[llvm-commits] [llvm] r171359 [2/2] - in /llvm/trunk: lib/ lib/Analysis/ lib/IR/ lib/VMCore/ utils/ utils/llvm-build/llvmbuild/
Chandler Carruth
chandlerc at gmail.com
Wed Jan 2 01:11:00 PST 2013
Removed: llvm/trunk/lib/VMCore/TargetTransformInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/TargetTransformInfo.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/TargetTransformInfo.cpp (original)
+++ llvm/trunk/lib/VMCore/TargetTransformInfo.cpp (removed)
@@ -1,31 +0,0 @@
-//===- llvm/VMCore/TargetTransformInfo.cpp ----------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/TargetTransformInfo.h"
-#include "llvm/Support/ErrorHandling.h"
-
-using namespace llvm;
-
-/// Default ctor.
-///
-/// @note This has to exist, because this is a pass, but it should never be
-/// used.
-TargetTransformInfo::TargetTransformInfo() : ImmutablePass(ID) {
- /// You are seeing this error because your pass required the TTI
- /// using a call to "getAnalysis<TargetTransformInfo>()", and you did
- /// not initialize a machine target which can provide the TTI.
- /// You should use "getAnalysisIfAvailable<TargetTransformInfo>()" instead.
- report_fatal_error("Bad TargetTransformInfo ctor used. "
- "Tool did not specify a TargetTransformInfo to use?");
-}
-
-INITIALIZE_PASS(TargetTransformInfo, "targettransforminfo",
- "Target Transform Info", false, true)
-char TargetTransformInfo::ID = 0;
-
Removed: llvm/trunk/lib/VMCore/Type.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Type.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Type.cpp (original)
+++ llvm/trunk/lib/VMCore/Type.cpp (removed)
@@ -1,767 +0,0 @@
-//===-- Type.cpp - Implement the Type class -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Type class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Type.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/Module.h"
-#include <algorithm>
-#include <cstdarg>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Type Class Implementation
-//===----------------------------------------------------------------------===//
-
-Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
- switch (IDNumber) {
- case VoidTyID : return getVoidTy(C);
- case HalfTyID : return getHalfTy(C);
- case FloatTyID : return getFloatTy(C);
- case DoubleTyID : return getDoubleTy(C);
- case X86_FP80TyID : return getX86_FP80Ty(C);
- case FP128TyID : return getFP128Ty(C);
- case PPC_FP128TyID : return getPPC_FP128Ty(C);
- case LabelTyID : return getLabelTy(C);
- case MetadataTyID : return getMetadataTy(C);
- case X86_MMXTyID : return getX86_MMXTy(C);
- default:
- return 0;
- }
-}
-
-/// getScalarType - If this is a vector type, return the element type,
-/// otherwise return this.
-Type *Type::getScalarType() {
- if (VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType();
- return this;
-}
-
-const Type *Type::getScalarType() const {
- if (const VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType();
- return this;
-}
-
-/// isIntegerTy - Return true if this is an IntegerType of the specified width.
-bool Type::isIntegerTy(unsigned Bitwidth) const {
- return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
-}
-
-// canLosslesslyBitCastTo - Return true if this type can be converted to
-// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
-//
-bool Type::canLosslesslyBitCastTo(Type *Ty) const {
- // Identity cast means no change so return true
- if (this == Ty)
- return true;
-
- // They are not convertible unless they are at least first class types
- if (!this->isFirstClassType() || !Ty->isFirstClassType())
- return false;
-
- // Vector -> Vector conversions are always lossless if the two vector types
- // have the same size, otherwise not. Also, 64-bit vector types can be
- // converted to x86mmx.
- if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
- if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
- return thisPTy->getBitWidth() == thatPTy->getBitWidth();
- if (Ty->getTypeID() == Type::X86_MMXTyID &&
- thisPTy->getBitWidth() == 64)
- return true;
- }
-
- if (this->getTypeID() == Type::X86_MMXTyID)
- if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
- if (thatPTy->getBitWidth() == 64)
- return true;
-
- // At this point we have only various mismatches of the first class types
- // remaining and ptr->ptr. Just select the lossless conversions. Everything
- // else is not lossless.
- if (this->isPointerTy())
- return Ty->isPointerTy();
- return false; // Other types have no identity values
-}
-
-bool Type::isEmptyTy() const {
- const ArrayType *ATy = dyn_cast<ArrayType>(this);
- if (ATy) {
- unsigned NumElements = ATy->getNumElements();
- return NumElements == 0 || ATy->getElementType()->isEmptyTy();
- }
-
- const StructType *STy = dyn_cast<StructType>(this);
- if (STy) {
- unsigned NumElements = STy->getNumElements();
- for (unsigned i = 0; i < NumElements; ++i)
- if (!STy->getElementType(i)->isEmptyTy())
- return false;
- return true;
- }
-
- return false;
-}
-
-unsigned Type::getPrimitiveSizeInBits() const {
- switch (getTypeID()) {
- case Type::HalfTyID: return 16;
- case Type::FloatTyID: return 32;
- case Type::DoubleTyID: return 64;
- case Type::X86_FP80TyID: return 80;
- case Type::FP128TyID: return 128;
- case Type::PPC_FP128TyID: return 128;
- case Type::X86_MMXTyID: return 64;
- case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
- case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
- default: return 0;
- }
-}
-
-/// getScalarSizeInBits - If this is a vector type, return the
-/// getPrimitiveSizeInBits value for the element type. Otherwise return the
-/// getPrimitiveSizeInBits value for this type.
-unsigned Type::getScalarSizeInBits() {
- return getScalarType()->getPrimitiveSizeInBits();
-}
-
-/// getFPMantissaWidth - Return the width of the mantissa of this type. This
-/// is only valid on floating point types. If the FP type does not
-/// have a stable mantissa (e.g. ppc long double), this method returns -1.
-int Type::getFPMantissaWidth() const {
- if (const VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType()->getFPMantissaWidth();
- assert(isFloatingPointTy() && "Not a floating point type!");
- if (getTypeID() == HalfTyID) return 11;
- if (getTypeID() == FloatTyID) return 24;
- if (getTypeID() == DoubleTyID) return 53;
- if (getTypeID() == X86_FP80TyID) return 64;
- if (getTypeID() == FP128TyID) return 113;
- assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
- return -1;
-}
-
-/// isSizedDerivedType - Derived types like structures and arrays are sized
-/// iff all of the members of the type are sized as well. Since asking for
-/// their size is relatively uncommon, move this operation out of line.
-bool Type::isSizedDerivedType() const {
- if (this->isIntegerTy())
- return true;
-
- if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
- return ATy->getElementType()->isSized();
-
- if (const VectorType *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType()->isSized();
-
- if (!this->isStructTy())
- return false;
-
- return cast<StructType>(this)->isSized();
-}
-
-//===----------------------------------------------------------------------===//
-// Subclass Helper Methods
-//===----------------------------------------------------------------------===//
-
-unsigned Type::getIntegerBitWidth() const {
- return cast<IntegerType>(this)->getBitWidth();
-}
-
-bool Type::isFunctionVarArg() const {
- return cast<FunctionType>(this)->isVarArg();
-}
-
-Type *Type::getFunctionParamType(unsigned i) const {
- return cast<FunctionType>(this)->getParamType(i);
-}
-
-unsigned Type::getFunctionNumParams() const {
- return cast<FunctionType>(this)->getNumParams();
-}
-
-StringRef Type::getStructName() const {
- return cast<StructType>(this)->getName();
-}
-
-unsigned Type::getStructNumElements() const {
- return cast<StructType>(this)->getNumElements();
-}
-
-Type *Type::getStructElementType(unsigned N) const {
- return cast<StructType>(this)->getElementType(N);
-}
-
-Type *Type::getSequentialElementType() const {
- return cast<SequentialType>(this)->getElementType();
-}
-
-uint64_t Type::getArrayNumElements() const {
- return cast<ArrayType>(this)->getNumElements();
-}
-
-unsigned Type::getVectorNumElements() const {
- return cast<VectorType>(this)->getNumElements();
-}
-
-unsigned Type::getPointerAddressSpace() const {
- return cast<PointerType>(getScalarType())->getAddressSpace();
-}
-
-
-//===----------------------------------------------------------------------===//
-// Primitive 'Type' data
-//===----------------------------------------------------------------------===//
-
-Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
-Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
-Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
-Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
-Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
-Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
-Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
-Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
-Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
-Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
-
-IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
-IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
-IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
-IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
-IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
-
-IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
- return IntegerType::get(C, N);
-}
-
-PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
- return getHalfTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
- return getFloatTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
- return getDoubleTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
- return getX86_FP80Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
- return getFP128Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
- return getPPC_FP128Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
- return getX86_MMXTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
- return getIntNTy(C, N)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
- return getInt1Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
- return getInt8Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
- return getInt16Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
- return getInt32Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
- return getInt64Ty(C)->getPointerTo(AS);
-}
-
-
-//===----------------------------------------------------------------------===//
-// IntegerType Implementation
-//===----------------------------------------------------------------------===//
-
-IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
- assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
- assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
-
- // Check for the built-in integer types
- switch (NumBits) {
- case 1: return cast<IntegerType>(Type::getInt1Ty(C));
- case 8: return cast<IntegerType>(Type::getInt8Ty(C));
- case 16: return cast<IntegerType>(Type::getInt16Ty(C));
- case 32: return cast<IntegerType>(Type::getInt32Ty(C));
- case 64: return cast<IntegerType>(Type::getInt64Ty(C));
- default:
- break;
- }
-
- IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
-
- if (Entry == 0)
- Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
-
- return Entry;
-}
-
-bool IntegerType::isPowerOf2ByteWidth() const {
- unsigned BitWidth = getBitWidth();
- return (BitWidth > 7) && isPowerOf2_32(BitWidth);
-}
-
-APInt IntegerType::getMask() const {
- return APInt::getAllOnesValue(getBitWidth());
-}
-
-//===----------------------------------------------------------------------===//
-// FunctionType Implementation
-//===----------------------------------------------------------------------===//
-
-FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
- bool IsVarArgs)
- : Type(Result->getContext(), FunctionTyID) {
- Type **SubTys = reinterpret_cast<Type**>(this+1);
- assert(isValidReturnType(Result) && "invalid return type for function");
- setSubclassData(IsVarArgs);
-
- SubTys[0] = const_cast<Type*>(Result);
-
- for (unsigned i = 0, e = Params.size(); i != e; ++i) {
- assert(isValidArgumentType(Params[i]) &&
- "Not a valid type for function argument!");
- SubTys[i+1] = Params[i];
- }
-
- ContainedTys = SubTys;
- NumContainedTys = Params.size() + 1; // + 1 for result type
-}
-
-// FunctionType::get - The factory function for the FunctionType class.
-FunctionType *FunctionType::get(Type *ReturnType,
- ArrayRef<Type*> Params, bool isVarArg) {
- LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
- FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
- LLVMContextImpl::FunctionTypeMap::iterator I =
- pImpl->FunctionTypes.find_as(Key);
- FunctionType *FT;
-
- if (I == pImpl->FunctionTypes.end()) {
- FT = (FunctionType*) pImpl->TypeAllocator.
- Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
- AlignOf<FunctionType>::Alignment);
- new (FT) FunctionType(ReturnType, Params, isVarArg);
- pImpl->FunctionTypes[FT] = true;
- } else {
- FT = I->first;
- }
-
- return FT;
-}
-
-FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
- return get(Result, ArrayRef<Type *>(), isVarArg);
-}
-
-/// isValidReturnType - Return true if the specified type is valid as a return
-/// type.
-bool FunctionType::isValidReturnType(Type *RetTy) {
- return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
- !RetTy->isMetadataTy();
-}
-
-/// isValidArgumentType - Return true if the specified type is valid as an
-/// argument type.
-bool FunctionType::isValidArgumentType(Type *ArgTy) {
- return ArgTy->isFirstClassType();
-}
-
-//===----------------------------------------------------------------------===//
-// StructType Implementation
-//===----------------------------------------------------------------------===//
-
-// Primitive Constructors.
-
-StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
- bool isPacked) {
- LLVMContextImpl *pImpl = Context.pImpl;
- AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
- LLVMContextImpl::StructTypeMap::iterator I =
- pImpl->AnonStructTypes.find_as(Key);
- StructType *ST;
-
- if (I == pImpl->AnonStructTypes.end()) {
- // Value not found. Create a new type!
- ST = new (Context.pImpl->TypeAllocator) StructType(Context);
- ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
- ST->setBody(ETypes, isPacked);
- Context.pImpl->AnonStructTypes[ST] = true;
- } else {
- ST = I->first;
- }
-
- return ST;
-}
-
-void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
- assert(isOpaque() && "Struct body already set!");
-
- setSubclassData(getSubclassData() | SCDB_HasBody);
- if (isPacked)
- setSubclassData(getSubclassData() | SCDB_Packed);
-
- unsigned NumElements = Elements.size();
- Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
- memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
-
- ContainedTys = Elts;
- NumContainedTys = NumElements;
-}
-
-void StructType::setName(StringRef Name) {
- if (Name == getName()) return;
-
- StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
- typedef StringMap<StructType *>::MapEntryTy EntryTy;
-
- // If this struct already had a name, remove its symbol table entry. Don't
- // delete the data yet because it may be part of the new name.
- if (SymbolTableEntry)
- SymbolTable.remove((EntryTy *)SymbolTableEntry);
-
- // If this is just removing the name, we're done.
- if (Name.empty()) {
- if (SymbolTableEntry) {
- // Delete the old string data.
- ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = 0;
- }
- return;
- }
-
- // Look up the entry for the name.
- EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
-
- // While we have a name collision, try a random rename.
- if (Entry->getValue()) {
- SmallString<64> TempStr(Name);
- TempStr.push_back('.');
- raw_svector_ostream TmpStream(TempStr);
- unsigned NameSize = Name.size();
-
- do {
- TempStr.resize(NameSize + 1);
- TmpStream.resync();
- TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
-
- Entry = &getContext().pImpl->
- NamedStructTypes.GetOrCreateValue(TmpStream.str());
- } while (Entry->getValue());
- }
-
- // Okay, we found an entry that isn't used. It's us!
- Entry->setValue(this);
-
- // Delete the old string data.
- if (SymbolTableEntry)
- ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = Entry;
-}
-
-//===----------------------------------------------------------------------===//
-// StructType Helper functions.
-
-StructType *StructType::create(LLVMContext &Context, StringRef Name) {
- StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
- if (!Name.empty())
- ST->setName(Name);
- return ST;
-}
-
-StructType *StructType::get(LLVMContext &Context, bool isPacked) {
- return get(Context, llvm::ArrayRef<Type*>(), isPacked);
-}
-
-StructType *StructType::get(Type *type, ...) {
- assert(type != 0 && "Cannot create a struct type with no elements with this");
- LLVMContext &Ctx = type->getContext();
- va_list ap;
- SmallVector<llvm::Type*, 8> StructFields;
- va_start(ap, type);
- while (type) {
- StructFields.push_back(type);
- type = va_arg(ap, llvm::Type*);
- }
- return llvm::StructType::get(Ctx, StructFields);
-}
-
-StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
- StringRef Name, bool isPacked) {
- StructType *ST = create(Context, Name);
- ST->setBody(Elements, isPacked);
- return ST;
-}
-
-StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
- return create(Context, Elements, StringRef());
-}
-
-StructType *StructType::create(LLVMContext &Context) {
- return create(Context, StringRef());
-}
-
-StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
- bool isPacked) {
- assert(!Elements.empty() &&
- "This method may not be invoked with an empty list");
- return create(Elements[0]->getContext(), Elements, Name, isPacked);
-}
-
-StructType *StructType::create(ArrayRef<Type*> Elements) {
- assert(!Elements.empty() &&
- "This method may not be invoked with an empty list");
- return create(Elements[0]->getContext(), Elements, StringRef());
-}
-
-StructType *StructType::create(StringRef Name, Type *type, ...) {
- assert(type != 0 && "Cannot create a struct type with no elements with this");
- LLVMContext &Ctx = type->getContext();
- va_list ap;
- SmallVector<llvm::Type*, 8> StructFields;
- va_start(ap, type);
- while (type) {
- StructFields.push_back(type);
- type = va_arg(ap, llvm::Type*);
- }
- return llvm::StructType::create(Ctx, StructFields, Name);
-}
-
-bool StructType::isSized() const {
- if ((getSubclassData() & SCDB_IsSized) != 0)
- return true;
- if (isOpaque())
- return false;
-
- // Okay, our struct is sized if all of the elements are, but if one of the
- // elements is opaque, the struct isn't sized *yet*, but may become sized in
- // the future, so just bail out without caching.
- for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
- if (!(*I)->isSized())
- return false;
-
- // Here we cheat a bit and cast away const-ness. The goal is to memoize when
- // we find a sized type, as types can only move from opaque to sized, not the
- // other way.
- const_cast<StructType*>(this)->setSubclassData(
- getSubclassData() | SCDB_IsSized);
- return true;
-}
-
-StringRef StructType::getName() const {
- assert(!isLiteral() && "Literal structs never have names");
- if (SymbolTableEntry == 0) return StringRef();
-
- return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
-}
-
-void StructType::setBody(Type *type, ...) {
- assert(type != 0 && "Cannot create a struct type with no elements with this");
- va_list ap;
- SmallVector<llvm::Type*, 8> StructFields;
- va_start(ap, type);
- while (type) {
- StructFields.push_back(type);
- type = va_arg(ap, llvm::Type*);
- }
- setBody(StructFields);
-}
-
-bool StructType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
-}
-
-/// isLayoutIdentical - Return true if this is layout identical to the
-/// specified struct.
-bool StructType::isLayoutIdentical(StructType *Other) const {
- if (this == Other) return true;
-
- if (isPacked() != Other->isPacked() ||
- getNumElements() != Other->getNumElements())
- return false;
-
- return std::equal(element_begin(), element_end(), Other->element_begin());
-}
-
-/// getTypeByName - Return the type with the specified name, or null if there
-/// is none by that name.
-StructType *Module::getTypeByName(StringRef Name) const {
- StringMap<StructType*>::iterator I =
- getContext().pImpl->NamedStructTypes.find(Name);
- if (I != getContext().pImpl->NamedStructTypes.end())
- return I->second;
- return 0;
-}
-
-
-//===----------------------------------------------------------------------===//
-// CompositeType Implementation
-//===----------------------------------------------------------------------===//
-
-Type *CompositeType::getTypeAtIndex(const Value *V) {
- if (StructType *STy = dyn_cast<StructType>(this)) {
- unsigned Idx =
- (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
- assert(indexValid(Idx) && "Invalid structure index!");
- return STy->getElementType(Idx);
- }
-
- return cast<SequentialType>(this)->getElementType();
-}
-Type *CompositeType::getTypeAtIndex(unsigned Idx) {
- if (StructType *STy = dyn_cast<StructType>(this)) {
- assert(indexValid(Idx) && "Invalid structure index!");
- return STy->getElementType(Idx);
- }
-
- return cast<SequentialType>(this)->getElementType();
-}
-bool CompositeType::indexValid(const Value *V) const {
- if (const StructType *STy = dyn_cast<StructType>(this)) {
- // Structure indexes require (vectors of) 32-bit integer constants. In the
- // vector case all of the indices must be equal.
- if (!V->getType()->getScalarType()->isIntegerTy(32))
- return false;
- const Constant *C = dyn_cast<Constant>(V);
- if (C && V->getType()->isVectorTy())
- C = C->getSplatValue();
- const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
- return CU && CU->getZExtValue() < STy->getNumElements();
- }
-
- // Sequential types can be indexed by any integer.
- return V->getType()->isIntOrIntVectorTy();
-}
-
-bool CompositeType::indexValid(unsigned Idx) const {
- if (const StructType *STy = dyn_cast<StructType>(this))
- return Idx < STy->getNumElements();
- // Sequential types can be indexed by any integer.
- return true;
-}
-
-
-//===----------------------------------------------------------------------===//
-// ArrayType Implementation
-//===----------------------------------------------------------------------===//
-
-ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
- : SequentialType(ArrayTyID, ElType) {
- NumElements = NumEl;
-}
-
-ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
- Type *ElementType = const_cast<Type*>(elementType);
- assert(isValidElementType(ElementType) && "Invalid type for array element!");
-
- LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- ArrayType *&Entry =
- pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
-
- if (Entry == 0)
- Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
- return Entry;
-}
-
-bool ArrayType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
-}
-
-//===----------------------------------------------------------------------===//
-// VectorType Implementation
-//===----------------------------------------------------------------------===//
-
-VectorType::VectorType(Type *ElType, unsigned NumEl)
- : SequentialType(VectorTyID, ElType) {
- NumElements = NumEl;
-}
-
-VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
- Type *ElementType = const_cast<Type*>(elementType);
- assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
- assert(isValidElementType(ElementType) &&
- "Elements of a VectorType must be a primitive type");
-
- LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- VectorType *&Entry = ElementType->getContext().pImpl
- ->VectorTypes[std::make_pair(ElementType, NumElements)];
-
- if (Entry == 0)
- Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
- return Entry;
-}
-
-bool VectorType::isValidElementType(Type *ElemTy) {
- return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
- ElemTy->isPointerTy();
-}
-
-//===----------------------------------------------------------------------===//
-// PointerType Implementation
-//===----------------------------------------------------------------------===//
-
-PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
- assert(EltTy && "Can't get a pointer to <null> type!");
- assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
-
- LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
-
- // Since AddressSpace #0 is the common case, we special case it.
- PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
- : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
-
- if (Entry == 0)
- Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
- return Entry;
-}
-
-
-PointerType::PointerType(Type *E, unsigned AddrSpace)
- : SequentialType(PointerTyID, E) {
-#ifndef NDEBUG
- const unsigned oldNCT = NumContainedTys;
-#endif
- setSubclassData(AddrSpace);
- // Check for miscompile. PR11652.
- assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
-}
-
-PointerType *Type::getPointerTo(unsigned addrs) {
- return PointerType::get(this, addrs);
-}
-
-bool PointerType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy();
-}
Removed: llvm/trunk/lib/VMCore/TypeFinder.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/TypeFinder.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/TypeFinder.cpp (original)
+++ llvm/trunk/lib/VMCore/TypeFinder.cpp (removed)
@@ -1,148 +0,0 @@
-//===-- TypeFinder.cpp - Implement the TypeFinder class -------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the TypeFinder class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/TypeFinder.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-using namespace llvm;
-
-void TypeFinder::run(const Module &M, bool onlyNamed) {
- OnlyNamed = onlyNamed;
-
- // Get types from global variables.
- for (Module::const_global_iterator I = M.global_begin(),
- E = M.global_end(); I != E; ++I) {
- incorporateType(I->getType());
- if (I->hasInitializer())
- incorporateValue(I->getInitializer());
- }
-
- // Get types from aliases.
- for (Module::const_alias_iterator I = M.alias_begin(),
- E = M.alias_end(); I != E; ++I) {
- incorporateType(I->getType());
- if (const Value *Aliasee = I->getAliasee())
- incorporateValue(Aliasee);
- }
-
- // Get types from functions.
- SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
- for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
- incorporateType(FI->getType());
-
- // First incorporate the arguments.
- for (Function::const_arg_iterator AI = FI->arg_begin(),
- AE = FI->arg_end(); AI != AE; ++AI)
- incorporateValue(AI);
-
- for (Function::const_iterator BB = FI->begin(), E = FI->end();
- BB != E;++BB)
- for (BasicBlock::const_iterator II = BB->begin(),
- E = BB->end(); II != E; ++II) {
- const Instruction &I = *II;
-
- // Incorporate the type of the instruction.
- incorporateType(I.getType());
-
- // Incorporate non-instruction operand types. (We are incorporating all
- // instructions with this loop.)
- for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
- OI != OE; ++OI)
- if (!isa<Instruction>(OI))
- incorporateValue(*OI);
-
- // Incorporate types hiding in metadata.
- I.getAllMetadataOtherThanDebugLoc(MDForInst);
- for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
- incorporateMDNode(MDForInst[i].second);
-
- MDForInst.clear();
- }
- }
-
- for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
- E = M.named_metadata_end(); I != E; ++I) {
- const NamedMDNode *NMD = I;
- for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
- incorporateMDNode(NMD->getOperand(i));
- }
-}
-
-void TypeFinder::clear() {
- VisitedConstants.clear();
- VisitedTypes.clear();
- StructTypes.clear();
-}
-
-/// incorporateType - This method adds the type to the list of used structures
-/// if it's not in there already.
-void TypeFinder::incorporateType(Type *Ty) {
- // Check to see if we're already visited this type.
- if (!VisitedTypes.insert(Ty).second)
- return;
-
- // If this is a structure or opaque type, add a name for the type.
- if (StructType *STy = dyn_cast<StructType>(Ty))
- if (!OnlyNamed || STy->hasName())
- StructTypes.push_back(STy);
-
- // Recursively walk all contained types.
- for (Type::subtype_iterator I = Ty->subtype_begin(),
- E = Ty->subtype_end(); I != E; ++I)
- incorporateType(*I);
-}
-
-/// incorporateValue - This method is used to walk operand lists finding types
-/// hiding in constant expressions and other operands that won't be walked in
-/// other ways. GlobalValues, basic blocks, instructions, and inst operands are
-/// all explicitly enumerated.
-void TypeFinder::incorporateValue(const Value *V) {
- if (const MDNode *M = dyn_cast<MDNode>(V))
- return incorporateMDNode(M);
-
- if (!isa<Constant>(V) || isa<GlobalValue>(V)) return;
-
- // Already visited?
- if (!VisitedConstants.insert(V).second)
- return;
-
- // Check this type.
- incorporateType(V->getType());
-
- // If this is an instruction, we incorporate it separately.
- if (isa<Instruction>(V))
- return;
-
- // Look in operands for types.
- const User *U = cast<User>(V);
- for (Constant::const_op_iterator I = U->op_begin(),
- E = U->op_end(); I != E;++I)
- incorporateValue(*I);
-}
-
-/// incorporateMDNode - This method is used to walk the operands of an MDNode to
-/// find types hiding within.
-void TypeFinder::incorporateMDNode(const MDNode *V) {
- // Already visited?
- if (!VisitedConstants.insert(V).second)
- return;
-
- // Look in operands for types.
- for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i)
- if (Value *Op = V->getOperand(i))
- incorporateValue(Op);
-}
Removed: llvm/trunk/lib/VMCore/Use.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Use.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Use.cpp (original)
+++ llvm/trunk/lib/VMCore/Use.cpp (removed)
@@ -1,145 +0,0 @@
-//===-- Use.cpp - Implement the Use class ---------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the algorithm for finding the User of a Use.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Value.h"
-#include <new>
-
-namespace llvm {
-
-//===----------------------------------------------------------------------===//
-// Use swap Implementation
-//===----------------------------------------------------------------------===//
-
-void Use::swap(Use &RHS) {
- Value *V1(Val);
- Value *V2(RHS.Val);
- if (V1 != V2) {
- if (V1) {
- removeFromList();
- }
-
- if (V2) {
- RHS.removeFromList();
- Val = V2;
- V2->addUse(*this);
- } else {
- Val = 0;
- }
-
- if (V1) {
- RHS.Val = V1;
- V1->addUse(RHS);
- } else {
- RHS.Val = 0;
- }
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Use getImpliedUser Implementation
-//===----------------------------------------------------------------------===//
-
-const Use *Use::getImpliedUser() const {
- const Use *Current = this;
-
- while (true) {
- unsigned Tag = (Current++)->Prev.getInt();
- switch (Tag) {
- case zeroDigitTag:
- case oneDigitTag:
- continue;
-
- case stopTag: {
- ++Current;
- ptrdiff_t Offset = 1;
- while (true) {
- unsigned Tag = Current->Prev.getInt();
- switch (Tag) {
- case zeroDigitTag:
- case oneDigitTag:
- ++Current;
- Offset = (Offset << 1) + Tag;
- continue;
- default:
- return Current + Offset;
- }
- }
- }
-
- case fullStopTag:
- return Current;
- }
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Use initTags Implementation
-//===----------------------------------------------------------------------===//
-
-Use *Use::initTags(Use * const Start, Use *Stop) {
- ptrdiff_t Done = 0;
- while (Done < 20) {
- if (Start == Stop--)
- return Start;
- static const PrevPtrTag tags[20] = { fullStopTag, oneDigitTag, stopTag,
- oneDigitTag, oneDigitTag, stopTag,
- zeroDigitTag, oneDigitTag, oneDigitTag,
- stopTag, zeroDigitTag, oneDigitTag,
- zeroDigitTag, oneDigitTag, stopTag,
- oneDigitTag, oneDigitTag, oneDigitTag,
- oneDigitTag, stopTag
- };
- new(Stop) Use(tags[Done++]);
- }
-
- ptrdiff_t Count = Done;
- while (Start != Stop) {
- --Stop;
- if (!Count) {
- new(Stop) Use(stopTag);
- ++Done;
- Count = Done;
- } else {
- new(Stop) Use(PrevPtrTag(Count & 1));
- Count >>= 1;
- ++Done;
- }
- }
-
- return Start;
-}
-
-//===----------------------------------------------------------------------===//
-// Use zap Implementation
-//===----------------------------------------------------------------------===//
-
-void Use::zap(Use *Start, const Use *Stop, bool del) {
- while (Start != Stop)
- (--Stop)->~Use();
- if (del)
- ::operator delete(Start);
-}
-
-//===----------------------------------------------------------------------===//
-// Use getUser Implementation
-//===----------------------------------------------------------------------===//
-
-User *Use::getUser() const {
- const Use *End = getImpliedUser();
- const UserRef *ref = reinterpret_cast<const UserRef*>(End);
- return ref->getInt()
- ? ref->getPointer()
- : (User*)End;
-}
-
-} // End llvm namespace
Removed: llvm/trunk/lib/VMCore/User.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/User.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/User.cpp (original)
+++ llvm/trunk/lib/VMCore/User.cpp (removed)
@@ -1,90 +0,0 @@
-//===-- User.cpp - Implement the User class -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/User.h"
-#include "llvm/Constant.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Operator.h"
-
-namespace llvm {
-
-//===----------------------------------------------------------------------===//
-// User Class
-//===----------------------------------------------------------------------===//
-
-void User::anchor() {}
-
-// replaceUsesOfWith - Replaces all references to the "From" definition with
-// references to the "To" definition.
-//
-void User::replaceUsesOfWith(Value *From, Value *To) {
- if (From == To) return; // Duh what?
-
- assert((!isa<Constant>(this) || isa<GlobalValue>(this)) &&
- "Cannot call User::replaceUsesOfWith on a constant!");
-
- for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
- if (getOperand(i) == From) { // Is This operand is pointing to oldval?
- // The side effects of this setOperand call include linking to
- // "To", adding "this" to the uses list of To, and
- // most importantly, removing "this" from the use list of "From".
- setOperand(i, To); // Fix it now...
- }
-}
-
-//===----------------------------------------------------------------------===//
-// User allocHungoffUses Implementation
-//===----------------------------------------------------------------------===//
-
-Use *User::allocHungoffUses(unsigned N) const {
- // Allocate the array of Uses, followed by a pointer (with bottom bit set) to
- // the User.
- size_t size = N * sizeof(Use) + sizeof(Use::UserRef);
- Use *Begin = static_cast<Use*>(::operator new(size));
- Use *End = Begin + N;
- (void) new(End) Use::UserRef(const_cast<User*>(this), 1);
- return Use::initTags(Begin, End);
-}
-
-//===----------------------------------------------------------------------===//
-// User operator new Implementations
-//===----------------------------------------------------------------------===//
-
-void *User::operator new(size_t s, unsigned Us) {
- void *Storage = ::operator new(s + sizeof(Use) * Us);
- Use *Start = static_cast<Use*>(Storage);
- Use *End = Start + Us;
- User *Obj = reinterpret_cast<User*>(End);
- Obj->OperandList = Start;
- Obj->NumOperands = Us;
- Use::initTags(Start, End);
- return Obj;
-}
-
-//===----------------------------------------------------------------------===//
-// User operator delete Implementation
-//===----------------------------------------------------------------------===//
-
-void User::operator delete(void *Usr) {
- User *Start = static_cast<User*>(Usr);
- Use *Storage = static_cast<Use*>(Usr) - Start->NumOperands;
- // If there were hung-off uses, they will have been freed already and
- // NumOperands reset to 0, so here we just free the User itself.
- ::operator delete(Storage);
-}
-
-//===----------------------------------------------------------------------===//
-// Operator Class
-//===----------------------------------------------------------------------===//
-
-Operator::~Operator() {
- llvm_unreachable("should never destroy an Operator");
-}
-
-} // End llvm namespace
Removed: llvm/trunk/lib/VMCore/Value.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Value.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Value.cpp (original)
+++ llvm/trunk/lib/VMCore/Value.cpp (removed)
@@ -1,698 +0,0 @@
-//===-- Value.cpp - Implement the Value class -----------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Value, ValueHandle, and User classes.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Value.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/Constant.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InstrTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/LeakDetector.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/ValueHandle.h"
-#include "llvm/ValueSymbolTable.h"
-#include <algorithm>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Value Class
-//===----------------------------------------------------------------------===//
-
-static inline Type *checkType(Type *Ty) {
- assert(Ty && "Value defined with a null type: Error!");
- return const_cast<Type*>(Ty);
-}
-
-Value::Value(Type *ty, unsigned scid)
- : SubclassID(scid), HasValueHandle(0),
- SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
- UseList(0), Name(0) {
- // FIXME: Why isn't this in the subclass gunk??
- // Note, we cannot call isa<CallInst> before the CallInst has been
- // constructed.
- if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
- assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
- "invalid CallInst type!");
- else if (SubclassID != BasicBlockVal &&
- (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
- assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
- "Cannot create non-first-class values except for constants!");
-}
-
-Value::~Value() {
- // Notify all ValueHandles (if present) that this value is going away.
- if (HasValueHandle)
- ValueHandleBase::ValueIsDeleted(this);
-
-#ifndef NDEBUG // Only in -g mode...
- // Check to make sure that there are no uses of this value that are still
- // around when the value is destroyed. If there are, then we have a dangling
- // reference and something is wrong. This code is here to print out what is
- // still being referenced. The value in question should be printed as
- // a <badref>
- //
- if (!use_empty()) {
- dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
- for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
- dbgs() << "Use still stuck around after Def is destroyed:"
- << **I << "\n";
- }
-#endif
- assert(use_empty() && "Uses remain when a value is destroyed!");
-
- // If this value is named, destroy the name. This should not be in a symtab
- // at this point.
- if (Name && SubclassID != MDStringVal)
- Name->Destroy();
-
- // There should be no uses of this object anymore, remove it.
- LeakDetector::removeGarbageObject(this);
-}
-
-/// hasNUses - Return true if this Value has exactly N users.
-///
-bool Value::hasNUses(unsigned N) const {
- const_use_iterator UI = use_begin(), E = use_end();
-
- for (; N; --N, ++UI)
- if (UI == E) return false; // Too few.
- return UI == E;
-}
-
-/// hasNUsesOrMore - Return true if this value has N users or more. This is
-/// logically equivalent to getNumUses() >= N.
-///
-bool Value::hasNUsesOrMore(unsigned N) const {
- const_use_iterator UI = use_begin(), E = use_end();
-
- for (; N; --N, ++UI)
- if (UI == E) return false; // Too few.
-
- return true;
-}
-
-/// isUsedInBasicBlock - Return true if this value is used in the specified
-/// basic block.
-bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
- // Start by scanning over the instructions looking for a use before we start
- // the expensive use iteration.
- unsigned MaxBlockSize = 3;
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (std::find(I->op_begin(), I->op_end(), this) != I->op_end())
- return true;
- if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator
- break;
- }
-
- if (MaxBlockSize != 0) // We scanned the entire block and found no use.
- return false;
-
- for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
- const Instruction *User = dyn_cast<Instruction>(*I);
- if (User && User->getParent() == BB)
- return true;
- }
- return false;
-}
-
-
-/// getNumUses - This method computes the number of uses of this Value. This
-/// is a linear time operation. Use hasOneUse or hasNUses to check for specific
-/// values.
-unsigned Value::getNumUses() const {
- return (unsigned)std::distance(use_begin(), use_end());
-}
-
-static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
- ST = 0;
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (BasicBlock *P = I->getParent())
- if (Function *PP = P->getParent())
- ST = &PP->getValueSymbolTable();
- } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
- if (Function *P = BB->getParent())
- ST = &P->getValueSymbolTable();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (Module *P = GV->getParent())
- ST = &P->getValueSymbolTable();
- } else if (Argument *A = dyn_cast<Argument>(V)) {
- if (Function *P = A->getParent())
- ST = &P->getValueSymbolTable();
- } else if (isa<MDString>(V))
- return true;
- else {
- assert(isa<Constant>(V) && "Unknown value type!");
- return true; // no name is setable for this.
- }
- return false;
-}
-
-StringRef Value::getName() const {
- // Make sure the empty string is still a C string. For historical reasons,
- // some clients want to call .data() on the result and expect it to be null
- // terminated.
- if (!Name) return StringRef("", 0);
- return Name->getKey();
-}
-
-void Value::setName(const Twine &NewName) {
- assert(SubclassID != MDStringVal &&
- "Cannot set the name of MDString with this method!");
-
- // Fast path for common IRBuilder case of setName("") when there is no name.
- if (NewName.isTriviallyEmpty() && !hasName())
- return;
-
- SmallString<256> NameData;
- StringRef NameRef = NewName.toStringRef(NameData);
-
- // Name isn't changing?
- if (getName() == NameRef)
- return;
-
- assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
-
- // Get the symbol table to update for this object.
- ValueSymbolTable *ST;
- if (getSymTab(this, ST))
- return; // Cannot set a name on this value (e.g. constant).
-
- if (!ST) { // No symbol table to update? Just do the change.
- if (NameRef.empty()) {
- // Free the name for this value.
- Name->Destroy();
- Name = 0;
- return;
- }
-
- if (Name)
- Name->Destroy();
-
- // NOTE: Could optimize for the case the name is shrinking to not deallocate
- // then reallocated.
-
- // Create the new name.
- Name = ValueName::Create(NameRef.begin(), NameRef.end());
- Name->setValue(this);
- return;
- }
-
- // NOTE: Could optimize for the case the name is shrinking to not deallocate
- // then reallocated.
- if (hasName()) {
- // Remove old name.
- ST->removeValueName(Name);
- Name->Destroy();
- Name = 0;
-
- if (NameRef.empty())
- return;
- }
-
- // Name is changing to something new.
- Name = ST->createValueName(NameRef, this);
-}
-
-
-/// takeName - transfer the name from V to this value, setting V's name to
-/// empty. It is an error to call V->takeName(V).
-void Value::takeName(Value *V) {
- assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
-
- ValueSymbolTable *ST = 0;
- // If this value has a name, drop it.
- if (hasName()) {
- // Get the symtab this is in.
- if (getSymTab(this, ST)) {
- // We can't set a name on this value, but we need to clear V's name if
- // it has one.
- if (V->hasName()) V->setName("");
- return; // Cannot set a name on this value (e.g. constant).
- }
-
- // Remove old name.
- if (ST)
- ST->removeValueName(Name);
- Name->Destroy();
- Name = 0;
- }
-
- // Now we know that this has no name.
-
- // If V has no name either, we're done.
- if (!V->hasName()) return;
-
- // Get this's symtab if we didn't before.
- if (!ST) {
- if (getSymTab(this, ST)) {
- // Clear V's name.
- V->setName("");
- return; // Cannot set a name on this value (e.g. constant).
- }
- }
-
- // Get V's ST, this should always succed, because V has a name.
- ValueSymbolTable *VST;
- bool Failure = getSymTab(V, VST);
- assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
-
- // If these values are both in the same symtab, we can do this very fast.
- // This works even if both values have no symtab yet.
- if (ST == VST) {
- // Take the name!
- Name = V->Name;
- V->Name = 0;
- Name->setValue(this);
- return;
- }
-
- // Otherwise, things are slightly more complex. Remove V's name from VST and
- // then reinsert it into ST.
-
- if (VST)
- VST->removeValueName(V->Name);
- Name = V->Name;
- V->Name = 0;
- Name->setValue(this);
-
- if (ST)
- ST->reinsertValue(this);
-}
-
-
-void Value::replaceAllUsesWith(Value *New) {
- assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
- assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
- assert(New->getType() == getType() &&
- "replaceAllUses of value with new value of different type!");
-
- // Notify all ValueHandles (if present) that this value is going away.
- if (HasValueHandle)
- ValueHandleBase::ValueIsRAUWd(this, New);
-
- while (!use_empty()) {
- Use &U = *UseList;
- // Must handle Constants specially, we cannot call replaceUsesOfWith on a
- // constant because they are uniqued.
- if (Constant *C = dyn_cast<Constant>(U.getUser())) {
- if (!isa<GlobalValue>(C)) {
- C->replaceUsesOfWithOnConstant(this, New, &U);
- continue;
- }
- }
-
- U.set(New);
- }
-
- if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
- BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
-}
-
-namespace {
-// Various metrics for how much to strip off of pointers.
-enum PointerStripKind {
- PSK_ZeroIndices,
- PSK_InBoundsConstantIndices,
- PSK_InBounds
-};
-
-template <PointerStripKind StripKind>
-static Value *stripPointerCastsAndOffsets(Value *V) {
- if (!V->getType()->isPointerTy())
- return V;
-
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<Value *, 4> Visited;
-
- Visited.insert(V);
- do {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- switch (StripKind) {
- case PSK_ZeroIndices:
- if (!GEP->hasAllZeroIndices())
- return V;
- break;
- case PSK_InBoundsConstantIndices:
- if (!GEP->hasAllConstantIndices())
- return V;
- // fallthrough
- case PSK_InBounds:
- if (!GEP->isInBounds())
- return V;
- break;
- }
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden())
- return V;
- V = GA->getAliasee();
- } else {
- return V;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(V));
-
- return V;
-}
-} // namespace
-
-Value *Value::stripPointerCasts() {
- return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
-}
-
-Value *Value::stripInBoundsConstantOffsets() {
- return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
-}
-
-Value *Value::stripInBoundsOffsets() {
- return stripPointerCastsAndOffsets<PSK_InBounds>(this);
-}
-
-/// isDereferenceablePointer - Test if this value is always a pointer to
-/// allocated and suitably aligned memory for a simple load or store.
-static bool isDereferenceablePointer(const Value *V,
- SmallPtrSet<const Value *, 32> &Visited) {
- // Note that it is not safe to speculate into a malloc'd region because
- // malloc may return null.
- // It's also not always safe to follow a bitcast, for example:
- // bitcast i8* (alloca i8) to i32*
- // would result in a 4-byte load from a 1-byte alloca. Some cases could
- // be handled using DataLayout to check sizes and alignments though.
-
- // These are obviously ok.
- if (isa<AllocaInst>(V)) return true;
-
- // Global variables which can't collapse to null are ok.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return !GV->hasExternalWeakLinkage();
-
- // byval arguments are ok.
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
-
- // For GEPs, determine if the indexing lands within the allocated object.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- // Conservatively require that the base pointer be fully dereferenceable.
- if (!Visited.insert(GEP->getOperand(0)))
- return false;
- if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
- return false;
- // Check the indices.
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::const_op_iterator I = GEP->op_begin()+1,
- E = GEP->op_end(); I != E; ++I) {
- Value *Index = *I;
- Type *Ty = *GTI++;
- // Struct indices can't be out of bounds.
- if (isa<StructType>(Ty))
- continue;
- ConstantInt *CI = dyn_cast<ConstantInt>(Index);
- if (!CI)
- return false;
- // Zero is always ok.
- if (CI->isZero())
- continue;
- // Check to see that it's within the bounds of an array.
- ArrayType *ATy = dyn_cast<ArrayType>(Ty);
- if (!ATy)
- return false;
- if (CI->getValue().getActiveBits() > 64)
- return false;
- if (CI->getZExtValue() >= ATy->getNumElements())
- return false;
- }
- // Indices check out; this is dereferenceable.
- return true;
- }
-
- // If we don't know, assume the worst.
- return false;
-}
-
-/// isDereferenceablePointer - Test if this value is always a pointer to
-/// allocated and suitably aligned memory for a simple load or store.
-bool Value::isDereferenceablePointer() const {
- SmallPtrSet<const Value *, 32> Visited;
- return ::isDereferenceablePointer(this, Visited);
-}
-
-/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
-/// return the value in the PHI node corresponding to PredBB. If not, return
-/// ourself. This is useful if you want to know the value something has in a
-/// predecessor block.
-Value *Value::DoPHITranslation(const BasicBlock *CurBB,
- const BasicBlock *PredBB) {
- PHINode *PN = dyn_cast<PHINode>(this);
- if (PN && PN->getParent() == CurBB)
- return PN->getIncomingValueForBlock(PredBB);
- return this;
-}
-
-LLVMContext &Value::getContext() const { return VTy->getContext(); }
-
-//===----------------------------------------------------------------------===//
-// ValueHandleBase Class
-//===----------------------------------------------------------------------===//
-
-/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
-/// List is known to point into the existing use list.
-void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
- assert(List && "Handle list is null?");
-
- // Splice ourselves into the list.
- Next = *List;
- *List = this;
- setPrevPtr(List);
- if (Next) {
- Next->setPrevPtr(&Next);
- assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
- }
-}
-
-void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
- assert(List && "Must insert after existing node");
-
- Next = List->Next;
- setPrevPtr(&List->Next);
- List->Next = this;
- if (Next)
- Next->setPrevPtr(&Next);
-}
-
-/// AddToUseList - Add this ValueHandle to the use list for VP.
-void ValueHandleBase::AddToUseList() {
- assert(VP.getPointer() && "Null pointer doesn't have a use list!");
-
- LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
-
- if (VP.getPointer()->HasValueHandle) {
- // If this value already has a ValueHandle, then it must be in the
- // ValueHandles map already.
- ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
- assert(Entry != 0 && "Value doesn't have any handles?");
- AddToExistingUseList(&Entry);
- return;
- }
-
- // Ok, it doesn't have any handles yet, so we must insert it into the
- // DenseMap. However, doing this insertion could cause the DenseMap to
- // reallocate itself, which would invalidate all of the PrevP pointers that
- // point into the old table. Handle this by checking for reallocation and
- // updating the stale pointers only if needed.
- DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
- const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
-
- ValueHandleBase *&Entry = Handles[VP.getPointer()];
- assert(Entry == 0 && "Value really did already have handles?");
- AddToExistingUseList(&Entry);
- VP.getPointer()->HasValueHandle = true;
-
- // If reallocation didn't happen or if this was the first insertion, don't
- // walk the table.
- if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
- Handles.size() == 1) {
- return;
- }
-
- // Okay, reallocation did happen. Fix the Prev Pointers.
- for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
- E = Handles.end(); I != E; ++I) {
- assert(I->second && I->first == I->second->VP.getPointer() &&
- "List invariant broken!");
- I->second->setPrevPtr(&I->second);
- }
-}
-
-/// RemoveFromUseList - Remove this ValueHandle from its current use list.
-void ValueHandleBase::RemoveFromUseList() {
- assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
- "Pointer doesn't have a use list!");
-
- // Unlink this from its use list.
- ValueHandleBase **PrevPtr = getPrevPtr();
- assert(*PrevPtr == this && "List invariant broken");
-
- *PrevPtr = Next;
- if (Next) {
- assert(Next->getPrevPtr() == &Next && "List invariant broken");
- Next->setPrevPtr(PrevPtr);
- return;
- }
-
- // If the Next pointer was null, then it is possible that this was the last
- // ValueHandle watching VP. If so, delete its entry from the ValueHandles
- // map.
- LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
- DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
- if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
- Handles.erase(VP.getPointer());
- VP.getPointer()->HasValueHandle = false;
- }
-}
-
-
-void ValueHandleBase::ValueIsDeleted(Value *V) {
- assert(V->HasValueHandle && "Should only be called if ValueHandles present");
-
- // Get the linked list base, which is guaranteed to exist since the
- // HasValueHandle flag is set.
- LLVMContextImpl *pImpl = V->getContext().pImpl;
- ValueHandleBase *Entry = pImpl->ValueHandles[V];
- assert(Entry && "Value bit set but no entries exist");
-
- // We use a local ValueHandleBase as an iterator so that ValueHandles can add
- // and remove themselves from the list without breaking our iteration. This
- // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
- // Note that we deliberately do not the support the case when dropping a value
- // handle results in a new value handle being permanently added to the list
- // (as might occur in theory for CallbackVH's): the new value handle will not
- // be processed and the checking code will mete out righteous punishment if
- // the handle is still present once we have finished processing all the other
- // value handles (it is fine to momentarily add then remove a value handle).
- for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
- Iterator.RemoveFromUseList();
- Iterator.AddToExistingUseListAfter(Entry);
- assert(Entry->Next == &Iterator && "Loop invariant broken.");
-
- switch (Entry->getKind()) {
- case Assert:
- break;
- case Tracking:
- // Mark that this value has been deleted by setting it to an invalid Value
- // pointer.
- Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
- break;
- case Weak:
- // Weak just goes to null, which will unlink it from the list.
- Entry->operator=(0);
- break;
- case Callback:
- // Forward to the subclass's implementation.
- static_cast<CallbackVH*>(Entry)->deleted();
- break;
- }
- }
-
- // All callbacks, weak references, and assertingVHs should be dropped by now.
- if (V->HasValueHandle) {
-#ifndef NDEBUG // Only in +Asserts mode...
- dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
- << "\n";
- if (pImpl->ValueHandles[V]->getKind() == Assert)
- llvm_unreachable("An asserting value handle still pointed to this"
- " value!");
-
-#endif
- llvm_unreachable("All references to V were not removed?");
- }
-}
-
-
-void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
- assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
- assert(Old != New && "Changing value into itself!");
-
- // Get the linked list base, which is guaranteed to exist since the
- // HasValueHandle flag is set.
- LLVMContextImpl *pImpl = Old->getContext().pImpl;
- ValueHandleBase *Entry = pImpl->ValueHandles[Old];
-
- assert(Entry && "Value bit set but no entries exist");
-
- // We use a local ValueHandleBase as an iterator so that
- // ValueHandles can add and remove themselves from the list without
- // breaking our iteration. This is not really an AssertingVH; we
- // just have to give ValueHandleBase some kind.
- for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
- Iterator.RemoveFromUseList();
- Iterator.AddToExistingUseListAfter(Entry);
- assert(Entry->Next == &Iterator && "Loop invariant broken.");
-
- switch (Entry->getKind()) {
- case Assert:
- // Asserting handle does not follow RAUW implicitly.
- break;
- case Tracking:
- // Tracking goes to new value like a WeakVH. Note that this may make it
- // something incompatible with its templated type. We don't want to have a
- // virtual (or inline) interface to handle this though, so instead we make
- // the TrackingVH accessors guarantee that a client never sees this value.
-
- // FALLTHROUGH
- case Weak:
- // Weak goes to the new value, which will unlink it from Old's list.
- Entry->operator=(New);
- break;
- case Callback:
- // Forward to the subclass's implementation.
- static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
- break;
- }
- }
-
-#ifndef NDEBUG
- // If any new tracking or weak value handles were added while processing the
- // list, then complain about it now.
- if (Old->HasValueHandle)
- for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
- switch (Entry->getKind()) {
- case Tracking:
- case Weak:
- dbgs() << "After RAUW from " << *Old->getType() << " %"
- << Old->getName() << " to " << *New->getType() << " %"
- << New->getName() << "\n";
- llvm_unreachable("A tracking or weak value handle still pointed to the"
- " old value!\n");
- default:
- break;
- }
-#endif
-}
-
-// Default implementation for CallbackVH.
-void CallbackVH::allUsesReplacedWith(Value *) {}
-
-void CallbackVH::deleted() {
- setValPtr(NULL);
-}
Removed: llvm/trunk/lib/VMCore/ValueSymbolTable.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/ValueSymbolTable.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/ValueSymbolTable.cpp (original)
+++ llvm/trunk/lib/VMCore/ValueSymbolTable.cpp (removed)
@@ -1,117 +0,0 @@
-//===-- ValueSymbolTable.cpp - Implement the ValueSymbolTable class -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the ValueSymbolTable class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "valuesymtab"
-#include "llvm/ValueSymbolTable.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Type.h"
-using namespace llvm;
-
-// Class destructor
-ValueSymbolTable::~ValueSymbolTable() {
-#ifndef NDEBUG // Only do this in -g mode...
- for (iterator VI = vmap.begin(), VE = vmap.end(); VI != VE; ++VI)
- dbgs() << "Value still in symbol table! Type = '"
- << *VI->getValue()->getType() << "' Name = '"
- << VI->getKeyData() << "'\n";
- assert(vmap.empty() && "Values remain in symbol table!");
-#endif
-}
-
-// Insert a value into the symbol table with the specified name...
-//
-void ValueSymbolTable::reinsertValue(Value* V) {
- assert(V->hasName() && "Can't insert nameless Value into symbol table");
-
- // Try inserting the name, assuming it won't conflict.
- if (vmap.insert(V->Name)) {
- //DEBUG(dbgs() << " Inserted value: " << V->Name << ": " << *V << "\n");
- return;
- }
-
- // Otherwise, there is a naming conflict. Rename this value.
- SmallString<256> UniqueName(V->getName().begin(), V->getName().end());
-
- // The name is too already used, just free it so we can allocate a new name.
- V->Name->Destroy();
-
- unsigned BaseSize = UniqueName.size();
- while (1) {
- // Trim any suffix off and append the next number.
- UniqueName.resize(BaseSize);
- raw_svector_ostream(UniqueName) << ++LastUnique;
-
- // Try insert the vmap entry with this suffix.
- ValueName &NewName = vmap.GetOrCreateValue(UniqueName);
- if (NewName.getValue() == 0) {
- // Newly inserted name. Success!
- NewName.setValue(V);
- V->Name = &NewName;
- //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
- return;
- }
- }
-}
-
-void ValueSymbolTable::removeValueName(ValueName *V) {
- //DEBUG(dbgs() << " Removing Value: " << V->getKeyData() << "\n");
- // Remove the value from the symbol table.
- vmap.remove(V);
-}
-
-/// createValueName - This method attempts to create a value name and insert
-/// it into the symbol table with the specified name. If it conflicts, it
-/// auto-renames the name and returns that instead.
-ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
- // In the common case, the name is not already in the symbol table.
- ValueName &Entry = vmap.GetOrCreateValue(Name);
- if (Entry.getValue() == 0) {
- Entry.setValue(V);
- //DEBUG(dbgs() << " Inserted value: " << Entry.getKeyData() << ": "
- // << *V << "\n");
- return &Entry;
- }
-
- // Otherwise, there is a naming conflict. Rename this value.
- SmallString<256> UniqueName(Name.begin(), Name.end());
-
- while (1) {
- // Trim any suffix off and append the next number.
- UniqueName.resize(Name.size());
- raw_svector_ostream(UniqueName) << ++LastUnique;
-
- // Try insert the vmap entry with this suffix.
- ValueName &NewName = vmap.GetOrCreateValue(UniqueName);
- if (NewName.getValue() == 0) {
- // Newly inserted name. Success!
- NewName.setValue(V);
- //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
- return &NewName;
- }
- }
-}
-
-
-// dump - print out the symbol table
-//
-void ValueSymbolTable::dump() const {
- //DEBUG(dbgs() << "ValueSymbolTable:\n");
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- //DEBUG(dbgs() << " '" << I->getKeyData() << "' = ");
- I->getValue()->dump();
- //DEBUG(dbgs() << "\n");
- }
-}
Removed: llvm/trunk/lib/VMCore/ValueTypes.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/ValueTypes.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/ValueTypes.cpp (original)
+++ llvm/trunk/lib/VMCore/ValueTypes.cpp (removed)
@@ -1,277 +0,0 @@
-//===----------- ValueTypes.cpp - Implementation of EVT methods -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements methods in the CodeGen/ValueTypes.h header.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Type.h"
-using namespace llvm;
-
-EVT EVT::changeExtendedVectorElementTypeToInteger() const {
- LLVMContext &Context = LLVMTy->getContext();
- EVT IntTy = getIntegerVT(Context, getVectorElementType().getSizeInBits());
- return getVectorVT(Context, IntTy, getVectorNumElements());
-}
-
-EVT EVT::getExtendedIntegerVT(LLVMContext &Context, unsigned BitWidth) {
- EVT VT;
- VT.LLVMTy = IntegerType::get(Context, BitWidth);
- assert(VT.isExtended() && "Type is not extended!");
- return VT;
-}
-
-EVT EVT::getExtendedVectorVT(LLVMContext &Context, EVT VT,
- unsigned NumElements) {
- EVT ResultVT;
- ResultVT.LLVMTy = VectorType::get(VT.getTypeForEVT(Context), NumElements);
- assert(ResultVT.isExtended() && "Type is not extended!");
- return ResultVT;
-}
-
-bool EVT::isExtendedFloatingPoint() const {
- assert(isExtended() && "Type is not extended!");
- return LLVMTy->isFPOrFPVectorTy();
-}
-
-bool EVT::isExtendedInteger() const {
- assert(isExtended() && "Type is not extended!");
- return LLVMTy->isIntOrIntVectorTy();
-}
-
-bool EVT::isExtendedVector() const {
- assert(isExtended() && "Type is not extended!");
- return LLVMTy->isVectorTy();
-}
-
-bool EVT::isExtended16BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 16;
-}
-
-bool EVT::isExtended32BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 32;
-}
-
-bool EVT::isExtended64BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 64;
-}
-
-bool EVT::isExtended128BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 128;
-}
-
-bool EVT::isExtended256BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 256;
-}
-
-bool EVT::isExtended512BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 512;
-}
-
-bool EVT::isExtended1024BitVector() const {
- return isExtendedVector() && getExtendedSizeInBits() == 1024;
-}
-
-EVT EVT::getExtendedVectorElementType() const {
- assert(isExtended() && "Type is not extended!");
- return EVT::getEVT(cast<VectorType>(LLVMTy)->getElementType());
-}
-
-unsigned EVT::getExtendedVectorNumElements() const {
- assert(isExtended() && "Type is not extended!");
- return cast<VectorType>(LLVMTy)->getNumElements();
-}
-
-unsigned EVT::getExtendedSizeInBits() const {
- assert(isExtended() && "Type is not extended!");
- if (IntegerType *ITy = dyn_cast<IntegerType>(LLVMTy))
- return ITy->getBitWidth();
- if (VectorType *VTy = dyn_cast<VectorType>(LLVMTy))
- return VTy->getBitWidth();
- llvm_unreachable("Unrecognized extended type!");
-}
-
-/// getEVTString - This function returns value type as a string, e.g. "i32".
-std::string EVT::getEVTString() const {
- switch (V.SimpleTy) {
- default:
- if (isVector())
- return "v" + utostr(getVectorNumElements()) +
- getVectorElementType().getEVTString();
- if (isInteger())
- return "i" + utostr(getSizeInBits());
- llvm_unreachable("Invalid EVT!");
- case MVT::i1: return "i1";
- case MVT::i8: return "i8";
- case MVT::i16: return "i16";
- case MVT::i32: return "i32";
- case MVT::i64: return "i64";
- case MVT::i128: return "i128";
- case MVT::f16: return "f16";
- case MVT::f32: return "f32";
- case MVT::f64: return "f64";
- case MVT::f80: return "f80";
- case MVT::f128: return "f128";
- case MVT::ppcf128: return "ppcf128";
- case MVT::isVoid: return "isVoid";
- case MVT::Other: return "ch";
- case MVT::Glue: return "glue";
- case MVT::x86mmx: return "x86mmx";
- case MVT::v2i1: return "v2i1";
- case MVT::v4i1: return "v4i1";
- case MVT::v8i1: return "v8i1";
- case MVT::v16i1: return "v16i1";
- case MVT::v32i1: return "v32i1";
- case MVT::v64i1: return "v64i1";
- case MVT::v2i8: return "v2i8";
- case MVT::v4i8: return "v4i8";
- case MVT::v8i8: return "v8i8";
- case MVT::v16i8: return "v16i8";
- case MVT::v32i8: return "v32i8";
- case MVT::v64i8: return "v64i8";
- case MVT::v1i16: return "v1i16";
- case MVT::v2i16: return "v2i16";
- case MVT::v4i16: return "v4i16";
- case MVT::v8i16: return "v8i16";
- case MVT::v16i16: return "v16i16";
- case MVT::v32i16: return "v32i16";
- case MVT::v1i32: return "v1i32";
- case MVT::v2i32: return "v2i32";
- case MVT::v4i32: return "v4i32";
- case MVT::v8i32: return "v8i32";
- case MVT::v16i32: return "v16i32";
- case MVT::v1i64: return "v1i64";
- case MVT::v2i64: return "v2i64";
- case MVT::v4i64: return "v4i64";
- case MVT::v8i64: return "v8i64";
- case MVT::v16i64: return "v16i64";
- case MVT::v2f32: return "v2f32";
- case MVT::v2f16: return "v2f16";
- case MVT::v4f32: return "v4f32";
- case MVT::v8f32: return "v8f32";
- case MVT::v16f32: return "v16f32";
- case MVT::v2f64: return "v2f64";
- case MVT::v4f64: return "v4f64";
- case MVT::v8f64: return "v8f64";
- case MVT::Metadata:return "Metadata";
- case MVT::Untyped: return "Untyped";
- }
-}
-
-/// getTypeForEVT - This method returns an LLVM type corresponding to the
-/// specified EVT. For integer types, this returns an unsigned type. Note
-/// that this will abort for types that cannot be represented.
-Type *EVT::getTypeForEVT(LLVMContext &Context) const {
- switch (V.SimpleTy) {
- default:
- assert(isExtended() && "Type is not extended!");
- return LLVMTy;
- case MVT::isVoid: return Type::getVoidTy(Context);
- case MVT::i1: return Type::getInt1Ty(Context);
- case MVT::i8: return Type::getInt8Ty(Context);
- case MVT::i16: return Type::getInt16Ty(Context);
- case MVT::i32: return Type::getInt32Ty(Context);
- case MVT::i64: return Type::getInt64Ty(Context);
- case MVT::i128: return IntegerType::get(Context, 128);
- case MVT::f16: return Type::getHalfTy(Context);
- case MVT::f32: return Type::getFloatTy(Context);
- case MVT::f64: return Type::getDoubleTy(Context);
- case MVT::f80: return Type::getX86_FP80Ty(Context);
- case MVT::f128: return Type::getFP128Ty(Context);
- case MVT::ppcf128: return Type::getPPC_FP128Ty(Context);
- case MVT::x86mmx: return Type::getX86_MMXTy(Context);
- case MVT::v2i1: return VectorType::get(Type::getInt1Ty(Context), 2);
- case MVT::v4i1: return VectorType::get(Type::getInt1Ty(Context), 4);
- case MVT::v8i1: return VectorType::get(Type::getInt1Ty(Context), 8);
- case MVT::v16i1: return VectorType::get(Type::getInt1Ty(Context), 16);
- case MVT::v32i1: return VectorType::get(Type::getInt1Ty(Context), 32);
- case MVT::v64i1: return VectorType::get(Type::getInt1Ty(Context), 64);
- case MVT::v2i8: return VectorType::get(Type::getInt8Ty(Context), 2);
- case MVT::v4i8: return VectorType::get(Type::getInt8Ty(Context), 4);
- case MVT::v8i8: return VectorType::get(Type::getInt8Ty(Context), 8);
- case MVT::v16i8: return VectorType::get(Type::getInt8Ty(Context), 16);
- case MVT::v32i8: return VectorType::get(Type::getInt8Ty(Context), 32);
- case MVT::v64i8: return VectorType::get(Type::getInt8Ty(Context), 64);
- case MVT::v1i16: return VectorType::get(Type::getInt16Ty(Context), 1);
- case MVT::v2i16: return VectorType::get(Type::getInt16Ty(Context), 2);
- case MVT::v4i16: return VectorType::get(Type::getInt16Ty(Context), 4);
- case MVT::v8i16: return VectorType::get(Type::getInt16Ty(Context), 8);
- case MVT::v16i16: return VectorType::get(Type::getInt16Ty(Context), 16);
- case MVT::v32i16: return VectorType::get(Type::getInt16Ty(Context), 32);
- case MVT::v1i32: return VectorType::get(Type::getInt32Ty(Context), 1);
- case MVT::v2i32: return VectorType::get(Type::getInt32Ty(Context), 2);
- case MVT::v4i32: return VectorType::get(Type::getInt32Ty(Context), 4);
- case MVT::v8i32: return VectorType::get(Type::getInt32Ty(Context), 8);
- case MVT::v16i32: return VectorType::get(Type::getInt32Ty(Context), 16);
- case MVT::v1i64: return VectorType::get(Type::getInt64Ty(Context), 1);
- case MVT::v2i64: return VectorType::get(Type::getInt64Ty(Context), 2);
- case MVT::v4i64: return VectorType::get(Type::getInt64Ty(Context), 4);
- case MVT::v8i64: return VectorType::get(Type::getInt64Ty(Context), 8);
- case MVT::v16i64: return VectorType::get(Type::getInt64Ty(Context), 16);
- case MVT::v2f16: return VectorType::get(Type::getHalfTy(Context), 2);
- case MVT::v2f32: return VectorType::get(Type::getFloatTy(Context), 2);
- case MVT::v4f32: return VectorType::get(Type::getFloatTy(Context), 4);
- case MVT::v8f32: return VectorType::get(Type::getFloatTy(Context), 8);
- case MVT::v16f32: return VectorType::get(Type::getFloatTy(Context), 16);
- case MVT::v2f64: return VectorType::get(Type::getDoubleTy(Context), 2);
- case MVT::v4f64: return VectorType::get(Type::getDoubleTy(Context), 4);
- case MVT::v8f64: return VectorType::get(Type::getDoubleTy(Context), 8);
- case MVT::Metadata: return Type::getMetadataTy(Context);
- }
-}
-
-/// Return the value type corresponding to the specified type. This returns all
-/// pointers as MVT::iPTR. If HandleUnknown is true, unknown types are returned
-/// as Other, otherwise they are invalid.
-MVT MVT::getVT(Type *Ty, bool HandleUnknown){
- switch (Ty->getTypeID()) {
- default:
- if (HandleUnknown) return MVT(MVT::Other);
- llvm_unreachable("Unknown type!");
- case Type::VoidTyID:
- return MVT::isVoid;
- case Type::IntegerTyID:
- return getIntegerVT(cast<IntegerType>(Ty)->getBitWidth());
- case Type::HalfTyID: return MVT(MVT::f16);
- case Type::FloatTyID: return MVT(MVT::f32);
- case Type::DoubleTyID: return MVT(MVT::f64);
- case Type::X86_FP80TyID: return MVT(MVT::f80);
- case Type::X86_MMXTyID: return MVT(MVT::x86mmx);
- case Type::FP128TyID: return MVT(MVT::f128);
- case Type::PPC_FP128TyID: return MVT(MVT::ppcf128);
- case Type::PointerTyID: return MVT(MVT::iPTR);
- case Type::VectorTyID: {
- VectorType *VTy = cast<VectorType>(Ty);
- return getVectorVT(
- getVT(VTy->getElementType(), false), VTy->getNumElements());
- }
- }
-}
-
-/// getEVT - Return the value type corresponding to the specified type. This
-/// returns all pointers as MVT::iPTR. If HandleUnknown is true, unknown types
-/// are returned as Other, otherwise they are invalid.
-EVT EVT::getEVT(Type *Ty, bool HandleUnknown){
- switch (Ty->getTypeID()) {
- default:
- return MVT::getVT(Ty, HandleUnknown);
- case Type::IntegerTyID:
- return getIntegerVT(Ty->getContext(), cast<IntegerType>(Ty)->getBitWidth());
- case Type::VectorTyID: {
- VectorType *VTy = cast<VectorType>(Ty);
- return getVectorVT(Ty->getContext(), getEVT(VTy->getElementType(), false),
- VTy->getNumElements());
- }
- }
-}
Removed: llvm/trunk/lib/VMCore/Verifier.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Verifier.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Verifier.cpp (original)
+++ llvm/trunk/lib/VMCore/Verifier.cpp (removed)
@@ -1,2015 +0,0 @@
-//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the function verifier interface, that can be used for some
-// sanity checking of input to the system.
-//
-// Note that this does not provide full `Java style' security and verifications,
-// instead it just tries to ensure that code is well-formed.
-//
-// * Both of a binary operator's parameters are of the same type
-// * Verify that the indices of mem access instructions match other operands
-// * Verify that arithmetic and other things are only performed on first-class
-// types. Verify that shifts & logicals only happen on integrals f.e.
-// * All of the constants in a switch statement are of the correct type
-// * The code is in valid SSA form
-// * It should be illegal to put a label into any other type (like a structure)
-// or to return one. [except constant arrays!]
-// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
-// * PHI nodes must have an entry for each predecessor, with no extras.
-// * PHI nodes must be the first thing in a basic block, all grouped together
-// * PHI nodes must have at least one entry
-// * All basic blocks should only end with terminator insts, not contain them
-// * The entry node to a function must not have predecessors
-// * All Instructions must be embedded into a basic block
-// * Functions cannot take a void-typed parameter
-// * Verify that a function's argument list agrees with it's declared type.
-// * It is illegal to specify a name for a void value.
-// * It is illegal to have a internal global value with no initializer
-// * It is illegal to have a ret instruction that returns a value that does not
-// agree with the function return value type.
-// * Function call argument types match the function prototype
-// * A landing pad is defined by a landingpad instruction, and can be jumped to
-// only by the unwind edge of an invoke instruction.
-// * A landingpad instruction must be the first non-PHI instruction in the
-// block.
-// * All landingpad instructions must use the same personality function with
-// the same function.
-// * All other things that are tested by asserts spread about the code...
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/CallingConv.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/InstVisitor.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cstdarg>
-using namespace llvm;
-
-namespace { // Anonymous namespace for class
- struct PreVerifier : public FunctionPass {
- static char ID; // Pass ID, replacement for typeid
-
- PreVerifier() : FunctionPass(ID) {
- initializePreVerifierPass(*PassRegistry::getPassRegistry());
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- }
-
- // Check that the prerequisites for successful DominatorTree construction
- // are satisfied.
- bool runOnFunction(Function &F) {
- bool Broken = false;
-
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- if (I->empty() || !I->back().isTerminator()) {
- dbgs() << "Basic Block in function '" << F.getName()
- << "' does not have terminator!\n";
- WriteAsOperand(dbgs(), I, true);
- dbgs() << "\n";
- Broken = true;
- }
- }
-
- if (Broken)
- report_fatal_error("Broken module, no Basic Block terminator!");
-
- return false;
- }
- };
-}
-
-char PreVerifier::ID = 0;
-INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
- false, false)
-static char &PreVerifyID = PreVerifier::ID;
-
-namespace {
- struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
- static char ID; // Pass ID, replacement for typeid
- bool Broken; // Is this module found to be broken?
- VerifierFailureAction action;
- // What to do if verification fails.
- Module *Mod; // Module we are verifying right now
- LLVMContext *Context; // Context within which we are verifying
- DominatorTree *DT; // Dominator Tree, caution can be null!
-
- std::string Messages;
- raw_string_ostream MessagesStr;
-
- /// InstInThisBlock - when verifying a basic block, keep track of all of the
- /// instructions we have seen so far. This allows us to do efficient
- /// dominance checks for the case when an instruction has an operand that is
- /// an instruction in the same block.
- SmallPtrSet<Instruction*, 16> InstsInThisBlock;
-
- /// MDNodes - keep track of the metadata nodes that have been checked
- /// already.
- SmallPtrSet<MDNode *, 32> MDNodes;
-
- /// PersonalityFn - The personality function referenced by the
- /// LandingPadInsts. All LandingPadInsts within the same function must use
- /// the same personality function.
- const Value *PersonalityFn;
-
- Verifier()
- : FunctionPass(ID), Broken(false),
- action(AbortProcessAction), Mod(0), Context(0), DT(0),
- MessagesStr(Messages), PersonalityFn(0) {
- initializeVerifierPass(*PassRegistry::getPassRegistry());
- }
- explicit Verifier(VerifierFailureAction ctn)
- : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
- Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
- initializeVerifierPass(*PassRegistry::getPassRegistry());
- }
-
- bool doInitialization(Module &M) {
- Mod = &M;
- Context = &M.getContext();
-
- // We must abort before returning back to the pass manager, or else the
- // pass manager may try to run other passes on the broken module.
- return abortIfBroken();
- }
-
- bool runOnFunction(Function &F) {
- // Get dominator information if we are being run by PassManager
- DT = &getAnalysis<DominatorTree>();
-
- Mod = F.getParent();
- if (!Context) Context = &F.getContext();
-
- visit(F);
- InstsInThisBlock.clear();
- PersonalityFn = 0;
-
- // We must abort before returning back to the pass manager, or else the
- // pass manager may try to run other passes on the broken module.
- return abortIfBroken();
- }
-
- bool doFinalization(Module &M) {
- // Scan through, checking all of the external function's linkage now...
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- visitGlobalValue(*I);
-
- // Check to make sure function prototypes are okay.
- if (I->isDeclaration()) visitFunction(*I);
- }
-
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- visitGlobalVariable(*I);
-
- for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
- I != E; ++I)
- visitGlobalAlias(*I);
-
- for (Module::named_metadata_iterator I = M.named_metadata_begin(),
- E = M.named_metadata_end(); I != E; ++I)
- visitNamedMDNode(*I);
-
- // If the module is broken, abort at this time.
- return abortIfBroken();
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredID(PreVerifyID);
- AU.addRequired<DominatorTree>();
- }
-
- /// abortIfBroken - If the module is broken and we are supposed to abort on
- /// this condition, do so.
- ///
- bool abortIfBroken() {
- if (!Broken) return false;
- MessagesStr << "Broken module found, ";
- switch (action) {
- case AbortProcessAction:
- MessagesStr << "compilation aborted!\n";
- dbgs() << MessagesStr.str();
- // Client should choose different reaction if abort is not desired
- abort();
- case PrintMessageAction:
- MessagesStr << "verification continues.\n";
- dbgs() << MessagesStr.str();
- return false;
- case ReturnStatusAction:
- MessagesStr << "compilation terminated.\n";
- return true;
- }
- llvm_unreachable("Invalid action");
- }
-
-
- // Verification methods...
- void visitGlobalValue(GlobalValue &GV);
- void visitGlobalVariable(GlobalVariable &GV);
- void visitGlobalAlias(GlobalAlias &GA);
- void visitNamedMDNode(NamedMDNode &NMD);
- void visitMDNode(MDNode &MD, Function *F);
- void visitFunction(Function &F);
- void visitBasicBlock(BasicBlock &BB);
- using InstVisitor<Verifier>::visit;
-
- void visit(Instruction &I);
-
- void visitTruncInst(TruncInst &I);
- void visitZExtInst(ZExtInst &I);
- void visitSExtInst(SExtInst &I);
- void visitFPTruncInst(FPTruncInst &I);
- void visitFPExtInst(FPExtInst &I);
- void visitFPToUIInst(FPToUIInst &I);
- void visitFPToSIInst(FPToSIInst &I);
- void visitUIToFPInst(UIToFPInst &I);
- void visitSIToFPInst(SIToFPInst &I);
- void visitIntToPtrInst(IntToPtrInst &I);
- void visitPtrToIntInst(PtrToIntInst &I);
- void visitBitCastInst(BitCastInst &I);
- void visitPHINode(PHINode &PN);
- void visitBinaryOperator(BinaryOperator &B);
- void visitICmpInst(ICmpInst &IC);
- void visitFCmpInst(FCmpInst &FC);
- void visitExtractElementInst(ExtractElementInst &EI);
- void visitInsertElementInst(InsertElementInst &EI);
- void visitShuffleVectorInst(ShuffleVectorInst &EI);
- void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
- void visitCallInst(CallInst &CI);
- void visitInvokeInst(InvokeInst &II);
- void visitGetElementPtrInst(GetElementPtrInst &GEP);
- void visitLoadInst(LoadInst &LI);
- void visitStoreInst(StoreInst &SI);
- void verifyDominatesUse(Instruction &I, unsigned i);
- void visitInstruction(Instruction &I);
- void visitTerminatorInst(TerminatorInst &I);
- void visitBranchInst(BranchInst &BI);
- void visitReturnInst(ReturnInst &RI);
- void visitSwitchInst(SwitchInst &SI);
- void visitIndirectBrInst(IndirectBrInst &BI);
- void visitSelectInst(SelectInst &SI);
- void visitUserOp1(Instruction &I);
- void visitUserOp2(Instruction &I) { visitUserOp1(I); }
- void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
- void visitAtomicRMWInst(AtomicRMWInst &RMWI);
- void visitFenceInst(FenceInst &FI);
- void visitAllocaInst(AllocaInst &AI);
- void visitExtractValueInst(ExtractValueInst &EVI);
- void visitInsertValueInst(InsertValueInst &IVI);
- void visitLandingPadInst(LandingPadInst &LPI);
-
- void VerifyCallSite(CallSite CS);
- bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
- int VT, unsigned ArgNo, std::string &Suffix);
- bool VerifyIntrinsicType(Type *Ty,
- ArrayRef<Intrinsic::IITDescriptor> &Infos,
- SmallVectorImpl<Type*> &ArgTys);
- void VerifyParameterAttrs(Attribute Attrs, Type *Ty,
- bool isReturnValue, const Value *V);
- void VerifyFunctionAttrs(FunctionType *FT, const AttributeSet &Attrs,
- const Value *V);
-
- void WriteValue(const Value *V) {
- if (!V) return;
- if (isa<Instruction>(V)) {
- MessagesStr << *V << '\n';
- } else {
- WriteAsOperand(MessagesStr, V, true, Mod);
- MessagesStr << '\n';
- }
- }
-
- void WriteType(Type *T) {
- if (!T) return;
- MessagesStr << ' ' << *T;
- }
-
-
- // CheckFailed - A check failed, so print out the condition and the message
- // that failed. This provides a nice place to put a breakpoint if you want
- // to see why something is not correct.
- void CheckFailed(const Twine &Message,
- const Value *V1 = 0, const Value *V2 = 0,
- const Value *V3 = 0, const Value *V4 = 0) {
- MessagesStr << Message.str() << "\n";
- WriteValue(V1);
- WriteValue(V2);
- WriteValue(V3);
- WriteValue(V4);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, const Value *V1,
- Type *T2, const Value *V3 = 0) {
- MessagesStr << Message.str() << "\n";
- WriteValue(V1);
- WriteType(T2);
- WriteValue(V3);
- Broken = true;
- }
-
- void CheckFailed(const Twine &Message, Type *T1,
- Type *T2 = 0, Type *T3 = 0) {
- MessagesStr << Message.str() << "\n";
- WriteType(T1);
- WriteType(T2);
- WriteType(T3);
- Broken = true;
- }
- };
-} // End anonymous namespace
-
-char Verifier::ID = 0;
-INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
-INITIALIZE_PASS_DEPENDENCY(PreVerifier)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
-INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
-
-// Assert - We know that cond should be true, if not print an error message.
-#define Assert(C, M) \
- do { if (!(C)) { CheckFailed(M); return; } } while (0)
-#define Assert1(C, M, V1) \
- do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
-#define Assert2(C, M, V1, V2) \
- do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
-#define Assert3(C, M, V1, V2, V3) \
- do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
-#define Assert4(C, M, V1, V2, V3, V4) \
- do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
-
-void Verifier::visit(Instruction &I) {
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
- Assert1(I.getOperand(i) != 0, "Operand is null", &I);
- InstVisitor<Verifier>::visit(I);
-}
-
-
-void Verifier::visitGlobalValue(GlobalValue &GV) {
- Assert1(!GV.isDeclaration() ||
- GV.isMaterializable() ||
- GV.hasExternalLinkage() ||
- GV.hasDLLImportLinkage() ||
- GV.hasExternalWeakLinkage() ||
- (isa<GlobalAlias>(GV) &&
- (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
- "Global is external, but doesn't have external or dllimport or weak linkage!",
- &GV);
-
- Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
- "Global is marked as dllimport, but not external", &GV);
-
- Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
- "Only global variables can have appending linkage!", &GV);
-
- if (GV.hasAppendingLinkage()) {
- GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
- Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
- "Only global arrays can have appending linkage!", GVar);
- }
-
- Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
- "linkonce_odr_auto_hide can only have default visibility!",
- &GV);
-}
-
-void Verifier::visitGlobalVariable(GlobalVariable &GV) {
- if (GV.hasInitializer()) {
- Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
- "Global variable initializer type does not match global "
- "variable type!", &GV);
-
- // If the global has common linkage, it must have a zero initializer and
- // cannot be constant.
- if (GV.hasCommonLinkage()) {
- Assert1(GV.getInitializer()->isNullValue(),
- "'common' global must have a zero initializer!", &GV);
- Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
- &GV);
- }
- } else {
- Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
- GV.hasExternalWeakLinkage(),
- "invalid linkage type for global declaration", &GV);
- }
-
- if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
- GV.getName() == "llvm.global_dtors")) {
- Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
- // Don't worry about emitting an error for it not being an array,
- // visitGlobalValue will complain on appending non-array.
- if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
- StructType *STy = dyn_cast<StructType>(ATy->getElementType());
- PointerType *FuncPtrTy =
- FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
- Assert1(STy && STy->getNumElements() == 2 &&
- STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
- STy->getTypeAtIndex(1) == FuncPtrTy,
- "wrong type for intrinsic global variable", &GV);
- }
- }
-
- visitGlobalValue(GV);
-}
-
-void Verifier::visitGlobalAlias(GlobalAlias &GA) {
- Assert1(!GA.getName().empty(),
- "Alias name cannot be empty!", &GA);
- Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
- GA.hasWeakLinkage(),
- "Alias should have external or external weak linkage!", &GA);
- Assert1(GA.getAliasee(),
- "Aliasee cannot be NULL!", &GA);
- Assert1(GA.getType() == GA.getAliasee()->getType(),
- "Alias and aliasee types should match!", &GA);
- Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
-
- if (!isa<GlobalValue>(GA.getAliasee())) {
- const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
- Assert1(CE &&
- (CE->getOpcode() == Instruction::BitCast ||
- CE->getOpcode() == Instruction::GetElementPtr) &&
- isa<GlobalValue>(CE->getOperand(0)),
- "Aliasee should be either GlobalValue or bitcast of GlobalValue",
- &GA);
- }
-
- const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
- Assert1(Aliasee,
- "Aliasing chain should end with function or global variable", &GA);
-
- visitGlobalValue(GA);
-}
-
-void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
- for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
- MDNode *MD = NMD.getOperand(i);
- if (!MD)
- continue;
-
- Assert1(!MD->isFunctionLocal(),
- "Named metadata operand cannot be function local!", MD);
- visitMDNode(*MD, 0);
- }
-}
-
-void Verifier::visitMDNode(MDNode &MD, Function *F) {
- // Only visit each node once. Metadata can be mutually recursive, so this
- // avoids infinite recursion here, as well as being an optimization.
- if (!MDNodes.insert(&MD))
- return;
-
- for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
- Value *Op = MD.getOperand(i);
- if (!Op)
- continue;
- if (isa<Constant>(Op) || isa<MDString>(Op))
- continue;
- if (MDNode *N = dyn_cast<MDNode>(Op)) {
- Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
- "Global metadata operand cannot be function local!", &MD, N);
- visitMDNode(*N, F);
- continue;
- }
- Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
-
- // If this was an instruction, bb, or argument, verify that it is in the
- // function that we expect.
- Function *ActualF = 0;
- if (Instruction *I = dyn_cast<Instruction>(Op))
- ActualF = I->getParent()->getParent();
- else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
- ActualF = BB->getParent();
- else if (Argument *A = dyn_cast<Argument>(Op))
- ActualF = A->getParent();
- assert(ActualF && "Unimplemented function local metadata case!");
-
- Assert2(ActualF == F, "function-local metadata used in wrong function",
- &MD, Op);
- }
-}
-
-// VerifyParameterAttrs - Check the given attributes for an argument or return
-// value of the specified type. The value V is printed in error messages.
-void Verifier::VerifyParameterAttrs(Attribute Attrs, Type *Ty,
- bool isReturnValue, const Value *V) {
- if (!Attrs.hasAttributes())
- return;
-
- Assert1(!Attrs.hasAttribute(Attribute::NoReturn) &&
- !Attrs.hasAttribute(Attribute::NoUnwind) &&
- !Attrs.hasAttribute(Attribute::ReadNone) &&
- !Attrs.hasAttribute(Attribute::ReadOnly) &&
- !Attrs.hasAttribute(Attribute::NoInline) &&
- !Attrs.hasAttribute(Attribute::AlwaysInline) &&
- !Attrs.hasAttribute(Attribute::OptimizeForSize) &&
- !Attrs.hasAttribute(Attribute::StackProtect) &&
- !Attrs.hasAttribute(Attribute::StackProtectReq) &&
- !Attrs.hasAttribute(Attribute::NoRedZone) &&
- !Attrs.hasAttribute(Attribute::NoImplicitFloat) &&
- !Attrs.hasAttribute(Attribute::Naked) &&
- !Attrs.hasAttribute(Attribute::InlineHint) &&
- !Attrs.hasAttribute(Attribute::StackAlignment) &&
- !Attrs.hasAttribute(Attribute::UWTable) &&
- !Attrs.hasAttribute(Attribute::NonLazyBind) &&
- !Attrs.hasAttribute(Attribute::ReturnsTwice) &&
- !Attrs.hasAttribute(Attribute::AddressSafety) &&
- !Attrs.hasAttribute(Attribute::MinSize),
- "Some attributes in '" + Attrs.getAsString() +
- "' only apply to functions!", V);
-
- if (isReturnValue)
- Assert1(!Attrs.hasAttribute(Attribute::ByVal) &&
- !Attrs.hasAttribute(Attribute::Nest) &&
- !Attrs.hasAttribute(Attribute::StructRet) &&
- !Attrs.hasAttribute(Attribute::NoCapture),
- "Attribute 'byval', 'nest', 'sret', and 'nocapture' "
- "do not apply to return values!", V);
-
- // Check for mutually incompatible attributes.
- Assert1(!((Attrs.hasAttribute(Attribute::ByVal) &&
- Attrs.hasAttribute(Attribute::Nest)) ||
- (Attrs.hasAttribute(Attribute::ByVal) &&
- Attrs.hasAttribute(Attribute::StructRet)) ||
- (Attrs.hasAttribute(Attribute::Nest) &&
- Attrs.hasAttribute(Attribute::StructRet))), "Attributes "
- "'byval, nest, and sret' are incompatible!", V);
-
- Assert1(!((Attrs.hasAttribute(Attribute::ByVal) &&
- Attrs.hasAttribute(Attribute::Nest)) ||
- (Attrs.hasAttribute(Attribute::ByVal) &&
- Attrs.hasAttribute(Attribute::InReg)) ||
- (Attrs.hasAttribute(Attribute::Nest) &&
- Attrs.hasAttribute(Attribute::InReg))), "Attributes "
- "'byval, nest, and inreg' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Attribute::ZExt) &&
- Attrs.hasAttribute(Attribute::SExt)), "Attributes "
- "'zeroext and signext' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Attribute::ReadNone) &&
- Attrs.hasAttribute(Attribute::ReadOnly)), "Attributes "
- "'readnone and readonly' are incompatible!", V);
-
- Assert1(!(Attrs.hasAttribute(Attribute::NoInline) &&
- Attrs.hasAttribute(Attribute::AlwaysInline)), "Attributes "
- "'noinline and alwaysinline' are incompatible!", V);
-
- Assert1(!AttrBuilder(Attrs).
- hasAttributes(Attribute::typeIncompatible(Ty)),
- "Wrong types for attribute: " +
- Attribute::typeIncompatible(Ty).getAsString(), V);
-
- if (PointerType *PTy = dyn_cast<PointerType>(Ty))
- Assert1(!Attrs.hasAttribute(Attribute::ByVal) ||
- PTy->getElementType()->isSized(),
- "Attribute 'byval' does not support unsized types!", V);
- else
- Assert1(!Attrs.hasAttribute(Attribute::ByVal),
- "Attribute 'byval' only applies to parameters with pointer type!",
- V);
-}
-
-// VerifyFunctionAttrs - Check parameter attributes against a function type.
-// The value V is printed in error messages.
-void Verifier::VerifyFunctionAttrs(FunctionType *FT,
- const AttributeSet &Attrs,
- const Value *V) {
- if (Attrs.isEmpty())
- return;
-
- bool SawNest = false;
-
- for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
- const AttributeWithIndex &Attr = Attrs.getSlot(i);
-
- Type *Ty;
- if (Attr.Index == 0)
- Ty = FT->getReturnType();
- else if (Attr.Index-1 < FT->getNumParams())
- Ty = FT->getParamType(Attr.Index-1);
- else
- break; // VarArgs attributes, verified elsewhere.
-
- VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
-
- if (Attr.Attrs.hasAttribute(Attribute::Nest)) {
- Assert1(!SawNest, "More than one parameter has attribute nest!", V);
- SawNest = true;
- }
-
- if (Attr.Attrs.hasAttribute(Attribute::StructRet))
- Assert1(Attr.Index == 1, "Attribute sret is not on first parameter!", V);
- }
-
- Attribute FAttrs = Attrs.getFnAttributes();
- AttrBuilder NotFn(FAttrs);
- NotFn.removeFunctionOnlyAttrs();
- Assert1(!NotFn.hasAttributes(), "Attribute '" +
- Attribute::get(V->getContext(), NotFn).getAsString() +
- "' do not apply to the function!", V);
-
- // Check for mutually incompatible attributes.
- Assert1(!((FAttrs.hasAttribute(Attribute::ByVal) &&
- FAttrs.hasAttribute(Attribute::Nest)) ||
- (FAttrs.hasAttribute(Attribute::ByVal) &&
- FAttrs.hasAttribute(Attribute::StructRet)) ||
- (FAttrs.hasAttribute(Attribute::Nest) &&
- FAttrs.hasAttribute(Attribute::StructRet))), "Attributes "
- "'byval, nest, and sret' are incompatible!", V);
-
- Assert1(!((FAttrs.hasAttribute(Attribute::ByVal) &&
- FAttrs.hasAttribute(Attribute::Nest)) ||
- (FAttrs.hasAttribute(Attribute::ByVal) &&
- FAttrs.hasAttribute(Attribute::InReg)) ||
- (FAttrs.hasAttribute(Attribute::Nest) &&
- FAttrs.hasAttribute(Attribute::InReg))), "Attributes "
- "'byval, nest, and inreg' are incompatible!", V);
-
- Assert1(!(FAttrs.hasAttribute(Attribute::ZExt) &&
- FAttrs.hasAttribute(Attribute::SExt)), "Attributes "
- "'zeroext and signext' are incompatible!", V);
-
- Assert1(!(FAttrs.hasAttribute(Attribute::ReadNone) &&
- FAttrs.hasAttribute(Attribute::ReadOnly)), "Attributes "
- "'readnone and readonly' are incompatible!", V);
-
- Assert1(!(FAttrs.hasAttribute(Attribute::NoInline) &&
- FAttrs.hasAttribute(Attribute::AlwaysInline)), "Attributes "
- "'noinline and alwaysinline' are incompatible!", V);
-}
-
-static bool VerifyAttributeCount(const AttributeSet &Attrs, unsigned Params) {
- if (Attrs.isEmpty())
- return true;
-
- unsigned LastSlot = Attrs.getNumSlots() - 1;
- unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
- if (LastIndex <= Params
- || (LastIndex == (unsigned)~0
- && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
- return true;
-
- return false;
-}
-
-// visitFunction - Verify that a function is ok.
-//
-void Verifier::visitFunction(Function &F) {
- // Check function arguments.
- FunctionType *FT = F.getFunctionType();
- unsigned NumArgs = F.arg_size();
-
- Assert1(Context == &F.getContext(),
- "Function context does not match Module context!", &F);
-
- Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
- Assert2(FT->getNumParams() == NumArgs,
- "# formal arguments must match # of arguments for function type!",
- &F, FT);
- Assert1(F.getReturnType()->isFirstClassType() ||
- F.getReturnType()->isVoidTy() ||
- F.getReturnType()->isStructTy(),
- "Functions cannot return aggregate values!", &F);
-
- Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
- "Invalid struct return type!", &F);
-
- const AttributeSet &Attrs = F.getAttributes();
-
- Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
- "Attribute after last parameter!", &F);
-
- // Check function attributes.
- VerifyFunctionAttrs(FT, Attrs, &F);
-
- // Check that this function meets the restrictions on this calling convention.
- switch (F.getCallingConv()) {
- default:
- break;
- case CallingConv::C:
- break;
- case CallingConv::Fast:
- case CallingConv::Cold:
- case CallingConv::X86_FastCall:
- case CallingConv::X86_ThisCall:
- case CallingConv::Intel_OCL_BI:
- case CallingConv::PTX_Kernel:
- case CallingConv::PTX_Device:
- Assert1(!F.isVarArg(),
- "Varargs functions must have C calling conventions!", &F);
- break;
- }
-
- bool isLLVMdotName = F.getName().size() >= 5 &&
- F.getName().substr(0, 5) == "llvm.";
-
- // Check that the argument values match the function type for this function...
- unsigned i = 0;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++i) {
- Assert2(I->getType() == FT->getParamType(i),
- "Argument value does not match function argument type!",
- I, FT->getParamType(i));
- Assert1(I->getType()->isFirstClassType(),
- "Function arguments must have first-class types!", I);
- if (!isLLVMdotName)
- Assert2(!I->getType()->isMetadataTy(),
- "Function takes metadata but isn't an intrinsic", I, &F);
- }
-
- if (F.isMaterializable()) {
- // Function has a body somewhere we can't see.
- } else if (F.isDeclaration()) {
- Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
- F.hasExternalWeakLinkage(),
- "invalid linkage type for function declaration", &F);
- } else {
- // Verify that this function (which has a body) is not named "llvm.*". It
- // is not legal to define intrinsics.
- Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
-
- // Check the entry node
- BasicBlock *Entry = &F.getEntryBlock();
- Assert1(pred_begin(Entry) == pred_end(Entry),
- "Entry block to function must not have predecessors!", Entry);
-
- // The address of the entry block cannot be taken, unless it is dead.
- if (Entry->hasAddressTaken()) {
- Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
- "blockaddress may not be used with the entry block!", Entry);
- }
- }
-
- // If this function is actually an intrinsic, verify that it is only used in
- // direct call/invokes, never having its "address taken".
- if (F.getIntrinsicID()) {
- const User *U;
- if (F.hasAddressTaken(&U))
- Assert1(0, "Invalid user of intrinsic instruction!", U);
- }
-}
-
-// verifyBasicBlock - Verify that a basic block is well formed...
-//
-void Verifier::visitBasicBlock(BasicBlock &BB) {
- InstsInThisBlock.clear();
-
- // Ensure that basic blocks have terminators!
- Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
-
- // Check constraints that this basic block imposes on all of the PHI nodes in
- // it.
- if (isa<PHINode>(BB.front())) {
- SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
- SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
- std::sort(Preds.begin(), Preds.end());
- PHINode *PN;
- for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
- // Ensure that PHI nodes have at least one entry!
- Assert1(PN->getNumIncomingValues() != 0,
- "PHI nodes must have at least one entry. If the block is dead, "
- "the PHI should be removed!", PN);
- Assert1(PN->getNumIncomingValues() == Preds.size(),
- "PHINode should have one entry for each predecessor of its "
- "parent basic block!", PN);
-
- // Get and sort all incoming values in the PHI node...
- Values.clear();
- Values.reserve(PN->getNumIncomingValues());
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- Values.push_back(std::make_pair(PN->getIncomingBlock(i),
- PN->getIncomingValue(i)));
- std::sort(Values.begin(), Values.end());
-
- for (unsigned i = 0, e = Values.size(); i != e; ++i) {
- // Check to make sure that if there is more than one entry for a
- // particular basic block in this PHI node, that the incoming values are
- // all identical.
- //
- Assert4(i == 0 || Values[i].first != Values[i-1].first ||
- Values[i].second == Values[i-1].second,
- "PHI node has multiple entries for the same basic block with "
- "different incoming values!", PN, Values[i].first,
- Values[i].second, Values[i-1].second);
-
- // Check to make sure that the predecessors and PHI node entries are
- // matched up.
- Assert3(Values[i].first == Preds[i],
- "PHI node entries do not match predecessors!", PN,
- Values[i].first, Preds[i]);
- }
- }
- }
-}
-
-void Verifier::visitTerminatorInst(TerminatorInst &I) {
- // Ensure that terminators only exist at the end of the basic block.
- Assert1(&I == I.getParent()->getTerminator(),
- "Terminator found in the middle of a basic block!", I.getParent());
- visitInstruction(I);
-}
-
-void Verifier::visitBranchInst(BranchInst &BI) {
- if (BI.isConditional()) {
- Assert2(BI.getCondition()->getType()->isIntegerTy(1),
- "Branch condition is not 'i1' type!", &BI, BI.getCondition());
- }
- visitTerminatorInst(BI);
-}
-
-void Verifier::visitReturnInst(ReturnInst &RI) {
- Function *F = RI.getParent()->getParent();
- unsigned N = RI.getNumOperands();
- if (F->getReturnType()->isVoidTy())
- Assert2(N == 0,
- "Found return instr that returns non-void in Function of void "
- "return type!", &RI, F->getReturnType());
- else
- Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
- "Function return type does not match operand "
- "type of return inst!", &RI, F->getReturnType());
-
- // Check to make sure that the return value has necessary properties for
- // terminators...
- visitTerminatorInst(RI);
-}
-
-void Verifier::visitSwitchInst(SwitchInst &SI) {
- // Check to make sure that all of the constants in the switch instruction
- // have the same type as the switched-on value.
- Type *SwitchTy = SI.getCondition()->getType();
- IntegerType *IntTy = cast<IntegerType>(SwitchTy);
- IntegersSubsetToBB Mapping;
- std::map<IntegersSubset::Range, unsigned> RangeSetMap;
- for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
- IntegersSubset CaseRanges = i.getCaseValueEx();
- for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
- IntegersSubset::Range r = CaseRanges.getItem(ri);
- Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
- "Switch constants must all be same type as switch value!", &SI);
- Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
- "Switch constants must all be same type as switch value!", &SI);
- Mapping.add(r);
- RangeSetMap[r] = i.getCaseIndex();
- }
- }
-
- IntegersSubsetToBB::RangeIterator errItem;
- if (!Mapping.verify(errItem)) {
- unsigned CaseIndex = RangeSetMap[errItem->first];
- SwitchInst::CaseIt i(&SI, CaseIndex);
- Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
- }
-
- visitTerminatorInst(SI);
-}
-
-void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
- Assert1(BI.getAddress()->getType()->isPointerTy(),
- "Indirectbr operand must have pointer type!", &BI);
- for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
- Assert1(BI.getDestination(i)->getType()->isLabelTy(),
- "Indirectbr destinations must all have pointer type!", &BI);
-
- visitTerminatorInst(BI);
-}
-
-void Verifier::visitSelectInst(SelectInst &SI) {
- Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
- SI.getOperand(2)),
- "Invalid operands for select instruction!", &SI);
-
- Assert1(SI.getTrueValue()->getType() == SI.getType(),
- "Select values must have same type as select instruction!", &SI);
- visitInstruction(SI);
-}
-
-/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
-/// a pass, if any exist, it's an error.
-///
-void Verifier::visitUserOp1(Instruction &I) {
- Assert1(0, "User-defined operators should not live outside of a pass!", &I);
-}
-
-void Verifier::visitTruncInst(TruncInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
- Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
- Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "trunc source and destination must both be a vector or neither", &I);
- Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitZExtInst(ZExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- // Get the size of the types in bits, we'll need this later
- Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
- Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "zext source and destination must both be a vector or neither", &I);
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
- Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitSExtInst(SExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
- Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
- Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "sext source and destination must both be a vector or neither", &I);
- Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitFPTruncInst(FPTruncInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
- Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fptrunc source and destination must both be a vector or neither",&I);
- Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitFPExtInst(FPExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
- Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fpext source and destination must both be a vector or neither", &I);
- Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitUIToFPInst(UIToFPInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
-
- Assert1(SrcVec == DstVec,
- "UIToFP source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isIntOrIntVectorTy(),
- "UIToFP source must be integer or integer vector", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),
- "UIToFP result must be FP or FP vector", &I);
-
- if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "UIToFP source and dest vector length mismatch", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitSIToFPInst(SIToFPInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
-
- Assert1(SrcVec == DstVec,
- "SIToFP source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isIntOrIntVectorTy(),
- "SIToFP source must be integer or integer vector", &I);
- Assert1(DestTy->isFPOrFPVectorTy(),
- "SIToFP result must be FP or FP vector", &I);
-
- if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "SIToFP source and dest vector length mismatch", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitFPToUIInst(FPToUIInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
-
- Assert1(SrcVec == DstVec,
- "FPToUI source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
- &I);
- Assert1(DestTy->isIntOrIntVectorTy(),
- "FPToUI result must be integer or integer vector", &I);
-
- if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "FPToUI source and dest vector length mismatch", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitFPToSIInst(FPToSIInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
-
- Assert1(SrcVec == DstVec,
- "FPToSI source and dest must both be vector or scalar", &I);
- Assert1(SrcTy->isFPOrFPVectorTy(),
- "FPToSI source must be FP or FP vector", &I);
- Assert1(DestTy->isIntOrIntVectorTy(),
- "FPToSI result must be integer or integer vector", &I);
-
- if (SrcVec && DstVec)
- Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "FPToSI source and dest vector length mismatch", &I);
-
- visitInstruction(I);
-}
-
-void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- Assert1(SrcTy->getScalarType()->isPointerTy(),
- "PtrToInt source must be pointer", &I);
- Assert1(DestTy->getScalarType()->isIntegerTy(),
- "PtrToInt result must be integral", &I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "PtrToInt type mismatch", &I);
-
- if (SrcTy->isVectorTy()) {
- VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
- VectorType *VDest = dyn_cast<VectorType>(DestTy);
- Assert1(VSrc->getNumElements() == VDest->getNumElements(),
- "PtrToInt Vector width mismatch", &I);
- }
-
- visitInstruction(I);
-}
-
-void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- Assert1(SrcTy->getScalarType()->isIntegerTy(),
- "IntToPtr source must be an integral", &I);
- Assert1(DestTy->getScalarType()->isPointerTy(),
- "IntToPtr result must be a pointer",&I);
- Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "IntToPtr type mismatch", &I);
- if (SrcTy->isVectorTy()) {
- VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
- VectorType *VDest = dyn_cast<VectorType>(DestTy);
- Assert1(VSrc->getNumElements() == VDest->getNumElements(),
- "IntToPtr Vector width mismatch", &I);
- }
- visitInstruction(I);
-}
-
-void Verifier::visitBitCastInst(BitCastInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
-
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
- unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
-
- // BitCast implies a no-op cast of type only. No bits change.
- // However, you can't cast pointers to anything but pointers.
- Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
- "Bitcast requires both operands to be pointer or neither", &I);
- Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
-
- // Disallow aggregates.
- Assert1(!SrcTy->isAggregateType(),
- "Bitcast operand must not be aggregate", &I);
- Assert1(!DestTy->isAggregateType(),
- "Bitcast type must not be aggregate", &I);
-
- visitInstruction(I);
-}
-
-/// visitPHINode - Ensure that a PHI node is well formed.
-///
-void Verifier::visitPHINode(PHINode &PN) {
- // Ensure that the PHI nodes are all grouped together at the top of the block.
- // This can be tested by checking whether the instruction before this is
- // either nonexistent (because this is begin()) or is a PHI node. If not,
- // then there is some other instruction before a PHI.
- Assert2(&PN == &PN.getParent()->front() ||
- isa<PHINode>(--BasicBlock::iterator(&PN)),
- "PHI nodes not grouped at top of basic block!",
- &PN, PN.getParent());
-
- // Check that all of the values of the PHI node have the same type as the
- // result, and that the incoming blocks are really basic blocks.
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
- "PHI node operands are not the same type as the result!", &PN);
- }
-
- // All other PHI node constraints are checked in the visitBasicBlock method.
-
- visitInstruction(PN);
-}
-
-void Verifier::VerifyCallSite(CallSite CS) {
- Instruction *I = CS.getInstruction();
-
- Assert1(CS.getCalledValue()->getType()->isPointerTy(),
- "Called function must be a pointer!", I);
- PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
-
- Assert1(FPTy->getElementType()->isFunctionTy(),
- "Called function is not pointer to function type!", I);
- FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
-
- // Verify that the correct number of arguments are being passed
- if (FTy->isVarArg())
- Assert1(CS.arg_size() >= FTy->getNumParams(),
- "Called function requires more parameters than were provided!",I);
- else
- Assert1(CS.arg_size() == FTy->getNumParams(),
- "Incorrect number of arguments passed to called function!", I);
-
- // Verify that all arguments to the call match the function type.
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
- "Call parameter type does not match function signature!",
- CS.getArgument(i), FTy->getParamType(i), I);
-
- const AttributeSet &Attrs = CS.getAttributes();
-
- Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
- "Attribute after last parameter!", I);
-
- // Verify call attributes.
- VerifyFunctionAttrs(FTy, Attrs, I);
-
- if (FTy->isVarArg())
- // Check attributes on the varargs part.
- for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
- Attribute Attr = Attrs.getParamAttributes(Idx);
-
- VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
-
- Assert1(!Attr.hasAttribute(Attribute::StructRet),
- "Attribute 'sret' cannot be used for vararg call arguments!", I);
- }
-
- // Verify that there's no metadata unless it's a direct call to an intrinsic.
- if (CS.getCalledFunction() == 0 ||
- !CS.getCalledFunction()->getName().startswith("llvm.")) {
- for (FunctionType::param_iterator PI = FTy->param_begin(),
- PE = FTy->param_end(); PI != PE; ++PI)
- Assert1(!(*PI)->isMetadataTy(),
- "Function has metadata parameter but isn't an intrinsic", I);
- }
-
- visitInstruction(*I);
-}
-
-void Verifier::visitCallInst(CallInst &CI) {
- VerifyCallSite(&CI);
-
- if (Function *F = CI.getCalledFunction())
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
- visitIntrinsicFunctionCall(ID, CI);
-}
-
-void Verifier::visitInvokeInst(InvokeInst &II) {
- VerifyCallSite(&II);
-
- // Verify that there is a landingpad instruction as the first non-PHI
- // instruction of the 'unwind' destination.
- Assert1(II.getUnwindDest()->isLandingPad(),
- "The unwind destination does not have a landingpad instruction!",&II);
-
- visitTerminatorInst(II);
-}
-
-/// visitBinaryOperator - Check that both arguments to the binary operator are
-/// of the same type!
-///
-void Verifier::visitBinaryOperator(BinaryOperator &B) {
- Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
- "Both operands to a binary operator are not of the same type!", &B);
-
- switch (B.getOpcode()) {
- // Check that integer arithmetic operators are only used with
- // integral operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- Assert1(B.getType()->isIntOrIntVectorTy(),
- "Integer arithmetic operators only work with integral types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Integer arithmetic operators must have same type "
- "for operands and result!", &B);
- break;
- // Check that floating-point arithmetic operators are only used with
- // floating-point operands.
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- Assert1(B.getType()->isFPOrFPVectorTy(),
- "Floating-point arithmetic operators only work with "
- "floating-point types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Floating-point arithmetic operators must have same type "
- "for operands and result!", &B);
- break;
- // Check that logical operators are only used with integral operands.
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- Assert1(B.getType()->isIntOrIntVectorTy(),
- "Logical operators only work with integral types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Logical operators must have same type for operands and result!",
- &B);
- break;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- Assert1(B.getType()->isIntOrIntVectorTy(),
- "Shifts only work with integral types!", &B);
- Assert1(B.getType() == B.getOperand(0)->getType(),
- "Shift return type must be same as operands!", &B);
- break;
- default:
- llvm_unreachable("Unknown BinaryOperator opcode!");
- }
-
- visitInstruction(B);
-}
-
-void Verifier::visitICmpInst(ICmpInst &IC) {
- // Check that the operands are the same type
- Type *Op0Ty = IC.getOperand(0)->getType();
- Type *Op1Ty = IC.getOperand(1)->getType();
- Assert1(Op0Ty == Op1Ty,
- "Both operands to ICmp instruction are not of the same type!", &IC);
- // Check that the operands are the right type
- Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
- "Invalid operand types for ICmp instruction", &IC);
- // Check that the predicate is valid.
- Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
- IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
- "Invalid predicate in ICmp instruction!", &IC);
-
- visitInstruction(IC);
-}
-
-void Verifier::visitFCmpInst(FCmpInst &FC) {
- // Check that the operands are the same type
- Type *Op0Ty = FC.getOperand(0)->getType();
- Type *Op1Ty = FC.getOperand(1)->getType();
- Assert1(Op0Ty == Op1Ty,
- "Both operands to FCmp instruction are not of the same type!", &FC);
- // Check that the operands are the right type
- Assert1(Op0Ty->isFPOrFPVectorTy(),
- "Invalid operand types for FCmp instruction", &FC);
- // Check that the predicate is valid.
- Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
- FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
- "Invalid predicate in FCmp instruction!", &FC);
-
- visitInstruction(FC);
-}
-
-void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
- Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
- EI.getOperand(1)),
- "Invalid extractelement operands!", &EI);
- visitInstruction(EI);
-}
-
-void Verifier::visitInsertElementInst(InsertElementInst &IE) {
- Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
- IE.getOperand(1),
- IE.getOperand(2)),
- "Invalid insertelement operands!", &IE);
- visitInstruction(IE);
-}
-
-void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
- Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
- SV.getOperand(2)),
- "Invalid shufflevector operands!", &SV);
- visitInstruction(SV);
-}
-
-void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
-
- Assert1(isa<PointerType>(TargetTy),
- "GEP base pointer is not a vector or a vector of pointers", &GEP);
- Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
- "GEP into unsized type!", &GEP);
- Assert1(GEP.getPointerOperandType()->isVectorTy() ==
- GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
- &GEP);
-
- SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
- Type *ElTy =
- GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
- Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
-
- Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
- cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
- == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
-
- if (GEP.getPointerOperandType()->isVectorTy()) {
- // Additional checks for vector GEPs.
- unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
- Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
- "Vector GEP result width doesn't match operand's", &GEP);
- for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
- Type *IndexTy = Idxs[i]->getType();
- Assert1(IndexTy->isVectorTy(),
- "Vector GEP must have vector indices!", &GEP);
- unsigned IndexWidth = IndexTy->getVectorNumElements();
- Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
- }
- }
- visitInstruction(GEP);
-}
-
-static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
- return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
-}
-
-void Verifier::visitLoadInst(LoadInst &LI) {
- PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
- Assert1(PTy, "Load operand must be a pointer.", &LI);
- Type *ElTy = PTy->getElementType();
- Assert2(ElTy == LI.getType(),
- "Load result type does not match pointer operand type!", &LI, ElTy);
- if (LI.isAtomic()) {
- Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
- "Load cannot have Release ordering", &LI);
- Assert1(LI.getAlignment() != 0,
- "Atomic load must specify explicit alignment", &LI);
- if (!ElTy->isPointerTy()) {
- Assert2(ElTy->isIntegerTy(),
- "atomic store operand must have integer type!",
- &LI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "atomic store operand must be power-of-two byte-sized integer",
- &LI, ElTy);
- }
- } else {
- Assert1(LI.getSynchScope() == CrossThread,
- "Non-atomic load cannot have SynchronizationScope specified", &LI);
- }
-
- if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
- unsigned NumOperands = Range->getNumOperands();
- Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
- unsigned NumRanges = NumOperands / 2;
- Assert1(NumRanges >= 1, "It should have at least one range!", Range);
-
- ConstantRange LastRange(1); // Dummy initial value
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
- Assert1(Low, "The lower limit must be an integer!", Low);
- ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
- Assert1(High, "The upper limit must be an integer!", High);
- Assert1(High->getType() == Low->getType() &&
- High->getType() == ElTy, "Range types must match load type!",
- &LI);
-
- APInt HighV = High->getValue();
- APInt LowV = Low->getValue();
- ConstantRange CurRange(LowV, HighV);
- Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
- "Range must not be empty!", Range);
- if (i != 0) {
- Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
- Range);
- Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
- Range);
- }
- LastRange = ConstantRange(LowV, HighV);
- }
- if (NumRanges > 2) {
- APInt FirstLow =
- dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
- APInt FirstHigh =
- dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
- ConstantRange FirstRange(FirstLow, FirstHigh);
- Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
- Range);
- }
-
-
- }
-
- visitInstruction(LI);
-}
-
-void Verifier::visitStoreInst(StoreInst &SI) {
- PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
- Assert1(PTy, "Store operand must be a pointer.", &SI);
- Type *ElTy = PTy->getElementType();
- Assert2(ElTy == SI.getOperand(0)->getType(),
- "Stored value type does not match pointer operand type!",
- &SI, ElTy);
- if (SI.isAtomic()) {
- Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
- "Store cannot have Acquire ordering", &SI);
- Assert1(SI.getAlignment() != 0,
- "Atomic store must specify explicit alignment", &SI);
- if (!ElTy->isPointerTy()) {
- Assert2(ElTy->isIntegerTy(),
- "atomic store operand must have integer type!",
- &SI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "atomic store operand must be power-of-two byte-sized integer",
- &SI, ElTy);
- }
- } else {
- Assert1(SI.getSynchScope() == CrossThread,
- "Non-atomic store cannot have SynchronizationScope specified", &SI);
- }
- visitInstruction(SI);
-}
-
-void Verifier::visitAllocaInst(AllocaInst &AI) {
- PointerType *PTy = AI.getType();
- Assert1(PTy->getAddressSpace() == 0,
- "Allocation instruction pointer not in the generic address space!",
- &AI);
- Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
- &AI);
- Assert1(AI.getArraySize()->getType()->isIntegerTy(),
- "Alloca array size must have integer type", &AI);
- visitInstruction(AI);
-}
-
-void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
- Assert1(CXI.getOrdering() != NotAtomic,
- "cmpxchg instructions must be atomic.", &CXI);
- Assert1(CXI.getOrdering() != Unordered,
- "cmpxchg instructions cannot be unordered.", &CXI);
- PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
- Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
- Type *ElTy = PTy->getElementType();
- Assert2(ElTy->isIntegerTy(),
- "cmpxchg operand must have integer type!",
- &CXI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "cmpxchg operand must be power-of-two byte-sized integer",
- &CXI, ElTy);
- Assert2(ElTy == CXI.getOperand(1)->getType(),
- "Expected value type does not match pointer operand type!",
- &CXI, ElTy);
- Assert2(ElTy == CXI.getOperand(2)->getType(),
- "Stored value type does not match pointer operand type!",
- &CXI, ElTy);
- visitInstruction(CXI);
-}
-
-void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
- Assert1(RMWI.getOrdering() != NotAtomic,
- "atomicrmw instructions must be atomic.", &RMWI);
- Assert1(RMWI.getOrdering() != Unordered,
- "atomicrmw instructions cannot be unordered.", &RMWI);
- PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
- Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
- Type *ElTy = PTy->getElementType();
- Assert2(ElTy->isIntegerTy(),
- "atomicrmw operand must have integer type!",
- &RMWI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert2(Size >= 8 && !(Size & (Size - 1)),
- "atomicrmw operand must be power-of-two byte-sized integer",
- &RMWI, ElTy);
- Assert2(ElTy == RMWI.getOperand(1)->getType(),
- "Argument value type does not match pointer operand type!",
- &RMWI, ElTy);
- Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
- RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
- "Invalid binary operation!", &RMWI);
- visitInstruction(RMWI);
-}
-
-void Verifier::visitFenceInst(FenceInst &FI) {
- const AtomicOrdering Ordering = FI.getOrdering();
- Assert1(Ordering == Acquire || Ordering == Release ||
- Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
- "fence instructions may only have "
- "acquire, release, acq_rel, or seq_cst ordering.", &FI);
- visitInstruction(FI);
-}
-
-void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
- Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
- EVI.getIndices()) ==
- EVI.getType(),
- "Invalid ExtractValueInst operands!", &EVI);
-
- visitInstruction(EVI);
-}
-
-void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
- Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
- IVI.getIndices()) ==
- IVI.getOperand(1)->getType(),
- "Invalid InsertValueInst operands!", &IVI);
-
- visitInstruction(IVI);
-}
-
-void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
- BasicBlock *BB = LPI.getParent();
-
- // The landingpad instruction is ill-formed if it doesn't have any clauses and
- // isn't a cleanup.
- Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
- "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
-
- // The landingpad instruction defines its parent as a landing pad block. The
- // landing pad block may be branched to only by the unwind edge of an invoke.
- for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
- const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
- Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
- "Block containing LandingPadInst must be jumped to "
- "only by the unwind edge of an invoke.", &LPI);
- }
-
- // The landingpad instruction must be the first non-PHI instruction in the
- // block.
- Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
- "LandingPadInst not the first non-PHI instruction in the block.",
- &LPI);
-
- // The personality functions for all landingpad instructions within the same
- // function should match.
- if (PersonalityFn)
- Assert1(LPI.getPersonalityFn() == PersonalityFn,
- "Personality function doesn't match others in function", &LPI);
- PersonalityFn = LPI.getPersonalityFn();
-
- // All operands must be constants.
- Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
- &LPI);
- for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
- Value *Clause = LPI.getClause(i);
- Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
- if (LPI.isCatch(i)) {
- Assert1(isa<PointerType>(Clause->getType()),
- "Catch operand does not have pointer type!", &LPI);
- } else {
- Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
- Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
- "Filter operand is not an array of constants!", &LPI);
- }
- }
-
- visitInstruction(LPI);
-}
-
-void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
- Instruction *Op = cast<Instruction>(I.getOperand(i));
- // If the we have an invalid invoke, don't try to compute the dominance.
- // We already reject it in the invoke specific checks and the dominance
- // computation doesn't handle multiple edges.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
- if (II->getNormalDest() == II->getUnwindDest())
- return;
- }
-
- const Use &U = I.getOperandUse(i);
- Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
- "Instruction does not dominate all uses!", Op, &I);
-}
-
-/// verifyInstruction - Verify that an instruction is well formed.
-///
-void Verifier::visitInstruction(Instruction &I) {
- BasicBlock *BB = I.getParent();
- Assert1(BB, "Instruction not embedded in basic block!", &I);
-
- if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
- for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
- UI != UE; ++UI)
- Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
- "Only PHI nodes may reference their own value!", &I);
- }
-
- // Check that void typed values don't have names
- Assert1(!I.getType()->isVoidTy() || !I.hasName(),
- "Instruction has a name, but provides a void value!", &I);
-
- // Check that the return value of the instruction is either void or a legal
- // value type.
- Assert1(I.getType()->isVoidTy() ||
- I.getType()->isFirstClassType(),
- "Instruction returns a non-scalar type!", &I);
-
- // Check that the instruction doesn't produce metadata. Calls are already
- // checked against the callee type.
- Assert1(!I.getType()->isMetadataTy() ||
- isa<CallInst>(I) || isa<InvokeInst>(I),
- "Invalid use of metadata!", &I);
-
- // Check that all uses of the instruction, if they are instructions
- // themselves, actually have parent basic blocks. If the use is not an
- // instruction, it is an error!
- for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
- UI != UE; ++UI) {
- if (Instruction *Used = dyn_cast<Instruction>(*UI))
- Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
- " embedded in a basic block!", &I, Used);
- else {
- CheckFailed("Use of instruction is not an instruction!", *UI);
- return;
- }
- }
-
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
-
- // Check to make sure that only first-class-values are operands to
- // instructions.
- if (!I.getOperand(i)->getType()->isFirstClassType()) {
- Assert1(0, "Instruction operands must be first-class values!", &I);
- }
-
- if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
- // Check to make sure that the "address of" an intrinsic function is never
- // taken.
- Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
- "Cannot take the address of an intrinsic!", &I);
- Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
- F->getIntrinsicID() == Intrinsic::donothing,
- "Cannot invoke an intrinsinc other than donothing", &I);
- Assert1(F->getParent() == Mod, "Referencing function in another module!",
- &I);
- } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
- Assert1(OpBB->getParent() == BB->getParent(),
- "Referring to a basic block in another function!", &I);
- } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
- Assert1(OpArg->getParent() == BB->getParent(),
- "Referring to an argument in another function!", &I);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
- Assert1(GV->getParent() == Mod, "Referencing global in another module!",
- &I);
- } else if (isa<Instruction>(I.getOperand(i))) {
- verifyDominatesUse(I, i);
- } else if (isa<InlineAsm>(I.getOperand(i))) {
- Assert1((i + 1 == e && isa<CallInst>(I)) ||
- (i + 3 == e && isa<InvokeInst>(I)),
- "Cannot take the address of an inline asm!", &I);
- }
- }
-
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
- Assert1(I.getType()->isFPOrFPVectorTy(),
- "fpmath requires a floating point result!", &I);
- Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
- Value *Op0 = MD->getOperand(0);
- if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
- APFloat Accuracy = CFP0->getValueAPF();
- Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
- "fpmath accuracy not a positive number!", &I);
- } else {
- Assert1(false, "invalid fpmath accuracy!", &I);
- }
- }
-
- MDNode *MD = I.getMetadata(LLVMContext::MD_range);
- Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
-
- InstsInThisBlock.insert(&I);
-}
-
-/// VerifyIntrinsicType - Verify that the specified type (which comes from an
-/// intrinsic argument or return value) matches the type constraints specified
-/// by the .td file (e.g. an "any integer" argument really is an integer).
-///
-/// This return true on error but does not print a message.
-bool Verifier::VerifyIntrinsicType(Type *Ty,
- ArrayRef<Intrinsic::IITDescriptor> &Infos,
- SmallVectorImpl<Type*> &ArgTys) {
- using namespace Intrinsic;
-
- // If we ran out of descriptors, there are too many arguments.
- if (Infos.empty()) return true;
- IITDescriptor D = Infos.front();
- Infos = Infos.slice(1);
-
- switch (D.Kind) {
- case IITDescriptor::Void: return !Ty->isVoidTy();
- case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
- case IITDescriptor::Metadata: return !Ty->isMetadataTy();
- case IITDescriptor::Float: return !Ty->isFloatTy();
- case IITDescriptor::Double: return !Ty->isDoubleTy();
- case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
- case IITDescriptor::Vector: {
- VectorType *VT = dyn_cast<VectorType>(Ty);
- return VT == 0 || VT->getNumElements() != D.Vector_Width ||
- VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
- }
- case IITDescriptor::Pointer: {
- PointerType *PT = dyn_cast<PointerType>(Ty);
- return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
- VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
- }
-
- case IITDescriptor::Struct: {
- StructType *ST = dyn_cast<StructType>(Ty);
- if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
- return true;
-
- for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
- if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
- return true;
- return false;
- }
-
- case IITDescriptor::Argument:
- // Two cases here - If this is the second occurrence of an argument, verify
- // that the later instance matches the previous instance.
- if (D.getArgumentNumber() < ArgTys.size())
- return Ty != ArgTys[D.getArgumentNumber()];
-
- // Otherwise, if this is the first instance of an argument, record it and
- // verify the "Any" kind.
- assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
- ArgTys.push_back(Ty);
-
- switch (D.getArgumentKind()) {
- case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
- case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
- case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
- case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
- }
- llvm_unreachable("all argument kinds not covered");
-
- case IITDescriptor::ExtendVecArgument:
- // This may only be used when referring to a previous vector argument.
- return D.getArgumentNumber() >= ArgTys.size() ||
- !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
- VectorType::getExtendedElementVectorType(
- cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
-
- case IITDescriptor::TruncVecArgument:
- // This may only be used when referring to a previous vector argument.
- return D.getArgumentNumber() >= ArgTys.size() ||
- !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
- VectorType::getTruncatedElementVectorType(
- cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
- }
- llvm_unreachable("unhandled");
-}
-
-/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
-///
-void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
- Function *IF = CI.getCalledFunction();
- Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
- IF);
-
- // Verify that the intrinsic prototype lines up with what the .td files
- // describe.
- FunctionType *IFTy = IF->getFunctionType();
- Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
-
- SmallVector<Intrinsic::IITDescriptor, 8> Table;
- getIntrinsicInfoTableEntries(ID, Table);
- ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
-
- SmallVector<Type *, 4> ArgTys;
- Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
- "Intrinsic has incorrect return type!", IF);
- for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
- Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
- "Intrinsic has incorrect argument type!", IF);
- Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
-
- // Now that we have the intrinsic ID and the actual argument types (and we
- // know they are legal for the intrinsic!) get the intrinsic name through the
- // usual means. This allows us to verify the mangling of argument types into
- // the name.
- Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
- "Intrinsic name not mangled correctly for type arguments!", IF);
-
- // If the intrinsic takes MDNode arguments, verify that they are either global
- // or are local to *this* function.
- for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
- if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
- visitMDNode(*MD, CI.getParent()->getParent());
-
- switch (ID) {
- default:
- break;
- case Intrinsic::ctlz: // llvm.ctlz
- case Intrinsic::cttz: // llvm.cttz
- Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
- "is_zero_undef argument of bit counting intrinsics must be a "
- "constant int", &CI);
- break;
- case Intrinsic::dbg_declare: { // llvm.dbg.declare
- Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
- "invalid llvm.dbg.declare intrinsic call 1", &CI);
- MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
- Assert1(MD->getNumOperands() == 1,
- "invalid llvm.dbg.declare intrinsic call 2", &CI);
- } break;
- case Intrinsic::memcpy:
- case Intrinsic::memmove:
- case Intrinsic::memset:
- Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
- "alignment argument of memory intrinsics must be a constant int",
- &CI);
- Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
- "isvolatile argument of memory intrinsics must be a constant int",
- &CI);
- break;
- case Intrinsic::gcroot:
- case Intrinsic::gcwrite:
- case Intrinsic::gcread:
- if (ID == Intrinsic::gcroot) {
- AllocaInst *AI =
- dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
- Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
- Assert1(isa<Constant>(CI.getArgOperand(1)),
- "llvm.gcroot parameter #2 must be a constant.", &CI);
- if (!AI->getType()->getElementType()->isPointerTy()) {
- Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
- "llvm.gcroot parameter #1 must either be a pointer alloca, "
- "or argument #2 must be a non-null constant.", &CI);
- }
- }
-
- Assert1(CI.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", &CI);
- break;
- case Intrinsic::init_trampoline:
- Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
- "llvm.init_trampoline parameter #2 must resolve to a function.",
- &CI);
- break;
- case Intrinsic::prefetch:
- Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
- isa<ConstantInt>(CI.getArgOperand(2)) &&
- cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
- cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
- "invalid arguments to llvm.prefetch",
- &CI);
- break;
- case Intrinsic::stackprotector:
- Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
- "llvm.stackprotector parameter #2 must resolve to an alloca.",
- &CI);
- break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
- "size argument of memory use markers must be a constant integer",
- &CI);
- break;
- case Intrinsic::invariant_end:
- Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
- "llvm.invariant.end parameter #2 must be a constant integer", &CI);
- break;
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Implement the public interfaces to this file...
-//===----------------------------------------------------------------------===//
-
-FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
- return new Verifier(action);
-}
-
-
-/// verifyFunction - Check a function for errors, printing messages on stderr.
-/// Return true if the function is corrupt.
-///
-bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
- Function &F = const_cast<Function&>(f);
- assert(!F.isDeclaration() && "Cannot verify external functions");
-
- FunctionPassManager FPM(F.getParent());
- Verifier *V = new Verifier(action);
- FPM.add(V);
- FPM.run(F);
- return V->Broken;
-}
-
-/// verifyModule - Check a module for errors, printing messages on stderr.
-/// Return true if the module is corrupt.
-///
-bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
- std::string *ErrorInfo) {
- PassManager PM;
- Verifier *V = new Verifier(action);
- PM.add(V);
- PM.run(const_cast<Module&>(M));
-
- if (ErrorInfo && V->Broken)
- *ErrorInfo = V->MessagesStr.str();
- return V->Broken;
-}
Modified: llvm/trunk/utils/GenLibDeps.pl
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/GenLibDeps.pl?rev=171359&r1=171358&r2=171359&view=diff
==============================================================================
--- llvm/trunk/utils/GenLibDeps.pl (original)
+++ llvm/trunk/utils/GenLibDeps.pl Wed Jan 2 03:10:48 2013
@@ -98,7 +98,7 @@
$libpath =~ s/^BitWriter/Bitcode\/Writer/;
$libpath =~ s/^CppBackend/Target\/CppBackend/;
$libpath =~ s/^MSIL/Target\/MSIL/;
- $libpath =~ s/^Core/VMCore/;
+ $libpath =~ s/^Core/IR/;
$libpath =~ s/^Instrumentation/Transforms\/Instrumentation/;
$libpath =~ s/^Interpreter/ExecutionEngine\/Interpreter/;
$libpath =~ s/^JIT/ExecutionEngine\/JIT/;
Modified: llvm/trunk/utils/llvm-build/llvmbuild/main.py
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/llvm-build/llvmbuild/main.py?rev=171359&r1=171358&r2=171359&view=diff
==============================================================================
--- llvm/trunk/utils/llvm-build/llvmbuild/main.py (original)
+++ llvm/trunk/utils/llvm-build/llvmbuild/main.py Wed Jan 2 03:10:48 2013
@@ -809,7 +809,7 @@
# Determine the LLVM source path, if not given.
source_root = opts.source_root
if source_root:
- if not os.path.exists(os.path.join(source_root, 'lib', 'VMCore',
+ if not os.path.exists(os.path.join(source_root, 'lib', 'IR',
'Function.cpp')):
parser.error('invalid LLVM source root: %r' % source_root)
else:
@@ -817,7 +817,7 @@
llvm_build_path = os.path.dirname(llvmbuild_path)
utils_path = os.path.dirname(llvm_build_path)
source_root = os.path.dirname(utils_path)
- if not os.path.exists(os.path.join(source_root, 'lib', 'VMCore',
+ if not os.path.exists(os.path.join(source_root, 'lib', 'IR',
'Function.cpp')):
parser.error('unable to infer LLVM source root, please specify')
More information about the llvm-commits
mailing list