeginOffset,
> +          IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
>       Type *SizeTy = II.getLength()->getType();
> -      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
> +      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
> 
>       CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
>                                        IsDest ? OtherPtr : OurPtr,
> @@ -2940,11 +2471,11 @@ private:
>     if (!Align)
>       Align = 1;
> 
> -    bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
> -                         EndOffset == NewAllocaEndOffset;
> -    uint64_t Size = EndOffset - BeginOffset;
> -    unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
> -    unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
> +    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
> +                         NewEndOffset == NewAllocaEndOffset;
> +    uint64_t Size = NewEndOffset - NewBeginOffset;
> +    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
> +    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
>     unsigned NumElements = EndIndex - BeginIndex;
>     IntegerType *SubIntTy
>       = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
> @@ -2975,8 +2506,7 @@ private:
>       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
>                                   "load");
>       Src = convertValue(TD, IRB, Src, IntTy);
> -      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
> -      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
> +      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
>       Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, "extract");
>     } else {
>       Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
> @@ -2991,8 +2521,7 @@ private:
>       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
>                                          "oldload");
>       Old = convertValue(TD, IRB, Old, IntTy);
> -      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
> -      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
> +      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
>       Src = insertInteger(TD, IRB, Old, Src, Offset, "insert");
>       Src = convertValue(TD, IRB, Src, NewAllocaTy);
>     }
> @@ -3010,13 +2539,20 @@ private:
>     DEBUG(dbgs() << "    original: " << II << "\n");
>     assert(II.getArgOperand(1) == OldPtr);
> 
> +    // Compute the intersecting offset range.
> +    assert(BeginOffset < NewAllocaEndOffset);
> +    assert(EndOffset > NewAllocaBeginOffset);
> +    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
> +    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
> +
>     // Record this instruction for deletion.
>     Pass.DeadInsts.insert(&II);
> 
>     ConstantInt *Size
>       = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
> -                         EndOffset - BeginOffset);
> -    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
> +                         NewEndOffset - NewBeginOffset);
> +    Value *Ptr =
> +        getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
>     Value *New;
>     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
>       New = IRB.CreateLifetimeStart(Ptr, Size);
> @@ -3030,6 +2566,8 @@ private:
> 
>   bool visitPHINode(PHINode &PN) {
>     DEBUG(dbgs() << "    original: " << PN << "\n");
> +    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
> +    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
> 
>     // We would like to compute a new pointer in only one place, but have it be
>     // as local as possible to the PHI. To do that, we re-use the location of
> @@ -3039,21 +2577,33 @@ private:
>     PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
>                              ".");
> 
> -    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
> +    Value *NewPtr =
> +        getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
>     // Replace the operands which were using the old pointer.
>     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
> 
>     DEBUG(dbgs() << "          to: " << PN << "\n");
>     deleteIfTriviallyDead(OldPtr);
> -    return false;
> +
> +    // Check whether we can speculate this PHI node, and if so remember that
> +    // fact and return that this alloca remains viable for promotion to an SSA
> +    // value.
> +    if (isSafePHIToSpeculate(PN, &TD)) {
> +      Pass.SpeculatablePHIs.insert(&PN);
> +      return true;
> +    }
> +
> +    return false; // PHIs can't be promoted on their own.
>   }
> 
>   bool visitSelectInst(SelectInst &SI) {
>     DEBUG(dbgs() << "    original: " << SI << "\n");
>     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
>            "Pointer isn't an operand!");
> +    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
> +    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
> 
> -    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
> +    Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
>     // Replace the operands which were using the old pointer.
>     if (SI.getOperand(1) == OldPtr)
>       SI.setOperand(1, NewPtr);
> @@ -3062,7 +2612,16 @@ private:
> 
>     DEBUG(dbgs() << "          to: " << SI << "\n");
>     deleteIfTriviallyDead(OldPtr);
> -    return false;
> +
> +    // Check whether we can speculate this select instruction, and if so
> +    // remember that fact and return that this alloca remains viable for
> +    // promotion to an SSA value.
> +    if (isSafeSelectToSpeculate(SI, &TD)) {
> +      Pass.SpeculatableSelects.insert(&SI);
> +      return true;
> +    }
> +
> +    return false; // Selects can't be promoted on their own.
>   }
> 
> };
> @@ -3432,57 +2991,52 @@ static Type *getTypePartition(const Data
> /// appropriate new offsets. It also evaluates how successful the rewrite was
> /// at enabling promotion and if it was successful queues the alloca to be
> /// promoted.
> -bool SROA::rewriteAllocaPartition(AllocaInst &AI,
> -                                  AllocaPartitioning &P,
> -                                  AllocaPartitioning::iterator PI) {
> -  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
> -  bool IsLive = false;
> -  for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
> -                                        UE = P.use_end(PI);
> -       UI != UE && !IsLive; ++UI)
> -    if (UI->getUse())
> -      IsLive = true;
> -  if (!IsLive)
> -    return false; // No live uses left of this partition.
> -
> -  DEBUG(dbgs() << "Speculating PHIs and selects in partition "
> -               << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
> -
> -  PHIOrSelectSpeculator Speculator(*TD, P, *this);
> -  DEBUG(dbgs() << "  speculating ");
> -  DEBUG(P.print(dbgs(), PI, ""));
> -  Speculator.visitUsers(PI);
> +bool SROA::rewritePartitions(AllocaInst &AI, AllocaPartitioning &P,
> +                             AllocaPartitioning::iterator B,
> +                             AllocaPartitioning::iterator E,
> +                             int64_t BeginOffset, int64_t EndOffset,
> +                             ArrayRef<AllocaPartitioning::iterator> SplitUses) {
> +  assert(BeginOffset < EndOffset);
> +  uint64_t PartitionSize = EndOffset - BeginOffset;
> 
>   // Try to compute a friendly type for this partition of the alloca. This
>   // won't always succeed, in which case we fall back to a legal integer type
>   // or an i8 array of an appropriate size.
> -  Type *AllocaTy = 0;
> -  if (Type *PartitionTy = P.getCommonType(PI))
> -    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
> -      AllocaTy = PartitionTy;
> -  if (!AllocaTy)
> -    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
> -                                             PI->BeginOffset, AllocaSize))
> -      AllocaTy = PartitionTy;
> -  if ((!AllocaTy ||
> -       (AllocaTy->isArrayTy() &&
> -        AllocaTy->getArrayElementType()->isIntegerTy())) &&
> -      TD->isLegalInteger(AllocaSize * 8))
> -    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
> -  if (!AllocaTy)
> -    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
> -  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
> +  Type *PartitionTy = 0;
> +  if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
> +    if (TD->getTypeAllocSize(CommonUseTy) >= PartitionSize)
> +      PartitionTy = CommonUseTy;
> +  if (!PartitionTy)
> +    if (Type *TypePartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
> +                                                 BeginOffset, PartitionSize))
> +      PartitionTy = TypePartitionTy;
> +  if ((!PartitionTy || (PartitionTy->isArrayTy() &&
> +                        PartitionTy->getArrayElementType()->isIntegerTy())) &&
> +      TD->isLegalInteger(PartitionSize * 8))
> +    PartitionTy = Type::getIntNTy(*C, PartitionSize * 8);
> +  if (!PartitionTy)
> +    PartitionTy = ArrayType::get(Type::getInt8Ty(*C), PartitionSize);
> +  assert(TD->getTypeAllocSize(PartitionTy) >= PartitionSize);
> +
> +  bool IsVectorPromotable = isVectorPromotionViable(
> +      *TD, PartitionTy, P, BeginOffset, EndOffset, B, E, SplitUses);
> +
> +  bool IsIntegerPromotable =
> +      !IsVectorPromotable &&
> +      isIntegerWideningViable(*TD, PartitionTy, BeginOffset, P, B, E,
> +                              SplitUses);
> 
>   // Check for the case where we're going to rewrite to a new alloca of the
>   // exact same type as the original, and with the same access offsets. In that
>   // case, re-use the existing alloca, but still run through the rewriter to
>   // perform phi and select speculation.
>   AllocaInst *NewAI;
> -  if (AllocaTy == AI.getAllocatedType()) {
> -    assert(PI->BeginOffset == 0 &&
> +  if (PartitionTy == AI.getAllocatedType()) {
> +    assert(BeginOffset == 0 &&
>            "Non-zero begin offset but same alloca type");
> -    assert(PI == P.begin() && "Begin offset is zero on later partition");
>     NewAI = &AI;
> +    // FIXME: We should be able to bail at this point with "nothing changed".
> +    // FIXME: We might want to defer PHI speculation until after here.
>   } else {
>     unsigned Alignment = AI.getAlignment();
>     if (!Alignment) {
> @@ -3491,54 +3045,207 @@ bool SROA::rewriteAllocaPartition(Alloca
>       // type.
>       Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
>     }
> -    Alignment = MinAlign(Alignment, PI->BeginOffset);
> +    Alignment = MinAlign(Alignment, BeginOffset);
>     // If we will get at least this much alignment from the type alone, leave
>     // the alloca's alignment unconstrained.
> -    if (Alignment <= TD->getABITypeAlignment(AllocaTy))
> +    if (Alignment <= TD->getABITypeAlignment(PartitionTy))
>       Alignment = 0;
> -    NewAI = new AllocaInst(AllocaTy, 0, Alignment,
> -                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
> -                           &AI);
> +    NewAI = new AllocaInst(PartitionTy, 0, Alignment,
> +                           AI.getName() + ".sroa." + Twine(B - P.begin()), &AI);
>     ++NumNewAllocas;
>   }
> 
>   DEBUG(dbgs() << "Rewriting alloca partition "
> -               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
> -               << *NewAI << "\n");
> +               << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
> +               << "\n");
> 
> -  // Track the high watermark of the post-promotion worklist. We will reset it
> -  // to this point if the alloca is not in fact scheduled for promotion.
> +  // Track the high watermark on several worklists that are only relevant for
> +  // promoted allocas. We will reset it to this point if the alloca is not in
> +  // fact scheduled for promotion.
>   unsigned PPWOldSize = PostPromotionWorklist.size();
> +  unsigned SPOldSize = SpeculatablePHIs.size();
> +  unsigned SSOldSize = SpeculatableSelects.size();
> 
> -  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
> -                                   PI->BeginOffset, PI->EndOffset);
> -  DEBUG(dbgs() << "  rewriting ");
> -  DEBUG(P.print(dbgs(), PI, ""));
> -  bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
> -  if (Promotable) {
> +  AllocaPartitionRewriter Rewriter(*TD, P, *this, AI, *NewAI, BeginOffset,
> +                                   EndOffset, IsVectorPromotable,
> +                                   IsIntegerPromotable);
> +  bool Promotable = true;
> +  for (ArrayRef<AllocaPartitioning::iterator>::const_iterator
> +           SUI = SplitUses.begin(),
> +           SUE = SplitUses.end();
> +       SUI != SUE; ++SUI) {
> +    DEBUG(dbgs() << "  rewriting split ");
> +    DEBUG(P.printPartition(dbgs(), *SUI, ""));
> +    Promotable &= Rewriter.visit(*SUI);
> +  }
> +  for (AllocaPartitioning::iterator I = B; I != E; ++I) {
> +    DEBUG(dbgs() << "  rewriting ");
> +    DEBUG(P.printPartition(dbgs(), I, ""));
> +    Promotable &= Rewriter.visit(I);
> +  }
> +
> +  if (Promotable && (SpeculatablePHIs.size() > SPOldSize ||
> +                     SpeculatableSelects.size() > SSOldSize)) {
> +    // If we have a promotable alloca except for some unspeculated loads below
> +    // PHIs or Selects, iterate once. We will speculate the loads and on the
> +    // next iteration rewrite them into a promotable form.
> +    Worklist.insert(NewAI);
> +  } else if (Promotable) {
>     DEBUG(dbgs() << "  and queuing for promotion\n");
>     PromotableAllocas.push_back(NewAI);
>   } else if (NewAI != &AI) {
>     // If we can't promote the alloca, iterate on it to check for new
>     // refinements exposed by splitting the current alloca. Don't iterate on an
>     // alloca which didn't actually change and didn't get promoted.
> +    // FIXME: We should actually track whether the rewriter changed anything.
>     Worklist.insert(NewAI);
>   }
> 
>   // Drop any post-promotion work items if promotion didn't happen.
> -  if (!Promotable)
> +  if (!Promotable) {
>     while (PostPromotionWorklist.size() > PPWOldSize)
>       PostPromotionWorklist.pop_back();
> +    while (SpeculatablePHIs.size() > SPOldSize)
> +      SpeculatablePHIs.pop_back();
> +    while (SpeculatableSelects.size() > SSOldSize)
> +      SpeculatableSelects.pop_back();
> +  }
> 
>   return true;
> }
> 
> +namespace {
> +  struct IsPartitionEndLessOrEqualTo {
> +    uint64_t UpperBound;
> +
> +    IsPartitionEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
> +
> +    bool operator()(const AllocaPartitioning::iterator &I) {
> +      return I->endOffset() <= UpperBound;
> +    }
> +  };
> +}
> +
> +static void removeFinishedSplitUses(
> +    SmallVectorImpl<AllocaPartitioning::iterator> &SplitUses,
> +    uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
> +  if (Offset >= MaxSplitUseEndOffset) {
> +    SplitUses.clear();
> +    MaxSplitUseEndOffset = 0;
> +    return;
> +  }
> +
> +  size_t SplitUsesOldSize = SplitUses.size();
> +  SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
> +                                 IsPartitionEndLessOrEqualTo(Offset)),
> +                  SplitUses.end());
> +  if (SplitUsesOldSize == SplitUses.size())
> +    return;
> +
> +  // Recompute the max. While this is linear, so is remove_if.
> +  MaxSplitUseEndOffset = 0;
> +  for (SmallVectorImpl<AllocaPartitioning::iterator>::iterator
> +           SUI = SplitUses.begin(),
> +           SUE = SplitUses.end();
> +       SUI != SUE; ++SUI)
> +    MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
> +}
> +
> /// \brief Walks the partitioning of an alloca rewriting uses of each partition.
> bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
> +  if (P.begin() == P.end())
> +    return false;
> +
>   bool Changed = false;
> -  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
> -       ++PI)
> -    Changed |= rewriteAllocaPartition(AI, P, PI);
> +  SmallVector<AllocaPartitioning::iterator, 4> SplitUses;
> +  uint64_t MaxSplitUseEndOffset = 0;
> +
> +  uint64_t BeginOffset = P.begin()->beginOffset();
> +
> +  for (AllocaPartitioning::iterator PI = P.begin(), PJ = llvm::next(PI),
> +                                    PE = P.end();
> +       PI != PE; PI = PJ) {
> +    uint64_t MaxEndOffset = PI->endOffset();
> +
> +    if (!PI->isSplittable()) {
> +      // When we're forming an unsplittable region, it must always start at he
> +      // first partitioning use and will extend through its end.
> +      assert(BeginOffset == PI->beginOffset());
> +
> +      // Rewrite a partition including all of the overlapping uses with this
> +      // unsplittable partition.
> +      while (PJ != PE && PJ->beginOffset() < MaxEndOffset) {
> +        if (!PJ->isSplittable())
> +          MaxEndOffset = std::max(MaxEndOffset, PJ->endOffset());
> +        ++PJ;
> +      }
> +    } else {
> +      assert(PI->isSplittable()); // Established above.
> +
> +      // Collect all of the overlapping splittable partitions.
> +      while (PJ != PE && PJ->beginOffset() < MaxEndOffset &&
> +             PJ->isSplittable()) {
> +        MaxEndOffset = std::max(MaxEndOffset, PJ->endOffset());
> +        ++PJ;
> +      }
> +
> +      // Back up MaxEndOffset and PJ if we ended the span early when
> +      // encountering an unsplittable partition.
> +      if (PJ != PE && PJ->beginOffset() < MaxEndOffset) {
> +        assert(!PJ->isSplittable());
> +        MaxEndOffset = PJ->beginOffset();
> +      }
> +    }
> +
> +    // Check if we have managed to move the end offset forward yet. If so,
> +    // we'll have to rewrite uses and erase old split uses.
> +    if (BeginOffset < MaxEndOffset) {
> +      // Rewrite a sequence of overlapping partition uses.
> +      Changed |= rewritePartitions(AI, P, PI, PJ, BeginOffset,
> +                                   MaxEndOffset, SplitUses);
> +
> +      removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
> +    }
> +
> +    // Accumulate all the splittable partitions from the [PI,PJ) region which
> +    // overlap going forward.
> +    for (AllocaPartitioning::iterator PII = PI, PIE = PJ; PII != PIE; ++PII)
> +      if (PII->isSplittable() && PII->endOffset() > MaxEndOffset) {
> +        SplitUses.push_back(PII);
> +        MaxSplitUseEndOffset = std::max(PII->endOffset(), MaxSplitUseEndOffset);
> +      }
> +
> +    // If we have no split uses or no gap in offsets, we're ready to move to
> +    // the next partitioning use.
> +    if (SplitUses.empty() || (PJ != PE && MaxEndOffset == PJ->beginOffset())) {
> +      BeginOffset = PJ->beginOffset();
> +      continue;
> +    }
> +
> +    // Even if we have split uses, if the next partitioning use is splittable
> +    // and the split uses reach it, we can simply set up the beginning offset
> +    // to bridge between them.
> +    if (PJ != PE && PJ->isSplittable() && MaxSplitUseEndOffset > PJ->beginOffset()) {
> +      BeginOffset = MaxEndOffset;
> +      continue;
> +    }
> +
> +    // Otherwise, we have a tail of split uses. Rewrite them with an empty
> +    // range of partitioning uses.
> +    uint64_t PostSplitEndOffset =
> +        PJ == PE ? MaxSplitUseEndOffset : PJ->beginOffset();
> +
> +    Changed |= rewritePartitions(AI, P, PJ, PJ, MaxEndOffset,
> +                                 PostSplitEndOffset, SplitUses);
> +    if (PJ == PE)
> +      break; // Skip the rest, we don't need to do any cleanup.
> +
> +    removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
> +                            PostSplitEndOffset);
> +
> +    // Now just reset the begin offset for the next iteration.
> +    BeginOffset = PJ->beginOffset();
> +  }
> 
>   return Changed;
> }
> @@ -3601,7 +3308,17 @@ bool SROA::runOnAlloca(AllocaInst &AI) {
>   if (P.begin() == P.end())
>     return Changed;
> 
> -  return splitAlloca(AI, P) || Changed;
> +  Changed |= splitAlloca(AI, P);
> +
> +  DEBUG(dbgs() << "  Speculating PHIs\n");
> +  while (!SpeculatablePHIs.empty())
> +    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
> +
> +  DEBUG(dbgs() << "  Speculating Selects\n");
> +  while (!SpeculatableSelects.empty())
> +    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
> +
> +  return Changed;
> }
> 
> /// \brief Delete the dead instructions accumulated in this run.
> 
> Modified: llvm/trunk/test/Transforms/SROA/basictest.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/SROA/basictest.ll?rev=186316&r1=186315&r2=186316&view=diff
> ==============================================================================
> --- llvm/trunk/test/Transforms/SROA/basictest.ll (original)
> +++ llvm/trunk/test/Transforms/SROA/basictest.ll Mon Jul 15 05:30:19 2013
> @@ -1308,7 +1308,7 @@ end:
> 
> define void @PR15805(i1 %a, i1 %b) {
> ; CHECK-LABEL: @PR15805(
> -; CHECK: select i1 undef, i64* %c, i64* %c
> +; CHECK-NOT: alloca
> ; CHECK: ret void
> 
>   %c = alloca i64, align 8
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits





More information about the llvm-commits mailing list