[llvm-commits] [llvm] r169701 - /llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp
Jakub Staszak
kubastaszak at gmail.com
Sun Dec 9 07:37:46 PST 2012
Author: kuba
Date: Sun Dec 9 09:37:46 2012
New Revision: 169701
URL: http://llvm.org/viewvc/llvm-project?rev=169701&view=rev
Log:
Remove trailing spaces.
Modified:
llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp
Modified: llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp?rev=169701&r1=169700&r2=169701&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp (original)
+++ llvm/trunk/lib/Transforms/InstCombine/InstCombineShifts.cpp Sun Dec 9 09:37:46 2012
@@ -49,7 +49,7 @@
I.setOperand(1, Rem);
return &I;
}
-
+
return 0;
}
@@ -70,10 +70,10 @@
// We can always evaluate constants shifted.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If this is the opposite shift, we can directly reuse the input of the shift
// if the needed bits are already zero in the input. This allows us to reuse
// the value which means that we don't care if the shift has multiple uses.
@@ -95,14 +95,14 @@
return CanEvaluateTruncated(I->getOperand(0), Ty);
}
#endif
-
+
}
}
-
+
// We can't mutate something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
-
+
switch (I->getOpcode()) {
default: return false;
case Instruction::And:
@@ -111,7 +111,7 @@
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
-
+
case Instruction::Shl: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
@@ -119,10 +119,10 @@
// We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
if (isLeftShift) return true;
-
+
// We can always turn shl(c)+shr(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
-
+
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
@@ -133,20 +133,20 @@
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
-
+
return false;
}
case Instruction::LShr: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (CI == 0) return false;
-
+
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) return true;
-
+
// We can always turn lshr(c)+shl(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
-
+
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
@@ -157,7 +157,7 @@
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
-
+
return false;
}
case Instruction::Select: {
@@ -175,7 +175,7 @@
return false;
return true;
}
- }
+ }
}
/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
@@ -194,7 +194,7 @@
IC.getTargetLibraryInfo());
return V;
}
-
+
Instruction *I = cast<Instruction>(V);
IC.Worklist.Add(I);
@@ -207,7 +207,7 @@
I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
return I;
-
+
case Instruction::Shl: {
BinaryOperator *BO = cast<BinaryOperator>(I);
unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
@@ -227,7 +227,7 @@
BO->setHasNoSignedWrap(false);
return I;
}
-
+
// We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
// zeros.
if (CI->getValue() == NumBits) {
@@ -240,7 +240,7 @@
}
return V;
}
-
+
// We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
// the and won't be needed.
assert(CI->getZExtValue() > NumBits);
@@ -255,19 +255,19 @@
unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
// We only accept shifts-by-a-constant in CanEvaluateShifted.
ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
-
+
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) {
// If this is oversized composite shift, then unsigned shifts get 0.
unsigned NewShAmt = NumBits+CI->getZExtValue();
if (NewShAmt >= TypeWidth)
return Constant::getNullValue(BO->getType());
-
+
BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
BO->setIsExact(false);
return I;
}
-
+
// We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
// zeros.
if (CI->getValue() == NumBits) {
@@ -280,7 +280,7 @@
}
return V;
}
-
+
// We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
// the and won't be needed.
assert(CI->getZExtValue() > NumBits);
@@ -289,7 +289,7 @@
BO->setIsExact(false);
return BO;
}
-
+
case Instruction::Select:
I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
@@ -304,7 +304,7 @@
NumBits, isLeftShift, IC));
return PN;
}
- }
+ }
}
@@ -312,24 +312,24 @@
Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
BinaryOperator &I) {
bool isLeftShift = I.getOpcode() == Instruction::Shl;
-
-
+
+
// See if we can propagate this shift into the input, this covers the trivial
// cast of lshr(shl(x,c1),c2) as well as other more complex cases.
if (I.getOpcode() != Instruction::AShr &&
CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
-
- return ReplaceInstUsesWith(I,
+
+ return ReplaceInstUsesWith(I,
GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
}
-
-
- // See if we can simplify any instructions used by the instruction whose sole
+
+
+ // See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
-
+
// shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
// a signed shift.
//
@@ -340,14 +340,14 @@
I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
return &I;
}
-
+
// ((X*C1) << C2) == (X * (C1 << C2))
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
if (BO->getOpcode() == Instruction::Mul && isLeftShift)
if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::CreateMul(BO->getOperand(0),
ConstantExpr::getShl(BOOp, Op1));
-
+
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -355,7 +355,7 @@
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
-
+
// Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
@@ -364,7 +364,7 @@
// require that the input operand is a shift-by-constant so that we have
// confidence that the shifts will get folded together. We could do this
// xform in more cases, but it is unlikely to be profitable.
- if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
+ if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
isa<ConstantInt>(TrOp->getOperand(1))) {
// Okay, we'll do this xform. Make the shift of shift.
Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
@@ -378,7 +378,7 @@
unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
unsigned DstSize = TI->getType()->getScalarSizeInBits();
APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
-
+
// The mask we constructed says what the trunc would do if occurring
// between the shifts. We want to know the effect *after* the second
// shift. We know that it is a logical shift by a constant, so adjust the
@@ -399,7 +399,7 @@
return new TruncInst(And, I.getType());
}
}
-
+
if (Op0->hasOneUse()) {
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
@@ -425,11 +425,11 @@
return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
-
+
// Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Value *Op0BOOp1 = Op0BO->getOperand(1);
if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1,
+ match(Op0BOOp1,
m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
m_ConstantInt(CC))) &&
cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
@@ -442,7 +442,7 @@
return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
}
}
-
+
// FALL THROUGH.
case Instruction::Sub: {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
@@ -458,7 +458,7 @@
return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
-
+
// Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
match(Op0BO->getOperand(0),
@@ -471,21 +471,21 @@
// X & (CC << C)
Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
V1->getName()+".mask");
-
+
return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
}
-
+
break;
}
}
-
-
+
+
// If the operand is an bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
bool isValid = true; // Valid only for And, Or, Xor
bool highBitSet = false; // Transform if high bit of constant set?
-
+
switch (Op0BO->getOpcode()) {
default: isValid = false; break; // Do not perform transform!
case Instruction::Add:
@@ -499,7 +499,7 @@
highBitSet = true;
break;
}
-
+
// If this is a signed shift right, and the high bit is modified
// by the logical operation, do not perform the transformation.
// The highBitSet boolean indicates the value of the high bit of
@@ -508,26 +508,26 @@
//
if (isValid && I.getOpcode() == Instruction::AShr)
isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
-
+
if (isValid) {
Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
-
+
Value *NewShift =
Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
NewShift->takeName(Op0BO);
-
+
return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
NewRHS);
}
}
}
}
-
+
// Find out if this is a shift of a shift by a constant.
BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
if (ShiftOp && !ShiftOp->isShift())
ShiftOp = 0;
-
+
if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
// This is a constant shift of a constant shift. Be careful about hiding
@@ -548,9 +548,9 @@
assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
Value *X = ShiftOp->getOperand(0);
-
+
IntegerType *Ty = cast<IntegerType>(I.getType());
-
+
// Check for (X << c1) << c2 and (X >> c1) >> c2
if (I.getOpcode() == ShiftOp->getOpcode()) {
uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
@@ -561,11 +561,11 @@
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
}
-
+
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, AmtSum));
}
-
+
if (ShiftAmt1 == ShiftAmt2) {
// If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
if (I.getOpcode() == Instruction::LShr &&
@@ -605,7 +605,7 @@
return NewLShr;
}
Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
-
+
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
return BinaryOperator::CreateAnd(Shift,
ConstantInt::get(I.getContext(),Mask));
@@ -653,12 +653,12 @@
return NewShl;
}
Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
-
+
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
return BinaryOperator::CreateAnd(Shift,
ConstantInt::get(I.getContext(),Mask));
}
-
+
// We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
// we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
if (I.getOpcode() == Instruction::AShr &&
@@ -682,21 +682,21 @@
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
TD))
return ReplaceInstUsesWith(I, V);
-
+
if (Instruction *V = commonShiftTransforms(I))
return V;
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
unsigned ShAmt = Op1C->getZExtValue();
-
+
// If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
+ if (!I.hasNoUnsignedWrap() &&
MaskedValueIsZero(I.getOperand(0),
APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
I.setHasNoUnsignedWrap();
return &I;
}
-
+
// If the shifted out value is all signbits, this is a NSW shift.
if (!I.hasNoSignedWrap() &&
ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
@@ -712,7 +712,7 @@
match(I.getOperand(1), m_Constant(C2)))
return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
- return 0;
+ return 0;
}
Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
@@ -722,9 +722,9 @@
if (Instruction *R = commonShiftTransforms(I))
return R;
-
+
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned ShAmt = Op1C->getZExtValue();
@@ -743,15 +743,15 @@
return new ZExtInst(Cmp, II->getType());
}
}
-
+
// If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
+ if (!I.isExact() &&
MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
I.setIsExact();
return &I;
- }
+ }
}
-
+
return 0;
}
@@ -762,12 +762,12 @@
if (Instruction *R = commonShiftTransforms(I))
return R;
-
+
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned ShAmt = Op1C->getZExtValue();
-
+
// If the input is a SHL by the same constant (ashr (shl X, C), C), then we
// have a sign-extend idiom.
Value *X;
@@ -791,23 +791,23 @@
}
// If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
+ if (!I.isExact() &&
MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
I.setIsExact();
return &I;
}
- }
-
+ }
+
// See if we can turn a signed shr into an unsigned shr.
if (MaskedValueIsZero(Op0,
APInt::getSignBit(I.getType()->getScalarSizeInBits())))
return BinaryOperator::CreateLShr(Op0, Op1);
-
+
// Arithmetic shifting an all-sign-bit value is a no-op.
unsigned NumSignBits = ComputeNumSignBits(Op0);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
return ReplaceInstUsesWith(I, Op0);
-
+
return 0;
}
More information about the llvm-commits
mailing list