[llvm-commits] [llvm] r173033 - in /llvm/trunk/lib/Analysis: CMakeLists.txt IPA/CMakeLists.txt IPA/InlineCost.cpp InlineCost.cpp

Chandler Carruth chandlerc at gmail.com
Mon Jan 21 04:09:41 PST 2013


Author: chandlerc
Date: Mon Jan 21 06:09:41 2013
New Revision: 173033

URL: http://llvm.org/viewvc/llvm-project?rev=173033&view=rev
Log:
Sink InlineCost.cpp into IPA -- it is now officially an interprocedural
analysis. How cute that it wasn't previously. ;]

Part of this confusion stems from the flattened header file tree. Thanks
to Benjamin for pointing out the goof on IRC, and we're considering
un-flattening the headers, so speak now if that would bug you.

Added:
    llvm/trunk/lib/Analysis/IPA/InlineCost.cpp
      - copied, changed from r173032, llvm/trunk/lib/Analysis/InlineCost.cpp
Removed:
    llvm/trunk/lib/Analysis/InlineCost.cpp
Modified:
    llvm/trunk/lib/Analysis/CMakeLists.txt
    llvm/trunk/lib/Analysis/IPA/CMakeLists.txt

Modified: llvm/trunk/lib/Analysis/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/CMakeLists.txt?rev=173033&r1=173032&r2=173033&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/CMakeLists.txt (original)
+++ llvm/trunk/lib/Analysis/CMakeLists.txt Mon Jan 21 06:09:41 2013
@@ -18,7 +18,6 @@
   DomPrinter.cpp
   DominanceFrontier.cpp
   IVUsers.cpp
-  InlineCost.cpp
   InstCount.cpp
   InstructionSimplify.cpp
   Interval.cpp

Modified: llvm/trunk/lib/Analysis/IPA/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/IPA/CMakeLists.txt?rev=173033&r1=173032&r2=173033&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/IPA/CMakeLists.txt (original)
+++ llvm/trunk/lib/Analysis/IPA/CMakeLists.txt Mon Jan 21 06:09:41 2013
@@ -5,6 +5,7 @@
   FindUsedTypes.cpp
   GlobalsModRef.cpp
   IPA.cpp
+  InlineCost.cpp
   )
 
 add_dependencies(LLVMipa intrinsics_gen)

Copied: llvm/trunk/lib/Analysis/IPA/InlineCost.cpp (from r173032, llvm/trunk/lib/Analysis/InlineCost.cpp)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/IPA/InlineCost.cpp?p2=llvm/trunk/lib/Analysis/IPA/InlineCost.cpp&p1=llvm/trunk/lib/Analysis/InlineCost.cpp&r1=173032&r2=173033&rev=173033&view=diff
==============================================================================
    (empty)

Removed: llvm/trunk/lib/Analysis/InlineCost.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/InlineCost.cpp?rev=173032&view=auto
==============================================================================
--- llvm/trunk/lib/Analysis/InlineCost.cpp (original)
+++ llvm/trunk/lib/Analysis/InlineCost.cpp (removed)
@@ -1,1237 +0,0 @@
-//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements inline cost analysis.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "inline-cost"
-#include "llvm/Analysis/InlineCost.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/InstVisitor.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-
-STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
-
-namespace {
-
-class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
-  typedef InstVisitor<CallAnalyzer, bool> Base;
-  friend class InstVisitor<CallAnalyzer, bool>;
-
-  // DataLayout if available, or null.
-  const DataLayout *const TD;
-
-  /// The TargetTransformInfo available for this compilation.
-  const TargetTransformInfo &TTI;
-
-  // The called function.
-  Function &F;
-
-  int Threshold;
-  int Cost;
-
-  bool IsCallerRecursive;
-  bool IsRecursiveCall;
-  bool ExposesReturnsTwice;
-  bool HasDynamicAlloca;
-  bool ContainsNoDuplicateCall;
-
-  /// Number of bytes allocated statically by the callee.
-  uint64_t AllocatedSize;
-  unsigned NumInstructions, NumVectorInstructions;
-  int FiftyPercentVectorBonus, TenPercentVectorBonus;
-  int VectorBonus;
-
-  // While we walk the potentially-inlined instructions, we build up and
-  // maintain a mapping of simplified values specific to this callsite. The
-  // idea is to propagate any special information we have about arguments to
-  // this call through the inlinable section of the function, and account for
-  // likely simplifications post-inlining. The most important aspect we track
-  // is CFG altering simplifications -- when we prove a basic block dead, that
-  // can cause dramatic shifts in the cost of inlining a function.
-  DenseMap<Value *, Constant *> SimplifiedValues;
-
-  // Keep track of the values which map back (through function arguments) to
-  // allocas on the caller stack which could be simplified through SROA.
-  DenseMap<Value *, Value *> SROAArgValues;
-
-  // The mapping of caller Alloca values to their accumulated cost savings. If
-  // we have to disable SROA for one of the allocas, this tells us how much
-  // cost must be added.
-  DenseMap<Value *, int> SROAArgCosts;
-
-  // Keep track of values which map to a pointer base and constant offset.
-  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
-
-  // Custom simplification helper routines.
-  bool isAllocaDerivedArg(Value *V);
-  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
-                            DenseMap<Value *, int>::iterator &CostIt);
-  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
-  void disableSROA(Value *V);
-  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
-                          int InstructionCost);
-  bool handleSROACandidate(bool IsSROAValid,
-                           DenseMap<Value *, int>::iterator CostIt,
-                           int InstructionCost);
-  bool isGEPOffsetConstant(GetElementPtrInst &GEP);
-  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
-  bool simplifyCallSite(Function *F, CallSite CS);
-  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
-
-  // Custom analysis routines.
-  bool analyzeBlock(BasicBlock *BB);
-
-  // Disable several entry points to the visitor so we don't accidentally use
-  // them by declaring but not defining them here.
-  void visit(Module *);     void visit(Module &);
-  void visit(Function *);   void visit(Function &);
-  void visit(BasicBlock *); void visit(BasicBlock &);
-
-  // Provide base case for our instruction visit.
-  bool visitInstruction(Instruction &I);
-
-  // Our visit overrides.
-  bool visitAlloca(AllocaInst &I);
-  bool visitPHI(PHINode &I);
-  bool visitGetElementPtr(GetElementPtrInst &I);
-  bool visitBitCast(BitCastInst &I);
-  bool visitPtrToInt(PtrToIntInst &I);
-  bool visitIntToPtr(IntToPtrInst &I);
-  bool visitCastInst(CastInst &I);
-  bool visitUnaryInstruction(UnaryInstruction &I);
-  bool visitICmp(ICmpInst &I);
-  bool visitSub(BinaryOperator &I);
-  bool visitBinaryOperator(BinaryOperator &I);
-  bool visitLoad(LoadInst &I);
-  bool visitStore(StoreInst &I);
-  bool visitExtractValue(ExtractValueInst &I);
-  bool visitInsertValue(InsertValueInst &I);
-  bool visitCallSite(CallSite CS);
-
-public:
-  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
-               Function &Callee, int Threshold)
-      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
-        IsCallerRecursive(false), IsRecursiveCall(false),
-        ExposesReturnsTwice(false), HasDynamicAlloca(false),
-        ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
-        NumVectorInstructions(0), FiftyPercentVectorBonus(0),
-        TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
-        NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
-        NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
-        SROACostSavings(0), SROACostSavingsLost(0) {}
-
-  bool analyzeCall(CallSite CS);
-
-  int getThreshold() { return Threshold; }
-  int getCost() { return Cost; }
-
-  // Keep a bunch of stats about the cost savings found so we can print them
-  // out when debugging.
-  unsigned NumConstantArgs;
-  unsigned NumConstantOffsetPtrArgs;
-  unsigned NumAllocaArgs;
-  unsigned NumConstantPtrCmps;
-  unsigned NumConstantPtrDiffs;
-  unsigned NumInstructionsSimplified;
-  unsigned SROACostSavings;
-  unsigned SROACostSavingsLost;
-
-  void dump();
-};
-
-} // namespace
-
-/// \brief Test whether the given value is an Alloca-derived function argument.
-bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
-  return SROAArgValues.count(V);
-}
-
-/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
-/// Returns false if V does not map to a SROA-candidate.
-bool CallAnalyzer::lookupSROAArgAndCost(
-    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
-  if (SROAArgValues.empty() || SROAArgCosts.empty())
-    return false;
-
-  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
-  if (ArgIt == SROAArgValues.end())
-    return false;
-
-  Arg = ArgIt->second;
-  CostIt = SROAArgCosts.find(Arg);
-  return CostIt != SROAArgCosts.end();
-}
-
-/// \brief Disable SROA for the candidate marked by this cost iterator.
-///
-/// This marks the candidate as no longer viable for SROA, and adds the cost
-/// savings associated with it back into the inline cost measurement.
-void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
-  // If we're no longer able to perform SROA we need to undo its cost savings
-  // and prevent subsequent analysis.
-  Cost += CostIt->second;
-  SROACostSavings -= CostIt->second;
-  SROACostSavingsLost += CostIt->second;
-  SROAArgCosts.erase(CostIt);
-}
-
-/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
-void CallAnalyzer::disableSROA(Value *V) {
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
-    disableSROA(CostIt);
-}
-
-/// \brief Accumulate the given cost for a particular SROA candidate.
-void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
-                                      int InstructionCost) {
-  CostIt->second += InstructionCost;
-  SROACostSavings += InstructionCost;
-}
-
-/// \brief Helper for the common pattern of handling a SROA candidate.
-/// Either accumulates the cost savings if the SROA remains valid, or disables
-/// SROA for the candidate.
-bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
-                                       DenseMap<Value *, int>::iterator CostIt,
-                                       int InstructionCost) {
-  if (IsSROAValid) {
-    accumulateSROACost(CostIt, InstructionCost);
-    return true;
-  }
-
-  disableSROA(CostIt);
-  return false;
-}
-
-/// \brief Check whether a GEP's indices are all constant.
-///
-/// Respects any simplified values known during the analysis of this callsite.
-bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
-  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
-    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
-      return false;
-
-  return true;
-}
-
-/// \brief Accumulate a constant GEP offset into an APInt if possible.
-///
-/// Returns false if unable to compute the offset for any reason. Respects any
-/// simplified values known during the analysis of this callsite.
-bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
-  if (!TD)
-    return false;
-
-  unsigned IntPtrWidth = TD->getPointerSizeInBits();
-  assert(IntPtrWidth == Offset.getBitWidth());
-
-  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
-       GTI != GTE; ++GTI) {
-    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
-    if (!OpC)
-      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
-        OpC = dyn_cast<ConstantInt>(SimpleOp);
-    if (!OpC)
-      return false;
-    if (OpC->isZero()) continue;
-
-    // Handle a struct index, which adds its field offset to the pointer.
-    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
-      unsigned ElementIdx = OpC->getZExtValue();
-      const StructLayout *SL = TD->getStructLayout(STy);
-      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
-      continue;
-    }
-
-    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
-    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
-  }
-  return true;
-}
-
-bool CallAnalyzer::visitAlloca(AllocaInst &I) {
-  // FIXME: Check whether inlining will turn a dynamic alloca into a static
-  // alloca, and handle that case.
-
-  // Accumulate the allocated size.
-  if (I.isStaticAlloca()) {
-    Type *Ty = I.getAllocatedType();
-    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
-                      Ty->getPrimitiveSizeInBits());
-  }
-
-  // We will happily inline static alloca instructions.
-  if (I.isStaticAlloca())
-    return Base::visitAlloca(I);
-
-  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
-  // a variety of reasons, and so we would like to not inline them into
-  // functions which don't currently have a dynamic alloca. This simply
-  // disables inlining altogether in the presence of a dynamic alloca.
-  HasDynamicAlloca = true;
-  return false;
-}
-
-bool CallAnalyzer::visitPHI(PHINode &I) {
-  // FIXME: We should potentially be tracking values through phi nodes,
-  // especially when they collapse to a single value due to deleted CFG edges
-  // during inlining.
-
-  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
-  // though we don't want to propagate it's bonuses. The idea is to disable
-  // SROA if it *might* be used in an inappropriate manner.
-
-  // Phi nodes are always zero-cost.
-  return true;
-}
-
-bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
-                                            SROAArg, CostIt);
-
-  // Try to fold GEPs of constant-offset call site argument pointers. This
-  // requires target data and inbounds GEPs.
-  if (TD && I.isInBounds()) {
-    // Check if we have a base + offset for the pointer.
-    Value *Ptr = I.getPointerOperand();
-    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
-    if (BaseAndOffset.first) {
-      // Check if the offset of this GEP is constant, and if so accumulate it
-      // into Offset.
-      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
-        // Non-constant GEPs aren't folded, and disable SROA.
-        if (SROACandidate)
-          disableSROA(CostIt);
-        return false;
-      }
-
-      // Add the result as a new mapping to Base + Offset.
-      ConstantOffsetPtrs[&I] = BaseAndOffset;
-
-      // Also handle SROA candidates here, we already know that the GEP is
-      // all-constant indexed.
-      if (SROACandidate)
-        SROAArgValues[&I] = SROAArg;
-
-      return true;
-    }
-  }
-
-  if (isGEPOffsetConstant(I)) {
-    if (SROACandidate)
-      SROAArgValues[&I] = SROAArg;
-
-    // Constant GEPs are modeled as free.
-    return true;
-  }
-
-  // Variable GEPs will require math and will disable SROA.
-  if (SROACandidate)
-    disableSROA(CostIt);
-  return false;
-}
-
-bool CallAnalyzer::visitBitCast(BitCastInst &I) {
-  // Propagate constants through bitcasts.
-  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
-  if (!COp)
-    COp = SimplifiedValues.lookup(I.getOperand(0));
-  if (COp)
-    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
-      SimplifiedValues[&I] = C;
-      return true;
-    }
-
-  // Track base/offsets through casts
-  std::pair<Value *, APInt> BaseAndOffset
-    = ConstantOffsetPtrs.lookup(I.getOperand(0));
-  // Casts don't change the offset, just wrap it up.
-  if (BaseAndOffset.first)
-    ConstantOffsetPtrs[&I] = BaseAndOffset;
-
-  // Also look for SROA candidates here.
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
-    SROAArgValues[&I] = SROAArg;
-
-  // Bitcasts are always zero cost.
-  return true;
-}
-
-bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
-  // Propagate constants through ptrtoint.
-  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
-  if (!COp)
-    COp = SimplifiedValues.lookup(I.getOperand(0));
-  if (COp)
-    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
-      SimplifiedValues[&I] = C;
-      return true;
-    }
-
-  // Track base/offset pairs when converted to a plain integer provided the
-  // integer is large enough to represent the pointer.
-  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
-  if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
-    std::pair<Value *, APInt> BaseAndOffset
-      = ConstantOffsetPtrs.lookup(I.getOperand(0));
-    if (BaseAndOffset.first)
-      ConstantOffsetPtrs[&I] = BaseAndOffset;
-  }
-
-  // This is really weird. Technically, ptrtoint will disable SROA. However,
-  // unless that ptrtoint is *used* somewhere in the live basic blocks after
-  // inlining, it will be nuked, and SROA should proceed. All of the uses which
-  // would block SROA would also block SROA if applied directly to a pointer,
-  // and so we can just add the integer in here. The only places where SROA is
-  // preserved either cannot fire on an integer, or won't in-and-of themselves
-  // disable SROA (ext) w/o some later use that we would see and disable.
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
-    SROAArgValues[&I] = SROAArg;
-
-  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
-}
-
-bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
-  // Propagate constants through ptrtoint.
-  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
-  if (!COp)
-    COp = SimplifiedValues.lookup(I.getOperand(0));
-  if (COp)
-    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
-      SimplifiedValues[&I] = C;
-      return true;
-    }
-
-  // Track base/offset pairs when round-tripped through a pointer without
-  // modifications provided the integer is not too large.
-  Value *Op = I.getOperand(0);
-  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
-  if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
-    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
-    if (BaseAndOffset.first)
-      ConstantOffsetPtrs[&I] = BaseAndOffset;
-  }
-
-  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
-    SROAArgValues[&I] = SROAArg;
-
-  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
-}
-
-bool CallAnalyzer::visitCastInst(CastInst &I) {
-  // Propagate constants through ptrtoint.
-  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
-  if (!COp)
-    COp = SimplifiedValues.lookup(I.getOperand(0));
-  if (COp)
-    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
-      SimplifiedValues[&I] = C;
-      return true;
-    }
-
-  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
-  disableSROA(I.getOperand(0));
-
-  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
-}
-
-bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
-  Value *Operand = I.getOperand(0);
-  Constant *Ops[1] = { dyn_cast<Constant>(Operand) };
-  if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand)))
-    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
-                                               Ops, TD)) {
-      SimplifiedValues[&I] = C;
-      return true;
-    }
-
-  // Disable any SROA on the argument to arbitrary unary operators.
-  disableSROA(Operand);
-
-  return false;
-}
-
-bool CallAnalyzer::visitICmp(ICmpInst &I) {
-  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
-  // First try to handle simplified comparisons.
-  if (!isa<Constant>(LHS))
-    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
-      LHS = SimpleLHS;
-  if (!isa<Constant>(RHS))
-    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
-      RHS = SimpleRHS;
-  if (Constant *CLHS = dyn_cast<Constant>(LHS))
-    if (Constant *CRHS = dyn_cast<Constant>(RHS))
-      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
-        SimplifiedValues[&I] = C;
-        return true;
-      }
-
-  // Otherwise look for a comparison between constant offset pointers with
-  // a common base.
-  Value *LHSBase, *RHSBase;
-  APInt LHSOffset, RHSOffset;
-  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
-  if (LHSBase) {
-    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
-    if (RHSBase && LHSBase == RHSBase) {
-      // We have common bases, fold the icmp to a constant based on the
-      // offsets.
-      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
-      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
-      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
-        SimplifiedValues[&I] = C;
-        ++NumConstantPtrCmps;
-        return true;
-      }
-    }
-  }
-
-  // If the comparison is an equality comparison with null, we can simplify it
-  // for any alloca-derived argument.
-  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
-    if (isAllocaDerivedArg(I.getOperand(0))) {
-      // We can actually predict the result of comparisons between an
-      // alloca-derived value and null. Note that this fires regardless of
-      // SROA firing.
-      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
-      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
-                                        : ConstantInt::getFalse(I.getType());
-      return true;
-    }
-
-  // Finally check for SROA candidates in comparisons.
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
-    if (isa<ConstantPointerNull>(I.getOperand(1))) {
-      accumulateSROACost(CostIt, InlineConstants::InstrCost);
-      return true;
-    }
-
-    disableSROA(CostIt);
-  }
-
-  return false;
-}
-
-bool CallAnalyzer::visitSub(BinaryOperator &I) {
-  // Try to handle a special case: we can fold computing the difference of two
-  // constant-related pointers.
-  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
-  Value *LHSBase, *RHSBase;
-  APInt LHSOffset, RHSOffset;
-  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
-  if (LHSBase) {
-    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
-    if (RHSBase && LHSBase == RHSBase) {
-      // We have common bases, fold the subtract to a constant based on the
-      // offsets.
-      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
-      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
-      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
-        SimplifiedValues[&I] = C;
-        ++NumConstantPtrDiffs;
-        return true;
-      }
-    }
-  }
-
-  // Otherwise, fall back to the generic logic for simplifying and handling
-  // instructions.
-  return Base::visitSub(I);
-}
-
-bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
-  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
-  if (!isa<Constant>(LHS))
-    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
-      LHS = SimpleLHS;
-  if (!isa<Constant>(RHS))
-    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
-      RHS = SimpleRHS;
-  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
-  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
-    SimplifiedValues[&I] = C;
-    return true;
-  }
-
-  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
-  disableSROA(LHS);
-  disableSROA(RHS);
-
-  return false;
-}
-
-bool CallAnalyzer::visitLoad(LoadInst &I) {
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
-    if (I.isSimple()) {
-      accumulateSROACost(CostIt, InlineConstants::InstrCost);
-      return true;
-    }
-
-    disableSROA(CostIt);
-  }
-
-  return false;
-}
-
-bool CallAnalyzer::visitStore(StoreInst &I) {
-  Value *SROAArg;
-  DenseMap<Value *, int>::iterator CostIt;
-  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
-    if (I.isSimple()) {
-      accumulateSROACost(CostIt, InlineConstants::InstrCost);
-      return true;
-    }
-
-    disableSROA(CostIt);
-  }
-
-  return false;
-}
-
-bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
-  // Constant folding for extract value is trivial.
-  Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
-  if (!C)
-    C = SimplifiedValues.lookup(I.getAggregateOperand());
-  if (C) {
-    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
-    return true;
-  }
-
-  // SROA can look through these but give them a cost.
-  return false;
-}
-
-bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
-  // Constant folding for insert value is trivial.
-  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
-  if (!AggC)
-    AggC = SimplifiedValues.lookup(I.getAggregateOperand());
-  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
-  if (!InsertedC)
-    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
-  if (AggC && InsertedC) {
-    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
-                                                        I.getIndices());
-    return true;
-  }
-
-  // SROA can look through these but give them a cost.
-  return false;
-}
-
-/// \brief Try to simplify a call site.
-///
-/// Takes a concrete function and callsite and tries to actually simplify it by
-/// analyzing the arguments and call itself with instsimplify. Returns true if
-/// it has simplified the callsite to some other entity (a constant), making it
-/// free.
-bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
-  // FIXME: Using the instsimplify logic directly for this is inefficient
-  // because we have to continually rebuild the argument list even when no
-  // simplifications can be performed. Until that is fixed with remapping
-  // inside of instsimplify, directly constant fold calls here.
-  if (!canConstantFoldCallTo(F))
-    return false;
-
-  // Try to re-map the arguments to constants.
-  SmallVector<Constant *, 4> ConstantArgs;
-  ConstantArgs.reserve(CS.arg_size());
-  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
-       I != E; ++I) {
-    Constant *C = dyn_cast<Constant>(*I);
-    if (!C)
-      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
-    if (!C)
-      return false; // This argument doesn't map to a constant.
-
-    ConstantArgs.push_back(C);
-  }
-  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
-    SimplifiedValues[CS.getInstruction()] = C;
-    return true;
-  }
-
-  return false;
-}
-
-bool CallAnalyzer::visitCallSite(CallSite CS) {
-  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
-      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
-                                      Attribute::ReturnsTwice)) {
-    // This aborts the entire analysis.
-    ExposesReturnsTwice = true;
-    return false;
-  }
-  if (CS.isCall() &&
-      cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
-    ContainsNoDuplicateCall = true;
-
-  if (Function *F = CS.getCalledFunction()) {
-    // When we have a concrete function, first try to simplify it directly.
-    if (simplifyCallSite(F, CS))
-      return true;
-
-    // Next check if it is an intrinsic we know about.
-    // FIXME: Lift this into part of the InstVisitor.
-    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
-      switch (II->getIntrinsicID()) {
-      default:
-        return Base::visitCallSite(CS);
-
-      case Intrinsic::memset:
-      case Intrinsic::memcpy:
-      case Intrinsic::memmove:
-        // SROA can usually chew through these intrinsics, but they aren't free.
-        return false;
-      }
-    }
-
-    if (F == CS.getInstruction()->getParent()->getParent()) {
-      // This flag will fully abort the analysis, so don't bother with anything
-      // else.
-      IsRecursiveCall = true;
-      return false;
-    }
-
-    if (!callIsSmall(CS)) {
-      // We account for the average 1 instruction per call argument setup
-      // here.
-      Cost += CS.arg_size() * InlineConstants::InstrCost;
-
-      // Everything other than inline ASM will also have a significant cost
-      // merely from making the call.
-      if (!isa<InlineAsm>(CS.getCalledValue()))
-        Cost += InlineConstants::CallPenalty;
-    }
-
-    return Base::visitCallSite(CS);
-  }
-
-  // Otherwise we're in a very special case -- an indirect function call. See
-  // if we can be particularly clever about this.
-  Value *Callee = CS.getCalledValue();
-
-  // First, pay the price of the argument setup. We account for the average
-  // 1 instruction per call argument setup here.
-  Cost += CS.arg_size() * InlineConstants::InstrCost;
-
-  // Next, check if this happens to be an indirect function call to a known
-  // function in this inline context. If not, we've done all we can.
-  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
-  if (!F)
-    return Base::visitCallSite(CS);
-
-  // If we have a constant that we are calling as a function, we can peer
-  // through it and see the function target. This happens not infrequently
-  // during devirtualization and so we want to give it a hefty bonus for
-  // inlining, but cap that bonus in the event that inlining wouldn't pan
-  // out. Pretend to inline the function, with a custom threshold.
-  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
-  if (CA.analyzeCall(CS)) {
-    // We were able to inline the indirect call! Subtract the cost from the
-    // bonus we want to apply, but don't go below zero.
-    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
-  }
-
-  return Base::visitCallSite(CS);
-}
-
-bool CallAnalyzer::visitInstruction(Instruction &I) {
-  // Some instructions are free. All of the free intrinsics can also be
-  // handled by SROA, etc.
-  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
-    return true;
-
-  // We found something we don't understand or can't handle. Mark any SROA-able
-  // values in the operand list as no longer viable.
-  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
-    disableSROA(*OI);
-
-  return false;
-}
-
-
-/// \brief Analyze a basic block for its contribution to the inline cost.
-///
-/// This method walks the analyzer over every instruction in the given basic
-/// block and accounts for their cost during inlining at this callsite. It
-/// aborts early if the threshold has been exceeded or an impossible to inline
-/// construct has been detected. It returns false if inlining is no longer
-/// viable, and true if inlining remains viable.
-bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
-  for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
-       I != E; ++I) {
-    ++NumInstructions;
-    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
-      ++NumVectorInstructions;
-
-    // If the instruction simplified to a constant, there is no cost to this
-    // instruction. Visit the instructions using our InstVisitor to account for
-    // all of the per-instruction logic. The visit tree returns true if we
-    // consumed the instruction in any way, and false if the instruction's base
-    // cost should count against inlining.
-    if (Base::visit(I))
-      ++NumInstructionsSimplified;
-    else
-      Cost += InlineConstants::InstrCost;
-
-    // If the visit this instruction detected an uninlinable pattern, abort.
-    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
-      return false;
-
-    // If the caller is a recursive function then we don't want to inline
-    // functions which allocate a lot of stack space because it would increase
-    // the caller stack usage dramatically.
-    if (IsCallerRecursive &&
-        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
-      return false;
-
-    if (NumVectorInstructions > NumInstructions/2)
-      VectorBonus = FiftyPercentVectorBonus;
-    else if (NumVectorInstructions > NumInstructions/10)
-      VectorBonus = TenPercentVectorBonus;
-    else
-      VectorBonus = 0;
-
-    // Check if we've past the threshold so we don't spin in huge basic
-    // blocks that will never inline.
-    if (Cost > (Threshold + VectorBonus))
-      return false;
-  }
-
-  return true;
-}
-
-/// \brief Compute the base pointer and cumulative constant offsets for V.
-///
-/// This strips all constant offsets off of V, leaving it the base pointer, and
-/// accumulates the total constant offset applied in the returned constant. It
-/// returns 0 if V is not a pointer, and returns the constant '0' if there are
-/// no constant offsets applied.
-ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
-  if (!TD || !V->getType()->isPointerTy())
-    return 0;
-
-  unsigned IntPtrWidth = TD->getPointerSizeInBits();
-  APInt Offset = APInt::getNullValue(IntPtrWidth);
-
-  // Even though we don't look through PHI nodes, we could be called on an
-  // instruction in an unreachable block, which may be on a cycle.
-  SmallPtrSet<Value *, 4> Visited;
-  Visited.insert(V);
-  do {
-    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
-      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
-        return 0;
-      V = GEP->getPointerOperand();
-    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
-      V = cast<Operator>(V)->getOperand(0);
-    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
-      if (GA->mayBeOverridden())
-        break;
-      V = GA->getAliasee();
-    } else {
-      break;
-    }
-    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
-  } while (Visited.insert(V));
-
-  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
-  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
-}
-
-/// \brief Analyze a call site for potential inlining.
-///
-/// Returns true if inlining this call is viable, and false if it is not
-/// viable. It computes the cost and adjusts the threshold based on numerous
-/// factors and heuristics. If this method returns false but the computed cost
-/// is below the computed threshold, then inlining was forcibly disabled by
-/// some artifact of the routine.
-bool CallAnalyzer::analyzeCall(CallSite CS) {
-  ++NumCallsAnalyzed;
-
-  // Track whether the post-inlining function would have more than one basic
-  // block. A single basic block is often intended for inlining. Balloon the
-  // threshold by 50% until we pass the single-BB phase.
-  bool SingleBB = true;
-  int SingleBBBonus = Threshold / 2;
-  Threshold += SingleBBBonus;
-
-  // Perform some tweaks to the cost and threshold based on the direct
-  // callsite information.
-
-  // We want to more aggressively inline vector-dense kernels, so up the
-  // threshold, and we'll lower it if the % of vector instructions gets too
-  // low.
-  assert(NumInstructions == 0);
-  assert(NumVectorInstructions == 0);
-  FiftyPercentVectorBonus = Threshold;
-  TenPercentVectorBonus = Threshold / 2;
-
-  // Give out bonuses per argument, as the instructions setting them up will
-  // be gone after inlining.
-  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
-    if (TD && CS.isByValArgument(I)) {
-      // We approximate the number of loads and stores needed by dividing the
-      // size of the byval type by the target's pointer size.
-      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
-      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
-      unsigned PointerSize = TD->getPointerSizeInBits();
-      // Ceiling division.
-      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
-
-      // If it generates more than 8 stores it is likely to be expanded as an
-      // inline memcpy so we take that as an upper bound. Otherwise we assume
-      // one load and one store per word copied.
-      // FIXME: The maxStoresPerMemcpy setting from the target should be used
-      // here instead of a magic number of 8, but it's not available via
-      // DataLayout.
-      NumStores = std::min(NumStores, 8U);
-
-      Cost -= 2 * NumStores * InlineConstants::InstrCost;
-    } else {
-      // For non-byval arguments subtract off one instruction per call
-      // argument.
-      Cost -= InlineConstants::InstrCost;
-    }
-  }
-
-  // If there is only one call of the function, and it has internal linkage,
-  // the cost of inlining it drops dramatically.
-  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
-    &F == CS.getCalledFunction();
-  if (OnlyOneCallAndLocalLinkage)
-    Cost += InlineConstants::LastCallToStaticBonus;
-
-  // If the instruction after the call, or if the normal destination of the
-  // invoke is an unreachable instruction, the function is noreturn. As such,
-  // there is little point in inlining this unless there is literally zero
-  // cost.
-  Instruction *Instr = CS.getInstruction();
-  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
-    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
-      Threshold = 1;
-  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
-    Threshold = 1;
-
-  // If this function uses the coldcc calling convention, prefer not to inline
-  // it.
-  if (F.getCallingConv() == CallingConv::Cold)
-    Cost += InlineConstants::ColdccPenalty;
-
-  // Check if we're done. This can happen due to bonuses and penalties.
-  if (Cost > Threshold)
-    return false;
-
-  if (F.empty())
-    return true;
-
-  Function *Caller = CS.getInstruction()->getParent()->getParent();
-  // Check if the caller function is recursive itself.
-  for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
-       U != E; ++U) {
-    CallSite Site(cast<Value>(*U));
-    if (!Site)
-      continue;
-    Instruction *I = Site.getInstruction();
-    if (I->getParent()->getParent() == Caller) {
-      IsCallerRecursive = true;
-      break;
-    }
-  }
-
-  // Track whether we've seen a return instruction. The first return
-  // instruction is free, as at least one will usually disappear in inlining.
-  bool HasReturn = false;
-
-  // Populate our simplified values by mapping from function arguments to call
-  // arguments with known important simplifications.
-  CallSite::arg_iterator CAI = CS.arg_begin();
-  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
-       FAI != FAE; ++FAI, ++CAI) {
-    assert(CAI != CS.arg_end());
-    if (Constant *C = dyn_cast<Constant>(CAI))
-      SimplifiedValues[FAI] = C;
-
-    Value *PtrArg = *CAI;
-    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
-      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
-
-      // We can SROA any pointer arguments derived from alloca instructions.
-      if (isa<AllocaInst>(PtrArg)) {
-        SROAArgValues[FAI] = PtrArg;
-        SROAArgCosts[PtrArg] = 0;
-      }
-    }
-  }
-  NumConstantArgs = SimplifiedValues.size();
-  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
-  NumAllocaArgs = SROAArgValues.size();
-
-  // The worklist of live basic blocks in the callee *after* inlining. We avoid
-  // adding basic blocks of the callee which can be proven to be dead for this
-  // particular call site in order to get more accurate cost estimates. This
-  // requires a somewhat heavyweight iteration pattern: we need to walk the
-  // basic blocks in a breadth-first order as we insert live successors. To
-  // accomplish this, prioritizing for small iterations because we exit after
-  // crossing our threshold, we use a small-size optimized SetVector.
-  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
-                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector;
-  BBSetVector BBWorklist;
-  BBWorklist.insert(&F.getEntryBlock());
-  // Note that we *must not* cache the size, this loop grows the worklist.
-  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
-    // Bail out the moment we cross the threshold. This means we'll under-count
-    // the cost, but only when undercounting doesn't matter.
-    if (Cost > (Threshold + VectorBonus))
-      break;
-
-    BasicBlock *BB = BBWorklist[Idx];
-    if (BB->empty())
-      continue;
-
-    // Handle the terminator cost here where we can track returns and other
-    // function-wide constructs.
-    TerminatorInst *TI = BB->getTerminator();
-
-    // We never want to inline functions that contain an indirectbr.  This is
-    // incorrect because all the blockaddress's (in static global initializers
-    // for example) would be referring to the original function, and this
-    // indirect jump would jump from the inlined copy of the function into the 
-    // original function which is extremely undefined behavior.
-    // FIXME: This logic isn't really right; we can safely inline functions
-    // with indirectbr's as long as no other function or global references the
-    // blockaddress of a block within the current function.  And as a QOI issue,
-    // if someone is using a blockaddress without an indirectbr, and that
-    // reference somehow ends up in another function or global, we probably
-    // don't want to inline this function.
-    if (isa<IndirectBrInst>(TI))
-      return false;
-
-    if (!HasReturn && isa<ReturnInst>(TI))
-      HasReturn = true;
-    else
-      Cost += InlineConstants::InstrCost;
-
-    // Analyze the cost of this block. If we blow through the threshold, this
-    // returns false, and we can bail on out.
-    if (!analyzeBlock(BB)) {
-      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
-        return false;
-
-      // If the caller is a recursive function then we don't want to inline
-      // functions which allocate a lot of stack space because it would increase
-      // the caller stack usage dramatically.
-      if (IsCallerRecursive &&
-          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
-        return false;
-
-      break;
-    }
-
-    // Add in the live successors by first checking whether we have terminator
-    // that may be simplified based on the values simplified by this call.
-    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
-      if (BI->isConditional()) {
-        Value *Cond = BI->getCondition();
-        if (ConstantInt *SimpleCond
-              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
-          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
-          continue;
-        }
-      }
-    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
-      Value *Cond = SI->getCondition();
-      if (ConstantInt *SimpleCond
-            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
-        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
-        continue;
-      }
-    }
-
-    // If we're unable to select a particular successor, just count all of
-    // them.
-    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
-         ++TIdx)
-      BBWorklist.insert(TI->getSuccessor(TIdx));
-
-    // If we had any successors at this point, than post-inlining is likely to
-    // have them as well. Note that we assume any basic blocks which existed
-    // due to branches or switches which folded above will also fold after
-    // inlining.
-    if (SingleBB && TI->getNumSuccessors() > 1) {
-      // Take off the bonus we applied to the threshold.
-      Threshold -= SingleBBBonus;
-      SingleBB = false;
-    }
-  }
-
-  // If this is a noduplicate call, we can still inline as long as 
-  // inlining this would cause the removal of the caller (so the instruction
-  // is not actually duplicated, just moved).
-  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
-    return false;
-
-  Threshold += VectorBonus;
-
-  return Cost < Threshold;
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-/// \brief Dump stats about this call's analysis.
-void CallAnalyzer::dump() {
-#define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
-  DEBUG_PRINT_STAT(NumConstantArgs);
-  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
-  DEBUG_PRINT_STAT(NumAllocaArgs);
-  DEBUG_PRINT_STAT(NumConstantPtrCmps);
-  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
-  DEBUG_PRINT_STAT(NumInstructionsSimplified);
-  DEBUG_PRINT_STAT(SROACostSavings);
-  DEBUG_PRINT_STAT(SROACostSavingsLost);
-  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
-#undef DEBUG_PRINT_STAT
-}
-#endif
-
-INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
-                      true, true)
-INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
-INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
-                    true, true)
-
-char InlineCostAnalysis::ID = 0;
-
-InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
-
-InlineCostAnalysis::~InlineCostAnalysis() {}
-
-void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
-  AU.setPreservesAll();
-  AU.addRequired<TargetTransformInfo>();
-  CallGraphSCCPass::getAnalysisUsage(AU);
-}
-
-bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
-  TD = getAnalysisIfAvailable<DataLayout>();
-  TTI = &getAnalysis<TargetTransformInfo>();
-  return false;
-}
-
-InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
-  return getInlineCost(CS, CS.getCalledFunction(), Threshold);
-}
-
-InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
-                                             int Threshold) {
-  // Cannot inline indirect calls.
-  if (!Callee)
-    return llvm::InlineCost::getNever();
-
-  // Calls to functions with always-inline attributes should be inlined
-  // whenever possible.
-  if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
-                                           Attribute::AlwaysInline)) {
-    if (isInlineViable(*Callee))
-      return llvm::InlineCost::getAlways();
-    return llvm::InlineCost::getNever();
-  }
-
-  // Don't inline functions which can be redefined at link-time to mean
-  // something else.  Don't inline functions marked noinline or call sites
-  // marked noinline.
-  if (Callee->mayBeOverridden() ||
-      Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
-                                           Attribute::NoInline) ||
-      CS.isNoInline())
-    return llvm::InlineCost::getNever();
-
-  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
-        << "...\n");
-
-  CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
-  bool ShouldInline = CA.analyzeCall(CS);
-
-  DEBUG(CA.dump());
-
-  // Check if there was a reason to force inlining or no inlining.
-  if (!ShouldInline && CA.getCost() < CA.getThreshold())
-    return InlineCost::getNever();
-  if (ShouldInline && CA.getCost() >= CA.getThreshold())
-    return InlineCost::getAlways();
-
-  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
-}
-
-bool InlineCostAnalysis::isInlineViable(Function &F) {
-  bool ReturnsTwice =
-    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
-                                   Attribute::ReturnsTwice);
-  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
-    // Disallow inlining of functions which contain an indirect branch.
-    if (isa<IndirectBrInst>(BI->getTerminator()))
-      return false;
-
-    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
-         ++II) {
-      CallSite CS(II);
-      if (!CS)
-        continue;
-
-      // Disallow recursive calls.
-      if (&F == CS.getCalledFunction())
-        return false;
-
-      // Disallow calls which expose returns-twice to a function not previously
-      // attributed as such.
-      if (!ReturnsTwice && CS.isCall() &&
-          cast<CallInst>(CS.getInstruction())->canReturnTwice())
-        return false;
-    }
-  }
-
-  return true;
-}





More information about the llvm-commits mailing list