[llvm-commits] [llvm] r171359 [2/2] - in /llvm/trunk: lib/ lib/Analysis/ lib/IR/ lib/VMCore/ utils/ utils/llvm-build/llvmbuild/

Chandler Carruth chandlerc at gmail.com
Wed Jan 2 01:11:00 PST 2013


Removed: llvm/trunk/lib/VMCore/TargetTransformInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/TargetTransformInfo.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/TargetTransformInfo.cpp (original)
+++ llvm/trunk/lib/VMCore/TargetTransformInfo.cpp (removed)
@@ -1,31 +0,0 @@
-//===- llvm/VMCore/TargetTransformInfo.cpp ----------------------*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/TargetTransformInfo.h"
-#include "llvm/Support/ErrorHandling.h"
-
-using namespace llvm;
-
-/// Default ctor.
-///
-/// @note This has to exist, because this is a pass, but it should never be
-/// used.
-TargetTransformInfo::TargetTransformInfo() : ImmutablePass(ID) {
-  /// You are seeing this error because your pass required the TTI
-  /// using a call to "getAnalysis<TargetTransformInfo>()", and you did
-  /// not initialize a machine target which can provide the TTI.
-  /// You should use "getAnalysisIfAvailable<TargetTransformInfo>()" instead.
-  report_fatal_error("Bad TargetTransformInfo ctor used.  "
-                     "Tool did not specify a TargetTransformInfo to use?");
-}
-
-INITIALIZE_PASS(TargetTransformInfo, "targettransforminfo",
-                "Target Transform Info", false, true)
-char TargetTransformInfo::ID = 0;
-

Removed: llvm/trunk/lib/VMCore/Type.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Type.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Type.cpp (original)
+++ llvm/trunk/lib/VMCore/Type.cpp (removed)
@@ -1,767 +0,0 @@
-//===-- Type.cpp - Implement the Type class -------------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Type class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Type.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/Module.h"
-#include <algorithm>
-#include <cstdarg>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-//                         Type Class Implementation
-//===----------------------------------------------------------------------===//
-
-Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
-  switch (IDNumber) {
-  case VoidTyID      : return getVoidTy(C);
-  case HalfTyID      : return getHalfTy(C);
-  case FloatTyID     : return getFloatTy(C);
-  case DoubleTyID    : return getDoubleTy(C);
-  case X86_FP80TyID  : return getX86_FP80Ty(C);
-  case FP128TyID     : return getFP128Ty(C);
-  case PPC_FP128TyID : return getPPC_FP128Ty(C);
-  case LabelTyID     : return getLabelTy(C);
-  case MetadataTyID  : return getMetadataTy(C);
-  case X86_MMXTyID   : return getX86_MMXTy(C);
-  default:
-    return 0;
-  }
-}
-
-/// getScalarType - If this is a vector type, return the element type,
-/// otherwise return this.
-Type *Type::getScalarType() {
-  if (VectorType *VTy = dyn_cast<VectorType>(this))
-    return VTy->getElementType();
-  return this;
-}
-
-const Type *Type::getScalarType() const {
-  if (const VectorType *VTy = dyn_cast<VectorType>(this))
-    return VTy->getElementType();
-  return this;
-}
-
-/// isIntegerTy - Return true if this is an IntegerType of the specified width.
-bool Type::isIntegerTy(unsigned Bitwidth) const {
-  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
-}
-
-// canLosslesslyBitCastTo - Return true if this type can be converted to
-// 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
-//
-bool Type::canLosslesslyBitCastTo(Type *Ty) const {
-  // Identity cast means no change so return true
-  if (this == Ty) 
-    return true;
-  
-  // They are not convertible unless they are at least first class types
-  if (!this->isFirstClassType() || !Ty->isFirstClassType())
-    return false;
-
-  // Vector -> Vector conversions are always lossless if the two vector types
-  // have the same size, otherwise not.  Also, 64-bit vector types can be
-  // converted to x86mmx.
-  if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
-    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
-      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
-    if (Ty->getTypeID() == Type::X86_MMXTyID &&
-        thisPTy->getBitWidth() == 64)
-      return true;
-  }
-
-  if (this->getTypeID() == Type::X86_MMXTyID)
-    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
-      if (thatPTy->getBitWidth() == 64)
-        return true;
-
-  // At this point we have only various mismatches of the first class types
-  // remaining and ptr->ptr. Just select the lossless conversions. Everything
-  // else is not lossless.
-  if (this->isPointerTy())
-    return Ty->isPointerTy();
-  return false;  // Other types have no identity values
-}
-
-bool Type::isEmptyTy() const {
-  const ArrayType *ATy = dyn_cast<ArrayType>(this);
-  if (ATy) {
-    unsigned NumElements = ATy->getNumElements();
-    return NumElements == 0 || ATy->getElementType()->isEmptyTy();
-  }
-
-  const StructType *STy = dyn_cast<StructType>(this);
-  if (STy) {
-    unsigned NumElements = STy->getNumElements();
-    for (unsigned i = 0; i < NumElements; ++i)
-      if (!STy->getElementType(i)->isEmptyTy())
-        return false;
-    return true;
-  }
-
-  return false;
-}
-
-unsigned Type::getPrimitiveSizeInBits() const {
-  switch (getTypeID()) {
-  case Type::HalfTyID: return 16;
-  case Type::FloatTyID: return 32;
-  case Type::DoubleTyID: return 64;
-  case Type::X86_FP80TyID: return 80;
-  case Type::FP128TyID: return 128;
-  case Type::PPC_FP128TyID: return 128;
-  case Type::X86_MMXTyID: return 64;
-  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
-  case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
-  default: return 0;
-  }
-}
-
-/// getScalarSizeInBits - If this is a vector type, return the
-/// getPrimitiveSizeInBits value for the element type. Otherwise return the
-/// getPrimitiveSizeInBits value for this type.
-unsigned Type::getScalarSizeInBits() {
-  return getScalarType()->getPrimitiveSizeInBits();
-}
-
-/// getFPMantissaWidth - Return the width of the mantissa of this type.  This
-/// is only valid on floating point types.  If the FP type does not
-/// have a stable mantissa (e.g. ppc long double), this method returns -1.
-int Type::getFPMantissaWidth() const {
-  if (const VectorType *VTy = dyn_cast<VectorType>(this))
-    return VTy->getElementType()->getFPMantissaWidth();
-  assert(isFloatingPointTy() && "Not a floating point type!");
-  if (getTypeID() == HalfTyID) return 11;
-  if (getTypeID() == FloatTyID) return 24;
-  if (getTypeID() == DoubleTyID) return 53;
-  if (getTypeID() == X86_FP80TyID) return 64;
-  if (getTypeID() == FP128TyID) return 113;
-  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
-  return -1;
-}
-
-/// isSizedDerivedType - Derived types like structures and arrays are sized
-/// iff all of the members of the type are sized as well.  Since asking for
-/// their size is relatively uncommon, move this operation out of line.
-bool Type::isSizedDerivedType() const {
-  if (this->isIntegerTy())
-    return true;
-
-  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
-    return ATy->getElementType()->isSized();
-
-  if (const VectorType *VTy = dyn_cast<VectorType>(this))
-    return VTy->getElementType()->isSized();
-
-  if (!this->isStructTy()) 
-    return false;
-
-  return cast<StructType>(this)->isSized();
-}
-
-//===----------------------------------------------------------------------===//
-//                         Subclass Helper Methods
-//===----------------------------------------------------------------------===//
-
-unsigned Type::getIntegerBitWidth() const {
-  return cast<IntegerType>(this)->getBitWidth();
-}
-
-bool Type::isFunctionVarArg() const {
-  return cast<FunctionType>(this)->isVarArg();
-}
-
-Type *Type::getFunctionParamType(unsigned i) const {
-  return cast<FunctionType>(this)->getParamType(i);
-}
-
-unsigned Type::getFunctionNumParams() const {
-  return cast<FunctionType>(this)->getNumParams();
-}
-
-StringRef Type::getStructName() const {
-  return cast<StructType>(this)->getName();
-}
-
-unsigned Type::getStructNumElements() const {
-  return cast<StructType>(this)->getNumElements();
-}
-
-Type *Type::getStructElementType(unsigned N) const {
-  return cast<StructType>(this)->getElementType(N);
-}
-
-Type *Type::getSequentialElementType() const {
-  return cast<SequentialType>(this)->getElementType();
-}
-
-uint64_t Type::getArrayNumElements() const {
-  return cast<ArrayType>(this)->getNumElements();
-}
-
-unsigned Type::getVectorNumElements() const {
-  return cast<VectorType>(this)->getNumElements();
-}
-
-unsigned Type::getPointerAddressSpace() const {
-  return cast<PointerType>(getScalarType())->getAddressSpace();
-}
-
-
-//===----------------------------------------------------------------------===//
-//                          Primitive 'Type' data
-//===----------------------------------------------------------------------===//
-
-Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
-Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
-Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
-Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
-Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
-Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
-Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
-Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
-Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
-Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
-
-IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
-IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
-IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
-IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
-IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
-
-IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
-  return IntegerType::get(C, N);
-}
-
-PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
-  return getHalfTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
-  return getFloatTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
-  return getDoubleTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
-  return getX86_FP80Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
-  return getFP128Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
-  return getPPC_FP128Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
-  return getX86_MMXTy(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
-  return getIntNTy(C, N)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
-  return getInt1Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
-  return getInt8Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
-  return getInt16Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
-  return getInt32Ty(C)->getPointerTo(AS);
-}
-
-PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
-  return getInt64Ty(C)->getPointerTo(AS);
-}
-
-
-//===----------------------------------------------------------------------===//
-//                       IntegerType Implementation
-//===----------------------------------------------------------------------===//
-
-IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
-  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
-  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
-  
-  // Check for the built-in integer types
-  switch (NumBits) {
-  case  1: return cast<IntegerType>(Type::getInt1Ty(C));
-  case  8: return cast<IntegerType>(Type::getInt8Ty(C));
-  case 16: return cast<IntegerType>(Type::getInt16Ty(C));
-  case 32: return cast<IntegerType>(Type::getInt32Ty(C));
-  case 64: return cast<IntegerType>(Type::getInt64Ty(C));
-  default: 
-    break;
-  }
-  
-  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
-  
-  if (Entry == 0)
-    Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
-  
-  return Entry;
-}
-
-bool IntegerType::isPowerOf2ByteWidth() const {
-  unsigned BitWidth = getBitWidth();
-  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
-}
-
-APInt IntegerType::getMask() const {
-  return APInt::getAllOnesValue(getBitWidth());
-}
-
-//===----------------------------------------------------------------------===//
-//                       FunctionType Implementation
-//===----------------------------------------------------------------------===//
-
-FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
-                           bool IsVarArgs)
-  : Type(Result->getContext(), FunctionTyID) {
-  Type **SubTys = reinterpret_cast<Type**>(this+1);
-  assert(isValidReturnType(Result) && "invalid return type for function");
-  setSubclassData(IsVarArgs);
-
-  SubTys[0] = const_cast<Type*>(Result);
-
-  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
-    assert(isValidArgumentType(Params[i]) &&
-           "Not a valid type for function argument!");
-    SubTys[i+1] = Params[i];
-  }
-
-  ContainedTys = SubTys;
-  NumContainedTys = Params.size() + 1; // + 1 for result type
-}
-
-// FunctionType::get - The factory function for the FunctionType class.
-FunctionType *FunctionType::get(Type *ReturnType,
-                                ArrayRef<Type*> Params, bool isVarArg) {
-  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
-  FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
-  LLVMContextImpl::FunctionTypeMap::iterator I =
-    pImpl->FunctionTypes.find_as(Key);
-  FunctionType *FT;
-
-  if (I == pImpl->FunctionTypes.end()) {
-    FT = (FunctionType*) pImpl->TypeAllocator.
-      Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
-               AlignOf<FunctionType>::Alignment);
-    new (FT) FunctionType(ReturnType, Params, isVarArg);
-    pImpl->FunctionTypes[FT] = true;
-  } else {
-    FT = I->first;
-  }
-
-  return FT;
-}
-
-FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
-  return get(Result, ArrayRef<Type *>(), isVarArg);
-}
-
-/// isValidReturnType - Return true if the specified type is valid as a return
-/// type.
-bool FunctionType::isValidReturnType(Type *RetTy) {
-  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
-  !RetTy->isMetadataTy();
-}
-
-/// isValidArgumentType - Return true if the specified type is valid as an
-/// argument type.
-bool FunctionType::isValidArgumentType(Type *ArgTy) {
-  return ArgTy->isFirstClassType();
-}
-
-//===----------------------------------------------------------------------===//
-//                       StructType Implementation
-//===----------------------------------------------------------------------===//
-
-// Primitive Constructors.
-
-StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 
-                            bool isPacked) {
-  LLVMContextImpl *pImpl = Context.pImpl;
-  AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
-  LLVMContextImpl::StructTypeMap::iterator I =
-    pImpl->AnonStructTypes.find_as(Key);
-  StructType *ST;
-
-  if (I == pImpl->AnonStructTypes.end()) {
-    // Value not found.  Create a new type!
-    ST = new (Context.pImpl->TypeAllocator) StructType(Context);
-    ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
-    ST->setBody(ETypes, isPacked);
-    Context.pImpl->AnonStructTypes[ST] = true;
-  } else {
-    ST = I->first;
-  }
-
-  return ST;
-}
-
-void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
-  assert(isOpaque() && "Struct body already set!");
-  
-  setSubclassData(getSubclassData() | SCDB_HasBody);
-  if (isPacked)
-    setSubclassData(getSubclassData() | SCDB_Packed);
-
-  unsigned NumElements = Elements.size();
-  Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
-  memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
-  
-  ContainedTys = Elts;
-  NumContainedTys = NumElements;
-}
-
-void StructType::setName(StringRef Name) {
-  if (Name == getName()) return;
-
-  StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
-  typedef StringMap<StructType *>::MapEntryTy EntryTy;
-
-  // If this struct already had a name, remove its symbol table entry. Don't
-  // delete the data yet because it may be part of the new name.
-  if (SymbolTableEntry)
-    SymbolTable.remove((EntryTy *)SymbolTableEntry);
-
-  // If this is just removing the name, we're done.
-  if (Name.empty()) {
-    if (SymbolTableEntry) {
-      // Delete the old string data.
-      ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
-      SymbolTableEntry = 0;
-    }
-    return;
-  }
-  
-  // Look up the entry for the name.
-  EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
-  
-  // While we have a name collision, try a random rename.
-  if (Entry->getValue()) {
-    SmallString<64> TempStr(Name);
-    TempStr.push_back('.');
-    raw_svector_ostream TmpStream(TempStr);
-    unsigned NameSize = Name.size();
-   
-    do {
-      TempStr.resize(NameSize + 1);
-      TmpStream.resync();
-      TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
-      
-      Entry = &getContext().pImpl->
-                 NamedStructTypes.GetOrCreateValue(TmpStream.str());
-    } while (Entry->getValue());
-  }
-
-  // Okay, we found an entry that isn't used.  It's us!
-  Entry->setValue(this);
-
-  // Delete the old string data.
-  if (SymbolTableEntry)
-    ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
-  SymbolTableEntry = Entry;
-}
-
-//===----------------------------------------------------------------------===//
-// StructType Helper functions.
-
-StructType *StructType::create(LLVMContext &Context, StringRef Name) {
-  StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
-  if (!Name.empty())
-    ST->setName(Name);
-  return ST;
-}
-
-StructType *StructType::get(LLVMContext &Context, bool isPacked) {
-  return get(Context, llvm::ArrayRef<Type*>(), isPacked);
-}
-
-StructType *StructType::get(Type *type, ...) {
-  assert(type != 0 && "Cannot create a struct type with no elements with this");
-  LLVMContext &Ctx = type->getContext();
-  va_list ap;
-  SmallVector<llvm::Type*, 8> StructFields;
-  va_start(ap, type);
-  while (type) {
-    StructFields.push_back(type);
-    type = va_arg(ap, llvm::Type*);
-  }
-  return llvm::StructType::get(Ctx, StructFields);
-}
-
-StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
-                               StringRef Name, bool isPacked) {
-  StructType *ST = create(Context, Name);
-  ST->setBody(Elements, isPacked);
-  return ST;
-}
-
-StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
-  return create(Context, Elements, StringRef());
-}
-
-StructType *StructType::create(LLVMContext &Context) {
-  return create(Context, StringRef());
-}
-
-StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
-                               bool isPacked) {
-  assert(!Elements.empty() &&
-         "This method may not be invoked with an empty list");
-  return create(Elements[0]->getContext(), Elements, Name, isPacked);
-}
-
-StructType *StructType::create(ArrayRef<Type*> Elements) {
-  assert(!Elements.empty() &&
-         "This method may not be invoked with an empty list");
-  return create(Elements[0]->getContext(), Elements, StringRef());
-}
-
-StructType *StructType::create(StringRef Name, Type *type, ...) {
-  assert(type != 0 && "Cannot create a struct type with no elements with this");
-  LLVMContext &Ctx = type->getContext();
-  va_list ap;
-  SmallVector<llvm::Type*, 8> StructFields;
-  va_start(ap, type);
-  while (type) {
-    StructFields.push_back(type);
-    type = va_arg(ap, llvm::Type*);
-  }
-  return llvm::StructType::create(Ctx, StructFields, Name);
-}
-
-bool StructType::isSized() const {
-  if ((getSubclassData() & SCDB_IsSized) != 0)
-    return true;
-  if (isOpaque())
-    return false;
-
-  // Okay, our struct is sized if all of the elements are, but if one of the
-  // elements is opaque, the struct isn't sized *yet*, but may become sized in
-  // the future, so just bail out without caching.
-  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
-    if (!(*I)->isSized())
-      return false;
-
-  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
-  // we find a sized type, as types can only move from opaque to sized, not the
-  // other way.
-  const_cast<StructType*>(this)->setSubclassData(
-    getSubclassData() | SCDB_IsSized);
-  return true;
-}
-
-StringRef StructType::getName() const {
-  assert(!isLiteral() && "Literal structs never have names");
-  if (SymbolTableEntry == 0) return StringRef();
-  
-  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
-}
-
-void StructType::setBody(Type *type, ...) {
-  assert(type != 0 && "Cannot create a struct type with no elements with this");
-  va_list ap;
-  SmallVector<llvm::Type*, 8> StructFields;
-  va_start(ap, type);
-  while (type) {
-    StructFields.push_back(type);
-    type = va_arg(ap, llvm::Type*);
-  }
-  setBody(StructFields);
-}
-
-bool StructType::isValidElementType(Type *ElemTy) {
-  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
-         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
-}
-
-/// isLayoutIdentical - Return true if this is layout identical to the
-/// specified struct.
-bool StructType::isLayoutIdentical(StructType *Other) const {
-  if (this == Other) return true;
-  
-  if (isPacked() != Other->isPacked() ||
-      getNumElements() != Other->getNumElements())
-    return false;
-  
-  return std::equal(element_begin(), element_end(), Other->element_begin());
-}
-
-/// getTypeByName - Return the type with the specified name, or null if there
-/// is none by that name.
-StructType *Module::getTypeByName(StringRef Name) const {
-  StringMap<StructType*>::iterator I =
-    getContext().pImpl->NamedStructTypes.find(Name);
-  if (I != getContext().pImpl->NamedStructTypes.end())
-    return I->second;
-  return 0;
-}
-
-
-//===----------------------------------------------------------------------===//
-//                       CompositeType Implementation
-//===----------------------------------------------------------------------===//
-
-Type *CompositeType::getTypeAtIndex(const Value *V) {
-  if (StructType *STy = dyn_cast<StructType>(this)) {
-    unsigned Idx =
-      (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
-    assert(indexValid(Idx) && "Invalid structure index!");
-    return STy->getElementType(Idx);
-  }
-
-  return cast<SequentialType>(this)->getElementType();
-}
-Type *CompositeType::getTypeAtIndex(unsigned Idx) {
-  if (StructType *STy = dyn_cast<StructType>(this)) {
-    assert(indexValid(Idx) && "Invalid structure index!");
-    return STy->getElementType(Idx);
-  }
-  
-  return cast<SequentialType>(this)->getElementType();
-}
-bool CompositeType::indexValid(const Value *V) const {
-  if (const StructType *STy = dyn_cast<StructType>(this)) {
-    // Structure indexes require (vectors of) 32-bit integer constants.  In the
-    // vector case all of the indices must be equal.
-    if (!V->getType()->getScalarType()->isIntegerTy(32))
-      return false;
-    const Constant *C = dyn_cast<Constant>(V);
-    if (C && V->getType()->isVectorTy())
-      C = C->getSplatValue();
-    const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
-    return CU && CU->getZExtValue() < STy->getNumElements();
-  }
-
-  // Sequential types can be indexed by any integer.
-  return V->getType()->isIntOrIntVectorTy();
-}
-
-bool CompositeType::indexValid(unsigned Idx) const {
-  if (const StructType *STy = dyn_cast<StructType>(this))
-    return Idx < STy->getNumElements();
-  // Sequential types can be indexed by any integer.
-  return true;
-}
-
-
-//===----------------------------------------------------------------------===//
-//                           ArrayType Implementation
-//===----------------------------------------------------------------------===//
-
-ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
-  : SequentialType(ArrayTyID, ElType) {
-  NumElements = NumEl;
-}
-
-ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
-  Type *ElementType = const_cast<Type*>(elementType);
-  assert(isValidElementType(ElementType) && "Invalid type for array element!");
-    
-  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
-  ArrayType *&Entry = 
-    pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
-  
-  if (Entry == 0)
-    Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
-  return Entry;
-}
-
-bool ArrayType::isValidElementType(Type *ElemTy) {
-  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
-         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
-}
-
-//===----------------------------------------------------------------------===//
-//                          VectorType Implementation
-//===----------------------------------------------------------------------===//
-
-VectorType::VectorType(Type *ElType, unsigned NumEl)
-  : SequentialType(VectorTyID, ElType) {
-  NumElements = NumEl;
-}
-
-VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
-  Type *ElementType = const_cast<Type*>(elementType);
-  assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
-  assert(isValidElementType(ElementType) &&
-         "Elements of a VectorType must be a primitive type");
-  
-  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
-  VectorType *&Entry = ElementType->getContext().pImpl
-    ->VectorTypes[std::make_pair(ElementType, NumElements)];
-  
-  if (Entry == 0)
-    Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
-  return Entry;
-}
-
-bool VectorType::isValidElementType(Type *ElemTy) {
-  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
-    ElemTy->isPointerTy();
-}
-
-//===----------------------------------------------------------------------===//
-//                         PointerType Implementation
-//===----------------------------------------------------------------------===//
-
-PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
-  assert(EltTy && "Can't get a pointer to <null> type!");
-  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
-  
-  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
-  
-  // Since AddressSpace #0 is the common case, we special case it.
-  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
-     : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
-
-  if (Entry == 0)
-    Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
-  return Entry;
-}
-
-
-PointerType::PointerType(Type *E, unsigned AddrSpace)
-  : SequentialType(PointerTyID, E) {
-#ifndef NDEBUG
-  const unsigned oldNCT = NumContainedTys;
-#endif
-  setSubclassData(AddrSpace);
-  // Check for miscompile. PR11652.
-  assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
-}
-
-PointerType *Type::getPointerTo(unsigned addrs) {
-  return PointerType::get(this, addrs);
-}
-
-bool PointerType::isValidElementType(Type *ElemTy) {
-  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
-         !ElemTy->isMetadataTy();
-}

Removed: llvm/trunk/lib/VMCore/TypeFinder.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/TypeFinder.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/TypeFinder.cpp (original)
+++ llvm/trunk/lib/VMCore/TypeFinder.cpp (removed)
@@ -1,148 +0,0 @@
-//===-- TypeFinder.cpp - Implement the TypeFinder class -------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the TypeFinder class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/TypeFinder.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-using namespace llvm;
-
-void TypeFinder::run(const Module &M, bool onlyNamed) {
-  OnlyNamed = onlyNamed;
-
-  // Get types from global variables.
-  for (Module::const_global_iterator I = M.global_begin(),
-         E = M.global_end(); I != E; ++I) {
-    incorporateType(I->getType());
-    if (I->hasInitializer())
-      incorporateValue(I->getInitializer());
-  }
-
-  // Get types from aliases.
-  for (Module::const_alias_iterator I = M.alias_begin(),
-         E = M.alias_end(); I != E; ++I) {
-    incorporateType(I->getType());
-    if (const Value *Aliasee = I->getAliasee())
-      incorporateValue(Aliasee);
-  }
-
-  // Get types from functions.
-  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
-  for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
-    incorporateType(FI->getType());
-
-    // First incorporate the arguments.
-    for (Function::const_arg_iterator AI = FI->arg_begin(),
-           AE = FI->arg_end(); AI != AE; ++AI)
-      incorporateValue(AI);
-
-    for (Function::const_iterator BB = FI->begin(), E = FI->end();
-         BB != E;++BB)
-      for (BasicBlock::const_iterator II = BB->begin(),
-             E = BB->end(); II != E; ++II) {
-        const Instruction &I = *II;
-
-        // Incorporate the type of the instruction.
-        incorporateType(I.getType());
-
-        // Incorporate non-instruction operand types. (We are incorporating all
-        // instructions with this loop.)
-        for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
-             OI != OE; ++OI)
-          if (!isa<Instruction>(OI))
-            incorporateValue(*OI);
-
-        // Incorporate types hiding in metadata.
-        I.getAllMetadataOtherThanDebugLoc(MDForInst);
-        for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
-          incorporateMDNode(MDForInst[i].second);
-
-        MDForInst.clear();
-      }
-  }
-
-  for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
-         E = M.named_metadata_end(); I != E; ++I) {
-    const NamedMDNode *NMD = I;
-    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
-      incorporateMDNode(NMD->getOperand(i));
-  }
-}
-
-void TypeFinder::clear() {
-  VisitedConstants.clear();
-  VisitedTypes.clear();
-  StructTypes.clear();
-}
-
-/// incorporateType - This method adds the type to the list of used structures
-/// if it's not in there already.
-void TypeFinder::incorporateType(Type *Ty) {
-  // Check to see if we're already visited this type.
-  if (!VisitedTypes.insert(Ty).second)
-    return;
-
-  // If this is a structure or opaque type, add a name for the type.
-  if (StructType *STy = dyn_cast<StructType>(Ty))
-    if (!OnlyNamed || STy->hasName())
-      StructTypes.push_back(STy);
-
-  // Recursively walk all contained types.
-  for (Type::subtype_iterator I = Ty->subtype_begin(),
-         E = Ty->subtype_end(); I != E; ++I)
-    incorporateType(*I);
-}
-
-/// incorporateValue - This method is used to walk operand lists finding types
-/// hiding in constant expressions and other operands that won't be walked in
-/// other ways.  GlobalValues, basic blocks, instructions, and inst operands are
-/// all explicitly enumerated.
-void TypeFinder::incorporateValue(const Value *V) {
-  if (const MDNode *M = dyn_cast<MDNode>(V))
-    return incorporateMDNode(M);
-
-  if (!isa<Constant>(V) || isa<GlobalValue>(V)) return;
-
-  // Already visited?
-  if (!VisitedConstants.insert(V).second)
-    return;
-
-  // Check this type.
-  incorporateType(V->getType());
-
-  // If this is an instruction, we incorporate it separately.
-  if (isa<Instruction>(V))
-    return;
-
-  // Look in operands for types.
-  const User *U = cast<User>(V);
-  for (Constant::const_op_iterator I = U->op_begin(),
-         E = U->op_end(); I != E;++I)
-    incorporateValue(*I);
-}
-
-/// incorporateMDNode - This method is used to walk the operands of an MDNode to
-/// find types hiding within.
-void TypeFinder::incorporateMDNode(const MDNode *V) {
-  // Already visited?
-  if (!VisitedConstants.insert(V).second)
-    return;
-
-  // Look in operands for types.
-  for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i)
-    if (Value *Op = V->getOperand(i))
-      incorporateValue(Op);
-}

Removed: llvm/trunk/lib/VMCore/Use.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Use.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Use.cpp (original)
+++ llvm/trunk/lib/VMCore/Use.cpp (removed)
@@ -1,145 +0,0 @@
-//===-- Use.cpp - Implement the Use class ---------------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the algorithm for finding the User of a Use.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Value.h"
-#include <new>
-
-namespace llvm {
-
-//===----------------------------------------------------------------------===//
-//                         Use swap Implementation
-//===----------------------------------------------------------------------===//
-
-void Use::swap(Use &RHS) {
-  Value *V1(Val);
-  Value *V2(RHS.Val);
-  if (V1 != V2) {
-    if (V1) {
-      removeFromList();
-    }
-
-    if (V2) {
-      RHS.removeFromList();
-      Val = V2;
-      V2->addUse(*this);
-    } else {
-      Val = 0;
-    }
-
-    if (V1) {
-      RHS.Val = V1;
-      V1->addUse(RHS);
-    } else {
-      RHS.Val = 0;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//                         Use getImpliedUser Implementation
-//===----------------------------------------------------------------------===//
-
-const Use *Use::getImpliedUser() const {
-  const Use *Current = this;
-
-  while (true) {
-    unsigned Tag = (Current++)->Prev.getInt();
-    switch (Tag) {
-      case zeroDigitTag:
-      case oneDigitTag:
-        continue;
-
-      case stopTag: {
-        ++Current;
-        ptrdiff_t Offset = 1;
-        while (true) {
-          unsigned Tag = Current->Prev.getInt();
-          switch (Tag) {
-            case zeroDigitTag:
-            case oneDigitTag:
-              ++Current;
-              Offset = (Offset << 1) + Tag;
-              continue;
-            default:
-              return Current + Offset;
-          }
-        }
-      }
-
-      case fullStopTag:
-        return Current;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//                         Use initTags Implementation
-//===----------------------------------------------------------------------===//
-
-Use *Use::initTags(Use * const Start, Use *Stop) {
-  ptrdiff_t Done = 0;
-  while (Done < 20) {
-    if (Start == Stop--)
-      return Start;
-    static const PrevPtrTag tags[20] = { fullStopTag, oneDigitTag, stopTag,
-                                         oneDigitTag, oneDigitTag, stopTag,
-                                         zeroDigitTag, oneDigitTag, oneDigitTag,
-                                         stopTag, zeroDigitTag, oneDigitTag,
-                                         zeroDigitTag, oneDigitTag, stopTag,
-                                         oneDigitTag, oneDigitTag, oneDigitTag,
-                                         oneDigitTag, stopTag
-                                       };
-    new(Stop) Use(tags[Done++]);
-  }
-
-  ptrdiff_t Count = Done;
-  while (Start != Stop) {
-    --Stop;
-    if (!Count) {
-      new(Stop) Use(stopTag);
-      ++Done;
-      Count = Done;
-    } else {
-      new(Stop) Use(PrevPtrTag(Count & 1));
-      Count >>= 1;
-      ++Done;
-    }
-  }
-
-  return Start;
-}
-
-//===----------------------------------------------------------------------===//
-//                         Use zap Implementation
-//===----------------------------------------------------------------------===//
-
-void Use::zap(Use *Start, const Use *Stop, bool del) {
-  while (Start != Stop)
-    (--Stop)->~Use();
-  if (del)
-    ::operator delete(Start);
-}
-
-//===----------------------------------------------------------------------===//
-//                         Use getUser Implementation
-//===----------------------------------------------------------------------===//
-
-User *Use::getUser() const {
-  const Use *End = getImpliedUser();
-  const UserRef *ref = reinterpret_cast<const UserRef*>(End);
-  return ref->getInt()
-    ? ref->getPointer()
-    : (User*)End;
-}
-
-} // End llvm namespace

Removed: llvm/trunk/lib/VMCore/User.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/User.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/User.cpp (original)
+++ llvm/trunk/lib/VMCore/User.cpp (removed)
@@ -1,90 +0,0 @@
-//===-- User.cpp - Implement the User class -------------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/User.h"
-#include "llvm/Constant.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Operator.h"
-
-namespace llvm {
-
-//===----------------------------------------------------------------------===//
-//                                 User Class
-//===----------------------------------------------------------------------===//
-
-void User::anchor() {}
-
-// replaceUsesOfWith - Replaces all references to the "From" definition with
-// references to the "To" definition.
-//
-void User::replaceUsesOfWith(Value *From, Value *To) {
-  if (From == To) return;   // Duh what?
-
-  assert((!isa<Constant>(this) || isa<GlobalValue>(this)) &&
-         "Cannot call User::replaceUsesOfWith on a constant!");
-
-  for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
-    if (getOperand(i) == From) {  // Is This operand is pointing to oldval?
-      // The side effects of this setOperand call include linking to
-      // "To", adding "this" to the uses list of To, and
-      // most importantly, removing "this" from the use list of "From".
-      setOperand(i, To); // Fix it now...
-    }
-}
-
-//===----------------------------------------------------------------------===//
-//                         User allocHungoffUses Implementation
-//===----------------------------------------------------------------------===//
-
-Use *User::allocHungoffUses(unsigned N) const {
-  // Allocate the array of Uses, followed by a pointer (with bottom bit set) to
-  // the User.
-  size_t size = N * sizeof(Use) + sizeof(Use::UserRef);
-  Use *Begin = static_cast<Use*>(::operator new(size));
-  Use *End = Begin + N;
-  (void) new(End) Use::UserRef(const_cast<User*>(this), 1);
-  return Use::initTags(Begin, End);
-}
-
-//===----------------------------------------------------------------------===//
-//                         User operator new Implementations
-//===----------------------------------------------------------------------===//
-
-void *User::operator new(size_t s, unsigned Us) {
-  void *Storage = ::operator new(s + sizeof(Use) * Us);
-  Use *Start = static_cast<Use*>(Storage);
-  Use *End = Start + Us;
-  User *Obj = reinterpret_cast<User*>(End);
-  Obj->OperandList = Start;
-  Obj->NumOperands = Us;
-  Use::initTags(Start, End);
-  return Obj;
-}
-
-//===----------------------------------------------------------------------===//
-//                         User operator delete Implementation
-//===----------------------------------------------------------------------===//
-
-void User::operator delete(void *Usr) {
-  User *Start = static_cast<User*>(Usr);
-  Use *Storage = static_cast<Use*>(Usr) - Start->NumOperands;
-  // If there were hung-off uses, they will have been freed already and
-  // NumOperands reset to 0, so here we just free the User itself.
-  ::operator delete(Storage);
-}
-
-//===----------------------------------------------------------------------===//
-//                             Operator Class
-//===----------------------------------------------------------------------===//
-
-Operator::~Operator() {
-  llvm_unreachable("should never destroy an Operator");
-}
-
-} // End llvm namespace

Removed: llvm/trunk/lib/VMCore/Value.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Value.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Value.cpp (original)
+++ llvm/trunk/lib/VMCore/Value.cpp (removed)
@@ -1,698 +0,0 @@
-//===-- Value.cpp - Implement the Value class -----------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Value, ValueHandle, and User classes.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Value.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/Constant.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InstrTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/LeakDetector.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/ValueHandle.h"
-#include "llvm/ValueSymbolTable.h"
-#include <algorithm>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-//                                Value Class
-//===----------------------------------------------------------------------===//
-
-static inline Type *checkType(Type *Ty) {
-  assert(Ty && "Value defined with a null type: Error!");
-  return const_cast<Type*>(Ty);
-}
-
-Value::Value(Type *ty, unsigned scid)
-  : SubclassID(scid), HasValueHandle(0),
-    SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
-    UseList(0), Name(0) {
-  // FIXME: Why isn't this in the subclass gunk??
-  // Note, we cannot call isa<CallInst> before the CallInst has been
-  // constructed.
-  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
-    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
-           "invalid CallInst type!");
-  else if (SubclassID != BasicBlockVal &&
-           (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
-    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
-           "Cannot create non-first-class values except for constants!");
-}
-
-Value::~Value() {
-  // Notify all ValueHandles (if present) that this value is going away.
-  if (HasValueHandle)
-    ValueHandleBase::ValueIsDeleted(this);
-
-#ifndef NDEBUG      // Only in -g mode...
-  // Check to make sure that there are no uses of this value that are still
-  // around when the value is destroyed.  If there are, then we have a dangling
-  // reference and something is wrong.  This code is here to print out what is
-  // still being referenced.  The value in question should be printed as
-  // a <badref>
-  //
-  if (!use_empty()) {
-    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
-    for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
-      dbgs() << "Use still stuck around after Def is destroyed:"
-           << **I << "\n";
-  }
-#endif
-  assert(use_empty() && "Uses remain when a value is destroyed!");
-
-  // If this value is named, destroy the name.  This should not be in a symtab
-  // at this point.
-  if (Name && SubclassID != MDStringVal)
-    Name->Destroy();
-
-  // There should be no uses of this object anymore, remove it.
-  LeakDetector::removeGarbageObject(this);
-}
-
-/// hasNUses - Return true if this Value has exactly N users.
-///
-bool Value::hasNUses(unsigned N) const {
-  const_use_iterator UI = use_begin(), E = use_end();
-
-  for (; N; --N, ++UI)
-    if (UI == E) return false;  // Too few.
-  return UI == E;
-}
-
-/// hasNUsesOrMore - Return true if this value has N users or more.  This is
-/// logically equivalent to getNumUses() >= N.
-///
-bool Value::hasNUsesOrMore(unsigned N) const {
-  const_use_iterator UI = use_begin(), E = use_end();
-
-  for (; N; --N, ++UI)
-    if (UI == E) return false;  // Too few.
-
-  return true;
-}
-
-/// isUsedInBasicBlock - Return true if this value is used in the specified
-/// basic block.
-bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
-  // Start by scanning over the instructions looking for a use before we start
-  // the expensive use iteration.
-  unsigned MaxBlockSize = 3;
-  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
-    if (std::find(I->op_begin(), I->op_end(), this) != I->op_end())
-      return true;
-    if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator
-      break;
-  }
-
-  if (MaxBlockSize != 0) // We scanned the entire block and found no use.
-    return false;
-
-  for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
-    const Instruction *User = dyn_cast<Instruction>(*I);
-    if (User && User->getParent() == BB)
-      return true;
-  }
-  return false;
-}
-
-
-/// getNumUses - This method computes the number of uses of this Value.  This
-/// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
-/// values.
-unsigned Value::getNumUses() const {
-  return (unsigned)std::distance(use_begin(), use_end());
-}
-
-static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
-  ST = 0;
-  if (Instruction *I = dyn_cast<Instruction>(V)) {
-    if (BasicBlock *P = I->getParent())
-      if (Function *PP = P->getParent())
-        ST = &PP->getValueSymbolTable();
-  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
-    if (Function *P = BB->getParent())
-      ST = &P->getValueSymbolTable();
-  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
-    if (Module *P = GV->getParent())
-      ST = &P->getValueSymbolTable();
-  } else if (Argument *A = dyn_cast<Argument>(V)) {
-    if (Function *P = A->getParent())
-      ST = &P->getValueSymbolTable();
-  } else if (isa<MDString>(V))
-    return true;
-  else {
-    assert(isa<Constant>(V) && "Unknown value type!");
-    return true;  // no name is setable for this.
-  }
-  return false;
-}
-
-StringRef Value::getName() const {
-  // Make sure the empty string is still a C string. For historical reasons,
-  // some clients want to call .data() on the result and expect it to be null
-  // terminated.
-  if (!Name) return StringRef("", 0);
-  return Name->getKey();
-}
-
-void Value::setName(const Twine &NewName) {
-  assert(SubclassID != MDStringVal &&
-         "Cannot set the name of MDString with this method!");
-
-  // Fast path for common IRBuilder case of setName("") when there is no name.
-  if (NewName.isTriviallyEmpty() && !hasName())
-    return;
-
-  SmallString<256> NameData;
-  StringRef NameRef = NewName.toStringRef(NameData);
-
-  // Name isn't changing?
-  if (getName() == NameRef)
-    return;
-
-  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
-
-  // Get the symbol table to update for this object.
-  ValueSymbolTable *ST;
-  if (getSymTab(this, ST))
-    return;  // Cannot set a name on this value (e.g. constant).
-
-  if (!ST) { // No symbol table to update?  Just do the change.
-    if (NameRef.empty()) {
-      // Free the name for this value.
-      Name->Destroy();
-      Name = 0;
-      return;
-    }
-
-    if (Name)
-      Name->Destroy();
-
-    // NOTE: Could optimize for the case the name is shrinking to not deallocate
-    // then reallocated.
-
-    // Create the new name.
-    Name = ValueName::Create(NameRef.begin(), NameRef.end());
-    Name->setValue(this);
-    return;
-  }
-
-  // NOTE: Could optimize for the case the name is shrinking to not deallocate
-  // then reallocated.
-  if (hasName()) {
-    // Remove old name.
-    ST->removeValueName(Name);
-    Name->Destroy();
-    Name = 0;
-
-    if (NameRef.empty())
-      return;
-  }
-
-  // Name is changing to something new.
-  Name = ST->createValueName(NameRef, this);
-}
-
-
-/// takeName - transfer the name from V to this value, setting V's name to
-/// empty.  It is an error to call V->takeName(V).
-void Value::takeName(Value *V) {
-  assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
-
-  ValueSymbolTable *ST = 0;
-  // If this value has a name, drop it.
-  if (hasName()) {
-    // Get the symtab this is in.
-    if (getSymTab(this, ST)) {
-      // We can't set a name on this value, but we need to clear V's name if
-      // it has one.
-      if (V->hasName()) V->setName("");
-      return;  // Cannot set a name on this value (e.g. constant).
-    }
-
-    // Remove old name.
-    if (ST)
-      ST->removeValueName(Name);
-    Name->Destroy();
-    Name = 0;
-  }
-
-  // Now we know that this has no name.
-
-  // If V has no name either, we're done.
-  if (!V->hasName()) return;
-
-  // Get this's symtab if we didn't before.
-  if (!ST) {
-    if (getSymTab(this, ST)) {
-      // Clear V's name.
-      V->setName("");
-      return;  // Cannot set a name on this value (e.g. constant).
-    }
-  }
-
-  // Get V's ST, this should always succed, because V has a name.
-  ValueSymbolTable *VST;
-  bool Failure = getSymTab(V, VST);
-  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
-
-  // If these values are both in the same symtab, we can do this very fast.
-  // This works even if both values have no symtab yet.
-  if (ST == VST) {
-    // Take the name!
-    Name = V->Name;
-    V->Name = 0;
-    Name->setValue(this);
-    return;
-  }
-
-  // Otherwise, things are slightly more complex.  Remove V's name from VST and
-  // then reinsert it into ST.
-
-  if (VST)
-    VST->removeValueName(V->Name);
-  Name = V->Name;
-  V->Name = 0;
-  Name->setValue(this);
-
-  if (ST)
-    ST->reinsertValue(this);
-}
-
-
-void Value::replaceAllUsesWith(Value *New) {
-  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
-  assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
-  assert(New->getType() == getType() &&
-         "replaceAllUses of value with new value of different type!");
-
-  // Notify all ValueHandles (if present) that this value is going away.
-  if (HasValueHandle)
-    ValueHandleBase::ValueIsRAUWd(this, New);
-  
-  while (!use_empty()) {
-    Use &U = *UseList;
-    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
-    // constant because they are uniqued.
-    if (Constant *C = dyn_cast<Constant>(U.getUser())) {
-      if (!isa<GlobalValue>(C)) {
-        C->replaceUsesOfWithOnConstant(this, New, &U);
-        continue;
-      }
-    }
-    
-    U.set(New);
-  }
-  
-  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
-    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
-}
-
-namespace {
-// Various metrics for how much to strip off of pointers.
-enum PointerStripKind {
-  PSK_ZeroIndices,
-  PSK_InBoundsConstantIndices,
-  PSK_InBounds
-};
-
-template <PointerStripKind StripKind>
-static Value *stripPointerCastsAndOffsets(Value *V) {
-  if (!V->getType()->isPointerTy())
-    return V;
-
-  // Even though we don't look through PHI nodes, we could be called on an
-  // instruction in an unreachable block, which may be on a cycle.
-  SmallPtrSet<Value *, 4> Visited;
-
-  Visited.insert(V);
-  do {
-    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
-      switch (StripKind) {
-      case PSK_ZeroIndices:
-        if (!GEP->hasAllZeroIndices())
-          return V;
-        break;
-      case PSK_InBoundsConstantIndices:
-        if (!GEP->hasAllConstantIndices())
-          return V;
-        // fallthrough
-      case PSK_InBounds:
-        if (!GEP->isInBounds())
-          return V;
-        break;
-      }
-      V = GEP->getPointerOperand();
-    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
-      V = cast<Operator>(V)->getOperand(0);
-    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
-      if (GA->mayBeOverridden())
-        return V;
-      V = GA->getAliasee();
-    } else {
-      return V;
-    }
-    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
-  } while (Visited.insert(V));
-
-  return V;
-}
-} // namespace
-
-Value *Value::stripPointerCasts() {
-  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
-}
-
-Value *Value::stripInBoundsConstantOffsets() {
-  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
-}
-
-Value *Value::stripInBoundsOffsets() {
-  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
-}
-
-/// isDereferenceablePointer - Test if this value is always a pointer to
-/// allocated and suitably aligned memory for a simple load or store.
-static bool isDereferenceablePointer(const Value *V,
-                                     SmallPtrSet<const Value *, 32> &Visited) {
-  // Note that it is not safe to speculate into a malloc'd region because
-  // malloc may return null.
-  // It's also not always safe to follow a bitcast, for example:
-  //   bitcast i8* (alloca i8) to i32*
-  // would result in a 4-byte load from a 1-byte alloca. Some cases could
-  // be handled using DataLayout to check sizes and alignments though.
-
-  // These are obviously ok.
-  if (isa<AllocaInst>(V)) return true;
-
-  // Global variables which can't collapse to null are ok.
-  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
-    return !GV->hasExternalWeakLinkage();
-
-  // byval arguments are ok.
-  if (const Argument *A = dyn_cast<Argument>(V))
-    return A->hasByValAttr();
-
-  // For GEPs, determine if the indexing lands within the allocated object.
-  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
-    // Conservatively require that the base pointer be fully dereferenceable.
-    if (!Visited.insert(GEP->getOperand(0)))
-      return false;
-    if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
-      return false;
-    // Check the indices.
-    gep_type_iterator GTI = gep_type_begin(GEP);
-    for (User::const_op_iterator I = GEP->op_begin()+1,
-         E = GEP->op_end(); I != E; ++I) {
-      Value *Index = *I;
-      Type *Ty = *GTI++;
-      // Struct indices can't be out of bounds.
-      if (isa<StructType>(Ty))
-        continue;
-      ConstantInt *CI = dyn_cast<ConstantInt>(Index);
-      if (!CI)
-        return false;
-      // Zero is always ok.
-      if (CI->isZero())
-        continue;
-      // Check to see that it's within the bounds of an array.
-      ArrayType *ATy = dyn_cast<ArrayType>(Ty);
-      if (!ATy)
-        return false;
-      if (CI->getValue().getActiveBits() > 64)
-        return false;
-      if (CI->getZExtValue() >= ATy->getNumElements())
-        return false;
-    }
-    // Indices check out; this is dereferenceable.
-    return true;
-  }
-
-  // If we don't know, assume the worst.
-  return false;
-}
-
-/// isDereferenceablePointer - Test if this value is always a pointer to
-/// allocated and suitably aligned memory for a simple load or store.
-bool Value::isDereferenceablePointer() const {
-  SmallPtrSet<const Value *, 32> Visited;
-  return ::isDereferenceablePointer(this, Visited);
-}
-
-/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
-/// return the value in the PHI node corresponding to PredBB.  If not, return
-/// ourself.  This is useful if you want to know the value something has in a
-/// predecessor block.
-Value *Value::DoPHITranslation(const BasicBlock *CurBB,
-                               const BasicBlock *PredBB) {
-  PHINode *PN = dyn_cast<PHINode>(this);
-  if (PN && PN->getParent() == CurBB)
-    return PN->getIncomingValueForBlock(PredBB);
-  return this;
-}
-
-LLVMContext &Value::getContext() const { return VTy->getContext(); }
-
-//===----------------------------------------------------------------------===//
-//                             ValueHandleBase Class
-//===----------------------------------------------------------------------===//
-
-/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
-/// List is known to point into the existing use list.
-void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
-  assert(List && "Handle list is null?");
-
-  // Splice ourselves into the list.
-  Next = *List;
-  *List = this;
-  setPrevPtr(List);
-  if (Next) {
-    Next->setPrevPtr(&Next);
-    assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
-  }
-}
-
-void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
-  assert(List && "Must insert after existing node");
-
-  Next = List->Next;
-  setPrevPtr(&List->Next);
-  List->Next = this;
-  if (Next)
-    Next->setPrevPtr(&Next);
-}
-
-/// AddToUseList - Add this ValueHandle to the use list for VP.
-void ValueHandleBase::AddToUseList() {
-  assert(VP.getPointer() && "Null pointer doesn't have a use list!");
-
-  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
-
-  if (VP.getPointer()->HasValueHandle) {
-    // If this value already has a ValueHandle, then it must be in the
-    // ValueHandles map already.
-    ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
-    assert(Entry != 0 && "Value doesn't have any handles?");
-    AddToExistingUseList(&Entry);
-    return;
-  }
-
-  // Ok, it doesn't have any handles yet, so we must insert it into the
-  // DenseMap.  However, doing this insertion could cause the DenseMap to
-  // reallocate itself, which would invalidate all of the PrevP pointers that
-  // point into the old table.  Handle this by checking for reallocation and
-  // updating the stale pointers only if needed.
-  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
-  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
-
-  ValueHandleBase *&Entry = Handles[VP.getPointer()];
-  assert(Entry == 0 && "Value really did already have handles?");
-  AddToExistingUseList(&Entry);
-  VP.getPointer()->HasValueHandle = true;
-
-  // If reallocation didn't happen or if this was the first insertion, don't
-  // walk the table.
-  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
-      Handles.size() == 1) {
-    return;
-  }
-
-  // Okay, reallocation did happen.  Fix the Prev Pointers.
-  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
-       E = Handles.end(); I != E; ++I) {
-    assert(I->second && I->first == I->second->VP.getPointer() &&
-           "List invariant broken!");
-    I->second->setPrevPtr(&I->second);
-  }
-}
-
-/// RemoveFromUseList - Remove this ValueHandle from its current use list.
-void ValueHandleBase::RemoveFromUseList() {
-  assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
-         "Pointer doesn't have a use list!");
-
-  // Unlink this from its use list.
-  ValueHandleBase **PrevPtr = getPrevPtr();
-  assert(*PrevPtr == this && "List invariant broken");
-
-  *PrevPtr = Next;
-  if (Next) {
-    assert(Next->getPrevPtr() == &Next && "List invariant broken");
-    Next->setPrevPtr(PrevPtr);
-    return;
-  }
-
-  // If the Next pointer was null, then it is possible that this was the last
-  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
-  // map.
-  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
-  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
-  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
-    Handles.erase(VP.getPointer());
-    VP.getPointer()->HasValueHandle = false;
-  }
-}
-
-
-void ValueHandleBase::ValueIsDeleted(Value *V) {
-  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
-
-  // Get the linked list base, which is guaranteed to exist since the
-  // HasValueHandle flag is set.
-  LLVMContextImpl *pImpl = V->getContext().pImpl;
-  ValueHandleBase *Entry = pImpl->ValueHandles[V];
-  assert(Entry && "Value bit set but no entries exist");
-
-  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
-  // and remove themselves from the list without breaking our iteration.  This
-  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
-  // Note that we deliberately do not the support the case when dropping a value
-  // handle results in a new value handle being permanently added to the list
-  // (as might occur in theory for CallbackVH's): the new value handle will not
-  // be processed and the checking code will mete out righteous punishment if
-  // the handle is still present once we have finished processing all the other
-  // value handles (it is fine to momentarily add then remove a value handle).
-  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
-    Iterator.RemoveFromUseList();
-    Iterator.AddToExistingUseListAfter(Entry);
-    assert(Entry->Next == &Iterator && "Loop invariant broken.");
-
-    switch (Entry->getKind()) {
-    case Assert:
-      break;
-    case Tracking:
-      // Mark that this value has been deleted by setting it to an invalid Value
-      // pointer.
-      Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
-      break;
-    case Weak:
-      // Weak just goes to null, which will unlink it from the list.
-      Entry->operator=(0);
-      break;
-    case Callback:
-      // Forward to the subclass's implementation.
-      static_cast<CallbackVH*>(Entry)->deleted();
-      break;
-    }
-  }
-
-  // All callbacks, weak references, and assertingVHs should be dropped by now.
-  if (V->HasValueHandle) {
-#ifndef NDEBUG      // Only in +Asserts mode...
-    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
-           << "\n";
-    if (pImpl->ValueHandles[V]->getKind() == Assert)
-      llvm_unreachable("An asserting value handle still pointed to this"
-                       " value!");
-
-#endif
-    llvm_unreachable("All references to V were not removed?");
-  }
-}
-
-
-void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
-  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
-  assert(Old != New && "Changing value into itself!");
-
-  // Get the linked list base, which is guaranteed to exist since the
-  // HasValueHandle flag is set.
-  LLVMContextImpl *pImpl = Old->getContext().pImpl;
-  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
-
-  assert(Entry && "Value bit set but no entries exist");
-
-  // We use a local ValueHandleBase as an iterator so that
-  // ValueHandles can add and remove themselves from the list without
-  // breaking our iteration.  This is not really an AssertingVH; we
-  // just have to give ValueHandleBase some kind.
-  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
-    Iterator.RemoveFromUseList();
-    Iterator.AddToExistingUseListAfter(Entry);
-    assert(Entry->Next == &Iterator && "Loop invariant broken.");
-
-    switch (Entry->getKind()) {
-    case Assert:
-      // Asserting handle does not follow RAUW implicitly.
-      break;
-    case Tracking:
-      // Tracking goes to new value like a WeakVH. Note that this may make it
-      // something incompatible with its templated type. We don't want to have a
-      // virtual (or inline) interface to handle this though, so instead we make
-      // the TrackingVH accessors guarantee that a client never sees this value.
-
-      // FALLTHROUGH
-    case Weak:
-      // Weak goes to the new value, which will unlink it from Old's list.
-      Entry->operator=(New);
-      break;
-    case Callback:
-      // Forward to the subclass's implementation.
-      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
-      break;
-    }
-  }
-
-#ifndef NDEBUG
-  // If any new tracking or weak value handles were added while processing the
-  // list, then complain about it now.
-  if (Old->HasValueHandle)
-    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
-      switch (Entry->getKind()) {
-      case Tracking:
-      case Weak:
-        dbgs() << "After RAUW from " << *Old->getType() << " %"
-               << Old->getName() << " to " << *New->getType() << " %"
-               << New->getName() << "\n";
-        llvm_unreachable("A tracking or weak value handle still pointed to the"
-                         " old value!\n");
-      default:
-        break;
-      }
-#endif
-}
-
-// Default implementation for CallbackVH.
-void CallbackVH::allUsesReplacedWith(Value *) {}
-
-void CallbackVH::deleted() {
-  setValPtr(NULL);
-}

Removed: llvm/trunk/lib/VMCore/ValueSymbolTable.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/ValueSymbolTable.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/ValueSymbolTable.cpp (original)
+++ llvm/trunk/lib/VMCore/ValueSymbolTable.cpp (removed)
@@ -1,117 +0,0 @@
-//===-- ValueSymbolTable.cpp - Implement the ValueSymbolTable class -------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the ValueSymbolTable class for the VMCore library.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "valuesymtab"
-#include "llvm/ValueSymbolTable.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Type.h"
-using namespace llvm;
-
-// Class destructor
-ValueSymbolTable::~ValueSymbolTable() {
-#ifndef NDEBUG   // Only do this in -g mode...
-  for (iterator VI = vmap.begin(), VE = vmap.end(); VI != VE; ++VI)
-    dbgs() << "Value still in symbol table! Type = '"
-           << *VI->getValue()->getType() << "' Name = '"
-           << VI->getKeyData() << "'\n";
-  assert(vmap.empty() && "Values remain in symbol table!");
-#endif
-}
-
-// Insert a value into the symbol table with the specified name...
-//
-void ValueSymbolTable::reinsertValue(Value* V) {
-  assert(V->hasName() && "Can't insert nameless Value into symbol table");
-
-  // Try inserting the name, assuming it won't conflict.
-  if (vmap.insert(V->Name)) {
-    //DEBUG(dbgs() << " Inserted value: " << V->Name << ": " << *V << "\n");
-    return;
-  }
-  
-  // Otherwise, there is a naming conflict.  Rename this value.
-  SmallString<256> UniqueName(V->getName().begin(), V->getName().end());
-
-  // The name is too already used, just free it so we can allocate a new name.
-  V->Name->Destroy();
-  
-  unsigned BaseSize = UniqueName.size();
-  while (1) {
-    // Trim any suffix off and append the next number.
-    UniqueName.resize(BaseSize);
-    raw_svector_ostream(UniqueName) << ++LastUnique;
-
-    // Try insert the vmap entry with this suffix.
-    ValueName &NewName = vmap.GetOrCreateValue(UniqueName);
-    if (NewName.getValue() == 0) {
-      // Newly inserted name.  Success!
-      NewName.setValue(V);
-      V->Name = &NewName;
-     //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
-      return;
-    }
-  }
-}
-
-void ValueSymbolTable::removeValueName(ValueName *V) {
-  //DEBUG(dbgs() << " Removing Value: " << V->getKeyData() << "\n");
-  // Remove the value from the symbol table.
-  vmap.remove(V);
-}
-
-/// createValueName - This method attempts to create a value name and insert
-/// it into the symbol table with the specified name.  If it conflicts, it
-/// auto-renames the name and returns that instead.
-ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
-  // In the common case, the name is not already in the symbol table.
-  ValueName &Entry = vmap.GetOrCreateValue(Name);
-  if (Entry.getValue() == 0) {
-    Entry.setValue(V);
-    //DEBUG(dbgs() << " Inserted value: " << Entry.getKeyData() << ": "
-    //           << *V << "\n");
-    return &Entry;
-  }
-  
-  // Otherwise, there is a naming conflict.  Rename this value.
-  SmallString<256> UniqueName(Name.begin(), Name.end());
-  
-  while (1) {
-    // Trim any suffix off and append the next number.
-    UniqueName.resize(Name.size());
-    raw_svector_ostream(UniqueName) << ++LastUnique;
-    
-    // Try insert the vmap entry with this suffix.
-    ValueName &NewName = vmap.GetOrCreateValue(UniqueName);
-    if (NewName.getValue() == 0) {
-      // Newly inserted name.  Success!
-      NewName.setValue(V);
-     //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
-      return &NewName;
-    }
-  }
-}
-
-
-// dump - print out the symbol table
-//
-void ValueSymbolTable::dump() const {
-  //DEBUG(dbgs() << "ValueSymbolTable:\n");
-  for (const_iterator I = begin(), E = end(); I != E; ++I) {
-    //DEBUG(dbgs() << "  '" << I->getKeyData() << "' = ");
-    I->getValue()->dump();
-    //DEBUG(dbgs() << "\n");
-  }
-}

Removed: llvm/trunk/lib/VMCore/ValueTypes.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/ValueTypes.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/ValueTypes.cpp (original)
+++ llvm/trunk/lib/VMCore/ValueTypes.cpp (removed)
@@ -1,277 +0,0 @@
-//===----------- ValueTypes.cpp - Implementation of EVT methods -----------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements methods in the CodeGen/ValueTypes.h header.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Type.h"
-using namespace llvm;
-
-EVT EVT::changeExtendedVectorElementTypeToInteger() const {
-  LLVMContext &Context = LLVMTy->getContext();
-  EVT IntTy = getIntegerVT(Context, getVectorElementType().getSizeInBits());
-  return getVectorVT(Context, IntTy, getVectorNumElements());
-}
-
-EVT EVT::getExtendedIntegerVT(LLVMContext &Context, unsigned BitWidth) {
-  EVT VT;
-  VT.LLVMTy = IntegerType::get(Context, BitWidth);
-  assert(VT.isExtended() && "Type is not extended!");
-  return VT;
-}
-
-EVT EVT::getExtendedVectorVT(LLVMContext &Context, EVT VT,
-                             unsigned NumElements) {
-  EVT ResultVT;
-  ResultVT.LLVMTy = VectorType::get(VT.getTypeForEVT(Context), NumElements);
-  assert(ResultVT.isExtended() && "Type is not extended!");
-  return ResultVT;
-}
-
-bool EVT::isExtendedFloatingPoint() const {
-  assert(isExtended() && "Type is not extended!");
-  return LLVMTy->isFPOrFPVectorTy();
-}
-
-bool EVT::isExtendedInteger() const {
-  assert(isExtended() && "Type is not extended!");
-  return LLVMTy->isIntOrIntVectorTy();
-}
-
-bool EVT::isExtendedVector() const {
-  assert(isExtended() && "Type is not extended!");
-  return LLVMTy->isVectorTy();
-}
-
-bool EVT::isExtended16BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 16;
-}
-
-bool EVT::isExtended32BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 32;
-}
-
-bool EVT::isExtended64BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 64;
-}
-
-bool EVT::isExtended128BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 128;
-}
-
-bool EVT::isExtended256BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 256;
-}
-
-bool EVT::isExtended512BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 512;
-}
-
-bool EVT::isExtended1024BitVector() const {
-  return isExtendedVector() && getExtendedSizeInBits() == 1024;
-}
-
-EVT EVT::getExtendedVectorElementType() const {
-  assert(isExtended() && "Type is not extended!");
-  return EVT::getEVT(cast<VectorType>(LLVMTy)->getElementType());
-}
-
-unsigned EVT::getExtendedVectorNumElements() const {
-  assert(isExtended() && "Type is not extended!");
-  return cast<VectorType>(LLVMTy)->getNumElements();
-}
-
-unsigned EVT::getExtendedSizeInBits() const {
-  assert(isExtended() && "Type is not extended!");
-  if (IntegerType *ITy = dyn_cast<IntegerType>(LLVMTy))
-    return ITy->getBitWidth();
-  if (VectorType *VTy = dyn_cast<VectorType>(LLVMTy))
-    return VTy->getBitWidth();
-  llvm_unreachable("Unrecognized extended type!");
-}
-
-/// getEVTString - This function returns value type as a string, e.g. "i32".
-std::string EVT::getEVTString() const {
-  switch (V.SimpleTy) {
-  default:
-    if (isVector())
-      return "v" + utostr(getVectorNumElements()) +
-             getVectorElementType().getEVTString();
-    if (isInteger())
-      return "i" + utostr(getSizeInBits());
-    llvm_unreachable("Invalid EVT!");
-  case MVT::i1:      return "i1";
-  case MVT::i8:      return "i8";
-  case MVT::i16:     return "i16";
-  case MVT::i32:     return "i32";
-  case MVT::i64:     return "i64";
-  case MVT::i128:    return "i128";
-  case MVT::f16:     return "f16";
-  case MVT::f32:     return "f32";
-  case MVT::f64:     return "f64";
-  case MVT::f80:     return "f80";
-  case MVT::f128:    return "f128";
-  case MVT::ppcf128: return "ppcf128";
-  case MVT::isVoid:  return "isVoid";
-  case MVT::Other:   return "ch";
-  case MVT::Glue:    return "glue";
-  case MVT::x86mmx:  return "x86mmx";
-  case MVT::v2i1:    return "v2i1";
-  case MVT::v4i1:    return "v4i1";
-  case MVT::v8i1:    return "v8i1";
-  case MVT::v16i1:   return "v16i1";
-  case MVT::v32i1:   return "v32i1";
-  case MVT::v64i1:   return "v64i1";
-  case MVT::v2i8:    return "v2i8";
-  case MVT::v4i8:    return "v4i8";
-  case MVT::v8i8:    return "v8i8";
-  case MVT::v16i8:   return "v16i8";
-  case MVT::v32i8:   return "v32i8";
-  case MVT::v64i8:   return "v64i8";
-  case MVT::v1i16:   return "v1i16";
-  case MVT::v2i16:   return "v2i16";
-  case MVT::v4i16:   return "v4i16";
-  case MVT::v8i16:   return "v8i16";
-  case MVT::v16i16:  return "v16i16";
-  case MVT::v32i16:  return "v32i16";
-  case MVT::v1i32:   return "v1i32";
-  case MVT::v2i32:   return "v2i32";
-  case MVT::v4i32:   return "v4i32";
-  case MVT::v8i32:   return "v8i32";
-  case MVT::v16i32:  return "v16i32";
-  case MVT::v1i64:   return "v1i64";
-  case MVT::v2i64:   return "v2i64";
-  case MVT::v4i64:   return "v4i64";
-  case MVT::v8i64:   return "v8i64";
-  case MVT::v16i64:  return "v16i64";
-  case MVT::v2f32:   return "v2f32";
-  case MVT::v2f16:   return "v2f16";
-  case MVT::v4f32:   return "v4f32";
-  case MVT::v8f32:   return "v8f32";
-  case MVT::v16f32:  return "v16f32";
-  case MVT::v2f64:   return "v2f64";
-  case MVT::v4f64:   return "v4f64";
-  case MVT::v8f64:   return "v8f64";
-  case MVT::Metadata:return "Metadata";
-  case MVT::Untyped: return "Untyped";
-  }
-}
-
-/// getTypeForEVT - This method returns an LLVM type corresponding to the
-/// specified EVT.  For integer types, this returns an unsigned type.  Note
-/// that this will abort for types that cannot be represented.
-Type *EVT::getTypeForEVT(LLVMContext &Context) const {
-  switch (V.SimpleTy) {
-  default:
-    assert(isExtended() && "Type is not extended!");
-    return LLVMTy;
-  case MVT::isVoid:  return Type::getVoidTy(Context);
-  case MVT::i1:      return Type::getInt1Ty(Context);
-  case MVT::i8:      return Type::getInt8Ty(Context);
-  case MVT::i16:     return Type::getInt16Ty(Context);
-  case MVT::i32:     return Type::getInt32Ty(Context);
-  case MVT::i64:     return Type::getInt64Ty(Context);
-  case MVT::i128:    return IntegerType::get(Context, 128);
-  case MVT::f16:     return Type::getHalfTy(Context);
-  case MVT::f32:     return Type::getFloatTy(Context);
-  case MVT::f64:     return Type::getDoubleTy(Context);
-  case MVT::f80:     return Type::getX86_FP80Ty(Context);
-  case MVT::f128:    return Type::getFP128Ty(Context);
-  case MVT::ppcf128: return Type::getPPC_FP128Ty(Context);
-  case MVT::x86mmx:  return Type::getX86_MMXTy(Context);
-  case MVT::v2i1:    return VectorType::get(Type::getInt1Ty(Context), 2);
-  case MVT::v4i1:    return VectorType::get(Type::getInt1Ty(Context), 4);
-  case MVT::v8i1:    return VectorType::get(Type::getInt1Ty(Context), 8);
-  case MVT::v16i1:   return VectorType::get(Type::getInt1Ty(Context), 16);
-  case MVT::v32i1:   return VectorType::get(Type::getInt1Ty(Context), 32);
-  case MVT::v64i1:   return VectorType::get(Type::getInt1Ty(Context), 64);
-  case MVT::v2i8:    return VectorType::get(Type::getInt8Ty(Context), 2);
-  case MVT::v4i8:    return VectorType::get(Type::getInt8Ty(Context), 4);
-  case MVT::v8i8:    return VectorType::get(Type::getInt8Ty(Context), 8);
-  case MVT::v16i8:   return VectorType::get(Type::getInt8Ty(Context), 16);
-  case MVT::v32i8:   return VectorType::get(Type::getInt8Ty(Context), 32);
-  case MVT::v64i8:   return VectorType::get(Type::getInt8Ty(Context), 64);
-  case MVT::v1i16:   return VectorType::get(Type::getInt16Ty(Context), 1);
-  case MVT::v2i16:   return VectorType::get(Type::getInt16Ty(Context), 2);
-  case MVT::v4i16:   return VectorType::get(Type::getInt16Ty(Context), 4);
-  case MVT::v8i16:   return VectorType::get(Type::getInt16Ty(Context), 8);
-  case MVT::v16i16:  return VectorType::get(Type::getInt16Ty(Context), 16);
-  case MVT::v32i16:  return VectorType::get(Type::getInt16Ty(Context), 32);
-  case MVT::v1i32:   return VectorType::get(Type::getInt32Ty(Context), 1);
-  case MVT::v2i32:   return VectorType::get(Type::getInt32Ty(Context), 2);
-  case MVT::v4i32:   return VectorType::get(Type::getInt32Ty(Context), 4);
-  case MVT::v8i32:   return VectorType::get(Type::getInt32Ty(Context), 8);
-  case MVT::v16i32:  return VectorType::get(Type::getInt32Ty(Context), 16);
-  case MVT::v1i64:   return VectorType::get(Type::getInt64Ty(Context), 1);
-  case MVT::v2i64:   return VectorType::get(Type::getInt64Ty(Context), 2);
-  case MVT::v4i64:   return VectorType::get(Type::getInt64Ty(Context), 4);
-  case MVT::v8i64:   return VectorType::get(Type::getInt64Ty(Context), 8);
-  case MVT::v16i64:  return VectorType::get(Type::getInt64Ty(Context), 16);
-  case MVT::v2f16:   return VectorType::get(Type::getHalfTy(Context), 2);
-  case MVT::v2f32:   return VectorType::get(Type::getFloatTy(Context), 2);
-  case MVT::v4f32:   return VectorType::get(Type::getFloatTy(Context), 4);
-  case MVT::v8f32:   return VectorType::get(Type::getFloatTy(Context), 8);
-  case MVT::v16f32:   return VectorType::get(Type::getFloatTy(Context), 16);
-  case MVT::v2f64:   return VectorType::get(Type::getDoubleTy(Context), 2);
-  case MVT::v4f64:   return VectorType::get(Type::getDoubleTy(Context), 4); 
-  case MVT::v8f64:   return VectorType::get(Type::getDoubleTy(Context), 8); 
-  case MVT::Metadata: return Type::getMetadataTy(Context);
- }
-}
-
-/// Return the value type corresponding to the specified type.  This returns all
-/// pointers as MVT::iPTR.  If HandleUnknown is true, unknown types are returned
-/// as Other, otherwise they are invalid.
-MVT MVT::getVT(Type *Ty, bool HandleUnknown){
-  switch (Ty->getTypeID()) {
-  default:
-    if (HandleUnknown) return MVT(MVT::Other);
-    llvm_unreachable("Unknown type!");
-  case Type::VoidTyID:
-    return MVT::isVoid;
-  case Type::IntegerTyID:
-    return getIntegerVT(cast<IntegerType>(Ty)->getBitWidth());
-  case Type::HalfTyID:      return MVT(MVT::f16);
-  case Type::FloatTyID:     return MVT(MVT::f32);
-  case Type::DoubleTyID:    return MVT(MVT::f64);
-  case Type::X86_FP80TyID:  return MVT(MVT::f80);
-  case Type::X86_MMXTyID:   return MVT(MVT::x86mmx);
-  case Type::FP128TyID:     return MVT(MVT::f128);
-  case Type::PPC_FP128TyID: return MVT(MVT::ppcf128);
-  case Type::PointerTyID:   return MVT(MVT::iPTR);
-  case Type::VectorTyID: {
-    VectorType *VTy = cast<VectorType>(Ty);
-    return getVectorVT(
-      getVT(VTy->getElementType(), false), VTy->getNumElements());
-  }
-  }
-}
-
-/// getEVT - Return the value type corresponding to the specified type.  This
-/// returns all pointers as MVT::iPTR.  If HandleUnknown is true, unknown types
-/// are returned as Other, otherwise they are invalid.
-EVT EVT::getEVT(Type *Ty, bool HandleUnknown){
-  switch (Ty->getTypeID()) {
-  default:
-    return MVT::getVT(Ty, HandleUnknown);
-  case Type::IntegerTyID:
-    return getIntegerVT(Ty->getContext(), cast<IntegerType>(Ty)->getBitWidth());
-  case Type::VectorTyID: {
-    VectorType *VTy = cast<VectorType>(Ty);
-    return getVectorVT(Ty->getContext(), getEVT(VTy->getElementType(), false),
-                       VTy->getNumElements());
-  }
-  }
-}

Removed: llvm/trunk/lib/VMCore/Verifier.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/VMCore/Verifier.cpp?rev=171358&view=auto
==============================================================================
--- llvm/trunk/lib/VMCore/Verifier.cpp (original)
+++ llvm/trunk/lib/VMCore/Verifier.cpp (removed)
@@ -1,2015 +0,0 @@
-//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the function verifier interface, that can be used for some
-// sanity checking of input to the system.
-//
-// Note that this does not provide full `Java style' security and verifications,
-// instead it just tries to ensure that code is well-formed.
-//
-//  * Both of a binary operator's parameters are of the same type
-//  * Verify that the indices of mem access instructions match other operands
-//  * Verify that arithmetic and other things are only performed on first-class
-//    types.  Verify that shifts & logicals only happen on integrals f.e.
-//  * All of the constants in a switch statement are of the correct type
-//  * The code is in valid SSA form
-//  * It should be illegal to put a label into any other type (like a structure)
-//    or to return one. [except constant arrays!]
-//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
-//  * PHI nodes must have an entry for each predecessor, with no extras.
-//  * PHI nodes must be the first thing in a basic block, all grouped together
-//  * PHI nodes must have at least one entry
-//  * All basic blocks should only end with terminator insts, not contain them
-//  * The entry node to a function must not have predecessors
-//  * All Instructions must be embedded into a basic block
-//  * Functions cannot take a void-typed parameter
-//  * Verify that a function's argument list agrees with it's declared type.
-//  * It is illegal to specify a name for a void value.
-//  * It is illegal to have a internal global value with no initializer
-//  * It is illegal to have a ret instruction that returns a value that does not
-//    agree with the function return value type.
-//  * Function call argument types match the function prototype
-//  * A landing pad is defined by a landingpad instruction, and can be jumped to
-//    only by the unwind edge of an invoke instruction.
-//  * A landingpad instruction must be the first non-PHI instruction in the
-//    block.
-//  * All landingpad instructions must use the same personality function with
-//    the same function.
-//  * All other things that are tested by asserts spread about the code...
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/CallingConv.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/InstVisitor.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cstdarg>
-using namespace llvm;
-
-namespace {  // Anonymous namespace for class
-  struct PreVerifier : public FunctionPass {
-    static char ID; // Pass ID, replacement for typeid
-
-    PreVerifier() : FunctionPass(ID) {
-      initializePreVerifierPass(*PassRegistry::getPassRegistry());
-    }
-
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.setPreservesAll();
-    }
-
-    // Check that the prerequisites for successful DominatorTree construction
-    // are satisfied.
-    bool runOnFunction(Function &F) {
-      bool Broken = false;
-
-      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
-        if (I->empty() || !I->back().isTerminator()) {
-          dbgs() << "Basic Block in function '" << F.getName() 
-                 << "' does not have terminator!\n";
-          WriteAsOperand(dbgs(), I, true);
-          dbgs() << "\n";
-          Broken = true;
-        }
-      }
-
-      if (Broken)
-        report_fatal_error("Broken module, no Basic Block terminator!");
-
-      return false;
-    }
-  };
-}
-
-char PreVerifier::ID = 0;
-INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification", 
-                false, false)
-static char &PreVerifyID = PreVerifier::ID;
-
-namespace {
-  struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
-    static char ID; // Pass ID, replacement for typeid
-    bool Broken;          // Is this module found to be broken?
-    VerifierFailureAction action;
-                          // What to do if verification fails.
-    Module *Mod;          // Module we are verifying right now
-    LLVMContext *Context; // Context within which we are verifying
-    DominatorTree *DT;    // Dominator Tree, caution can be null!
-
-    std::string Messages;
-    raw_string_ostream MessagesStr;
-
-    /// InstInThisBlock - when verifying a basic block, keep track of all of the
-    /// instructions we have seen so far.  This allows us to do efficient
-    /// dominance checks for the case when an instruction has an operand that is
-    /// an instruction in the same block.
-    SmallPtrSet<Instruction*, 16> InstsInThisBlock;
-
-    /// MDNodes - keep track of the metadata nodes that have been checked
-    /// already.
-    SmallPtrSet<MDNode *, 32> MDNodes;
-
-    /// PersonalityFn - The personality function referenced by the
-    /// LandingPadInsts. All LandingPadInsts within the same function must use
-    /// the same personality function.
-    const Value *PersonalityFn;
-
-    Verifier()
-      : FunctionPass(ID), Broken(false),
-        action(AbortProcessAction), Mod(0), Context(0), DT(0),
-        MessagesStr(Messages), PersonalityFn(0) {
-      initializeVerifierPass(*PassRegistry::getPassRegistry());
-    }
-    explicit Verifier(VerifierFailureAction ctn)
-      : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
-        Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
-      initializeVerifierPass(*PassRegistry::getPassRegistry());
-    }
-
-    bool doInitialization(Module &M) {
-      Mod = &M;
-      Context = &M.getContext();
-
-      // We must abort before returning back to the pass manager, or else the
-      // pass manager may try to run other passes on the broken module.
-      return abortIfBroken();
-    }
-
-    bool runOnFunction(Function &F) {
-      // Get dominator information if we are being run by PassManager
-      DT = &getAnalysis<DominatorTree>();
-
-      Mod = F.getParent();
-      if (!Context) Context = &F.getContext();
-
-      visit(F);
-      InstsInThisBlock.clear();
-      PersonalityFn = 0;
-
-      // We must abort before returning back to the pass manager, or else the
-      // pass manager may try to run other passes on the broken module.
-      return abortIfBroken();
-    }
-
-    bool doFinalization(Module &M) {
-      // Scan through, checking all of the external function's linkage now...
-      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
-        visitGlobalValue(*I);
-
-        // Check to make sure function prototypes are okay.
-        if (I->isDeclaration()) visitFunction(*I);
-      }
-
-      for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
-           I != E; ++I)
-        visitGlobalVariable(*I);
-
-      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
-           I != E; ++I)
-        visitGlobalAlias(*I);
-
-      for (Module::named_metadata_iterator I = M.named_metadata_begin(),
-           E = M.named_metadata_end(); I != E; ++I)
-        visitNamedMDNode(*I);
-
-      // If the module is broken, abort at this time.
-      return abortIfBroken();
-    }
-
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.setPreservesAll();
-      AU.addRequiredID(PreVerifyID);
-      AU.addRequired<DominatorTree>();
-    }
-
-    /// abortIfBroken - If the module is broken and we are supposed to abort on
-    /// this condition, do so.
-    ///
-    bool abortIfBroken() {
-      if (!Broken) return false;
-      MessagesStr << "Broken module found, ";
-      switch (action) {
-      case AbortProcessAction:
-        MessagesStr << "compilation aborted!\n";
-        dbgs() << MessagesStr.str();
-        // Client should choose different reaction if abort is not desired
-        abort();
-      case PrintMessageAction:
-        MessagesStr << "verification continues.\n";
-        dbgs() << MessagesStr.str();
-        return false;
-      case ReturnStatusAction:
-        MessagesStr << "compilation terminated.\n";
-        return true;
-      }
-      llvm_unreachable("Invalid action");
-    }
-
-
-    // Verification methods...
-    void visitGlobalValue(GlobalValue &GV);
-    void visitGlobalVariable(GlobalVariable &GV);
-    void visitGlobalAlias(GlobalAlias &GA);
-    void visitNamedMDNode(NamedMDNode &NMD);
-    void visitMDNode(MDNode &MD, Function *F);
-    void visitFunction(Function &F);
-    void visitBasicBlock(BasicBlock &BB);
-    using InstVisitor<Verifier>::visit;
-
-    void visit(Instruction &I);
-
-    void visitTruncInst(TruncInst &I);
-    void visitZExtInst(ZExtInst &I);
-    void visitSExtInst(SExtInst &I);
-    void visitFPTruncInst(FPTruncInst &I);
-    void visitFPExtInst(FPExtInst &I);
-    void visitFPToUIInst(FPToUIInst &I);
-    void visitFPToSIInst(FPToSIInst &I);
-    void visitUIToFPInst(UIToFPInst &I);
-    void visitSIToFPInst(SIToFPInst &I);
-    void visitIntToPtrInst(IntToPtrInst &I);
-    void visitPtrToIntInst(PtrToIntInst &I);
-    void visitBitCastInst(BitCastInst &I);
-    void visitPHINode(PHINode &PN);
-    void visitBinaryOperator(BinaryOperator &B);
-    void visitICmpInst(ICmpInst &IC);
-    void visitFCmpInst(FCmpInst &FC);
-    void visitExtractElementInst(ExtractElementInst &EI);
-    void visitInsertElementInst(InsertElementInst &EI);
-    void visitShuffleVectorInst(ShuffleVectorInst &EI);
-    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
-    void visitCallInst(CallInst &CI);
-    void visitInvokeInst(InvokeInst &II);
-    void visitGetElementPtrInst(GetElementPtrInst &GEP);
-    void visitLoadInst(LoadInst &LI);
-    void visitStoreInst(StoreInst &SI);
-    void verifyDominatesUse(Instruction &I, unsigned i);
-    void visitInstruction(Instruction &I);
-    void visitTerminatorInst(TerminatorInst &I);
-    void visitBranchInst(BranchInst &BI);
-    void visitReturnInst(ReturnInst &RI);
-    void visitSwitchInst(SwitchInst &SI);
-    void visitIndirectBrInst(IndirectBrInst &BI);
-    void visitSelectInst(SelectInst &SI);
-    void visitUserOp1(Instruction &I);
-    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
-    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
-    void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
-    void visitAtomicRMWInst(AtomicRMWInst &RMWI);
-    void visitFenceInst(FenceInst &FI);
-    void visitAllocaInst(AllocaInst &AI);
-    void visitExtractValueInst(ExtractValueInst &EVI);
-    void visitInsertValueInst(InsertValueInst &IVI);
-    void visitLandingPadInst(LandingPadInst &LPI);
-
-    void VerifyCallSite(CallSite CS);
-    bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
-                          int VT, unsigned ArgNo, std::string &Suffix);
-    bool VerifyIntrinsicType(Type *Ty,
-                             ArrayRef<Intrinsic::IITDescriptor> &Infos,
-                             SmallVectorImpl<Type*> &ArgTys);
-    void VerifyParameterAttrs(Attribute Attrs, Type *Ty,
-                              bool isReturnValue, const Value *V);
-    void VerifyFunctionAttrs(FunctionType *FT, const AttributeSet &Attrs,
-                             const Value *V);
-
-    void WriteValue(const Value *V) {
-      if (!V) return;
-      if (isa<Instruction>(V)) {
-        MessagesStr << *V << '\n';
-      } else {
-        WriteAsOperand(MessagesStr, V, true, Mod);
-        MessagesStr << '\n';
-      }
-    }
-
-    void WriteType(Type *T) {
-      if (!T) return;
-      MessagesStr << ' ' << *T;
-    }
-
-
-    // CheckFailed - A check failed, so print out the condition and the message
-    // that failed.  This provides a nice place to put a breakpoint if you want
-    // to see why something is not correct.
-    void CheckFailed(const Twine &Message,
-                     const Value *V1 = 0, const Value *V2 = 0,
-                     const Value *V3 = 0, const Value *V4 = 0) {
-      MessagesStr << Message.str() << "\n";
-      WriteValue(V1);
-      WriteValue(V2);
-      WriteValue(V3);
-      WriteValue(V4);
-      Broken = true;
-    }
-
-    void CheckFailed(const Twine &Message, const Value *V1,
-                     Type *T2, const Value *V3 = 0) {
-      MessagesStr << Message.str() << "\n";
-      WriteValue(V1);
-      WriteType(T2);
-      WriteValue(V3);
-      Broken = true;
-    }
-
-    void CheckFailed(const Twine &Message, Type *T1,
-                     Type *T2 = 0, Type *T3 = 0) {
-      MessagesStr << Message.str() << "\n";
-      WriteType(T1);
-      WriteType(T2);
-      WriteType(T3);
-      Broken = true;
-    }
-  };
-} // End anonymous namespace
-
-char Verifier::ID = 0;
-INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
-INITIALIZE_PASS_DEPENDENCY(PreVerifier)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
-INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
-
-// Assert - We know that cond should be true, if not print an error message.
-#define Assert(C, M) \
-  do { if (!(C)) { CheckFailed(M); return; } } while (0)
-#define Assert1(C, M, V1) \
-  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
-#define Assert2(C, M, V1, V2) \
-  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
-#define Assert3(C, M, V1, V2, V3) \
-  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
-#define Assert4(C, M, V1, V2, V3, V4) \
-  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
-
-void Verifier::visit(Instruction &I) {
-  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
-    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
-  InstVisitor<Verifier>::visit(I);
-}
-
-
-void Verifier::visitGlobalValue(GlobalValue &GV) {
-  Assert1(!GV.isDeclaration() ||
-          GV.isMaterializable() ||
-          GV.hasExternalLinkage() ||
-          GV.hasDLLImportLinkage() ||
-          GV.hasExternalWeakLinkage() ||
-          (isa<GlobalAlias>(GV) &&
-           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
-  "Global is external, but doesn't have external or dllimport or weak linkage!",
-          &GV);
-
-  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
-          "Global is marked as dllimport, but not external", &GV);
-
-  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
-          "Only global variables can have appending linkage!", &GV);
-
-  if (GV.hasAppendingLinkage()) {
-    GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
-    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
-            "Only global arrays can have appending linkage!", GVar);
-  }
-
-  Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
-          "linkonce_odr_auto_hide can only have default visibility!",
-          &GV);
-}
-
-void Verifier::visitGlobalVariable(GlobalVariable &GV) {
-  if (GV.hasInitializer()) {
-    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
-            "Global variable initializer type does not match global "
-            "variable type!", &GV);
-
-    // If the global has common linkage, it must have a zero initializer and
-    // cannot be constant.
-    if (GV.hasCommonLinkage()) {
-      Assert1(GV.getInitializer()->isNullValue(),
-              "'common' global must have a zero initializer!", &GV);
-      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
-              &GV);
-    }
-  } else {
-    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
-            GV.hasExternalWeakLinkage(),
-            "invalid linkage type for global declaration", &GV);
-  }
-
-  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
-                       GV.getName() == "llvm.global_dtors")) {
-    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
-            "invalid linkage for intrinsic global variable", &GV);
-    // Don't worry about emitting an error for it not being an array,
-    // visitGlobalValue will complain on appending non-array.
-    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
-      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
-      PointerType *FuncPtrTy =
-          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
-      Assert1(STy && STy->getNumElements() == 2 &&
-              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
-              STy->getTypeAtIndex(1) == FuncPtrTy,
-              "wrong type for intrinsic global variable", &GV);
-    }
-  }
-
-  visitGlobalValue(GV);
-}
-
-void Verifier::visitGlobalAlias(GlobalAlias &GA) {
-  Assert1(!GA.getName().empty(),
-          "Alias name cannot be empty!", &GA);
-  Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
-          GA.hasWeakLinkage(),
-          "Alias should have external or external weak linkage!", &GA);
-  Assert1(GA.getAliasee(),
-          "Aliasee cannot be NULL!", &GA);
-  Assert1(GA.getType() == GA.getAliasee()->getType(),
-          "Alias and aliasee types should match!", &GA);
-  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
-
-  if (!isa<GlobalValue>(GA.getAliasee())) {
-    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
-    Assert1(CE && 
-            (CE->getOpcode() == Instruction::BitCast ||
-             CE->getOpcode() == Instruction::GetElementPtr) &&
-            isa<GlobalValue>(CE->getOperand(0)),
-            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
-            &GA);
-  }
-
-  const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
-  Assert1(Aliasee,
-          "Aliasing chain should end with function or global variable", &GA);
-
-  visitGlobalValue(GA);
-}
-
-void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
-  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
-    MDNode *MD = NMD.getOperand(i);
-    if (!MD)
-      continue;
-
-    Assert1(!MD->isFunctionLocal(),
-            "Named metadata operand cannot be function local!", MD);
-    visitMDNode(*MD, 0);
-  }
-}
-
-void Verifier::visitMDNode(MDNode &MD, Function *F) {
-  // Only visit each node once.  Metadata can be mutually recursive, so this
-  // avoids infinite recursion here, as well as being an optimization.
-  if (!MDNodes.insert(&MD))
-    return;
-
-  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
-    Value *Op = MD.getOperand(i);
-    if (!Op)
-      continue;
-    if (isa<Constant>(Op) || isa<MDString>(Op))
-      continue;
-    if (MDNode *N = dyn_cast<MDNode>(Op)) {
-      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
-              "Global metadata operand cannot be function local!", &MD, N);
-      visitMDNode(*N, F);
-      continue;
-    }
-    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
-
-    // If this was an instruction, bb, or argument, verify that it is in the
-    // function that we expect.
-    Function *ActualF = 0;
-    if (Instruction *I = dyn_cast<Instruction>(Op))
-      ActualF = I->getParent()->getParent();
-    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
-      ActualF = BB->getParent();
-    else if (Argument *A = dyn_cast<Argument>(Op))
-      ActualF = A->getParent();
-    assert(ActualF && "Unimplemented function local metadata case!");
-
-    Assert2(ActualF == F, "function-local metadata used in wrong function",
-            &MD, Op);
-  }
-}
-
-// VerifyParameterAttrs - Check the given attributes for an argument or return
-// value of the specified type.  The value V is printed in error messages.
-void Verifier::VerifyParameterAttrs(Attribute Attrs, Type *Ty,
-                                    bool isReturnValue, const Value *V) {
-  if (!Attrs.hasAttributes())
-    return;
-
-  Assert1(!Attrs.hasAttribute(Attribute::NoReturn) &&
-          !Attrs.hasAttribute(Attribute::NoUnwind) &&
-          !Attrs.hasAttribute(Attribute::ReadNone) &&
-          !Attrs.hasAttribute(Attribute::ReadOnly) &&
-          !Attrs.hasAttribute(Attribute::NoInline) &&
-          !Attrs.hasAttribute(Attribute::AlwaysInline) &&
-          !Attrs.hasAttribute(Attribute::OptimizeForSize) &&
-          !Attrs.hasAttribute(Attribute::StackProtect) &&
-          !Attrs.hasAttribute(Attribute::StackProtectReq) &&
-          !Attrs.hasAttribute(Attribute::NoRedZone) &&
-          !Attrs.hasAttribute(Attribute::NoImplicitFloat) &&
-          !Attrs.hasAttribute(Attribute::Naked) &&
-          !Attrs.hasAttribute(Attribute::InlineHint) &&
-          !Attrs.hasAttribute(Attribute::StackAlignment) &&
-          !Attrs.hasAttribute(Attribute::UWTable) &&
-          !Attrs.hasAttribute(Attribute::NonLazyBind) &&
-          !Attrs.hasAttribute(Attribute::ReturnsTwice) &&
-          !Attrs.hasAttribute(Attribute::AddressSafety) &&
-          !Attrs.hasAttribute(Attribute::MinSize),
-          "Some attributes in '" + Attrs.getAsString() +
-          "' only apply to functions!", V);
-
-  if (isReturnValue)
-    Assert1(!Attrs.hasAttribute(Attribute::ByVal) &&
-            !Attrs.hasAttribute(Attribute::Nest) &&
-            !Attrs.hasAttribute(Attribute::StructRet) &&
-            !Attrs.hasAttribute(Attribute::NoCapture),
-            "Attribute 'byval', 'nest', 'sret', and 'nocapture' "
-            "do not apply to return values!", V);
-
-  // Check for mutually incompatible attributes.
-  Assert1(!((Attrs.hasAttribute(Attribute::ByVal) &&
-             Attrs.hasAttribute(Attribute::Nest)) ||
-            (Attrs.hasAttribute(Attribute::ByVal) &&
-             Attrs.hasAttribute(Attribute::StructRet)) ||
-            (Attrs.hasAttribute(Attribute::Nest) &&
-             Attrs.hasAttribute(Attribute::StructRet))), "Attributes "
-          "'byval, nest, and sret' are incompatible!", V);
-
-  Assert1(!((Attrs.hasAttribute(Attribute::ByVal) &&
-             Attrs.hasAttribute(Attribute::Nest)) ||
-            (Attrs.hasAttribute(Attribute::ByVal) &&
-             Attrs.hasAttribute(Attribute::InReg)) ||
-            (Attrs.hasAttribute(Attribute::Nest) &&
-             Attrs.hasAttribute(Attribute::InReg))), "Attributes "
-          "'byval, nest, and inreg' are incompatible!", V);
-
-  Assert1(!(Attrs.hasAttribute(Attribute::ZExt) &&
-            Attrs.hasAttribute(Attribute::SExt)), "Attributes "
-          "'zeroext and signext' are incompatible!", V);
-
-  Assert1(!(Attrs.hasAttribute(Attribute::ReadNone) &&
-            Attrs.hasAttribute(Attribute::ReadOnly)), "Attributes "
-          "'readnone and readonly' are incompatible!", V);
-
-  Assert1(!(Attrs.hasAttribute(Attribute::NoInline) &&
-            Attrs.hasAttribute(Attribute::AlwaysInline)), "Attributes "
-          "'noinline and alwaysinline' are incompatible!", V);
-
-  Assert1(!AttrBuilder(Attrs).
-            hasAttributes(Attribute::typeIncompatible(Ty)),
-          "Wrong types for attribute: " +
-          Attribute::typeIncompatible(Ty).getAsString(), V);
-
-  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
-    Assert1(!Attrs.hasAttribute(Attribute::ByVal) ||
-            PTy->getElementType()->isSized(),
-            "Attribute 'byval' does not support unsized types!", V);
-  else
-    Assert1(!Attrs.hasAttribute(Attribute::ByVal),
-            "Attribute 'byval' only applies to parameters with pointer type!",
-            V);
-}
-
-// VerifyFunctionAttrs - Check parameter attributes against a function type.
-// The value V is printed in error messages.
-void Verifier::VerifyFunctionAttrs(FunctionType *FT,
-                                   const AttributeSet &Attrs,
-                                   const Value *V) {
-  if (Attrs.isEmpty())
-    return;
-
-  bool SawNest = false;
-
-  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
-    const AttributeWithIndex &Attr = Attrs.getSlot(i);
-
-    Type *Ty;
-    if (Attr.Index == 0)
-      Ty = FT->getReturnType();
-    else if (Attr.Index-1 < FT->getNumParams())
-      Ty = FT->getParamType(Attr.Index-1);
-    else
-      break;  // VarArgs attributes, verified elsewhere.
-
-    VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
-
-    if (Attr.Attrs.hasAttribute(Attribute::Nest)) {
-      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
-      SawNest = true;
-    }
-
-    if (Attr.Attrs.hasAttribute(Attribute::StructRet))
-      Assert1(Attr.Index == 1, "Attribute sret is not on first parameter!", V);
-  }
-
-  Attribute FAttrs = Attrs.getFnAttributes();
-  AttrBuilder NotFn(FAttrs);
-  NotFn.removeFunctionOnlyAttrs();
-  Assert1(!NotFn.hasAttributes(), "Attribute '" +
-          Attribute::get(V->getContext(), NotFn).getAsString() +
-          "' do not apply to the function!", V);
-
-  // Check for mutually incompatible attributes.
-  Assert1(!((FAttrs.hasAttribute(Attribute::ByVal) &&
-             FAttrs.hasAttribute(Attribute::Nest)) ||
-            (FAttrs.hasAttribute(Attribute::ByVal) &&
-             FAttrs.hasAttribute(Attribute::StructRet)) ||
-            (FAttrs.hasAttribute(Attribute::Nest) &&
-             FAttrs.hasAttribute(Attribute::StructRet))), "Attributes "
-          "'byval, nest, and sret' are incompatible!", V);
-
-  Assert1(!((FAttrs.hasAttribute(Attribute::ByVal) &&
-             FAttrs.hasAttribute(Attribute::Nest)) ||
-            (FAttrs.hasAttribute(Attribute::ByVal) &&
-             FAttrs.hasAttribute(Attribute::InReg)) ||
-            (FAttrs.hasAttribute(Attribute::Nest) &&
-             FAttrs.hasAttribute(Attribute::InReg))), "Attributes "
-          "'byval, nest, and inreg' are incompatible!", V);
-
-  Assert1(!(FAttrs.hasAttribute(Attribute::ZExt) &&
-            FAttrs.hasAttribute(Attribute::SExt)), "Attributes "
-          "'zeroext and signext' are incompatible!", V);
-
-  Assert1(!(FAttrs.hasAttribute(Attribute::ReadNone) &&
-            FAttrs.hasAttribute(Attribute::ReadOnly)), "Attributes "
-          "'readnone and readonly' are incompatible!", V);
-
-  Assert1(!(FAttrs.hasAttribute(Attribute::NoInline) &&
-            FAttrs.hasAttribute(Attribute::AlwaysInline)), "Attributes "
-          "'noinline and alwaysinline' are incompatible!", V);
-}
-
-static bool VerifyAttributeCount(const AttributeSet &Attrs, unsigned Params) {
-  if (Attrs.isEmpty())
-    return true;
-
-  unsigned LastSlot = Attrs.getNumSlots() - 1;
-  unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
-  if (LastIndex <= Params
-      || (LastIndex == (unsigned)~0
-          && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))  
-    return true;
-
-  return false;
-}
-
-// visitFunction - Verify that a function is ok.
-//
-void Verifier::visitFunction(Function &F) {
-  // Check function arguments.
-  FunctionType *FT = F.getFunctionType();
-  unsigned NumArgs = F.arg_size();
-
-  Assert1(Context == &F.getContext(),
-          "Function context does not match Module context!", &F);
-
-  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
-  Assert2(FT->getNumParams() == NumArgs,
-          "# formal arguments must match # of arguments for function type!",
-          &F, FT);
-  Assert1(F.getReturnType()->isFirstClassType() ||
-          F.getReturnType()->isVoidTy() || 
-          F.getReturnType()->isStructTy(),
-          "Functions cannot return aggregate values!", &F);
-
-  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
-          "Invalid struct return type!", &F);
-
-  const AttributeSet &Attrs = F.getAttributes();
-
-  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
-          "Attribute after last parameter!", &F);
-
-  // Check function attributes.
-  VerifyFunctionAttrs(FT, Attrs, &F);
-
-  // Check that this function meets the restrictions on this calling convention.
-  switch (F.getCallingConv()) {
-  default:
-    break;
-  case CallingConv::C:
-    break;
-  case CallingConv::Fast:
-  case CallingConv::Cold:
-  case CallingConv::X86_FastCall:
-  case CallingConv::X86_ThisCall:
-  case CallingConv::Intel_OCL_BI:
-  case CallingConv::PTX_Kernel:
-  case CallingConv::PTX_Device:
-    Assert1(!F.isVarArg(),
-            "Varargs functions must have C calling conventions!", &F);
-    break;
-  }
-
-  bool isLLVMdotName = F.getName().size() >= 5 &&
-                       F.getName().substr(0, 5) == "llvm.";
-
-  // Check that the argument values match the function type for this function...
-  unsigned i = 0;
-  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
-       I != E; ++I, ++i) {
-    Assert2(I->getType() == FT->getParamType(i),
-            "Argument value does not match function argument type!",
-            I, FT->getParamType(i));
-    Assert1(I->getType()->isFirstClassType(),
-            "Function arguments must have first-class types!", I);
-    if (!isLLVMdotName)
-      Assert2(!I->getType()->isMetadataTy(),
-              "Function takes metadata but isn't an intrinsic", I, &F);
-  }
-
-  if (F.isMaterializable()) {
-    // Function has a body somewhere we can't see.
-  } else if (F.isDeclaration()) {
-    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
-            F.hasExternalWeakLinkage(),
-            "invalid linkage type for function declaration", &F);
-  } else {
-    // Verify that this function (which has a body) is not named "llvm.*".  It
-    // is not legal to define intrinsics.
-    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
-    
-    // Check the entry node
-    BasicBlock *Entry = &F.getEntryBlock();
-    Assert1(pred_begin(Entry) == pred_end(Entry),
-            "Entry block to function must not have predecessors!", Entry);
-    
-    // The address of the entry block cannot be taken, unless it is dead.
-    if (Entry->hasAddressTaken()) {
-      Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
-              "blockaddress may not be used with the entry block!", Entry);
-    }
-  }
- 
-  // If this function is actually an intrinsic, verify that it is only used in
-  // direct call/invokes, never having its "address taken".
-  if (F.getIntrinsicID()) {
-    const User *U;
-    if (F.hasAddressTaken(&U))
-      Assert1(0, "Invalid user of intrinsic instruction!", U); 
-  }
-}
-
-// verifyBasicBlock - Verify that a basic block is well formed...
-//
-void Verifier::visitBasicBlock(BasicBlock &BB) {
-  InstsInThisBlock.clear();
-
-  // Ensure that basic blocks have terminators!
-  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
-
-  // Check constraints that this basic block imposes on all of the PHI nodes in
-  // it.
-  if (isa<PHINode>(BB.front())) {
-    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
-    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
-    std::sort(Preds.begin(), Preds.end());
-    PHINode *PN;
-    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
-      // Ensure that PHI nodes have at least one entry!
-      Assert1(PN->getNumIncomingValues() != 0,
-              "PHI nodes must have at least one entry.  If the block is dead, "
-              "the PHI should be removed!", PN);
-      Assert1(PN->getNumIncomingValues() == Preds.size(),
-              "PHINode should have one entry for each predecessor of its "
-              "parent basic block!", PN);
-
-      // Get and sort all incoming values in the PHI node...
-      Values.clear();
-      Values.reserve(PN->getNumIncomingValues());
-      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
-        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
-                                        PN->getIncomingValue(i)));
-      std::sort(Values.begin(), Values.end());
-
-      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
-        // Check to make sure that if there is more than one entry for a
-        // particular basic block in this PHI node, that the incoming values are
-        // all identical.
-        //
-        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
-                Values[i].second == Values[i-1].second,
-                "PHI node has multiple entries for the same basic block with "
-                "different incoming values!", PN, Values[i].first,
-                Values[i].second, Values[i-1].second);
-
-        // Check to make sure that the predecessors and PHI node entries are
-        // matched up.
-        Assert3(Values[i].first == Preds[i],
-                "PHI node entries do not match predecessors!", PN,
-                Values[i].first, Preds[i]);
-      }
-    }
-  }
-}
-
-void Verifier::visitTerminatorInst(TerminatorInst &I) {
-  // Ensure that terminators only exist at the end of the basic block.
-  Assert1(&I == I.getParent()->getTerminator(),
-          "Terminator found in the middle of a basic block!", I.getParent());
-  visitInstruction(I);
-}
-
-void Verifier::visitBranchInst(BranchInst &BI) {
-  if (BI.isConditional()) {
-    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
-            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
-  }
-  visitTerminatorInst(BI);
-}
-
-void Verifier::visitReturnInst(ReturnInst &RI) {
-  Function *F = RI.getParent()->getParent();
-  unsigned N = RI.getNumOperands();
-  if (F->getReturnType()->isVoidTy()) 
-    Assert2(N == 0,
-            "Found return instr that returns non-void in Function of void "
-            "return type!", &RI, F->getReturnType());
-  else
-    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
-            "Function return type does not match operand "
-            "type of return inst!", &RI, F->getReturnType());
-
-  // Check to make sure that the return value has necessary properties for
-  // terminators...
-  visitTerminatorInst(RI);
-}
-
-void Verifier::visitSwitchInst(SwitchInst &SI) {
-  // Check to make sure that all of the constants in the switch instruction
-  // have the same type as the switched-on value.
-  Type *SwitchTy = SI.getCondition()->getType();
-  IntegerType *IntTy = cast<IntegerType>(SwitchTy);
-  IntegersSubsetToBB Mapping;
-  std::map<IntegersSubset::Range, unsigned> RangeSetMap;
-  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
-    IntegersSubset CaseRanges = i.getCaseValueEx();
-    for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
-      IntegersSubset::Range r = CaseRanges.getItem(ri);
-      Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
-              "Switch constants must all be same type as switch value!", &SI);
-      Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
-              "Switch constants must all be same type as switch value!", &SI);
-      Mapping.add(r);
-      RangeSetMap[r] = i.getCaseIndex();
-    }
-  }
-  
-  IntegersSubsetToBB::RangeIterator errItem;
-  if (!Mapping.verify(errItem)) {
-    unsigned CaseIndex = RangeSetMap[errItem->first];
-    SwitchInst::CaseIt i(&SI, CaseIndex);
-    Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
-  }
-  
-  visitTerminatorInst(SI);
-}
-
-void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
-  Assert1(BI.getAddress()->getType()->isPointerTy(),
-          "Indirectbr operand must have pointer type!", &BI);
-  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
-    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
-            "Indirectbr destinations must all have pointer type!", &BI);
-
-  visitTerminatorInst(BI);
-}
-
-void Verifier::visitSelectInst(SelectInst &SI) {
-  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
-                                          SI.getOperand(2)),
-          "Invalid operands for select instruction!", &SI);
-
-  Assert1(SI.getTrueValue()->getType() == SI.getType(),
-          "Select values must have same type as select instruction!", &SI);
-  visitInstruction(SI);
-}
-
-/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
-/// a pass, if any exist, it's an error.
-///
-void Verifier::visitUserOp1(Instruction &I) {
-  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
-}
-
-void Verifier::visitTruncInst(TruncInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  // Get the size of the types in bits, we'll need this later
-  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
-  unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
-  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
-  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "trunc source and destination must both be a vector or neither", &I);
-  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitZExtInst(ZExtInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  // Get the size of the types in bits, we'll need this later
-  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
-  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "zext source and destination must both be a vector or neither", &I);
-  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
-  unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
-  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitSExtInst(SExtInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  // Get the size of the types in bits, we'll need this later
-  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
-  unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
-  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
-  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "sext source and destination must both be a vector or neither", &I);
-  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitFPTruncInst(FPTruncInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-  // Get the size of the types in bits, we'll need this later
-  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
-  unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
-  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
-  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "fptrunc source and destination must both be a vector or neither",&I);
-  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitFPExtInst(FPExtInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  // Get the size of the types in bits, we'll need this later
-  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
-  unsigned DestBitSize = DestTy->getScalarSizeInBits();
-
-  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
-  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "fpext source and destination must both be a vector or neither", &I);
-  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitUIToFPInst(UIToFPInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  bool SrcVec = SrcTy->isVectorTy();
-  bool DstVec = DestTy->isVectorTy();
-
-  Assert1(SrcVec == DstVec,
-          "UIToFP source and dest must both be vector or scalar", &I);
-  Assert1(SrcTy->isIntOrIntVectorTy(),
-          "UIToFP source must be integer or integer vector", &I);
-  Assert1(DestTy->isFPOrFPVectorTy(),
-          "UIToFP result must be FP or FP vector", &I);
-
-  if (SrcVec && DstVec)
-    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
-            cast<VectorType>(DestTy)->getNumElements(),
-            "UIToFP source and dest vector length mismatch", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitSIToFPInst(SIToFPInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  bool SrcVec = SrcTy->isVectorTy();
-  bool DstVec = DestTy->isVectorTy();
-
-  Assert1(SrcVec == DstVec,
-          "SIToFP source and dest must both be vector or scalar", &I);
-  Assert1(SrcTy->isIntOrIntVectorTy(),
-          "SIToFP source must be integer or integer vector", &I);
-  Assert1(DestTy->isFPOrFPVectorTy(),
-          "SIToFP result must be FP or FP vector", &I);
-
-  if (SrcVec && DstVec)
-    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
-            cast<VectorType>(DestTy)->getNumElements(),
-            "SIToFP source and dest vector length mismatch", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitFPToUIInst(FPToUIInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  bool SrcVec = SrcTy->isVectorTy();
-  bool DstVec = DestTy->isVectorTy();
-
-  Assert1(SrcVec == DstVec,
-          "FPToUI source and dest must both be vector or scalar", &I);
-  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
-          &I);
-  Assert1(DestTy->isIntOrIntVectorTy(),
-          "FPToUI result must be integer or integer vector", &I);
-
-  if (SrcVec && DstVec)
-    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
-            cast<VectorType>(DestTy)->getNumElements(),
-            "FPToUI source and dest vector length mismatch", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitFPToSIInst(FPToSIInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  bool SrcVec = SrcTy->isVectorTy();
-  bool DstVec = DestTy->isVectorTy();
-
-  Assert1(SrcVec == DstVec,
-          "FPToSI source and dest must both be vector or scalar", &I);
-  Assert1(SrcTy->isFPOrFPVectorTy(),
-          "FPToSI source must be FP or FP vector", &I);
-  Assert1(DestTy->isIntOrIntVectorTy(),
-          "FPToSI result must be integer or integer vector", &I);
-
-  if (SrcVec && DstVec)
-    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
-            cast<VectorType>(DestTy)->getNumElements(),
-            "FPToSI source and dest vector length mismatch", &I);
-
-  visitInstruction(I);
-}
-
-void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  Assert1(SrcTy->getScalarType()->isPointerTy(),
-          "PtrToInt source must be pointer", &I);
-  Assert1(DestTy->getScalarType()->isIntegerTy(),
-          "PtrToInt result must be integral", &I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "PtrToInt type mismatch", &I);
-
-  if (SrcTy->isVectorTy()) {
-    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
-    VectorType *VDest = dyn_cast<VectorType>(DestTy);
-    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
-          "PtrToInt Vector width mismatch", &I);
-  }
-
-  visitInstruction(I);
-}
-
-void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  Assert1(SrcTy->getScalarType()->isIntegerTy(),
-          "IntToPtr source must be an integral", &I);
-  Assert1(DestTy->getScalarType()->isPointerTy(),
-          "IntToPtr result must be a pointer",&I);
-  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
-          "IntToPtr type mismatch", &I);
-  if (SrcTy->isVectorTy()) {
-    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
-    VectorType *VDest = dyn_cast<VectorType>(DestTy);
-    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
-          "IntToPtr Vector width mismatch", &I);
-  }
-  visitInstruction(I);
-}
-
-void Verifier::visitBitCastInst(BitCastInst &I) {
-  // Get the source and destination types
-  Type *SrcTy = I.getOperand(0)->getType();
-  Type *DestTy = I.getType();
-
-  // Get the size of the types in bits, we'll need this later
-  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
-  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
-
-  // BitCast implies a no-op cast of type only. No bits change.
-  // However, you can't cast pointers to anything but pointers.
-  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
-          "Bitcast requires both operands to be pointer or neither", &I);
-  Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
-
-  // Disallow aggregates.
-  Assert1(!SrcTy->isAggregateType(),
-          "Bitcast operand must not be aggregate", &I);
-  Assert1(!DestTy->isAggregateType(),
-          "Bitcast type must not be aggregate", &I);
-
-  visitInstruction(I);
-}
-
-/// visitPHINode - Ensure that a PHI node is well formed.
-///
-void Verifier::visitPHINode(PHINode &PN) {
-  // Ensure that the PHI nodes are all grouped together at the top of the block.
-  // This can be tested by checking whether the instruction before this is
-  // either nonexistent (because this is begin()) or is a PHI node.  If not,
-  // then there is some other instruction before a PHI.
-  Assert2(&PN == &PN.getParent()->front() || 
-          isa<PHINode>(--BasicBlock::iterator(&PN)),
-          "PHI nodes not grouped at top of basic block!",
-          &PN, PN.getParent());
-
-  // Check that all of the values of the PHI node have the same type as the
-  // result, and that the incoming blocks are really basic blocks.
-  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
-    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
-            "PHI node operands are not the same type as the result!", &PN);
-  }
-
-  // All other PHI node constraints are checked in the visitBasicBlock method.
-
-  visitInstruction(PN);
-}
-
-void Verifier::VerifyCallSite(CallSite CS) {
-  Instruction *I = CS.getInstruction();
-
-  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
-          "Called function must be a pointer!", I);
-  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
-
-  Assert1(FPTy->getElementType()->isFunctionTy(),
-          "Called function is not pointer to function type!", I);
-  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
-
-  // Verify that the correct number of arguments are being passed
-  if (FTy->isVarArg())
-    Assert1(CS.arg_size() >= FTy->getNumParams(),
-            "Called function requires more parameters than were provided!",I);
-  else
-    Assert1(CS.arg_size() == FTy->getNumParams(),
-            "Incorrect number of arguments passed to called function!", I);
-
-  // Verify that all arguments to the call match the function type.
-  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
-    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
-            "Call parameter type does not match function signature!",
-            CS.getArgument(i), FTy->getParamType(i), I);
-
-  const AttributeSet &Attrs = CS.getAttributes();
-
-  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
-          "Attribute after last parameter!", I);
-
-  // Verify call attributes.
-  VerifyFunctionAttrs(FTy, Attrs, I);
-
-  if (FTy->isVarArg())
-    // Check attributes on the varargs part.
-    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
-      Attribute Attr = Attrs.getParamAttributes(Idx);
-
-      VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
-
-      Assert1(!Attr.hasAttribute(Attribute::StructRet),
-              "Attribute 'sret' cannot be used for vararg call arguments!", I);
-    }
-
-  // Verify that there's no metadata unless it's a direct call to an intrinsic.
-  if (CS.getCalledFunction() == 0 ||
-      !CS.getCalledFunction()->getName().startswith("llvm.")) {
-    for (FunctionType::param_iterator PI = FTy->param_begin(),
-           PE = FTy->param_end(); PI != PE; ++PI)
-      Assert1(!(*PI)->isMetadataTy(),
-              "Function has metadata parameter but isn't an intrinsic", I);
-  }
-
-  visitInstruction(*I);
-}
-
-void Verifier::visitCallInst(CallInst &CI) {
-  VerifyCallSite(&CI);
-
-  if (Function *F = CI.getCalledFunction())
-    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
-      visitIntrinsicFunctionCall(ID, CI);
-}
-
-void Verifier::visitInvokeInst(InvokeInst &II) {
-  VerifyCallSite(&II);
-
-  // Verify that there is a landingpad instruction as the first non-PHI
-  // instruction of the 'unwind' destination.
-  Assert1(II.getUnwindDest()->isLandingPad(),
-          "The unwind destination does not have a landingpad instruction!",&II);
-
-  visitTerminatorInst(II);
-}
-
-/// visitBinaryOperator - Check that both arguments to the binary operator are
-/// of the same type!
-///
-void Verifier::visitBinaryOperator(BinaryOperator &B) {
-  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
-          "Both operands to a binary operator are not of the same type!", &B);
-
-  switch (B.getOpcode()) {
-  // Check that integer arithmetic operators are only used with
-  // integral operands.
-  case Instruction::Add:
-  case Instruction::Sub:
-  case Instruction::Mul:
-  case Instruction::SDiv:
-  case Instruction::UDiv:
-  case Instruction::SRem:
-  case Instruction::URem:
-    Assert1(B.getType()->isIntOrIntVectorTy(),
-            "Integer arithmetic operators only work with integral types!", &B);
-    Assert1(B.getType() == B.getOperand(0)->getType(),
-            "Integer arithmetic operators must have same type "
-            "for operands and result!", &B);
-    break;
-  // Check that floating-point arithmetic operators are only used with
-  // floating-point operands.
-  case Instruction::FAdd:
-  case Instruction::FSub:
-  case Instruction::FMul:
-  case Instruction::FDiv:
-  case Instruction::FRem:
-    Assert1(B.getType()->isFPOrFPVectorTy(),
-            "Floating-point arithmetic operators only work with "
-            "floating-point types!", &B);
-    Assert1(B.getType() == B.getOperand(0)->getType(),
-            "Floating-point arithmetic operators must have same type "
-            "for operands and result!", &B);
-    break;
-  // Check that logical operators are only used with integral operands.
-  case Instruction::And:
-  case Instruction::Or:
-  case Instruction::Xor:
-    Assert1(B.getType()->isIntOrIntVectorTy(),
-            "Logical operators only work with integral types!", &B);
-    Assert1(B.getType() == B.getOperand(0)->getType(),
-            "Logical operators must have same type for operands and result!",
-            &B);
-    break;
-  case Instruction::Shl:
-  case Instruction::LShr:
-  case Instruction::AShr:
-    Assert1(B.getType()->isIntOrIntVectorTy(),
-            "Shifts only work with integral types!", &B);
-    Assert1(B.getType() == B.getOperand(0)->getType(),
-            "Shift return type must be same as operands!", &B);
-    break;
-  default:
-    llvm_unreachable("Unknown BinaryOperator opcode!");
-  }
-
-  visitInstruction(B);
-}
-
-void Verifier::visitICmpInst(ICmpInst &IC) {
-  // Check that the operands are the same type
-  Type *Op0Ty = IC.getOperand(0)->getType();
-  Type *Op1Ty = IC.getOperand(1)->getType();
-  Assert1(Op0Ty == Op1Ty,
-          "Both operands to ICmp instruction are not of the same type!", &IC);
-  // Check that the operands are the right type
-  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
-          "Invalid operand types for ICmp instruction", &IC);
-  // Check that the predicate is valid.
-  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
-          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
-          "Invalid predicate in ICmp instruction!", &IC);
-
-  visitInstruction(IC);
-}
-
-void Verifier::visitFCmpInst(FCmpInst &FC) {
-  // Check that the operands are the same type
-  Type *Op0Ty = FC.getOperand(0)->getType();
-  Type *Op1Ty = FC.getOperand(1)->getType();
-  Assert1(Op0Ty == Op1Ty,
-          "Both operands to FCmp instruction are not of the same type!", &FC);
-  // Check that the operands are the right type
-  Assert1(Op0Ty->isFPOrFPVectorTy(),
-          "Invalid operand types for FCmp instruction", &FC);
-  // Check that the predicate is valid.
-  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
-          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
-          "Invalid predicate in FCmp instruction!", &FC);
-
-  visitInstruction(FC);
-}
-
-void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
-  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
-                                              EI.getOperand(1)),
-          "Invalid extractelement operands!", &EI);
-  visitInstruction(EI);
-}
-
-void Verifier::visitInsertElementInst(InsertElementInst &IE) {
-  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
-                                             IE.getOperand(1),
-                                             IE.getOperand(2)),
-          "Invalid insertelement operands!", &IE);
-  visitInstruction(IE);
-}
-
-void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
-  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
-                                             SV.getOperand(2)),
-          "Invalid shufflevector operands!", &SV);
-  visitInstruction(SV);
-}
-
-void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
-  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
-
-  Assert1(isa<PointerType>(TargetTy),
-    "GEP base pointer is not a vector or a vector of pointers", &GEP);
-  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
-          "GEP into unsized type!", &GEP);
-  Assert1(GEP.getPointerOperandType()->isVectorTy() ==
-          GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
-          &GEP);
-
-  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
-  Type *ElTy =
-    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
-  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
-
-  Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
-          cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
-          == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
-
-  if (GEP.getPointerOperandType()->isVectorTy()) {
-    // Additional checks for vector GEPs.
-    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
-    Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
-            "Vector GEP result width doesn't match operand's", &GEP);
-    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
-      Type *IndexTy = Idxs[i]->getType();
-      Assert1(IndexTy->isVectorTy(),
-              "Vector GEP must have vector indices!", &GEP);
-      unsigned IndexWidth = IndexTy->getVectorNumElements();
-      Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
-    }
-  }
-  visitInstruction(GEP);
-}
-
-static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
-  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
-}
-
-void Verifier::visitLoadInst(LoadInst &LI) {
-  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
-  Assert1(PTy, "Load operand must be a pointer.", &LI);
-  Type *ElTy = PTy->getElementType();
-  Assert2(ElTy == LI.getType(),
-          "Load result type does not match pointer operand type!", &LI, ElTy);
-  if (LI.isAtomic()) {
-    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
-            "Load cannot have Release ordering", &LI);
-    Assert1(LI.getAlignment() != 0,
-            "Atomic load must specify explicit alignment", &LI);
-    if (!ElTy->isPointerTy()) {
-      Assert2(ElTy->isIntegerTy(),
-              "atomic store operand must have integer type!",
-              &LI, ElTy);
-      unsigned Size = ElTy->getPrimitiveSizeInBits();
-      Assert2(Size >= 8 && !(Size & (Size - 1)),
-              "atomic store operand must be power-of-two byte-sized integer",
-              &LI, ElTy);
-    }
-  } else {
-    Assert1(LI.getSynchScope() == CrossThread,
-            "Non-atomic load cannot have SynchronizationScope specified", &LI);
-  }
-
-  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
-    unsigned NumOperands = Range->getNumOperands();
-    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
-    unsigned NumRanges = NumOperands / 2;
-    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
-
-    ConstantRange LastRange(1); // Dummy initial value
-    for (unsigned i = 0; i < NumRanges; ++i) {
-      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
-      Assert1(Low, "The lower limit must be an integer!", Low);
-      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
-      Assert1(High, "The upper limit must be an integer!", High);
-      Assert1(High->getType() == Low->getType() &&
-              High->getType() == ElTy, "Range types must match load type!",
-              &LI);
-
-      APInt HighV = High->getValue();
-      APInt LowV = Low->getValue();
-      ConstantRange CurRange(LowV, HighV);
-      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
-              "Range must not be empty!", Range);
-      if (i != 0) {
-        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
-                "Intervals are overlapping", Range);
-        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
-                Range);
-        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
-                Range);
-      }
-      LastRange = ConstantRange(LowV, HighV);
-    }
-    if (NumRanges > 2) {
-      APInt FirstLow =
-        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
-      APInt FirstHigh =
-        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
-      ConstantRange FirstRange(FirstLow, FirstHigh);
-      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
-              "Intervals are overlapping", Range);
-      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
-              Range);
-    }
-
-
-  }
-
-  visitInstruction(LI);
-}
-
-void Verifier::visitStoreInst(StoreInst &SI) {
-  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
-  Assert1(PTy, "Store operand must be a pointer.", &SI);
-  Type *ElTy = PTy->getElementType();
-  Assert2(ElTy == SI.getOperand(0)->getType(),
-          "Stored value type does not match pointer operand type!",
-          &SI, ElTy);
-  if (SI.isAtomic()) {
-    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
-            "Store cannot have Acquire ordering", &SI);
-    Assert1(SI.getAlignment() != 0,
-            "Atomic store must specify explicit alignment", &SI);
-    if (!ElTy->isPointerTy()) {
-      Assert2(ElTy->isIntegerTy(),
-              "atomic store operand must have integer type!",
-              &SI, ElTy);
-      unsigned Size = ElTy->getPrimitiveSizeInBits();
-      Assert2(Size >= 8 && !(Size & (Size - 1)),
-              "atomic store operand must be power-of-two byte-sized integer",
-              &SI, ElTy);
-    }
-  } else {
-    Assert1(SI.getSynchScope() == CrossThread,
-            "Non-atomic store cannot have SynchronizationScope specified", &SI);
-  }
-  visitInstruction(SI);
-}
-
-void Verifier::visitAllocaInst(AllocaInst &AI) {
-  PointerType *PTy = AI.getType();
-  Assert1(PTy->getAddressSpace() == 0, 
-          "Allocation instruction pointer not in the generic address space!",
-          &AI);
-  Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
-          &AI);
-  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
-          "Alloca array size must have integer type", &AI);
-  visitInstruction(AI);
-}
-
-void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
-  Assert1(CXI.getOrdering() != NotAtomic,
-          "cmpxchg instructions must be atomic.", &CXI);
-  Assert1(CXI.getOrdering() != Unordered,
-          "cmpxchg instructions cannot be unordered.", &CXI);
-  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
-  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
-  Type *ElTy = PTy->getElementType();
-  Assert2(ElTy->isIntegerTy(),
-          "cmpxchg operand must have integer type!",
-          &CXI, ElTy);
-  unsigned Size = ElTy->getPrimitiveSizeInBits();
-  Assert2(Size >= 8 && !(Size & (Size - 1)),
-          "cmpxchg operand must be power-of-two byte-sized integer",
-          &CXI, ElTy);
-  Assert2(ElTy == CXI.getOperand(1)->getType(),
-          "Expected value type does not match pointer operand type!",
-          &CXI, ElTy);
-  Assert2(ElTy == CXI.getOperand(2)->getType(),
-          "Stored value type does not match pointer operand type!",
-          &CXI, ElTy);
-  visitInstruction(CXI);
-}
-
-void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
-  Assert1(RMWI.getOrdering() != NotAtomic,
-          "atomicrmw instructions must be atomic.", &RMWI);
-  Assert1(RMWI.getOrdering() != Unordered,
-          "atomicrmw instructions cannot be unordered.", &RMWI);
-  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
-  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
-  Type *ElTy = PTy->getElementType();
-  Assert2(ElTy->isIntegerTy(),
-          "atomicrmw operand must have integer type!",
-          &RMWI, ElTy);
-  unsigned Size = ElTy->getPrimitiveSizeInBits();
-  Assert2(Size >= 8 && !(Size & (Size - 1)),
-          "atomicrmw operand must be power-of-two byte-sized integer",
-          &RMWI, ElTy);
-  Assert2(ElTy == RMWI.getOperand(1)->getType(),
-          "Argument value type does not match pointer operand type!",
-          &RMWI, ElTy);
-  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
-          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
-          "Invalid binary operation!", &RMWI);
-  visitInstruction(RMWI);
-}
-
-void Verifier::visitFenceInst(FenceInst &FI) {
-  const AtomicOrdering Ordering = FI.getOrdering();
-  Assert1(Ordering == Acquire || Ordering == Release ||
-          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
-          "fence instructions may only have "
-          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
-  visitInstruction(FI);
-}
-
-void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
-  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
-                                           EVI.getIndices()) ==
-          EVI.getType(),
-          "Invalid ExtractValueInst operands!", &EVI);
-  
-  visitInstruction(EVI);
-}
-
-void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
-  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
-                                           IVI.getIndices()) ==
-          IVI.getOperand(1)->getType(),
-          "Invalid InsertValueInst operands!", &IVI);
-  
-  visitInstruction(IVI);
-}
-
-void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
-  BasicBlock *BB = LPI.getParent();
-
-  // The landingpad instruction is ill-formed if it doesn't have any clauses and
-  // isn't a cleanup.
-  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
-          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
-
-  // The landingpad instruction defines its parent as a landing pad block. The
-  // landing pad block may be branched to only by the unwind edge of an invoke.
-  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
-    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
-    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
-            "Block containing LandingPadInst must be jumped to "
-            "only by the unwind edge of an invoke.", &LPI);
-  }
-
-  // The landingpad instruction must be the first non-PHI instruction in the
-  // block.
-  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
-          "LandingPadInst not the first non-PHI instruction in the block.",
-          &LPI);
-
-  // The personality functions for all landingpad instructions within the same
-  // function should match.
-  if (PersonalityFn)
-    Assert1(LPI.getPersonalityFn() == PersonalityFn,
-            "Personality function doesn't match others in function", &LPI);
-  PersonalityFn = LPI.getPersonalityFn();
-
-  // All operands must be constants.
-  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
-          &LPI);
-  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
-    Value *Clause = LPI.getClause(i);
-    Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
-    if (LPI.isCatch(i)) {
-      Assert1(isa<PointerType>(Clause->getType()),
-              "Catch operand does not have pointer type!", &LPI);
-    } else {
-      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
-      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
-              "Filter operand is not an array of constants!", &LPI);
-    }
-  }
-
-  visitInstruction(LPI);
-}
-
-void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
-  Instruction *Op = cast<Instruction>(I.getOperand(i));
-  // If the we have an invalid invoke, don't try to compute the dominance.
-  // We already reject it in the invoke specific checks and the dominance
-  // computation doesn't handle multiple edges.
-  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
-    if (II->getNormalDest() == II->getUnwindDest())
-      return;
-  }
-
-  const Use &U = I.getOperandUse(i);
-  Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
-          "Instruction does not dominate all uses!", Op, &I);
-}
-
-/// verifyInstruction - Verify that an instruction is well formed.
-///
-void Verifier::visitInstruction(Instruction &I) {
-  BasicBlock *BB = I.getParent();
-  Assert1(BB, "Instruction not embedded in basic block!", &I);
-
-  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
-    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
-         UI != UE; ++UI)
-      Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
-              "Only PHI nodes may reference their own value!", &I);
-  }
-
-  // Check that void typed values don't have names
-  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
-          "Instruction has a name, but provides a void value!", &I);
-
-  // Check that the return value of the instruction is either void or a legal
-  // value type.
-  Assert1(I.getType()->isVoidTy() || 
-          I.getType()->isFirstClassType(),
-          "Instruction returns a non-scalar type!", &I);
-
-  // Check that the instruction doesn't produce metadata. Calls are already
-  // checked against the callee type.
-  Assert1(!I.getType()->isMetadataTy() ||
-          isa<CallInst>(I) || isa<InvokeInst>(I),
-          "Invalid use of metadata!", &I);
-
-  // Check that all uses of the instruction, if they are instructions
-  // themselves, actually have parent basic blocks.  If the use is not an
-  // instruction, it is an error!
-  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
-       UI != UE; ++UI) {
-    if (Instruction *Used = dyn_cast<Instruction>(*UI))
-      Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
-              " embedded in a basic block!", &I, Used);
-    else {
-      CheckFailed("Use of instruction is not an instruction!", *UI);
-      return;
-    }
-  }
-
-  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
-    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
-
-    // Check to make sure that only first-class-values are operands to
-    // instructions.
-    if (!I.getOperand(i)->getType()->isFirstClassType()) {
-      Assert1(0, "Instruction operands must be first-class values!", &I);
-    }
-
-    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
-      // Check to make sure that the "address of" an intrinsic function is never
-      // taken.
-      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
-              "Cannot take the address of an intrinsic!", &I);
-      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
-              F->getIntrinsicID() == Intrinsic::donothing,
-              "Cannot invoke an intrinsinc other than donothing", &I);
-      Assert1(F->getParent() == Mod, "Referencing function in another module!",
-              &I);
-    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
-      Assert1(OpBB->getParent() == BB->getParent(),
-              "Referring to a basic block in another function!", &I);
-    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
-      Assert1(OpArg->getParent() == BB->getParent(),
-              "Referring to an argument in another function!", &I);
-    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
-      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
-              &I);
-    } else if (isa<Instruction>(I.getOperand(i))) {
-      verifyDominatesUse(I, i);
-    } else if (isa<InlineAsm>(I.getOperand(i))) {
-      Assert1((i + 1 == e && isa<CallInst>(I)) ||
-              (i + 3 == e && isa<InvokeInst>(I)),
-              "Cannot take the address of an inline asm!", &I);
-    }
-  }
-
-  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
-    Assert1(I.getType()->isFPOrFPVectorTy(),
-            "fpmath requires a floating point result!", &I);
-    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
-    Value *Op0 = MD->getOperand(0);
-    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
-      APFloat Accuracy = CFP0->getValueAPF();
-      Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
-              "fpmath accuracy not a positive number!", &I);
-    } else {
-      Assert1(false, "invalid fpmath accuracy!", &I);
-    }
-  }
-
-  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
-  Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
-
-  InstsInThisBlock.insert(&I);
-}
-
-/// VerifyIntrinsicType - Verify that the specified type (which comes from an
-/// intrinsic argument or return value) matches the type constraints specified
-/// by the .td file (e.g. an "any integer" argument really is an integer).
-///
-/// This return true on error but does not print a message.
-bool Verifier::VerifyIntrinsicType(Type *Ty,
-                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
-                                   SmallVectorImpl<Type*> &ArgTys) {
-  using namespace Intrinsic;
-
-  // If we ran out of descriptors, there are too many arguments.
-  if (Infos.empty()) return true; 
-  IITDescriptor D = Infos.front();
-  Infos = Infos.slice(1);
-  
-  switch (D.Kind) {
-  case IITDescriptor::Void: return !Ty->isVoidTy();
-  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
-  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
-  case IITDescriptor::Float: return !Ty->isFloatTy();
-  case IITDescriptor::Double: return !Ty->isDoubleTy();
-  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
-  case IITDescriptor::Vector: {
-    VectorType *VT = dyn_cast<VectorType>(Ty);
-    return VT == 0 || VT->getNumElements() != D.Vector_Width ||
-           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
-  }
-  case IITDescriptor::Pointer: {
-    PointerType *PT = dyn_cast<PointerType>(Ty);
-    return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
-           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
-  }
-      
-  case IITDescriptor::Struct: {
-    StructType *ST = dyn_cast<StructType>(Ty);
-    if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
-      return true;
-    
-    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
-      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
-        return true;
-    return false;
-  }
-      
-  case IITDescriptor::Argument:
-    // Two cases here - If this is the second occurrence of an argument, verify
-    // that the later instance matches the previous instance. 
-    if (D.getArgumentNumber() < ArgTys.size())
-      return Ty != ArgTys[D.getArgumentNumber()];  
-      
-    // Otherwise, if this is the first instance of an argument, record it and
-    // verify the "Any" kind.
-    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
-    ArgTys.push_back(Ty);
-      
-    switch (D.getArgumentKind()) {
-    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
-    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
-    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
-    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
-    }
-    llvm_unreachable("all argument kinds not covered");
-      
-  case IITDescriptor::ExtendVecArgument:
-    // This may only be used when referring to a previous vector argument.
-    return D.getArgumentNumber() >= ArgTys.size() ||
-           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
-           VectorType::getExtendedElementVectorType(
-                       cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
-
-  case IITDescriptor::TruncVecArgument:
-    // This may only be used when referring to a previous vector argument.
-    return D.getArgumentNumber() >= ArgTys.size() ||
-           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
-           VectorType::getTruncatedElementVectorType(
-                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
-  }
-  llvm_unreachable("unhandled");
-}
-
-/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
-///
-void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
-  Function *IF = CI.getCalledFunction();
-  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
-          IF);
-
-  // Verify that the intrinsic prototype lines up with what the .td files
-  // describe.
-  FunctionType *IFTy = IF->getFunctionType();
-  Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
-  
-  SmallVector<Intrinsic::IITDescriptor, 8> Table;
-  getIntrinsicInfoTableEntries(ID, Table);
-  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
-
-  SmallVector<Type *, 4> ArgTys;
-  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
-          "Intrinsic has incorrect return type!", IF);
-  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
-    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
-            "Intrinsic has incorrect argument type!", IF);
-  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
-
-  // Now that we have the intrinsic ID and the actual argument types (and we
-  // know they are legal for the intrinsic!) get the intrinsic name through the
-  // usual means.  This allows us to verify the mangling of argument types into
-  // the name.
-  Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
-          "Intrinsic name not mangled correctly for type arguments!", IF);
-  
-  // If the intrinsic takes MDNode arguments, verify that they are either global
-  // or are local to *this* function.
-  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
-    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
-      visitMDNode(*MD, CI.getParent()->getParent());
-
-  switch (ID) {
-  default:
-    break;
-  case Intrinsic::ctlz:  // llvm.ctlz
-  case Intrinsic::cttz:  // llvm.cttz
-    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
-            "is_zero_undef argument of bit counting intrinsics must be a "
-            "constant int", &CI);
-    break;
-  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
-    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
-                "invalid llvm.dbg.declare intrinsic call 1", &CI);
-    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
-    Assert1(MD->getNumOperands() == 1,
-                "invalid llvm.dbg.declare intrinsic call 2", &CI);
-  } break;
-  case Intrinsic::memcpy:
-  case Intrinsic::memmove:
-  case Intrinsic::memset:
-    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
-            "alignment argument of memory intrinsics must be a constant int",
-            &CI);
-    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
-            "isvolatile argument of memory intrinsics must be a constant int",
-            &CI);
-    break;
-  case Intrinsic::gcroot:
-  case Intrinsic::gcwrite:
-  case Intrinsic::gcread:
-    if (ID == Intrinsic::gcroot) {
-      AllocaInst *AI =
-        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
-      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
-      Assert1(isa<Constant>(CI.getArgOperand(1)),
-              "llvm.gcroot parameter #2 must be a constant.", &CI);
-      if (!AI->getType()->getElementType()->isPointerTy()) {
-        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
-                "llvm.gcroot parameter #1 must either be a pointer alloca, "
-                "or argument #2 must be a non-null constant.", &CI);
-      }
-    }
-
-    Assert1(CI.getParent()->getParent()->hasGC(),
-            "Enclosing function does not use GC.", &CI);
-    break;
-  case Intrinsic::init_trampoline:
-    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
-            "llvm.init_trampoline parameter #2 must resolve to a function.",
-            &CI);
-    break;
-  case Intrinsic::prefetch:
-    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
-            isa<ConstantInt>(CI.getArgOperand(2)) &&
-            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
-            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
-            "invalid arguments to llvm.prefetch",
-            &CI);
-    break;
-  case Intrinsic::stackprotector:
-    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
-            "llvm.stackprotector parameter #2 must resolve to an alloca.",
-            &CI);
-    break;
-  case Intrinsic::lifetime_start:
-  case Intrinsic::lifetime_end:
-  case Intrinsic::invariant_start:
-    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
-            "size argument of memory use markers must be a constant integer",
-            &CI);
-    break;
-  case Intrinsic::invariant_end:
-    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
-            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
-    break;
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//  Implement the public interfaces to this file...
-//===----------------------------------------------------------------------===//
-
-FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
-  return new Verifier(action);
-}
-
-
-/// verifyFunction - Check a function for errors, printing messages on stderr.
-/// Return true if the function is corrupt.
-///
-bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
-  Function &F = const_cast<Function&>(f);
-  assert(!F.isDeclaration() && "Cannot verify external functions");
-
-  FunctionPassManager FPM(F.getParent());
-  Verifier *V = new Verifier(action);
-  FPM.add(V);
-  FPM.run(F);
-  return V->Broken;
-}
-
-/// verifyModule - Check a module for errors, printing messages on stderr.
-/// Return true if the module is corrupt.
-///
-bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
-                        std::string *ErrorInfo) {
-  PassManager PM;
-  Verifier *V = new Verifier(action);
-  PM.add(V);
-  PM.run(const_cast<Module&>(M));
-
-  if (ErrorInfo && V->Broken)
-    *ErrorInfo = V->MessagesStr.str();
-  return V->Broken;
-}

Modified: llvm/trunk/utils/GenLibDeps.pl
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/GenLibDeps.pl?rev=171359&r1=171358&r2=171359&view=diff
==============================================================================
--- llvm/trunk/utils/GenLibDeps.pl (original)
+++ llvm/trunk/utils/GenLibDeps.pl Wed Jan  2 03:10:48 2013
@@ -98,7 +98,7 @@
     $libpath =~ s/^BitWriter/Bitcode\/Writer/;
     $libpath =~ s/^CppBackend/Target\/CppBackend/;
     $libpath =~ s/^MSIL/Target\/MSIL/;
-    $libpath =~ s/^Core/VMCore/;
+    $libpath =~ s/^Core/IR/;
     $libpath =~ s/^Instrumentation/Transforms\/Instrumentation/;
     $libpath =~ s/^Interpreter/ExecutionEngine\/Interpreter/;
     $libpath =~ s/^JIT/ExecutionEngine\/JIT/;

Modified: llvm/trunk/utils/llvm-build/llvmbuild/main.py
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/llvm-build/llvmbuild/main.py?rev=171359&r1=171358&r2=171359&view=diff
==============================================================================
--- llvm/trunk/utils/llvm-build/llvmbuild/main.py (original)
+++ llvm/trunk/utils/llvm-build/llvmbuild/main.py Wed Jan  2 03:10:48 2013
@@ -809,7 +809,7 @@
     # Determine the LLVM source path, if not given.
     source_root = opts.source_root
     if source_root:
-        if not os.path.exists(os.path.join(source_root, 'lib', 'VMCore',
+        if not os.path.exists(os.path.join(source_root, 'lib', 'IR',
                                            'Function.cpp')):
             parser.error('invalid LLVM source root: %r' % source_root)
     else:
@@ -817,7 +817,7 @@
         llvm_build_path = os.path.dirname(llvmbuild_path)
         utils_path = os.path.dirname(llvm_build_path)
         source_root = os.path.dirname(utils_path)
-        if not os.path.exists(os.path.join(source_root, 'lib', 'VMCore',
+        if not os.path.exists(os.path.join(source_root, 'lib', 'IR',
                                            'Function.cpp')):
             parser.error('unable to infer LLVM source root, please specify')
 





More information about the llvm-commits mailing list