[llvm-commits] [llvm] r169343 [1/2] - in /llvm/trunk/docs: ./ tutorial/

Sean Silva silvas at purdue.edu
Tue Dec 4 16:26:33 PST 2012


Author: silvas
Date: Tue Dec  4 18:26:32 2012
New Revision: 169343

URL: http://llvm.org/viewvc/llvm-project?rev=169343&view=rev
Log:
docs: Sphinxify `docs/tutorial/`

Sorry for the massive commit, but I just wanted to knock this one down
and it is really straightforward.

There are still a couple trivial (i.e. not related to the content)
things left to fix:

- Use of raw HTML links where :doc:`...` and :ref:`...` could be used
  instead. If you are a newbie and want to help fix this it would make
  for some good bite-sized patches; more experienced developers should
  be focusing on adding new content (to this tutorial or elsewhere, but
  please _do not_ waste your time on formatting when there is such dire
  need for documentation (see docs/SphinxQuickstartTemplate.rst to get
  started writing)).

- Highlighting of the kaleidoscope code blocks (currently left as bare
  `::`).  I will be working on writing a custom Pygments highlighter for
  this, mostly as training for maintaining the `llvm` code-block's lexer
  in-tree. I want to do this because I am extremely unhappy with how it
  just "gives up" on the slightest deviation from the expected syntax
  and leaves the whole code-block un-highlighted.

  More generally I am looking at writing some Sphinx extensions and
  keeping them in-tree as well, to support common use cases that
  currently have no good solution (like "monospace text inside a link").

Added:
    llvm/trunk/docs/tutorial/LangImpl1.rst
    llvm/trunk/docs/tutorial/LangImpl2.rst
    llvm/trunk/docs/tutorial/LangImpl3.rst
    llvm/trunk/docs/tutorial/LangImpl4.rst
    llvm/trunk/docs/tutorial/LangImpl5.rst
    llvm/trunk/docs/tutorial/LangImpl6.rst
    llvm/trunk/docs/tutorial/LangImpl7.rst
    llvm/trunk/docs/tutorial/LangImpl8.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl1.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl2.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl3.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl4.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl5.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl6.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl7.rst
    llvm/trunk/docs/tutorial/OCamlLangImpl8.rst
Removed:
    llvm/trunk/docs/tutorial/LangImpl1.html
    llvm/trunk/docs/tutorial/LangImpl2.html
    llvm/trunk/docs/tutorial/LangImpl3.html
    llvm/trunk/docs/tutorial/LangImpl4.html
    llvm/trunk/docs/tutorial/LangImpl5.html
    llvm/trunk/docs/tutorial/LangImpl6.html
    llvm/trunk/docs/tutorial/LangImpl7.html
    llvm/trunk/docs/tutorial/LangImpl8.html
    llvm/trunk/docs/tutorial/OCamlLangImpl1.html
    llvm/trunk/docs/tutorial/OCamlLangImpl2.html
    llvm/trunk/docs/tutorial/OCamlLangImpl3.html
    llvm/trunk/docs/tutorial/OCamlLangImpl4.html
    llvm/trunk/docs/tutorial/OCamlLangImpl5.html
    llvm/trunk/docs/tutorial/OCamlLangImpl6.html
    llvm/trunk/docs/tutorial/OCamlLangImpl7.html
    llvm/trunk/docs/tutorial/OCamlLangImpl8.html
Modified:
    llvm/trunk/docs/Makefile.sphinx
    llvm/trunk/docs/tutorial/index.rst

Modified: llvm/trunk/docs/Makefile.sphinx
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/Makefile.sphinx?rev=169343&r1=169342&r2=169343&view=diff
==============================================================================
--- llvm/trunk/docs/Makefile.sphinx (original)
+++ llvm/trunk/docs/Makefile.sphinx Tue Dec  4 18:26:32 2012
@@ -50,8 +50,6 @@
 	@# Kind of a hack, but HTML-formatted docs are on the way out anyway.
 	@echo "Copying legacy HTML-formatted docs into $(BUILDDIR)/html"
 	@cp -a *.html $(BUILDDIR)/html
-	@mkdir -p $(BUILDDIR)/html/tutorial
-	@cp tutorial/*.html tutorial/*.png $(BUILDDIR)/html/tutorial
 	@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
 
 dirhtml:

Removed: llvm/trunk/docs/tutorial/LangImpl1.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl1.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl1.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl1.html (removed)
@@ -1,348 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Tutorial Introduction and the Lexer</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Tutorial Introduction and the Lexer</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 1
-  <ol>
-    <li><a href="#intro">Tutorial Introduction</a></li>
-    <li><a href="#language">The Basic Language</a></li>
-    <li><a href="#lexer">The Lexer</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl2.html">Chapter 2</a>: Implementing a Parser and AST</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Tutorial Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to the "Implementing a language with LLVM" tutorial.  This tutorial
-runs through the implementation of a simple language, showing how fun and
-easy it can be.  This tutorial will get you up and started as well as help to
-build a framework you can extend to other languages.  The code in this tutorial
-can also be used as a playground to hack on other LLVM specific things.
-</p>
-
-<p>
-The goal of this tutorial is to progressively unveil our language, describing
-how it is built up over time.  This will let us cover a fairly broad range of
-language design and LLVM-specific usage issues, showing and explaining the code
-for it all along the way, without overwhelming you with tons of details up
-front.</p>
-
-<p>It is useful to point out ahead of time that this tutorial is really about
-teaching compiler techniques and LLVM specifically, <em>not</em> about teaching
-modern and sane software engineering principles.  In practice, this means that
-we'll take a number of shortcuts to simplify the exposition.  For example, the
-code leaks memory, uses global variables all over the place, doesn't use nice
-design patterns like <a
-href="http://en.wikipedia.org/wiki/Visitor_pattern">visitors</a>, etc... but it
-is very simple.  If you dig in and use the code as a basis for future projects,
-fixing these deficiencies shouldn't be hard.</p>
-
-<p>I've tried to put this tutorial together in a way that makes chapters easy to
-skip over if you are already familiar with or are uninterested in the various
-pieces.  The structure of the tutorial is:
-</p>
-
-<ul>
-<li><b><a href="#language">Chapter #1</a>: Introduction to the Kaleidoscope
-language, and the definition of its Lexer</b> - This shows where we are going
-and the basic functionality that we want it to do.  In order to make this
-tutorial maximally understandable and hackable, we choose to implement 
-everything in C++ instead of using lexer and parser generators.  LLVM obviously
-works just fine with such tools, feel free to use one if you prefer.</li>
-<li><b><a href="LangImpl2.html">Chapter #2</a>: Implementing a Parser and
-AST</b> - With the lexer in place, we can talk about parsing techniques and
-basic AST construction.  This tutorial describes recursive descent parsing and
-operator precedence parsing.  Nothing in Chapters 1 or 2 is LLVM-specific,
-the code doesn't even link in LLVM at this point. :)</li>
-<li><b><a href="LangImpl3.html">Chapter #3</a>: Code generation to LLVM IR</b> -
-With the AST ready, we can show off how easy generation of LLVM IR really 
-is.</li>
-<li><b><a href="LangImpl4.html">Chapter #4</a>: Adding JIT and Optimizer
-Support</b> - Because a lot of people are interested in using LLVM as a JIT,
-we'll dive right into it and show you the 3 lines it takes to add JIT support.
-LLVM is also useful in many other ways, but this is one simple and "sexy" way
-to shows off its power. :)</li>
-<li><b><a href="LangImpl5.html">Chapter #5</a>: Extending the Language: Control
-Flow</b> - With the language up and running, we show how to extend it with
-control flow operations (if/then/else and a 'for' loop).  This gives us a chance
-to talk about simple SSA construction and control flow.</li>
-<li><b><a href="LangImpl6.html">Chapter #6</a>: Extending the Language: 
-User-defined Operators</b> - This is a silly but fun chapter that talks about
-extending the language to let the user program define their own arbitrary
-unary and binary operators (with assignable precedence!).  This lets us build a
-significant piece of the "language" as library routines.</li>
-<li><b><a href="LangImpl7.html">Chapter #7</a>: Extending the Language: Mutable
-Variables</b> - This chapter talks about adding user-defined local variables
-along with an assignment operator.  The interesting part about this is how
-easy and trivial it is to construct SSA form in LLVM: no, LLVM does <em>not</em>
-require your front-end to construct SSA form!</li>
-<li><b><a href="LangImpl8.html">Chapter #8</a>: Conclusion and other useful LLVM
-tidbits</b> - This chapter wraps up the series by talking about potential
-ways to extend the language, but also includes a bunch of pointers to info about
-"special topics" like adding garbage collection support, exceptions, debugging,
-support for "spaghetti stacks", and a bunch of other tips and tricks.</li>
-
-</ul>
-
-<p>By the end of the tutorial, we'll have written a bit less than 700 lines of 
-non-comment, non-blank, lines of code.  With this small amount of code, we'll
-have built up a very reasonable compiler for a non-trivial language including
-a hand-written lexer, parser, AST, as well as code generation support with a JIT
-compiler.  While other systems may have interesting "hello world" tutorials,
-I think the breadth of this tutorial is a great testament to the strengths of
-LLVM and why you should consider it if you're interested in language or compiler
-design.</p>
-
-<p>A note about this tutorial: we expect you to extend the language and play
-with it on your own.  Take the code and go crazy hacking away at it, compilers
-don't need to be scary creatures - it can be a lot of fun to play with
-languages!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="language">The Basic Language</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>This tutorial will be illustrated with a toy language that we'll call
-"<a href="http://en.wikipedia.org/wiki/Kaleidoscope">Kaleidoscope</a>" (derived 
-from "meaning beautiful, form, and view").
-Kaleidoscope is a procedural language that allows you to define functions, use
-conditionals, math, etc.  Over the course of the tutorial, we'll extend
-Kaleidoscope to support the if/then/else construct, a for loop, user defined
-operators, JIT compilation with a simple command line interface, etc.</p>
-
-<p>Because we want to keep things simple, the only datatype in Kaleidoscope is a
-64-bit floating point type (aka 'double' in C parlance).  As such, all values
-are implicitly double precision and the language doesn't require type
-declarations.  This gives the language a very nice and simple syntax.  For
-example, the following simple example computes <a 
-href="http://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci numbers:</a></p>
-
-<div class="doc_code">
-<pre>
-# Compute the x'th fibonacci number.
-def fib(x)
-  if x < 3 then
-    1
-  else
-    fib(x-1)+fib(x-2)
-
-# This expression will compute the 40th number.
-fib(40)
-</pre>
-</div>
-
-<p>We also allow Kaleidoscope to call into standard library functions (the LLVM
-JIT makes this completely trivial).  This means that you can use the 'extern'
-keyword to define a function before you use it (this is also useful for mutually
-recursive functions).  For example:</p>
-
-<div class="doc_code">
-<pre>
-extern sin(arg);
-extern cos(arg);
-extern atan2(arg1 arg2);
-
-atan2(sin(.4), cos(42))
-</pre>
-</div>
-
-<p>A more interesting example is included in Chapter 6 where we write a little
-Kaleidoscope application that <a href="LangImpl6.html#example">displays 
-a Mandelbrot Set</a> at various levels of magnification.</p>
-
-<p>Lets dive into the implementation of this language!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="lexer">The Lexer</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>When it comes to implementing a language, the first thing needed is
-the ability to process a text file and recognize what it says.  The traditional
-way to do this is to use a "<a 
-href="http://en.wikipedia.org/wiki/Lexical_analysis">lexer</a>" (aka 'scanner')
-to break the input up into "tokens".  Each token returned by the lexer includes
-a token code and potentially some metadata (e.g. the numeric value of a number).
-First, we define the possibilities:
-</p>
-
-<div class="doc_code">
-<pre>
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5,
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-</pre>
-</div>
-
-<p>Each token returned by our lexer will either be one of the Token enum values
-or it will be an 'unknown' character like '+', which is returned as its ASCII
-value.  If the current token is an identifier, the <tt>IdentifierStr</tt>
-global variable holds the name of the identifier.  If the current token is a
-numeric literal (like 1.0), <tt>NumVal</tt> holds its value.  Note that we use
-global variables for simplicity, this is not the best choice for a real language
-implementation :).
-</p>
-
-<p>The actual implementation of the lexer is a single function named
-<tt>gettok</tt>. The <tt>gettok</tt> function is called to return the next token
-from standard input.  Its definition starts as:</p>
-
-<div class="doc_code">
-<pre>
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-</pre>
-</div>
-
-<p>
-<tt>gettok</tt> works by calling the C <tt>getchar()</tt> function to read
-characters one at a time from standard input.  It eats them as it recognizes
-them and stores the last character read, but not processed, in LastChar.  The
-first thing that it has to do is ignore whitespace between tokens.  This is 
-accomplished with the loop above.</p>
-
-<p>The next thing <tt>gettok</tt> needs to do is recognize identifiers and
-specific keywords like "def".  Kaleidoscope does this with this simple loop:</p>
-
-<div class="doc_code">
-<pre>
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    return tok_identifier;
-  }
-</pre>
-</div>
-
-<p>Note that this code sets the '<tt>IdentifierStr</tt>' global whenever it
-lexes an identifier.  Also, since language keywords are matched by the same
-loop, we handle them here inline.  Numeric values are similar:</p>
-
-<div class="doc_code">
-<pre>
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-</pre>
-</div>
-
-<p>This is all pretty straight-forward code for processing input.  When reading
-a numeric value from input, we use the C <tt>strtod</tt> function to convert it
-to a numeric value that we store in <tt>NumVal</tt>.  Note that this isn't doing
-sufficient error checking: it will incorrectly read "1.23.45.67" and handle it as
-if you typed in "1.23".  Feel free to extend it :).  Next we handle comments:
-</p>
-
-<div class="doc_code">
-<pre>
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-</pre>
-</div>
-
-<p>We handle comments by skipping to the end of the line and then return the
-next token.  Finally, if the input doesn't match one of the above cases, it is
-either an operator character like '+' or the end of the file.  These are handled
-with this code:</p>
-
-<div class="doc_code">
-<pre>
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-  
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-</pre>
-</div>
-
-<p>With this, we have the complete lexer for the basic Kaleidoscope language
-(the <a href="LangImpl2.html#code">full code listing</a> for the Lexer is
-available in the <a href="LangImpl2.html">next chapter</a> of the tutorial).
-Next we'll <a href="LangImpl2.html">build a simple parser that uses this to 
-build an Abstract Syntax Tree</a>.  When we have that, we'll include a driver
-so that you can use the lexer and parser together.
-</p>
-
-<a href="LangImpl2.html">Next: Implementing a Parser and AST</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl1.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl1.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl1.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl1.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,280 @@
+=================================================
+Kaleidoscope: Tutorial Introduction and the Lexer
+=================================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Tutorial Introduction
+=====================
+
+Welcome to the "Implementing a language with LLVM" tutorial. This
+tutorial runs through the implementation of a simple language, showing
+how fun and easy it can be. This tutorial will get you up and started as
+well as help to build a framework you can extend to other languages. The
+code in this tutorial can also be used as a playground to hack on other
+LLVM specific things.
+
+The goal of this tutorial is to progressively unveil our language,
+describing how it is built up over time. This will let us cover a fairly
+broad range of language design and LLVM-specific usage issues, showing
+and explaining the code for it all along the way, without overwhelming
+you with tons of details up front.
+
+It is useful to point out ahead of time that this tutorial is really
+about teaching compiler techniques and LLVM specifically, *not* about
+teaching modern and sane software engineering principles. In practice,
+this means that we'll take a number of shortcuts to simplify the
+exposition. For example, the code leaks memory, uses global variables
+all over the place, doesn't use nice design patterns like
+`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
+it is very simple. If you dig in and use the code as a basis for future
+projects, fixing these deficiencies shouldn't be hard.
+
+I've tried to put this tutorial together in a way that makes chapters
+easy to skip over if you are already familiar with or are uninterested
+in the various pieces. The structure of the tutorial is:
+
+-  `Chapter #1 <#language>`_: Introduction to the Kaleidoscope
+   language, and the definition of its Lexer - This shows where we are
+   going and the basic functionality that we want it to do. In order to
+   make this tutorial maximally understandable and hackable, we choose
+   to implement everything in C++ instead of using lexer and parser
+   generators. LLVM obviously works just fine with such tools, feel free
+   to use one if you prefer.
+-  `Chapter #2 <LangImpl2.html>`_: Implementing a Parser and AST -
+   With the lexer in place, we can talk about parsing techniques and
+   basic AST construction. This tutorial describes recursive descent
+   parsing and operator precedence parsing. Nothing in Chapters 1 or 2
+   is LLVM-specific, the code doesn't even link in LLVM at this point.
+   :)
+-  `Chapter #3 <LangImpl3.html>`_: Code generation to LLVM IR - With
+   the AST ready, we can show off how easy generation of LLVM IR really
+   is.
+-  `Chapter #4 <LangImpl4.html>`_: Adding JIT and Optimizer Support
+   - Because a lot of people are interested in using LLVM as a JIT,
+   we'll dive right into it and show you the 3 lines it takes to add JIT
+   support. LLVM is also useful in many other ways, but this is one
+   simple and "sexy" way to shows off its power. :)
+-  `Chapter #5 <LangImpl5.html>`_: Extending the Language: Control
+   Flow - With the language up and running, we show how to extend it
+   with control flow operations (if/then/else and a 'for' loop). This
+   gives us a chance to talk about simple SSA construction and control
+   flow.
+-  `Chapter #6 <LangImpl6.html>`_: Extending the Language:
+   User-defined Operators - This is a silly but fun chapter that talks
+   about extending the language to let the user program define their own
+   arbitrary unary and binary operators (with assignable precedence!).
+   This lets us build a significant piece of the "language" as library
+   routines.
+-  `Chapter #7 <LangImpl7.html>`_: Extending the Language: Mutable
+   Variables - This chapter talks about adding user-defined local
+   variables along with an assignment operator. The interesting part
+   about this is how easy and trivial it is to construct SSA form in
+   LLVM: no, LLVM does *not* require your front-end to construct SSA
+   form!
+-  `Chapter #8 <LangImpl8.html>`_: Conclusion and other useful LLVM
+   tidbits - This chapter wraps up the series by talking about
+   potential ways to extend the language, but also includes a bunch of
+   pointers to info about "special topics" like adding garbage
+   collection support, exceptions, debugging, support for "spaghetti
+   stacks", and a bunch of other tips and tricks.
+
+By the end of the tutorial, we'll have written a bit less than 700 lines
+of non-comment, non-blank, lines of code. With this small amount of
+code, we'll have built up a very reasonable compiler for a non-trivial
+language including a hand-written lexer, parser, AST, as well as code
+generation support with a JIT compiler. While other systems may have
+interesting "hello world" tutorials, I think the breadth of this
+tutorial is a great testament to the strengths of LLVM and why you
+should consider it if you're interested in language or compiler design.
+
+A note about this tutorial: we expect you to extend the language and
+play with it on your own. Take the code and go crazy hacking away at it,
+compilers don't need to be scary creatures - it can be a lot of fun to
+play with languages!
+
+The Basic Language
+==================
+
+This tutorial will be illustrated with a toy language that we'll call
+"`Kaleidoscope <http://en.wikipedia.org/wiki/Kaleidoscope>`_" (derived
+from "meaning beautiful, form, and view"). Kaleidoscope is a procedural
+language that allows you to define functions, use conditionals, math,
+etc. Over the course of the tutorial, we'll extend Kaleidoscope to
+support the if/then/else construct, a for loop, user defined operators,
+JIT compilation with a simple command line interface, etc.
+
+Because we want to keep things simple, the only datatype in Kaleidoscope
+is a 64-bit floating point type (aka 'double' in C parlance). As such,
+all values are implicitly double precision and the language doesn't
+require type declarations. This gives the language a very nice and
+simple syntax. For example, the following simple example computes
+`Fibonacci numbers: <http://en.wikipedia.org/wiki/Fibonacci_number>`_
+
+::
+
+    # Compute the x'th fibonacci number.
+    def fib(x)
+      if x < 3 then
+        1
+      else
+        fib(x-1)+fib(x-2)
+
+    # This expression will compute the 40th number.
+    fib(40)
+
+We also allow Kaleidoscope to call into standard library functions (the
+LLVM JIT makes this completely trivial). This means that you can use the
+'extern' keyword to define a function before you use it (this is also
+useful for mutually recursive functions). For example:
+
+::
+
+    extern sin(arg);
+    extern cos(arg);
+    extern atan2(arg1 arg2);
+
+    atan2(sin(.4), cos(42))
+
+A more interesting example is included in Chapter 6 where we write a
+little Kaleidoscope application that `displays a Mandelbrot
+Set <LangImpl6.html#example>`_ at various levels of magnification.
+
+Lets dive into the implementation of this language!
+
+The Lexer
+=========
+
+When it comes to implementing a language, the first thing needed is the
+ability to process a text file and recognize what it says. The
+traditional way to do this is to use a
+"`lexer <http://en.wikipedia.org/wiki/Lexical_analysis>`_" (aka
+'scanner') to break the input up into "tokens". Each token returned by
+the lexer includes a token code and potentially some metadata (e.g. the
+numeric value of a number). First, we define the possibilities:
+
+.. code-block:: c++
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5,
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+Each token returned by our lexer will either be one of the Token enum
+values or it will be an 'unknown' character like '+', which is returned
+as its ASCII value. If the current token is an identifier, the
+``IdentifierStr`` global variable holds the name of the identifier. If
+the current token is a numeric literal (like 1.0), ``NumVal`` holds its
+value. Note that we use global variables for simplicity, this is not the
+best choice for a real language implementation :).
+
+The actual implementation of the lexer is a single function named
+``gettok``. The ``gettok`` function is called to return the next token
+from standard input. Its definition starts as:
+
+.. code-block:: c++
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+``gettok`` works by calling the C ``getchar()`` function to read
+characters one at a time from standard input. It eats them as it
+recognizes them and stores the last character read, but not processed,
+in LastChar. The first thing that it has to do is ignore whitespace
+between tokens. This is accomplished with the loop above.
+
+The next thing ``gettok`` needs to do is recognize identifiers and
+specific keywords like "def". Kaleidoscope does this with this simple
+loop:
+
+.. code-block:: c++
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        return tok_identifier;
+      }
+
+Note that this code sets the '``IdentifierStr``' global whenever it
+lexes an identifier. Also, since language keywords are matched by the
+same loop, we handle them here inline. Numeric values are similar:
+
+.. code-block:: c++
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+This is all pretty straight-forward code for processing input. When
+reading a numeric value from input, we use the C ``strtod`` function to
+convert it to a numeric value that we store in ``NumVal``. Note that
+this isn't doing sufficient error checking: it will incorrectly read
+"1.23.45.67" and handle it as if you typed in "1.23". Feel free to
+extend it :). Next we handle comments:
+
+.. code-block:: c++
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+We handle comments by skipping to the end of the line and then return
+the next token. Finally, if the input doesn't match one of the above
+cases, it is either an operator character like '+' or the end of the
+file. These are handled with this code:
+
+.. code-block:: c++
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+With this, we have the complete lexer for the basic Kaleidoscope
+language (the `full code listing <LangImpl2.html#code>`_ for the Lexer
+is available in the `next chapter <LangImpl2.html>`_ of the tutorial).
+Next we'll `build a simple parser that uses this to build an Abstract
+Syntax Tree <LangImpl2.html>`_. When we have that, we'll include a
+driver so that you can use the lexer and parser together.
+
+`Next: Implementing a Parser and AST <LangImpl2.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl2.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl2.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl2.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl2.html (removed)
@@ -1,1231 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Implementing a Parser and AST</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Implementing a Parser and AST</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 2
-  <ol>
-    <li><a href="#intro">Chapter 2 Introduction</a></li>
-    <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
-    <li><a href="#parserbasics">Parser Basics</a></li>
-    <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
-    <li><a href="#parserbinops">Binary Expression Parsing</a></li>
-    <li><a href="#parsertop">Parsing the Rest</a></li>
-    <li><a href="#driver">The Driver</a></li>
-    <li><a href="#conclusions">Conclusions</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 2 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  This chapter shows you how to use the lexer, built in 
-<a href="LangImpl1.html">Chapter 1</a>, to build a full <a
-href="http://en.wikipedia.org/wiki/Parsing">parser</a> for
-our Kaleidoscope language.  Once we have a parser, we'll define and build an <a 
-href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax 
-Tree</a> (AST).</p>
-
-<p>The parser we will build uses a combination of <a 
-href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
-Parsing</a> and <a href=
-"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence 
-Parsing</a> to parse the Kaleidoscope language (the latter for 
-binary expressions and the former for everything else).  Before we get to
-parsing though, lets talk about the output of the parser: the Abstract Syntax
-Tree.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="ast">The Abstract Syntax Tree (AST)</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The AST for a program captures its behavior in such a way that it is easy for
-later stages of the compiler (e.g. code generation) to interpret.  We basically
-want one object for each construct in the language, and the AST should closely
-model the language.  In Kaleidoscope, we have expressions, a prototype, and a
-function object.  We'll start with expressions first:</p>
-
-<div class="doc_code">
-<pre>
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-};
-</pre>
-</div>
-
-<p>The code above shows the definition of the base ExprAST class and one
-subclass which we use for numeric literals.  The important thing to note about
-this code is that the NumberExprAST class captures the numeric value of the
-literal as an instance variable. This allows later phases of the compiler to
-know what the stored numeric value is.</p>
-
-<p>Right now we only create the AST,  so there are no useful accessor methods on
-them.  It would be very easy to add a virtual method to pretty print the code,
-for example.  Here are the other expression AST node definitions that we'll use
-in the basic form of the Kaleidoscope language:
-</p>
-
-<div class="doc_code">
-<pre>
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-};
-</pre>
-</div>
-
-<p>This is all (intentionally) rather straight-forward: variables capture the
-variable name, binary operators capture their opcode (e.g. '+'), and calls
-capture a function name as well as a list of any argument expressions.  One thing 
-that is nice about our AST is that it captures the language features without 
-talking about the syntax of the language.  Note that there is no discussion about 
-precedence of binary operators, lexical structure, etc.</p>
-
-<p>For our basic language, these are all of the expression nodes we'll define.
-Because it doesn't have conditional control flow, it isn't Turing-complete;
-we'll fix that in a later installment.  The two things we need next are a way
-to talk about the interface to a function, and a way to talk about functions
-themselves:</p>
-
-<div class="doc_code">
-<pre>
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
-    : Name(name), Args(args) {}
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-};
-</pre>
-</div>
-
-<p>In Kaleidoscope, functions are typed with just a count of their arguments.
-Since all values are double precision floating point, the type of each argument
-doesn't need to be stored anywhere.  In a more aggressive and realistic
-language, the "ExprAST" class would probably have a type field.</p>
-
-<p>With this scaffolding, we can now talk about parsing expressions and function
-bodies in Kaleidoscope.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserbasics">Parser Basics</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we have an AST to build, we need to define the parser code to build
-it.  The idea here is that we want to parse something like "x+y" (which is
-returned as three tokens by the lexer) into an AST that could be generated with
-calls like this:</p>
-
-<div class="doc_code">
-<pre>
-  ExprAST *X = new VariableExprAST("x");
-  ExprAST *Y = new VariableExprAST("y");
-  ExprAST *Result = new BinaryExprAST('+', X, Y);
-</pre>
-</div>
-
-<p>In order to do this, we'll start by defining some basic helper routines:</p>
-
-<div class="doc_code">
-<pre>
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-</pre>
-</div>
-
-<p>
-This implements a simple token buffer around the lexer.  This allows 
-us to look one token ahead at what the lexer is returning.  Every function in
-our parser will assume that CurTok is the current token that needs to be
-parsed.</p>
-
-<div class="doc_code">
-<pre>
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-</pre>
-</div>
-
-<p>
-The <tt>Error</tt> routines are simple helper routines that our parser will use
-to handle errors.  The error recovery in our parser will not be the best and
-is not particular user-friendly, but it will be enough for our tutorial.  These
-routines make it easier to handle errors in routines that have various return
-types: they always return null.</p>
-
-<p>With these basic helper functions, we can implement the first
-piece of our grammar: numeric literals.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserprimexprs">Basic Expression Parsing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>We start with numeric literals, because they are the simplest to process.
-For each production in our grammar, we'll define a function which parses that
-production.  For numeric literals, we have:
-</p>
-
-<div class="doc_code">
-<pre>
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-</pre>
-</div>
-
-<p>This routine is very simple: it expects to be called when the current token
-is a <tt>tok_number</tt> token.  It takes the current number value, creates 
-a <tt>NumberExprAST</tt> node, advances the lexer to the next token, and finally
-returns.</p>
-
-<p>There are some interesting aspects to this.  The most important one is that
-this routine eats all of the tokens that correspond to the production and
-returns the lexer buffer with the next token (which is not part of the grammar
-production) ready to go.  This is a fairly standard way to go for recursive
-descent parsers.  For a better example, the parenthesis operator is defined like
-this:</p>
-
-<div class="doc_code">
-<pre>
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-</pre>
-</div>
-
-<p>This function illustrates a number of interesting things about the 
-parser:</p>
-
-<p>
-1) It shows how we use the Error routines.  When called, this function expects
-that the current token is a '(' token, but after parsing the subexpression, it
-is possible that there is no ')' waiting.  For example, if the user types in
-"(4 x" instead of "(4)", the parser should emit an error.  Because errors can
-occur, the parser needs a way to indicate that they happened: in our parser, we
-return null on an error.</p>
-
-<p>2) Another interesting aspect of this function is that it uses recursion by
-calling <tt>ParseExpression</tt> (we will soon see that <tt>ParseExpression</tt> can call
-<tt>ParseParenExpr</tt>).  This is powerful because it allows us to handle 
-recursive grammars, and keeps each production very simple.  Note that
-parentheses do not cause construction of AST nodes themselves.  While we could
-do it this way, the most important role of parentheses are to guide the parser
-and provide grouping.  Once the parser constructs the AST, parentheses are not
-needed.</p>
-
-<p>The next simple production is for handling variable references and function
-calls:</p>
-
-<div class="doc_code">
-<pre>
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-</pre>
-</div>
-
-<p>This routine follows the same style as the other routines.  (It expects to be
-called if the current token is a <tt>tok_identifier</tt> token).  It also has
-recursion and error handling.  One interesting aspect of this is that it uses
-<em>look-ahead</em> to determine if the current identifier is a stand alone
-variable reference or if it is a function call expression.  It handles this by
-checking to see if the token after the identifier is a '(' token, constructing
-either a <tt>VariableExprAST</tt> or <tt>CallExprAST</tt> node as appropriate.
-</p>
-
-<p>Now that we have all of our simple expression-parsing logic in place, we can
-define a helper function to wrap it together into one entry point.  We call this
-class of expressions "primary" expressions, for reasons that will become more
-clear <a href="LangImpl6.html#unary">later in the tutorial</a>.  In order to
-parse an arbitrary primary expression, we need to determine what sort of
-expression it is:</p>
-
-<div class="doc_code">
-<pre>
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  }
-}
-</pre>
-</div>
-
-<p>Now that you see the definition of this function, it is more obvious why we
-can assume the state of CurTok in the various functions.  This uses look-ahead
-to determine which sort of expression is being inspected, and then parses it
-with a function call.</p>
-
-<p>Now that basic expressions are handled, we need to handle binary expressions.
-They are a bit more complex.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserbinops">Binary Expression Parsing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Binary expressions are significantly harder to parse because they are often
-ambiguous.  For example, when given the string "x+y*z", the parser can choose
-to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from
-mathematics, we expect the later parse, because "*" (multiplication) has
-higher <em>precedence</em> than "+" (addition).</p>
-
-<p>There are many ways to handle this, but an elegant and efficient way is to
-use <a href=
-"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence 
-Parsing</a>.  This parsing technique uses the precedence of binary operators to
-guide recursion.  To start with, we need a table of precedences:</p>
-
-<div class="doc_code">
-<pre>
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-    
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-int main() {
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-  ...
-}
-</pre>
-</div>
-
-<p>For the basic form of Kaleidoscope, we will only support 4 binary operators
-(this can obviously be extended by you, our brave and intrepid reader).  The
-<tt>GetTokPrecedence</tt> function returns the precedence for the current token,
-or -1 if the token is not a binary operator.  Having a map makes it easy to add
-new operators and makes it clear that the algorithm doesn't depend on the
-specific operators involved, but it would be easy enough to eliminate the map
-and do the comparisons in the <tt>GetTokPrecedence</tt> function.  (Or just use
-a fixed-size array).</p>
-
-<p>With the helper above defined, we can now start parsing binary expressions.
-The basic idea of operator precedence parsing is to break down an expression
-with potentially ambiguous binary operators into pieces.  Consider ,for example,
-the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this
-as a stream of primary expressions separated by binary operators.  As such,
-it will first parse the leading primary expression "a", then it will see the
-pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses
-are primary expressions, the binary expression parser doesn't need to worry
-about nested subexpressions like (c+d) at all. 
-</p>
-
-<p>
-To start, an expression is a primary expression potentially followed by a
-sequence of [binop,primaryexpr] pairs:</p>
-
-<div class="doc_code">
-<pre>
-/// expression
-///   ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParsePrimary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-</pre>
-</div>
-
-<p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for
-us.  It takes a precedence and a pointer to an expression for the part that has been
-parsed so far.   Note that "x" is a perfectly valid expression: As such, "binoprhs" is
-allowed to be empty, in which case it returns the expression that is passed into
-it. In our example above, the code passes the expression for "a" into
-<tt>ParseBinOpRHS</tt> and the current token is "+".</p>
-
-<p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em>
-minimal operator precedence</em> that the function is allowed to eat.  For
-example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is
-passed in a precedence of 40, it will not consume any tokens (because the
-precedence of '+' is only 20).  With this in mind, <tt>ParseBinOpRHS</tt> starts
-with:</p>
-
-<div class="doc_code">
-<pre>
-/// binoprhs
-///   ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-</pre>
-</div>
-
-<p>This code gets the precedence of the current token and checks to see if if is
-too low.  Because we defined invalid tokens to have a precedence of -1, this 
-check implicitly knows that the pair-stream ends when the token stream runs out
-of binary operators.  If this check succeeds, we know that the token is a binary
-operator and that it will be included in this expression:</p>
-
-<div class="doc_code">
-<pre>
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the primary expression after the binary operator.
-    ExprAST *RHS = ParsePrimary();
-    if (!RHS) return 0;
-</pre>
-</div>
-
-<p>As such, this code eats (and remembers) the binary operator and then parses
-the primary expression that follows.  This builds up the whole pair, the first of
-which is [+, b] for the running example.</p>
-
-<p>Now that we parsed the left-hand side of an expression and one pair of the 
-RHS sequence, we have to decide which way the expression associates.  In
-particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)".
-To determine this, we look ahead at "binop" to determine its precedence and 
-compare it to BinOp's precedence (which is '+' in this case):</p>
-
-<div class="doc_code">
-<pre>
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-</pre>
-</div>
-
-<p>If the precedence of the binop to the right of "RHS" is lower or equal to the
-precedence of our current operator, then we know that the parentheses associate
-as "(a+b) binop ...".  In our example, the current operator is "+" and the next 
-operator is "+", we know that they have the same precedence.  In this case we'll
-create the AST node for "a+b", and then continue parsing:</p>
-
-<div class="doc_code">
-<pre>
-      ... if body omitted ...
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }  // loop around to the top of the while loop.
-}
-</pre>
-</div>
-
-<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
-iteration of the loop, with "+" as the current token.  The code above will eat, 
-remember, and parse "(c+d)" as the primary expression, which makes the
-current pair equal to [+, (c+d)].  It will then evaluate the 'if' conditional above with 
-"*" as the binop to the right of the primary.  In this case, the precedence of "*" is
-higher than the precedence of "+" so the if condition will be entered.</p>
-
-<p>The critical question left here is "how can the if condition parse the right
-hand side in full"?  In particular, to build the AST correctly for our example,
-it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to
-do this is surprisingly simple (code from the above two blocks duplicated for
-context):</p>
-
-<div class="doc_code">
-<pre>
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      <b>RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;</b>
-    }
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }  // loop around to the top of the while loop.
-}
-</pre>
-</div>
-
-<p>At this point, we know that the binary operator to the RHS of our primary
-has higher precedence than the binop we are currently parsing.  As such, we know
-that any sequence of pairs whose operators are all higher precedence than "+"
-should be parsed together and returned as "RHS".  To do this, we recursively
-invoke the <tt>ParseBinOpRHS</tt> function specifying "TokPrec+1" as the minimum
-precedence required for it to continue.  In our example above, this will cause
-it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS
-of the '+' expression.</p>
-
-<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
-and added to the AST.  With this little bit of code (14 non-trivial lines), we
-correctly handle fully general binary expression parsing in a very elegant way.
-This was a whirlwind tour of this code, and it is somewhat subtle.  I recommend
-running through it with a few tough examples to see how it works.
-</p>
-
-<p>This wraps up handling of expressions.  At this point, we can point the
-parser at an arbitrary token stream and build an expression from it, stopping
-at the first token that is not part of the expression.  Next up we need to
-handle function definitions, etc.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parsertop">Parsing the Rest</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-The next thing missing is handling of function prototypes.  In Kaleidoscope,
-these are used both for 'extern' function declarations as well as function body
-definitions.  The code to do this is straight-forward and not very interesting
-(once you've survived expressions):
-</p>
-
-<div class="doc_code">
-<pre>
-/// prototype
-///   ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
-  if (CurTok != tok_identifier)
-    return ErrorP("Expected function name in prototype");
-
-  std::string FnName = IdentifierStr;
-  getNextToken();
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  // Read the list of argument names.
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  return new PrototypeAST(FnName, ArgNames);
-}
-</pre>
-</div>
-
-<p>Given this, a function definition is very simple, just a prototype plus
-an expression to implement the body:</p>
-
-<div class="doc_code">
-<pre>
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-</pre>
-</div>
-
-<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
-well as to support forward declaration of user functions.  These 'extern's are just
-prototypes with no body:</p>
-
-<div class="doc_code">
-<pre>
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-</pre>
-</div>
-
-<p>Finally, we'll also let the user type in arbitrary top-level expressions and
-evaluate them on the fly.  We will handle this by defining anonymous nullary
-(zero argument) functions for them:</p>
-
-<div class="doc_code">
-<pre>
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-</pre>
-</div>
-
-<p>Now that we have all the pieces, let's build a little driver that will let us
-actually <em>execute</em> this code we've built!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="driver">The Driver</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The driver for this simply invokes all of the parsing pieces with a top-level
-dispatch loop.  There isn't much interesting here, so I'll just include the
-top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level
-Parsing" section.</p>
-
-<div class="doc_code">
-<pre>
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-</pre>
-</div>
-
-<p>The most interesting part of this is that we ignore top-level semicolons.
-Why is this, you ask?  The basic reason is that if you type "4 + 5" at the
-command line, the parser doesn't know whether that is the end of what you will type
-or not.  For example, on the next line you could type "def foo..." in which case
-4+5 is the end of a top-level expression.  Alternatively you could type "* 6",
-which would continue the expression.  Having top-level semicolons allows you to
-type "4+5;", and the parser will know you are done.</p> 
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="conclusions">Conclusions</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>With just under 400 lines of commented code (240 lines of non-comment, 
-non-blank code), we fully defined our minimal language, including a lexer,
-parser, and AST builder.  With this done, the executable will validate 
-Kaleidoscope code and tell us if it is grammatically invalid.  For
-example, here is a sample interaction:</p>
-
-<div class="doc_code">
-<pre>
-$ <b>./a.out</b>
-ready> <b>def foo(x y) x+foo(y, 4.0);</b>
-Parsed a function definition.
-ready> <b>def foo(x y) x+y y;</b>
-Parsed a function definition.
-Parsed a top-level expr
-ready> <b>def foo(x y) x+y );</b>
-Parsed a function definition.
-Error: unknown token when expecting an expression
-ready> <b>extern sin(a);</b>
-ready> Parsed an extern
-ready> <b>^D</b>
-$ 
-</pre>
-</div>
-
-<p>There is a lot of room for extension here.  You can define new AST nodes,
-extend the language in many ways, etc.  In the <a href="LangImpl3.html">next
-installment</a>, we will describe how to generate LLVM Intermediate
-Representation (IR) from the AST.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for this and the previous chapter.  
-Note that it is fully self-contained: you don't need LLVM or any external
-libraries at all for this.  (Besides the C and C++ standard libraries, of
-course.)  To build this, just compile with:</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g -O3 toy.cpp
-# Run
-./a.out 
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include <cstdio>
-#include <cstdlib>
-#include <string>
-#include <map>
-#include <vector>
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    return tok_identifier;
-  }
-
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-  
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
-    : Name(name), Args(args) {}
-  
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-  
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-  
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  }
-}
-
-/// binoprhs
-///   ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-    
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the primary expression after the binary operator.
-    ExprAST *RHS = ParsePrimary();
-    if (!RHS) return 0;
-    
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }
-}
-
-/// expression
-///   ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParsePrimary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-///   ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
-  if (CurTok != tok_identifier)
-    return ErrorP("Expected function name in prototype");
-
-  std::string FnName = IdentifierStr;
-  getNextToken();
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  return new PrototypeAST(FnName, ArgNames);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing
-//===----------------------------------------------------------------------===//
-
-static void HandleDefinition() {
-  if (ParseDefinition()) {
-    fprintf(stderr, "Parsed a function definition.\n");
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleExtern() {
-  if (ParseExtern()) {
-    fprintf(stderr, "Parsed an extern\n");
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (ParseTopLevelExpr()) {
-    fprintf(stderr, "Parsed a top-level expr\n");
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-
-  // Prime the first token.
-  fprintf(stderr, "ready> ");
-  getNextToken();
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-
-  return 0;
-}
-</pre>
-</div>
-<a href="LangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl2.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl2.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl2.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl2.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,1098 @@
+===========================================
+Kaleidoscope: Implementing a Parser and AST
+===========================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Chapter 2 Introduction
+======================
+
+Welcome to Chapter 2 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. This chapter shows you how to use the
+lexer, built in `Chapter 1 <LangImpl1.html>`_, to build a full
+`parser <http://en.wikipedia.org/wiki/Parsing>`_ for our Kaleidoscope
+language. Once we have a parser, we'll define and build an `Abstract
+Syntax Tree <http://en.wikipedia.org/wiki/Abstract_syntax_tree>`_ (AST).
+
+The parser we will build uses a combination of `Recursive Descent
+Parsing <http://en.wikipedia.org/wiki/Recursive_descent_parser>`_ and
+`Operator-Precedence
+Parsing <http://en.wikipedia.org/wiki/Operator-precedence_parser>`_ to
+parse the Kaleidoscope language (the latter for binary expressions and
+the former for everything else). Before we get to parsing though, lets
+talk about the output of the parser: the Abstract Syntax Tree.
+
+The Abstract Syntax Tree (AST)
+==============================
+
+The AST for a program captures its behavior in such a way that it is
+easy for later stages of the compiler (e.g. code generation) to
+interpret. We basically want one object for each construct in the
+language, and the AST should closely model the language. In
+Kaleidoscope, we have expressions, a prototype, and a function object.
+We'll start with expressions first:
+
+.. code-block:: c++
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+    };
+
+The code above shows the definition of the base ExprAST class and one
+subclass which we use for numeric literals. The important thing to note
+about this code is that the NumberExprAST class captures the numeric
+value of the literal as an instance variable. This allows later phases
+of the compiler to know what the stored numeric value is.
+
+Right now we only create the AST, so there are no useful accessor
+methods on them. It would be very easy to add a virtual method to pretty
+print the code, for example. Here are the other expression AST node
+definitions that we'll use in the basic form of the Kaleidoscope
+language:
+
+.. code-block:: c++
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+    };
+
+This is all (intentionally) rather straight-forward: variables capture
+the variable name, binary operators capture their opcode (e.g. '+'), and
+calls capture a function name as well as a list of any argument
+expressions. One thing that is nice about our AST is that it captures
+the language features without talking about the syntax of the language.
+Note that there is no discussion about precedence of binary operators,
+lexical structure, etc.
+
+For our basic language, these are all of the expression nodes we'll
+define. Because it doesn't have conditional control flow, it isn't
+Turing-complete; we'll fix that in a later installment. The two things
+we need next are a way to talk about the interface to a function, and a
+way to talk about functions themselves:
+
+.. code-block:: c++
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes).
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+        : Name(name), Args(args) {}
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+    };
+
+In Kaleidoscope, functions are typed with just a count of their
+arguments. Since all values are double precision floating point, the
+type of each argument doesn't need to be stored anywhere. In a more
+aggressive and realistic language, the "ExprAST" class would probably
+have a type field.
+
+With this scaffolding, we can now talk about parsing expressions and
+function bodies in Kaleidoscope.
+
+Parser Basics
+=============
+
+Now that we have an AST to build, we need to define the parser code to
+build it. The idea here is that we want to parse something like "x+y"
+(which is returned as three tokens by the lexer) into an AST that could
+be generated with calls like this:
+
+.. code-block:: c++
+
+      ExprAST *X = new VariableExprAST("x");
+      ExprAST *Y = new VariableExprAST("y");
+      ExprAST *Result = new BinaryExprAST('+', X, Y);
+
+In order to do this, we'll start by defining some basic helper routines:
+
+.. code-block:: c++
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+This implements a simple token buffer around the lexer. This allows us
+to look one token ahead at what the lexer is returning. Every function
+in our parser will assume that CurTok is the current token that needs to
+be parsed.
+
+.. code-block:: c++
+
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+The ``Error`` routines are simple helper routines that our parser will
+use to handle errors. The error recovery in our parser will not be the
+best and is not particular user-friendly, but it will be enough for our
+tutorial. These routines make it easier to handle errors in routines
+that have various return types: they always return null.
+
+With these basic helper functions, we can implement the first piece of
+our grammar: numeric literals.
+
+Basic Expression Parsing
+========================
+
+We start with numeric literals, because they are the simplest to
+process. For each production in our grammar, we'll define a function
+which parses that production. For numeric literals, we have:
+
+.. code-block:: c++
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+This routine is very simple: it expects to be called when the current
+token is a ``tok_number`` token. It takes the current number value,
+creates a ``NumberExprAST`` node, advances the lexer to the next token,
+and finally returns.
+
+There are some interesting aspects to this. The most important one is
+that this routine eats all of the tokens that correspond to the
+production and returns the lexer buffer with the next token (which is
+not part of the grammar production) ready to go. This is a fairly
+standard way to go for recursive descent parsers. For a better example,
+the parenthesis operator is defined like this:
+
+.. code-block:: c++
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+This function illustrates a number of interesting things about the
+parser:
+
+1) It shows how we use the Error routines. When called, this function
+expects that the current token is a '(' token, but after parsing the
+subexpression, it is possible that there is no ')' waiting. For example,
+if the user types in "(4 x" instead of "(4)", the parser should emit an
+error. Because errors can occur, the parser needs a way to indicate that
+they happened: in our parser, we return null on an error.
+
+2) Another interesting aspect of this function is that it uses recursion
+by calling ``ParseExpression`` (we will soon see that
+``ParseExpression`` can call ``ParseParenExpr``). This is powerful
+because it allows us to handle recursive grammars, and keeps each
+production very simple. Note that parentheses do not cause construction
+of AST nodes themselves. While we could do it this way, the most
+important role of parentheses are to guide the parser and provide
+grouping. Once the parser constructs the AST, parentheses are not
+needed.
+
+The next simple production is for handling variable references and
+function calls:
+
+.. code-block:: c++
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+This routine follows the same style as the other routines. (It expects
+to be called if the current token is a ``tok_identifier`` token). It
+also has recursion and error handling. One interesting aspect of this is
+that it uses *look-ahead* to determine if the current identifier is a
+stand alone variable reference or if it is a function call expression.
+It handles this by checking to see if the token after the identifier is
+a '(' token, constructing either a ``VariableExprAST`` or
+``CallExprAST`` node as appropriate.
+
+Now that we have all of our simple expression-parsing logic in place, we
+can define a helper function to wrap it together into one entry point.
+We call this class of expressions "primary" expressions, for reasons
+that will become more clear `later in the
+tutorial <LangImpl6.html#unary>`_. In order to parse an arbitrary
+primary expression, we need to determine what sort of expression it is:
+
+.. code-block:: c++
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      }
+    }
+
+Now that you see the definition of this function, it is more obvious why
+we can assume the state of CurTok in the various functions. This uses
+look-ahead to determine which sort of expression is being inspected, and
+then parses it with a function call.
+
+Now that basic expressions are handled, we need to handle binary
+expressions. They are a bit more complex.
+
+Binary Expression Parsing
+=========================
+
+Binary expressions are significantly harder to parse because they are
+often ambiguous. For example, when given the string "x+y\*z", the parser
+can choose to parse it as either "(x+y)\*z" or "x+(y\*z)". With common
+definitions from mathematics, we expect the later parse, because "\*"
+(multiplication) has higher *precedence* than "+" (addition).
+
+There are many ways to handle this, but an elegant and efficient way is
+to use `Operator-Precedence
+Parsing <http://en.wikipedia.org/wiki/Operator-precedence_parser>`_.
+This parsing technique uses the precedence of binary operators to guide
+recursion. To start with, we need a table of precedences:
+
+.. code-block:: c++
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    int main() {
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+      ...
+    }
+
+For the basic form of Kaleidoscope, we will only support 4 binary
+operators (this can obviously be extended by you, our brave and intrepid
+reader). The ``GetTokPrecedence`` function returns the precedence for
+the current token, or -1 if the token is not a binary operator. Having a
+map makes it easy to add new operators and makes it clear that the
+algorithm doesn't depend on the specific operators involved, but it
+would be easy enough to eliminate the map and do the comparisons in the
+``GetTokPrecedence`` function. (Or just use a fixed-size array).
+
+With the helper above defined, we can now start parsing binary
+expressions. The basic idea of operator precedence parsing is to break
+down an expression with potentially ambiguous binary operators into
+pieces. Consider ,for example, the expression "a+b+(c+d)\*e\*f+g".
+Operator precedence parsing considers this as a stream of primary
+expressions separated by binary operators. As such, it will first parse
+the leading primary expression "a", then it will see the pairs [+, b]
+[+, (c+d)] [\*, e] [\*, f] and [+, g]. Note that because parentheses are
+primary expressions, the binary expression parser doesn't need to worry
+about nested subexpressions like (c+d) at all.
+
+To start, an expression is a primary expression potentially followed by
+a sequence of [binop,primaryexpr] pairs:
+
+.. code-block:: c++
+
+    /// expression
+    ///   ::= primary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParsePrimary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+``ParseBinOpRHS`` is the function that parses the sequence of pairs for
+us. It takes a precedence and a pointer to an expression for the part
+that has been parsed so far. Note that "x" is a perfectly valid
+expression: As such, "binoprhs" is allowed to be empty, in which case it
+returns the expression that is passed into it. In our example above, the
+code passes the expression for "a" into ``ParseBinOpRHS`` and the
+current token is "+".
+
+The precedence value passed into ``ParseBinOpRHS`` indicates the
+*minimal operator precedence* that the function is allowed to eat. For
+example, if the current pair stream is [+, x] and ``ParseBinOpRHS`` is
+passed in a precedence of 40, it will not consume any tokens (because
+the precedence of '+' is only 20). With this in mind, ``ParseBinOpRHS``
+starts with:
+
+.. code-block:: c++
+
+    /// binoprhs
+    ///   ::= ('+' primary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+This code gets the precedence of the current token and checks to see if
+if is too low. Because we defined invalid tokens to have a precedence of
+-1, this check implicitly knows that the pair-stream ends when the token
+stream runs out of binary operators. If this check succeeds, we know
+that the token is a binary operator and that it will be included in this
+expression:
+
+.. code-block:: c++
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the primary expression after the binary operator.
+        ExprAST *RHS = ParsePrimary();
+        if (!RHS) return 0;
+
+As such, this code eats (and remembers) the binary operator and then
+parses the primary expression that follows. This builds up the whole
+pair, the first of which is [+, b] for the running example.
+
+Now that we parsed the left-hand side of an expression and one pair of
+the RHS sequence, we have to decide which way the expression associates.
+In particular, we could have "(a+b) binop unparsed" or "a + (b binop
+unparsed)". To determine this, we look ahead at "binop" to determine its
+precedence and compare it to BinOp's precedence (which is '+' in this
+case):
+
+.. code-block:: c++
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+
+If the precedence of the binop to the right of "RHS" is lower or equal
+to the precedence of our current operator, then we know that the
+parentheses associate as "(a+b) binop ...". In our example, the current
+operator is "+" and the next operator is "+", we know that they have the
+same precedence. In this case we'll create the AST node for "a+b", and
+then continue parsing:
+
+.. code-block:: c++
+
+          ... if body omitted ...
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }  // loop around to the top of the while loop.
+    }
+
+In our example above, this will turn "a+b+" into "(a+b)" and execute the
+next iteration of the loop, with "+" as the current token. The code
+above will eat, remember, and parse "(c+d)" as the primary expression,
+which makes the current pair equal to [+, (c+d)]. It will then evaluate
+the 'if' conditional above with "\*" as the binop to the right of the
+primary. In this case, the precedence of "\*" is higher than the
+precedence of "+" so the if condition will be entered.
+
+The critical question left here is "how can the if condition parse the
+right hand side in full"? In particular, to build the AST correctly for
+our example, it needs to get all of "(c+d)\*e\*f" as the RHS expression
+variable. The code to do this is surprisingly simple (code from the
+above two blocks duplicated for context):
+
+.. code-block:: c++
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }  // loop around to the top of the while loop.
+    }
+
+At this point, we know that the binary operator to the RHS of our
+primary has higher precedence than the binop we are currently parsing.
+As such, we know that any sequence of pairs whose operators are all
+higher precedence than "+" should be parsed together and returned as
+"RHS". To do this, we recursively invoke the ``ParseBinOpRHS`` function
+specifying "TokPrec+1" as the minimum precedence required for it to
+continue. In our example above, this will cause it to return the AST
+node for "(c+d)\*e\*f" as RHS, which is then set as the RHS of the '+'
+expression.
+
+Finally, on the next iteration of the while loop, the "+g" piece is
+parsed and added to the AST. With this little bit of code (14
+non-trivial lines), we correctly handle fully general binary expression
+parsing in a very elegant way. This was a whirlwind tour of this code,
+and it is somewhat subtle. I recommend running through it with a few
+tough examples to see how it works.
+
+This wraps up handling of expressions. At this point, we can point the
+parser at an arbitrary token stream and build an expression from it,
+stopping at the first token that is not part of the expression. Next up
+we need to handle function definitions, etc.
+
+Parsing the Rest
+================
+
+The next thing missing is handling of function prototypes. In
+Kaleidoscope, these are used both for 'extern' function declarations as
+well as function body definitions. The code to do this is
+straight-forward and not very interesting (once you've survived
+expressions):
+
+.. code-block:: c++
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    static PrototypeAST *ParsePrototype() {
+      if (CurTok != tok_identifier)
+        return ErrorP("Expected function name in prototype");
+
+      std::string FnName = IdentifierStr;
+      getNextToken();
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      // Read the list of argument names.
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      return new PrototypeAST(FnName, ArgNames);
+    }
+
+Given this, a function definition is very simple, just a prototype plus
+an expression to implement the body:
+
+.. code-block:: c++
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+In addition, we support 'extern' to declare functions like 'sin' and
+'cos' as well as to support forward declaration of user functions. These
+'extern's are just prototypes with no body:
+
+.. code-block:: c++
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+Finally, we'll also let the user type in arbitrary top-level expressions
+and evaluate them on the fly. We will handle this by defining anonymous
+nullary (zero argument) functions for them:
+
+.. code-block:: c++
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+Now that we have all the pieces, let's build a little driver that will
+let us actually *execute* this code we've built!
+
+The Driver
+==========
+
+The driver for this simply invokes all of the parsing pieces with a
+top-level dispatch loop. There isn't much interesting here, so I'll just
+include the top-level loop. See `below <#code>`_ for full code in the
+"Top-Level Parsing" section.
+
+.. code-block:: c++
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+The most interesting part of this is that we ignore top-level
+semicolons. Why is this, you ask? The basic reason is that if you type
+"4 + 5" at the command line, the parser doesn't know whether that is the
+end of what you will type or not. For example, on the next line you
+could type "def foo..." in which case 4+5 is the end of a top-level
+expression. Alternatively you could type "\* 6", which would continue
+the expression. Having top-level semicolons allows you to type "4+5;",
+and the parser will know you are done.
+
+Conclusions
+===========
+
+With just under 400 lines of commented code (240 lines of non-comment,
+non-blank code), we fully defined our minimal language, including a
+lexer, parser, and AST builder. With this done, the executable will
+validate Kaleidoscope code and tell us if it is grammatically invalid.
+For example, here is a sample interaction:
+
+.. code-block:: bash
+
+    $ ./a.out
+    ready> def foo(x y) x+foo(y, 4.0);
+    Parsed a function definition.
+    ready> def foo(x y) x+y y;
+    Parsed a function definition.
+    Parsed a top-level expr
+    ready> def foo(x y) x+y );
+    Parsed a function definition.
+    Error: unknown token when expecting an expression
+    ready> extern sin(a);
+    ready> Parsed an extern
+    ready> ^D
+    $
+
+There is a lot of room for extension here. You can define new AST nodes,
+extend the language in many ways, etc. In the `next
+installment <LangImpl3.html>`_, we will describe how to generate LLVM
+Intermediate Representation (IR) from the AST.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for this and the previous chapter.
+Note that it is fully self-contained: you don't need LLVM or any
+external libraries at all for this. (Besides the C and C++ standard
+libraries, of course.) To build this, just compile with:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g -O3 toy.cpp
+    # Run
+    ./a.out
+
+Here is the code:
+
+.. code-block:: c++
+
+    #include <cstdio>
+    #include <cstdlib>
+    #include <string>
+    #include <map>
+    #include <vector>
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes).
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+        : Name(name), Args(args) {}
+
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      }
+    }
+
+    /// binoprhs
+    ///   ::= ('+' primary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the primary expression after the binary operator.
+        ExprAST *RHS = ParsePrimary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= primary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParsePrimary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    static PrototypeAST *ParsePrototype() {
+      if (CurTok != tok_identifier)
+        return ErrorP("Expected function name in prototype");
+
+      std::string FnName = IdentifierStr;
+      getNextToken();
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      return new PrototypeAST(FnName, ArgNames);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing
+    //===----------------------------------------------------------------------===//
+
+    static void HandleDefinition() {
+      if (ParseDefinition()) {
+        fprintf(stderr, "Parsed a function definition.\n");
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (ParseExtern()) {
+        fprintf(stderr, "Parsed an extern\n");
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (ParseTopLevelExpr()) {
+        fprintf(stderr, "Parsed a top-level expr\n");
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      return 0;
+    }
+
+`Next: Implementing Code Generation to LLVM IR <LangImpl3.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl3.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl3.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl3.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl3.html (removed)
@@ -1,1268 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Code generation to LLVM IR</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 3
-  <ol>
-    <li><a href="#intro">Chapter 3 Introduction</a></li>
-    <li><a href="#basics">Code Generation Setup</a></li>
-    <li><a href="#exprs">Expression Code Generation</a></li>
-    <li><a href="#funcs">Function Code Generation</a></li>
-    <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer 
-Support</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 3 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  This chapter shows you how to transform the <a 
-href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
-This will teach you a little bit about how LLVM does things, as well as
-demonstrate how easy it is to use.  It's much more work to build a lexer and
-parser than it is to generate LLVM IR code. :)
-</p>
-
-<p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
-later.  LLVM 2.1 and before will not work with it.  Also note that you need
-to use a version of this tutorial that matches your LLVM release: If you are
-using an official LLVM release, use the version of the documentation included
-with your release or on the <a href="http://llvm.org/releases/">llvm.org 
-releases page</a>.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="basics">Code Generation Setup</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-In order to generate LLVM IR, we want some simple setup to get started.  First
-we define virtual code generation (codegen) methods in each AST class:</p>
-
-<div class="doc_code">
-<pre>
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-  <b>virtual Value *Codegen() = 0;</b>
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-  <b>virtual Value *Codegen();</b>
-};
-...
-</pre>
-</div>
-
-<p>The Codegen() method says to emit IR for that AST node along with all the things it
-depends on, and they all return an LLVM Value object. 
-"Value" is the class used to represent a "<a 
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
-Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
-of SSA values is that their value is computed as the related instruction
-executes, and it does not get a new value until (and if) the instruction
-re-executes.  In other words, there is no way to "change" an SSA value.  For
-more information, please read up on <a 
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
-Assignment</a> - the concepts are really quite natural once you grok them.</p>
-
-<p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
-it could also make sense to use a <a
-href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
-other way to model this.  Again, this tutorial won't dwell on good software
-engineering practices: for our purposes, adding a virtual method is
-simplest.</p>
-
-<p>The
-second thing we want is an "Error" method like we used for the parser, which will
-be used to report errors found during code generation (for example, use of an
-undeclared parameter):</p>
-
-<div class="doc_code">
-<pre>
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-static Module *TheModule;
-static IRBuilder<> Builder(getGlobalContext());
-static std::map<std::string, Value*> NamedValues;
-</pre>
-</div>
-
-<p>The static variables will be used during code generation.  <tt>TheModule</tt>
-is the LLVM construct that contains all of the functions and global variables in
-a chunk of code.  In many ways, it is the top-level structure that the LLVM IR
-uses to contain code.</p>
-
-<p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
-LLVM instructions.  Instances of the <a 
-href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> 
-class template keep track of the current place to insert instructions and has
-methods to create new instructions.</p>
-
-<p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
-current scope and what their LLVM representation is.  (In other words, it is a
-symbol table for the code).  In this form of Kaleidoscope, the only things that
-can be referenced are function parameters.  As such, function parameters will
-be in this map when generating code for their function body.</p>
-
-<p>
-With these basics in place, we can start talking about how to generate code for
-each expression.  Note that this assumes that the <tt>Builder</tt> has been set
-up to generate code <em>into</em> something.  For now, we'll assume that this
-has already been done, and we'll just use it to emit code.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="exprs">Expression Code Generation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Generating LLVM code for expression nodes is very straightforward: less
-than 45 lines of commented code for all four of our expression nodes.  First
-we'll do numeric literals:</p>
-
-<div class="doc_code">
-<pre>
-Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-</pre>
-</div>
-
-<p>In the LLVM IR, numeric constants are represented with the
-<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
-internally (<tt>APFloat</tt> has the capability of holding floating point
-constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
-creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
-that constants are all uniqued together and shared.  For this reason, the API
-uses the "foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
-
-<div class="doc_code">
-<pre>
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  return V ? V : ErrorV("Unknown variable name");
-}
-</pre>
-</div>
-
-<p>References to variables are also quite simple using LLVM.  In the simple version
-of Kaleidoscope, we assume that the variable has already been emitted somewhere
-and its value is available.  In practice, the only values that can be in the
-<tt>NamedValues</tt> map are function arguments.  This
-code simply checks to see that the specified name is in the map (if not, an 
-unknown variable is being referenced) and returns the value for it.  In future
-chapters, we'll add support for <a href="LangImpl5.html#for">loop induction 
-variables</a> in the symbol table, and for <a 
-href="LangImpl7.html#localvars">local variables</a>.</p>
-
-<div class="doc_code">
-<pre>
-Value *BinaryExprAST::Codegen() {
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  default: return ErrorV("invalid binary operator");
-  }
-}
-</pre>
-</div>
-
-<p>Binary operators start to get more interesting.  The basic idea here is that
-we recursively emit code for the left-hand side of the expression, then the 
-right-hand side, then we compute the result of the binary expression.  In this
-code, we do a simple switch on the opcode to create the right LLVM instruction.
-</p>
-
-<p>In the example above, the LLVM builder class is starting to show its value.  
-IRBuilder knows where to insert the newly created instruction, all you have to
-do is specify what instruction to create (e.g. with <tt>CreateFAdd</tt>), which
-operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
-for the generated instruction.</p>
-
-<p>One nice thing about LLVM is that the name is just a hint.  For instance, if
-the code above emits multiple "addtmp" variables, LLVM will automatically
-provide each one with an increasing, unique numeric suffix.  Local value names
-for instructions are purely optional, but it makes it much easier to read the
-IR dumps.</p>
-
-<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
-strict rules: for example, the Left and Right operators of
-an <a href="../LangRef.html#i_add">add instruction</a> must have the same
-type, and the result type of the add must match the operand types.  Because
-all values in Kaleidoscope are doubles, this makes for very simple code for add,
-sub and mul.</p>
-
-<p>On the other hand, LLVM specifies that the <a 
-href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
-(a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
-a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
-converts its input integer into a floating point value by treating the input
-as an unsigned value.  In contrast, if we used the <a 
-href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<'
-operator would return 0.0 and -1.0, depending on the input value.</p>
-
-<div class="doc_code">
-<pre>
-Value *CallExprAST::Codegen() {
-  // Look up the name in the global module table.
-  Function *CalleeF = TheModule->getFunction(Callee);
-  if (CalleeF == 0)
-    return ErrorV("Unknown function referenced");
-  
-  // If argument mismatch error.
-  if (CalleeF->arg_size() != Args.size())
-    return ErrorV("Incorrect # arguments passed");
-
-  std::vector<Value*> ArgsV;
-  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-    ArgsV.push_back(Args[i]->Codegen());
-    if (ArgsV.back() == 0) return 0;
-  }
-  
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-</pre>
-</div>
-
-<p>Code generation for function calls is quite straightforward with LLVM.  The
-code above initially does a function name lookup in the LLVM Module's symbol
-table.  Recall that the LLVM Module is the container that holds all of the
-functions we are JIT'ing.  By giving each function the same name as what the
-user specifies, we can use the LLVM symbol table to resolve function names for
-us.</p>
-
-<p>Once we have the function to call, we recursively codegen each argument that
-is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
-instruction</a>.  Note that LLVM uses the native C calling conventions by
-default, allowing these calls to also call into standard library functions like
-"sin" and "cos", with no additional effort.</p>
-
-<p>This wraps up our handling of the four basic expressions that we have so far
-in Kaleidoscope.  Feel free to go in and add some more.  For example, by 
-browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
-several other interesting instructions that are really easy to plug into our
-basic framework.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="funcs">Function Code Generation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Code generation for prototypes and functions must handle a number of
-details, which make their code less beautiful than expression code
-generation, but allows us to  illustrate some important points.  First, lets
-talk about code generation for prototypes: they are used both for function 
-bodies and external function declarations.  The code starts with:</p>
-
-<div class="doc_code">
-<pre>
-Function *PrototypeAST::Codegen() {
-  // Make the function type:  double(double,double) etc.
-  std::vector<Type*> Doubles(Args.size(),
-                             Type::getDoubleTy(getGlobalContext()));
-  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
-                                       Doubles, false);
-
-  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-</pre>
-</div>
-
-<p>This code packs a lot of power into a few lines.  Note first that this 
-function returns a "Function*" instead of a "Value*".  Because a "prototype"
-really talks about the external interface for a function (not the value computed
-by an expression), it makes sense for it to return the LLVM Function it
-corresponds to when codegen'd.</p>
-
-<p>The call to <tt>FunctionType::get</tt> creates
-the <tt>FunctionType</tt> that should be used for a given Prototype.  Since all
-function arguments in Kaleidoscope are of type double, the first line creates
-a vector of "N" LLVM double types.  It then uses the <tt>Functiontype::get</tt>
-method to create a function type that takes "N" doubles as arguments, returns
-one double as a result, and that is not vararg (the false parameter indicates
-this).  Note that Types in LLVM are uniqued just like Constants are, so you
-don't "new" a type, you "get" it.</p>
-
-<p>The final line above actually creates the function that the prototype will
-correspond to.  This indicates the type, linkage and name to use, as well as which
-module to insert into.  "<a href="../LangRef.html#linkage">external linkage</a>"
-means that the function may be defined outside the current module and/or that it
-is callable by functions outside the module.  The Name passed in is the name the
-user specified: since "<tt>TheModule</tt>" is specified, this name is registered
-in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
-above.</p>
-
-<div class="doc_code">
-<pre>
-  // If F conflicted, there was already something named 'Name'.  If it has a
-  // body, don't allow redefinition or reextern.
-  if (F->getName() != Name) {
-    // Delete the one we just made and get the existing one.
-    F->eraseFromParent();
-    F = TheModule->getFunction(Name);
-</pre>
-</div>
-
-<p>The Module symbol table works just like the Function symbol table when it
-comes to name conflicts: if a new function is created with a name that was previously
-added to the symbol table, the new function will get implicitly renamed when added to the
-Module.  The code above exploits this fact to determine if there was a previous
-definition of this function.</p>
-
-<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
-first, we want to allow 'extern'ing a function more than once, as long as the
-prototypes for the externs match (since all arguments have the same type, we
-just have to check that the number of arguments match).  Second, we want to
-allow 'extern'ing a function and then defining a body for it.  This is useful
-when defining mutually recursive functions.</p>
-
-<p>In order to implement this, the code above first checks to see if there is
-a collision on the name of the function.  If so, it deletes the function we just
-created (by calling <tt>eraseFromParent</tt>) and then calling 
-<tt>getFunction</tt> to get the existing function with the specified name.  Note
-that many APIs in LLVM have "erase" forms and "remove" forms.  The "remove" form
-unlinks the object from its parent (e.g. a Function from a Module) and returns
-it.  The "erase" form unlinks the object and then deletes it.</p>
-   
-<div class="doc_code">
-<pre>
-    // If F already has a body, reject this.
-    if (!F->empty()) {
-      ErrorF("redefinition of function");
-      return 0;
-    }
-    
-    // If F took a different number of args, reject.
-    if (F->arg_size() != Args.size()) {
-      ErrorF("redefinition of function with different # args");
-      return 0;
-    }
-  }
-</pre>
-</div>
-
-<p>In order to verify the logic above, we first check to see if the pre-existing
-function is "empty".  In this case, empty means that it has no basic blocks in
-it, which means it has no body.  If it has no body, it is a forward 
-declaration.  Since we don't allow anything after a full definition of the
-function, the code rejects this case.  If the previous reference to a function
-was an 'extern', we simply verify that the number of arguments for that
-definition and this one match up.  If not, we emit an error.</p>
-
-<div class="doc_code">
-<pre>
-  // Set names for all arguments.
-  unsigned Idx = 0;
-  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
-       ++AI, ++Idx) {
-    AI->setName(Args[Idx]);
-    
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = AI;
-  }
-  return F;
-}
-</pre>
-</div>
-
-<p>The last bit of code for prototypes loops over all of the arguments in the
-function, setting the name of the LLVM Argument objects to match, and registering
-the arguments in the <tt>NamedValues</tt> map for future use by the
-<tt>VariableExprAST</tt> AST node.  Once this is set up, it returns the Function
-object to the caller.  Note that we don't check for conflicting 
-argument names here (e.g. "extern foo(a b a)").  Doing so would be very
-straight-forward with the mechanics we have already used above.</p>
-
-<div class="doc_code">
-<pre>
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-</pre>
-</div>
-
-<p>Code generation for function definitions starts out simply enough: we just
-codegen the prototype (Proto) and verify that it is ok.  We then clear out the
-<tt>NamedValues</tt> map to make sure that there isn't anything in it from the
-last function we compiled.  Code generation of the prototype ensures that there
-is an LLVM Function object that is ready to go for us.</p>
-
-<div class="doc_code">
-<pre>
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  if (Value *RetVal = Body->Codegen()) {
-</pre>
-</div>
-
-<p>Now we get to the point where the <tt>Builder</tt> is set up.  The first
-line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
-block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>.  The
-second line then tells the builder that new instructions should be inserted into
-the end of the new basic block.  Basic blocks in LLVM are an important part
-of functions that define the <a 
-href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
-Since we don't have any control flow, our functions will only contain one 
-block at this point.  We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
-
-<div class="doc_code">
-<pre>
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    return TheFunction;
-  }
-</pre>
-</div>
-
-<p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
-the root expression of the function.  If no error happens, this emits code to
-compute the expression into the entry block and returns the value that was
-computed.  Assuming no error, we then create an LLVM <a 
-href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
-Once the function is built, we call <tt>verifyFunction</tt>, which
-is provided by LLVM.  This function does a variety of consistency checks on the
-generated code, to determine if our compiler is doing everything right.  Using
-this is important: it can catch a lot of bugs.  Once the function is finished
-and validated, we return it.</p>
-  
-<div class="doc_code">
-<pre>
-  // Error reading body, remove function.
-  TheFunction->eraseFromParent();
-  return 0;
-}
-</pre>
-</div>
-
-<p>The only piece left here is handling of the error case.  For simplicity, we
-handle this by merely deleting the function we produced with the 
-<tt>eraseFromParent</tt> method.  This allows the user to redefine a function
-that they incorrectly typed in before: if we didn't delete it, it would live in
-the symbol table, with a body, preventing future redefinition.</p>
-
-<p>This code does have a bug, though.  Since the <tt>PrototypeAST::Codegen</tt>
-can return a previously defined forward declaration, our code can actually delete
-a forward declaration.  There are a number of ways to fix this bug, see what you
-can come up with!  Here is a testcase:</p>
-
-<div class="doc_code">
-<pre>
-extern foo(a b);     # ok, defines foo.
-def foo(a b) c;      # error, 'c' is invalid.
-def bar() foo(1, 2); # error, unknown function "foo"
-</pre>
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="driver">Driver Changes and Closing Thoughts</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-For now, code generation to LLVM doesn't really get us much, except that we can
-look at the pretty IR calls.  The sample code inserts calls to Codegen into the
-"<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
-dumps out the LLVM IR.  This gives a nice way to look at the LLVM IR for simple
-functions.  For example:
-</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>4+5</b>;
-Read top-level expression:
-define double @0() {
-entry:
-  ret double 9.000000e+00
-}
-</pre>
-</div>
-
-<p>Note how the parser turns the top-level expression into anonymous functions
-for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT 
-support</a> in the next chapter.  Also note that the code is very literally
-transcribed, no optimizations are being performed except simple constant
-folding done by IRBuilder.  We will 
-<a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
-the next chapter.</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b>
-Read function definition:
-define double @foo(double %a, double %b) {
-entry:
-  %multmp = fmul double %a, %a
-  %multmp1 = fmul double 2.000000e+00, %a
-  %multmp2 = fmul double %multmp1, %b
-  %addtmp = fadd double %multmp, %multmp2
-  %multmp3 = fmul double %b, %b
-  %addtmp4 = fadd double %addtmp, %multmp3
-  ret double %addtmp4
-}
-</pre>
-</div>
-
-<p>This shows some simple arithmetic. Notice the striking similarity to the
-LLVM builder calls that we use to create the instructions.</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
-Read function definition:
-define double @bar(double %a) {
-entry:
-  %calltmp = call double @foo(double %a, double 4.000000e+00)
-  %calltmp1 = call double @bar(double 3.133700e+04)
-  %addtmp = fadd double %calltmp, %calltmp1
-  ret double %addtmp
-}
-</pre>
-</div>
-
-<p>This shows some function calls.  Note that this function will take a long
-time to execute if you call it.  In the future we'll add conditional control 
-flow to actually make recursion useful :).</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>extern cos(x);</b>
-Read extern: 
-declare double @cos(double)
-
-ready> <b>cos(1.234);</b>
-Read top-level expression:
-define double @1() {
-entry:
-  %calltmp = call double @cos(double 1.234000e+00)
-  ret double %calltmp
-}
-</pre>
-</div>
-
-<p>This shows an extern for the libm "cos" function, and a call to it.</p>
-
-
-<div class="doc_code">
-<pre>
-ready> <b>^D</b>
-; ModuleID = 'my cool jit'
-
-define double @0() {
-entry:
-  %addtmp = fadd double 4.000000e+00, 5.000000e+00
-  ret double %addtmp
-}
-
-define double @foo(double %a, double %b) {
-entry:
-  %multmp = fmul double %a, %a
-  %multmp1 = fmul double 2.000000e+00, %a
-  %multmp2 = fmul double %multmp1, %b
-  %addtmp = fadd double %multmp, %multmp2
-  %multmp3 = fmul double %b, %b
-  %addtmp4 = fadd double %addtmp, %multmp3
-  ret double %addtmp4
-}
-
-define double @bar(double %a) {
-entry:
-  %calltmp = call double @foo(double %a, double 4.000000e+00)
-  %calltmp1 = call double @bar(double 3.133700e+04)
-  %addtmp = fadd double %calltmp, %calltmp1
-  ret double %addtmp
-}
-
-declare double @cos(double)
-
-define double @1() {
-entry:
-  %calltmp = call double @cos(double 1.234000e+00)
-  ret double %calltmp
-}
-</pre>
-</div>
-
-<p>When you quit the current demo, it dumps out the IR for the entire module
-generated.  Here you can see the big picture with all the functions referencing
-each other.</p>
-
-<p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
-describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
-support</a> to this so we can actually start running code!</p>
-
-</div>
-
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-LLVM code generator.    Because this uses the LLVM libraries, we need to link
-them in.  To do this, we use the <a 
-href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
-our makefile/command line about which options to use:</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-// To build this:
-// See example below.
-
-#include "llvm/DerivedTypes.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/Verifier.h"
-#include <cstdio>
-#include <string>
-#include <map>
-#include <vector>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    return tok_identifier;
-  }
-
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-  
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-  virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-  virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-  virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-  virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-  virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
-    : Name(name), Args(args) {}
-  
-  Function *Codegen();
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-  
-  Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-  
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  }
-}
-
-/// binoprhs
-///   ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-    
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the primary expression after the binary operator.
-    ExprAST *RHS = ParsePrimary();
-    if (!RHS) return 0;
-    
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }
-}
-
-/// expression
-///   ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParsePrimary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-///   ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
-  if (CurTok != tok_identifier)
-    return ErrorP("Expected function name in prototype");
-
-  std::string FnName = IdentifierStr;
-  getNextToken();
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  return new PrototypeAST(FnName, ArgNames);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder<> Builder(getGlobalContext());
-static std::map<std::string, Value*> NamedValues;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  return V ? V : ErrorV("Unknown variable name");
-}
-
-Value *BinaryExprAST::Codegen() {
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  default: return ErrorV("invalid binary operator");
-  }
-}
-
-Value *CallExprAST::Codegen() {
-  // Look up the name in the global module table.
-  Function *CalleeF = TheModule->getFunction(Callee);
-  if (CalleeF == 0)
-    return ErrorV("Unknown function referenced");
-  
-  // If argument mismatch error.
-  if (CalleeF->arg_size() != Args.size())
-    return ErrorV("Incorrect # arguments passed");
-
-  std::vector<Value*> ArgsV;
-  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-    ArgsV.push_back(Args[i]->Codegen());
-    if (ArgsV.back() == 0) return 0;
-  }
-  
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-
-Function *PrototypeAST::Codegen() {
-  // Make the function type:  double(double,double) etc.
-  std::vector<Type*> Doubles(Args.size(),
-                             Type::getDoubleTy(getGlobalContext()));
-  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
-                                       Doubles, false);
-  
-  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-  
-  // If F conflicted, there was already something named 'Name'.  If it has a
-  // body, don't allow redefinition or reextern.
-  if (F->getName() != Name) {
-    // Delete the one we just made and get the existing one.
-    F->eraseFromParent();
-    F = TheModule->getFunction(Name);
-    
-    // If F already has a body, reject this.
-    if (!F->empty()) {
-      ErrorF("redefinition of function");
-      return 0;
-    }
-    
-    // If F took a different number of args, reject.
-    if (F->arg_size() != Args.size()) {
-      ErrorF("redefinition of function with different # args");
-      return 0;
-    }
-  }
-  
-  // Set names for all arguments.
-  unsigned Idx = 0;
-  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
-       ++AI, ++Idx) {
-    AI->setName(Args[Idx]);
-    
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = AI;
-  }
-  
-  return F;
-}
-
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-  
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    return TheFunction;
-  }
-  
-  // Error reading body, remove function.
-  TheFunction->eraseFromParent();
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static void HandleDefinition() {
-  if (FunctionAST *F = ParseDefinition()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read function definition:");
-      LF->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleExtern() {
-  if (PrototypeAST *P = ParseExtern()) {
-    if (Function *F = P->Codegen()) {
-      fprintf(stderr, "Read extern: ");
-      F->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (FunctionAST *F = ParseTopLevelExpr()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read top-level expression:");
-      LF->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C" 
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
-  LLVMContext &Context = getGlobalContext();
-
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-
-  // Prime the first token.
-  fprintf(stderr, "ready> ");
-  getNextToken();
-
-  // Make the module, which holds all the code.
-  TheModule = new Module("my cool jit", Context);
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-
-  // Print out all of the generated code.
-  TheModule->dump();
-
-  return 0;
-}
-</pre>
-</div>
-<a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl3.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl3.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl3.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl3.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,1162 @@
+========================================
+Kaleidoscope: Code generation to LLVM IR
+========================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Chapter 3 Introduction
+======================
+
+Welcome to Chapter 3 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. This chapter shows you how to transform
+the `Abstract Syntax Tree <LangImpl2.html>`_, built in Chapter 2, into
+LLVM IR. This will teach you a little bit about how LLVM does things, as
+well as demonstrate how easy it is to use. It's much more work to build
+a lexer and parser than it is to generate LLVM IR code. :)
+
+**Please note**: the code in this chapter and later require LLVM 2.2 or
+later. LLVM 2.1 and before will not work with it. Also note that you
+need to use a version of this tutorial that matches your LLVM release:
+If you are using an official LLVM release, use the version of the
+documentation included with your release or on the `llvm.org releases
+page <http://llvm.org/releases/>`_.
+
+Code Generation Setup
+=====================
+
+In order to generate LLVM IR, we want some simple setup to get started.
+First we define virtual code generation (codegen) methods in each AST
+class:
+
+.. code-block:: c++
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+    ...
+
+The Codegen() method says to emit IR for that AST node along with all
+the things it depends on, and they all return an LLVM Value object.
+"Value" is the class used to represent a "`Static Single Assignment
+(SSA) <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+register" or "SSA value" in LLVM. The most distinct aspect of SSA values
+is that their value is computed as the related instruction executes, and
+it does not get a new value until (and if) the instruction re-executes.
+In other words, there is no way to "change" an SSA value. For more
+information, please read up on `Static Single
+Assignment <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+- the concepts are really quite natural once you grok them.
+
+Note that instead of adding virtual methods to the ExprAST class
+hierarchy, it could also make sense to use a `visitor
+pattern <http://en.wikipedia.org/wiki/Visitor_pattern>`_ or some other
+way to model this. Again, this tutorial won't dwell on good software
+engineering practices: for our purposes, adding a virtual method is
+simplest.
+
+The second thing we want is an "Error" method like we used for the
+parser, which will be used to report errors found during code generation
+(for example, use of an undeclared parameter):
+
+.. code-block:: c++
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+
+The static variables will be used during code generation. ``TheModule``
+is the LLVM construct that contains all of the functions and global
+variables in a chunk of code. In many ways, it is the top-level
+structure that the LLVM IR uses to contain code.
+
+The ``Builder`` object is a helper object that makes it easy to generate
+LLVM instructions. Instances of the
+```IRBuilder`` <http://llvm.org/doxygen/IRBuilder_8h-source.html>`_
+class template keep track of the current place to insert instructions
+and has methods to create new instructions.
+
+The ``NamedValues`` map keeps track of which values are defined in the
+current scope and what their LLVM representation is. (In other words, it
+is a symbol table for the code). In this form of Kaleidoscope, the only
+things that can be referenced are function parameters. As such, function
+parameters will be in this map when generating code for their function
+body.
+
+With these basics in place, we can start talking about how to generate
+code for each expression. Note that this assumes that the ``Builder``
+has been set up to generate code *into* something. For now, we'll assume
+that this has already been done, and we'll just use it to emit code.
+
+Expression Code Generation
+==========================
+
+Generating LLVM code for expression nodes is very straightforward: less
+than 45 lines of commented code for all four of our expression nodes.
+First we'll do numeric literals:
+
+.. code-block:: c++
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+In the LLVM IR, numeric constants are represented with the
+``ConstantFP`` class, which holds the numeric value in an ``APFloat``
+internally (``APFloat`` has the capability of holding floating point
+constants of Arbitrary Precision). This code basically just creates
+and returns a ``ConstantFP``. Note that in the LLVM IR that constants
+are all uniqued together and shared. For this reason, the API uses the
+"foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".
+
+.. code-block:: c++
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+References to variables are also quite simple using LLVM. In the simple
+version of Kaleidoscope, we assume that the variable has already been
+emitted somewhere and its value is available. In practice, the only
+values that can be in the ``NamedValues`` map are function arguments.
+This code simply checks to see that the specified name is in the map (if
+not, an unknown variable is being referenced) and returns the value for
+it. In future chapters, we'll add support for `loop induction
+variables <LangImpl5.html#for>`_ in the symbol table, and for `local
+variables <LangImpl7.html#localvars>`_.
+
+.. code-block:: c++
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: return ErrorV("invalid binary operator");
+      }
+    }
+
+Binary operators start to get more interesting. The basic idea here is
+that we recursively emit code for the left-hand side of the expression,
+then the right-hand side, then we compute the result of the binary
+expression. In this code, we do a simple switch on the opcode to create
+the right LLVM instruction.
+
+In the example above, the LLVM builder class is starting to show its
+value. IRBuilder knows where to insert the newly created instruction,
+all you have to do is specify what instruction to create (e.g. with
+``CreateFAdd``), which operands to use (``L`` and ``R`` here) and
+optionally provide a name for the generated instruction.
+
+One nice thing about LLVM is that the name is just a hint. For instance,
+if the code above emits multiple "addtmp" variables, LLVM will
+automatically provide each one with an increasing, unique numeric
+suffix. Local value names for instructions are purely optional, but it
+makes it much easier to read the IR dumps.
+
+`LLVM instructions <../LangRef.html#instref>`_ are constrained by strict
+rules: for example, the Left and Right operators of an `add
+instruction <../LangRef.html#i_add>`_ must have the same type, and the
+result type of the add must match the operand types. Because all values
+in Kaleidoscope are doubles, this makes for very simple code for add,
+sub and mul.
+
+On the other hand, LLVM specifies that the `fcmp
+instruction <../LangRef.html#i_fcmp>`_ always returns an 'i1' value (a
+one bit integer). The problem with this is that Kaleidoscope wants the
+value to be a 0.0 or 1.0 value. In order to get these semantics, we
+combine the fcmp instruction with a `uitofp
+instruction <../LangRef.html#i_uitofp>`_. This instruction converts its
+input integer into a floating point value by treating the input as an
+unsigned value. In contrast, if we used the `sitofp
+instruction <../LangRef.html#i_sitofp>`_, the Kaleidoscope '<' operator
+would return 0.0 and -1.0, depending on the input value.
+
+.. code-block:: c++
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+Code generation for function calls is quite straightforward with LLVM.
+The code above initially does a function name lookup in the LLVM
+Module's symbol table. Recall that the LLVM Module is the container that
+holds all of the functions we are JIT'ing. By giving each function the
+same name as what the user specifies, we can use the LLVM symbol table
+to resolve function names for us.
+
+Once we have the function to call, we recursively codegen each argument
+that is to be passed in, and create an LLVM `call
+instruction <../LangRef.html#i_call>`_. Note that LLVM uses the native C
+calling conventions by default, allowing these calls to also call into
+standard library functions like "sin" and "cos", with no additional
+effort.
+
+This wraps up our handling of the four basic expressions that we have so
+far in Kaleidoscope. Feel free to go in and add some more. For example,
+by browsing the `LLVM language reference <../LangRef.html>`_ you'll find
+several other interesting instructions that are really easy to plug into
+our basic framework.
+
+Function Code Generation
+========================
+
+Code generation for prototypes and functions must handle a number of
+details, which make their code less beautiful than expression code
+generation, but allows us to illustrate some important points. First,
+lets talk about code generation for prototypes: they are used both for
+function bodies and external function declarations. The code starts
+with:
+
+.. code-block:: c++
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+This code packs a lot of power into a few lines. Note first that this
+function returns a "Function\*" instead of a "Value\*". Because a
+"prototype" really talks about the external interface for a function
+(not the value computed by an expression), it makes sense for it to
+return the LLVM Function it corresponds to when codegen'd.
+
+The call to ``FunctionType::get`` creates the ``FunctionType`` that
+should be used for a given Prototype. Since all function arguments in
+Kaleidoscope are of type double, the first line creates a vector of "N"
+LLVM double types. It then uses the ``Functiontype::get`` method to
+create a function type that takes "N" doubles as arguments, returns one
+double as a result, and that is not vararg (the false parameter
+indicates this). Note that Types in LLVM are uniqued just like Constants
+are, so you don't "new" a type, you "get" it.
+
+The final line above actually creates the function that the prototype
+will correspond to. This indicates the type, linkage and name to use, as
+well as which module to insert into. "`external
+linkage <../LangRef.html#linkage>`_" means that the function may be
+defined outside the current module and/or that it is callable by
+functions outside the module. The Name passed in is the name the user
+specified: since "``TheModule``" is specified, this name is registered
+in "``TheModule``"s symbol table, which is used by the function call
+code above.
+
+.. code-block:: c++
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+The Module symbol table works just like the Function symbol table when
+it comes to name conflicts: if a new function is created with a name
+that was previously added to the symbol table, the new function will get
+implicitly renamed when added to the Module. The code above exploits
+this fact to determine if there was a previous definition of this
+function.
+
+In Kaleidoscope, I choose to allow redefinitions of functions in two
+cases: first, we want to allow 'extern'ing a function more than once, as
+long as the prototypes for the externs match (since all arguments have
+the same type, we just have to check that the number of arguments
+match). Second, we want to allow 'extern'ing a function and then
+defining a body for it. This is useful when defining mutually recursive
+functions.
+
+In order to implement this, the code above first checks to see if there
+is a collision on the name of the function. If so, it deletes the
+function we just created (by calling ``eraseFromParent``) and then
+calling ``getFunction`` to get the existing function with the specified
+name. Note that many APIs in LLVM have "erase" forms and "remove" forms.
+The "remove" form unlinks the object from its parent (e.g. a Function
+from a Module) and returns it. The "erase" form unlinks the object and
+then deletes it.
+
+.. code-block:: c++
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+In order to verify the logic above, we first check to see if the
+pre-existing function is "empty". In this case, empty means that it has
+no basic blocks in it, which means it has no body. If it has no body, it
+is a forward declaration. Since we don't allow anything after a full
+definition of the function, the code rejects this case. If the previous
+reference to a function was an 'extern', we simply verify that the
+number of arguments for that definition and this one match up. If not,
+we emit an error.
+
+.. code-block:: c++
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+      return F;
+    }
+
+The last bit of code for prototypes loops over all of the arguments in
+the function, setting the name of the LLVM Argument objects to match,
+and registering the arguments in the ``NamedValues`` map for future use
+by the ``VariableExprAST`` AST node. Once this is set up, it returns the
+Function object to the caller. Note that we don't check for conflicting
+argument names here (e.g. "extern foo(a b a)"). Doing so would be very
+straight-forward with the mechanics we have already used above.
+
+.. code-block:: c++
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+Code generation for function definitions starts out simply enough: we
+just codegen the prototype (Proto) and verify that it is ok. We then
+clear out the ``NamedValues`` map to make sure that there isn't anything
+in it from the last function we compiled. Code generation of the
+prototype ensures that there is an LLVM Function object that is ready to
+go for us.
+
+.. code-block:: c++
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+
+Now we get to the point where the ``Builder`` is set up. The first line
+creates a new `basic block <http://en.wikipedia.org/wiki/Basic_block>`_
+(named "entry"), which is inserted into ``TheFunction``. The second line
+then tells the builder that new instructions should be inserted into the
+end of the new basic block. Basic blocks in LLVM are an important part
+of functions that define the `Control Flow
+Graph <http://en.wikipedia.org/wiki/Control_flow_graph>`_. Since we
+don't have any control flow, our functions will only contain one block
+at this point. We'll fix this in `Chapter 5 <LangImpl5.html>`_ :).
+
+.. code-block:: c++
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        return TheFunction;
+      }
+
+Once the insertion point is set up, we call the ``CodeGen()`` method for
+the root expression of the function. If no error happens, this emits
+code to compute the expression into the entry block and returns the
+value that was computed. Assuming no error, we then create an LLVM `ret
+instruction <../LangRef.html#i_ret>`_, which completes the function.
+Once the function is built, we call ``verifyFunction``, which is
+provided by LLVM. This function does a variety of consistency checks on
+the generated code, to determine if our compiler is doing everything
+right. Using this is important: it can catch a lot of bugs. Once the
+function is finished and validated, we return it.
+
+.. code-block:: c++
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+      return 0;
+    }
+
+The only piece left here is handling of the error case. For simplicity,
+we handle this by merely deleting the function we produced with the
+``eraseFromParent`` method. This allows the user to redefine a function
+that they incorrectly typed in before: if we didn't delete it, it would
+live in the symbol table, with a body, preventing future redefinition.
+
+This code does have a bug, though. Since the ``PrototypeAST::Codegen``
+can return a previously defined forward declaration, our code can
+actually delete a forward declaration. There are a number of ways to fix
+this bug, see what you can come up with! Here is a testcase:
+
+::
+
+    extern foo(a b);     # ok, defines foo.
+    def foo(a b) c;      # error, 'c' is invalid.
+    def bar() foo(1, 2); # error, unknown function "foo"
+
+Driver Changes and Closing Thoughts
+===================================
+
+For now, code generation to LLVM doesn't really get us much, except that
+we can look at the pretty IR calls. The sample code inserts calls to
+Codegen into the "``HandleDefinition``", "``HandleExtern``" etc
+functions, and then dumps out the LLVM IR. This gives a nice way to look
+at the LLVM IR for simple functions. For example:
+
+::
+
+    ready> 4+5;
+    Read top-level expression:
+    define double @0() {
+    entry:
+      ret double 9.000000e+00
+    }
+
+Note how the parser turns the top-level expression into anonymous
+functions for us. This will be handy when we add `JIT
+support <LangImpl4.html#jit>`_ in the next chapter. Also note that the
+code is very literally transcribed, no optimizations are being performed
+except simple constant folding done by IRBuilder. We will `add
+optimizations <LangImpl4.html#trivialconstfold>`_ explicitly in the next
+chapter.
+
+::
+
+    ready> def foo(a b) a*a + 2*a*b + b*b;
+    Read function definition:
+    define double @foo(double %a, double %b) {
+    entry:
+      %multmp = fmul double %a, %a
+      %multmp1 = fmul double 2.000000e+00, %a
+      %multmp2 = fmul double %multmp1, %b
+      %addtmp = fadd double %multmp, %multmp2
+      %multmp3 = fmul double %b, %b
+      %addtmp4 = fadd double %addtmp, %multmp3
+      ret double %addtmp4
+    }
+
+This shows some simple arithmetic. Notice the striking similarity to the
+LLVM builder calls that we use to create the instructions.
+
+::
+
+    ready> def bar(a) foo(a, 4.0) + bar(31337);
+    Read function definition:
+    define double @bar(double %a) {
+    entry:
+      %calltmp = call double @foo(double %a, double 4.000000e+00)
+      %calltmp1 = call double @bar(double 3.133700e+04)
+      %addtmp = fadd double %calltmp, %calltmp1
+      ret double %addtmp
+    }
+
+This shows some function calls. Note that this function will take a long
+time to execute if you call it. In the future we'll add conditional
+control flow to actually make recursion useful :).
+
+::
+
+    ready> extern cos(x);
+    Read extern:
+    declare double @cos(double)
+
+    ready> cos(1.234);
+    Read top-level expression:
+    define double @1() {
+    entry:
+      %calltmp = call double @cos(double 1.234000e+00)
+      ret double %calltmp
+    }
+
+This shows an extern for the libm "cos" function, and a call to it.
+
+.. TODO:: Abandon Pygments' horrible `llvm` lexer. It just totally gives up
+   on highlighting this due to the first line.
+
+::
+
+    ready> ^D
+    ; ModuleID = 'my cool jit'
+
+    define double @0() {
+    entry:
+      %addtmp = fadd double 4.000000e+00, 5.000000e+00
+      ret double %addtmp
+    }
+
+    define double @foo(double %a, double %b) {
+    entry:
+      %multmp = fmul double %a, %a
+      %multmp1 = fmul double 2.000000e+00, %a
+      %multmp2 = fmul double %multmp1, %b
+      %addtmp = fadd double %multmp, %multmp2
+      %multmp3 = fmul double %b, %b
+      %addtmp4 = fadd double %addtmp, %multmp3
+      ret double %addtmp4
+    }
+
+    define double @bar(double %a) {
+    entry:
+      %calltmp = call double @foo(double %a, double 4.000000e+00)
+      %calltmp1 = call double @bar(double 3.133700e+04)
+      %addtmp = fadd double %calltmp, %calltmp1
+      ret double %addtmp
+    }
+
+    declare double @cos(double)
+
+    define double @1() {
+    entry:
+      %calltmp = call double @cos(double 1.234000e+00)
+      ret double %calltmp
+    }
+
+When you quit the current demo, it dumps out the IR for the entire
+module generated. Here you can see the big picture with all the
+functions referencing each other.
+
+This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
+we'll describe how to `add JIT codegen and optimizer
+support <LangImpl4.html>`_ to this so we can actually start running
+code!
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM code generator. Because this uses the LLVM libraries, we need
+to link them in. To do this, we use the
+`llvm-config <http://llvm.org/cmds/llvm-config.html>`_ tool to inform
+our makefile/command line about which options to use:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
+    # Run
+    ./toy
+
+Here is the code:
+
+.. code-block:: c++
+
+    // To build this:
+    // See example below.
+
+    #include "llvm/DerivedTypes.h"
+    #include "llvm/IRBuilder.h"
+    #include "llvm/LLVMContext.h"
+    #include "llvm/Module.h"
+    #include "llvm/Analysis/Verifier.h"
+    #include <cstdio>
+    #include <string>
+    #include <map>
+    #include <vector>
+    using namespace llvm;
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+      virtual Value *Codegen();
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+      virtual Value *Codegen();
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+      virtual Value *Codegen();
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes).
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+        : Name(name), Args(args) {}
+
+      Function *Codegen();
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+      Function *Codegen();
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      }
+    }
+
+    /// binoprhs
+    ///   ::= ('+' primary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the primary expression after the binary operator.
+        ExprAST *RHS = ParsePrimary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= primary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParsePrimary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    static PrototypeAST *ParsePrototype() {
+      if (CurTok != tok_identifier)
+        return ErrorP("Expected function name in prototype");
+
+      std::string FnName = IdentifierStr;
+      getNextToken();
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      return new PrototypeAST(FnName, ArgNames);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Code Generation
+    //===----------------------------------------------------------------------===//
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: return ErrorV("invalid binary operator");
+      }
+    }
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+
+      return F;
+    }
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        return TheFunction;
+      }
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing and JIT Driver
+    //===----------------------------------------------------------------------===//
+
+    static void HandleDefinition() {
+      if (FunctionAST *F = ParseDefinition()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read function definition:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (PrototypeAST *P = ParseExtern()) {
+        if (Function *F = P->Codegen()) {
+          fprintf(stderr, "Read extern: ");
+          F->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read top-level expression:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // "Library" functions that can be "extern'd" from user code.
+    //===----------------------------------------------------------------------===//
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      LLVMContext &Context = getGlobalContext();
+
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Make the module, which holds all the code.
+      TheModule = new Module("my cool jit", Context);
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      // Print out all of the generated code.
+      TheModule->dump();
+
+      return 0;
+    }
+
+`Next: Adding JIT and Optimizer Support <LangImpl4.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl4.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl4.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl4.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl4.html (removed)
@@ -1,1152 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 4
-  <ol>
-    <li><a href="#intro">Chapter 4 Introduction</a></li>
-    <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
-    <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
-    <li><a href="#jit">Adding a JIT Compiler</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control 
-Flow</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 4 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
-language and added support for generating LLVM IR.  This chapter describes
-two new techniques: adding optimizer support to your language, and adding JIT
-compiler support.  These additions will demonstrate how to get nice, efficient code 
-for the Kaleidoscope language.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
-it does not produce wonderful code.  The IRBuilder, however, does give us
-obvious optimizations when compiling simple code:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) 1+2+x;</b>
-Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double 3.000000e+00, %x
-        ret double %addtmp
-}
-</pre>
-</div>
-
-<p>This code is not a literal transcription of the AST built by parsing the 
-input. That would be:
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) 1+2+x;</b>
-Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double 2.000000e+00, 1.000000e+00
-        %addtmp1 = fadd double %addtmp, %x
-        ret double %addtmp1
-}
-</pre>
-</div>
-
-<p>Constant folding, as seen above, in particular, is a very common and very
-important optimization: so much so that many language implementors implement
-constant folding support in their AST representation.</p>
-
-<p>With LLVM, you don't need this support in the AST.  Since all calls to build 
-LLVM IR go through the LLVM IR builder, the builder itself checked to see if 
-there was a constant folding opportunity when you call it.  If so, it just does 
-the constant fold and return the constant instead of creating an instruction.
-
-<p>Well, that was easy :).  In practice, we recommend always using
-<tt>IRBuilder</tt> when generating code like this.  It has no
-"syntactic overhead" for its use (you don't have to uglify your compiler with
-constant checks everywhere) and it can dramatically reduce the amount of
-LLVM IR that is generated in some cases (particular for languages with a macro
-preprocessor or that use a lot of constants).</p>
-
-<p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
-that it does all of its analysis inline with the code as it is built.  If you
-take a slightly more complex example:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) (1+2+x)*(x+(1+2));</b>
-ready> Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double 3.000000e+00, %x
-        %addtmp1 = fadd double %x, 3.000000e+00
-        %multmp = fmul double %addtmp, %addtmp1
-        ret double %multmp
-}
-</pre>
-</div>
-
-<p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
-really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
-of computing "<tt>x+3</tt>" twice.</p>
-
-<p>Unfortunately, no amount of local analysis will be able to detect and correct
-this.  This requires two transformations: reassociation of expressions (to 
-make the add's lexically identical) and Common Subexpression Elimination (CSE)
-to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
-range of optimizations that you can use, in the form of "passes".</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>LLVM provides many optimization passes, which do many different sorts of
-things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
-to the mistaken notion that one set of optimizations is right for all languages
-and for all situations.  LLVM allows a compiler implementor to make complete
-decisions about what optimizations to use, in which order, and in what
-situation.</p>
-
-<p>As a concrete example, LLVM supports both "whole module" passes, which look
-across as large of body of code as they can (often a whole file, but if run 
-at link time, this can be a substantial portion of the whole program).  It also
-supports and includes "per-function" passes which just operate on a single
-function at a time, without looking at other functions.  For more information
-on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
-to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 
-Passes</a>.</p>
-
-<p>For Kaleidoscope, we are currently generating functions on the fly, one at
-a time, as the user types them in.  We aren't shooting for the ultimate
-optimization experience in this setting, but we also want to catch the easy and
-quick stuff where possible.  As such, we will choose to run a few per-function
-optimizations as the user types the function in.  If we wanted to make a "static
-Kaleidoscope compiler", we would use exactly the code we have now, except that
-we would defer running the optimizer until the entire file has been parsed.</p>
-
-<p>In order to get per-function optimizations going, we need to set up a
-<a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
-organize the LLVM optimizations that we want to run.  Once we have that, we can
-add a set of optimizations to run.  The code looks like this:</p>
-
-<div class="doc_code">
-<pre>
-  FunctionPassManager OurFPM(TheModule);
-
-  // Set up the optimizer pipeline.  Start with registering info about how the
-  // target lays out data structures.
-  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
-  // Provide basic AliasAnalysis support for GVN.
-  OurFPM.add(createBasicAliasAnalysisPass());
-  // Do simple "peephole" optimizations and bit-twiddling optzns.
-  OurFPM.add(createInstructionCombiningPass());
-  // Reassociate expressions.
-  OurFPM.add(createReassociatePass());
-  // Eliminate Common SubExpressions.
-  OurFPM.add(createGVNPass());
-  // Simplify the control flow graph (deleting unreachable blocks, etc).
-  OurFPM.add(createCFGSimplificationPass());
-
-  OurFPM.doInitialization();
-
-  // Set the global so the code gen can use this.
-  TheFPM = &OurFPM;
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-</pre>
-</div>
-
-<p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>".  It
-requires a pointer to the <tt>Module</tt> to construct itself.  Once it is set
-up, we use a series of "add" calls to add a bunch of LLVM passes.  The first
-pass is basically boilerplate, it adds a pass so that later optimizations know
-how the data structures in the program are laid out.  The
-"<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get
-to in the next section.</p>
-
-<p>In this case, we choose to add 4 optimization passes.  The passes we chose
-here are a pretty standard set of "cleanup" optimizations that are useful for
-a wide variety of code.  I won't delve into what they do but, believe me,
-they are a good starting place :).</p>
-
-<p>Once the PassManager is set up, we need to make use of it.  We do this by
-running it after our newly created function is constructed (in 
-<tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
-
-<div class="doc_code">
-<pre>
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    <b>// Optimize the function.
-    TheFPM->run(*TheFunction);</b>
-    
-    return TheFunction;
-  }
-</pre>
-</div>
-
-<p>As you can see, this is pretty straightforward.  The 
-<tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
-improving (hopefully) its body.  With this in place, we can try our test above
-again:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) (1+2+x)*(x+(1+2));</b>
-ready> Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double %x, 3.000000e+00
-        %multmp = fmul double %addtmp, %addtmp
-        ret double %multmp
-}
-</pre>
-</div>
-
-<p>As expected, we now get our nicely optimized code, saving a floating point
-add instruction from every execution of this function.</p>
-
-<p>LLVM provides a wide variety of optimizations that can be used in certain
-circumstances.  Some <a href="../Passes.html">documentation about the various 
-passes</a> is available, but it isn't very complete.  Another good source of
-ideas can come from looking at the passes that <tt>Clang</tt> runs to get
-started.  The "<tt>opt</tt>" tool allows you to experiment with passes from the
-command line, so you can see if they do anything.</p>
-
-<p>Now that we have reasonable code coming out of our front-end, lets talk about
-executing it!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="jit">Adding a JIT Compiler</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Code that is available in LLVM IR can have a wide variety of tools 
-applied to it.  For example, you can run optimizations on it (as we did above),
-you can dump it out in textual or binary forms, you can compile the code to an
-assembly file (.s) for some target, or you can JIT compile it.  The nice thing
-about the LLVM IR representation is that it is the "common currency" between
-many different parts of the compiler.
-</p>
-
-<p>In this section, we'll add JIT compiler support to our interpreter.  The
-basic idea that we want for Kaleidoscope is to have the user enter function
-bodies as they do now, but immediately evaluate the top-level expressions they
-type in.  For example, if they type in "1 + 2;", we should evaluate and print
-out 3.  If they define a function, they should be able to call it from the 
-command line.</p>
-
-<p>In order to do this, we first declare and initialize the JIT.  This is done
-by adding a global variable and a call in <tt>main</tt>:</p>
-
-<div class="doc_code">
-<pre>
-<b>static ExecutionEngine *TheExecutionEngine;</b>
-...
-int main() {
-  ..
-  <b>// Create the JIT.  This takes ownership of the module.
-  TheExecutionEngine = EngineBuilder(TheModule).create();</b>
-  ..
-}
-</pre>
-</div>
-
-<p>This creates an abstract "Execution Engine" which can be either a JIT
-compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
-for you if one is available for your platform, otherwise it will fall back to
-the interpreter.</p>
-
-<p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
-There are a variety of APIs that are useful, but the simplest one is the
-"<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the
-specified LLVM Function and returns a function pointer to the generated machine
-code.  In our case, this means that we can change the code that parses a
-top-level expression to look like this:</p>
-
-<div class="doc_code">
-<pre>
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (FunctionAST *F = ParseTopLevelExpr()) {
-    if (Function *LF = F->Codegen()) {
-      LF->dump();  // Dump the function for exposition purposes.
-    
-      <b>// JIT the function, returning a function pointer.
-      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
-      
-      // Cast it to the right type (takes no arguments, returns a double) so we
-      // can call it as a native function.
-      double (*FP)() = (double (*)())(intptr_t)FPtr;
-      fprintf(stderr, "Evaluated to %f\n", FP());</b>
-    }
-</pre>
-</div>
-
-<p>Recall that we compile top-level expressions into a self-contained LLVM
-function that takes no arguments and returns the computed double.  Because the 
-LLVM JIT compiler matches the native platform ABI, this means that you can just
-cast the result pointer to a function pointer of that type and call it directly.
-This means, there is no difference between JIT compiled code and native machine
-code that is statically linked into your application.</p>
-
-<p>With just these two changes, lets see how Kaleidoscope works now!</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>4+5;</b>
-Read top-level expression:
-define double @0() {
-entry:
-  ret double 9.000000e+00
-}
-
-<em>Evaluated to 9.000000</em>
-</pre>
-</div>
-
-<p>Well this looks like it is basically working.  The dump of the function
-shows the "no argument function that always returns double" that we synthesize
-for each top-level expression that is typed in.  This demonstrates very basic
-functionality, but can we do more?</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def testfunc(x y) x + y*2; </b> 
-Read function definition:
-define double @testfunc(double %x, double %y) {
-entry:
-  %multmp = fmul double %y, 2.000000e+00
-  %addtmp = fadd double %multmp, %x
-  ret double %addtmp
-}
-
-ready> <b>testfunc(4, 10);</b>
-Read top-level expression:
-define double @1() {
-entry:
-  %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
-  ret double %calltmp
-}
-
-<em>Evaluated to 24.000000</em>
-</pre>
-</div>
-
-<p>This illustrates that we can now call user code, but there is something a bit
-subtle going on here.  Note that we only invoke the JIT on the anonymous
-functions that <em>call testfunc</em>, but we never invoked it
-on <em>testfunc</em> itself.  What actually happened here is that the JIT
-scanned for all non-JIT'd functions transitively called from the anonymous
-function and compiled all of them before returning
-from <tt>getPointerToFunction()</tt>.</p>
-
-<p>The JIT provides a number of other more advanced interfaces for things like
-freeing allocated machine code, rejit'ing functions to update them, etc.
-However, even with this simple code, we get some surprisingly powerful
-capabilities - check this out (I removed the dump of the anonymous functions,
-you should get the idea by now :) :</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>extern sin(x);</b>
-Read extern: 
-declare double @sin(double)
-
-ready> <b>extern cos(x);</b>
-Read extern: 
-declare double @cos(double)
-
-ready> <b>sin(1.0);</b>
-Read top-level expression:
-define double @2() {
-entry:
-  ret double 0x3FEAED548F090CEE
-}
-
-<em>Evaluated to 0.841471</em>
-
-ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
-Read function definition:
-define double @foo(double %x) {
-entry:
-  %calltmp = call double @sin(double %x)
-  %multmp = fmul double %calltmp, %calltmp
-  %calltmp2 = call double @cos(double %x)
-  %multmp4 = fmul double %calltmp2, %calltmp2
-  %addtmp = fadd double %multmp, %multmp4
-  ret double %addtmp
-}
-
-ready> <b>foo(4.0);</b>
-Read top-level expression:
-define double @3() {
-entry:
-  %calltmp = call double @foo(double 4.000000e+00)
-  ret double %calltmp
-}
-
-<em>Evaluated to 1.000000</em>
-</pre>
-</div>
-
-<p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
-simple: in this
-example, the JIT started execution of a function and got to a function call.  It
-realized that the function was not yet JIT compiled and invoked the standard set
-of routines to resolve the function.  In this case, there is no body defined
-for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
-Kaleidoscope process itself.
-Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
-patches up calls in the module to call the libm version of <tt>sin</tt>
-directly.</p>
-
-<p>The LLVM JIT provides a number of interfaces (look in the 
-<tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
-resolved.  It allows you to establish explicit mappings between IR objects and
-addresses (useful for LLVM global variables that you want to map to static
-tables, for example), allows you to dynamically decide on the fly based on the
-function name, and even allows you to have the JIT compile functions lazily the
-first time they're called.</p>
-
-<p>One interesting application of this is that we can now extend the language
-by writing arbitrary C++ code to implement operations.  For example, if we add:
-</p>
-
-<div class="doc_code">
-<pre>
-/// putchard - putchar that takes a double and returns 0.
-extern "C" 
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-</pre>
-</div>
-
-<p>Now we can produce simple output to the console by using things like:
-"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
-the console (120 is the ASCII code for 'x').  Similar code could be used to 
-implement file I/O, console input, and many other capabilities in
-Kaleidoscope.</p>
-
-<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
-this point, we can compile a non-Turing-complete programming language, optimize
-and JIT compile it in a user-driven way.  Next up we'll look into <a 
-href="LangImpl5.html">extending the language with control flow constructs</a>,
-tackling some interesting LLVM IR issues along the way.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-LLVM JIT and optimizer.  To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>
-If you are compiling this on Linux, make sure to add the "-rdynamic" option 
-as well.  This makes sure that the external functions are resolved properly 
-at runtime.</p>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/DerivedTypes.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Support/TargetSelect.h"
-#include <cstdio>
-#include <string>
-#include <map>
-#include <vector>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    return tok_identifier;
-  }
-
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-  
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-  virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-  virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-  virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-  virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-  virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
-    : Name(name), Args(args) {}
-  
-  Function *Codegen();
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-  
-  Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-  
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  }
-}
-
-/// binoprhs
-///   ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-    
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the primary expression after the binary operator.
-    ExprAST *RHS = ParsePrimary();
-    if (!RHS) return 0;
-    
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }
-}
-
-/// expression
-///   ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParsePrimary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-///   ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
-  if (CurTok != tok_identifier)
-    return ErrorP("Expected function name in prototype");
-
-  std::string FnName = IdentifierStr;
-  getNextToken();
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  return new PrototypeAST(FnName, ArgNames);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder<> Builder(getGlobalContext());
-static std::map<std::string, Value*> NamedValues;
-static FunctionPassManager *TheFPM;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  return V ? V : ErrorV("Unknown variable name");
-}
-
-Value *BinaryExprAST::Codegen() {
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  default: return ErrorV("invalid binary operator");
-  }
-}
-
-Value *CallExprAST::Codegen() {
-  // Look up the name in the global module table.
-  Function *CalleeF = TheModule->getFunction(Callee);
-  if (CalleeF == 0)
-    return ErrorV("Unknown function referenced");
-  
-  // If argument mismatch error.
-  if (CalleeF->arg_size() != Args.size())
-    return ErrorV("Incorrect # arguments passed");
-
-  std::vector<Value*> ArgsV;
-  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-    ArgsV.push_back(Args[i]->Codegen());
-    if (ArgsV.back() == 0) return 0;
-  }
-  
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-
-Function *PrototypeAST::Codegen() {
-  // Make the function type:  double(double,double) etc.
-  std::vector<Type*> Doubles(Args.size(),
-                             Type::getDoubleTy(getGlobalContext()));
-  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
-                                       Doubles, false);
-  
-  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-  
-  // If F conflicted, there was already something named 'Name'.  If it has a
-  // body, don't allow redefinition or reextern.
-  if (F->getName() != Name) {
-    // Delete the one we just made and get the existing one.
-    F->eraseFromParent();
-    F = TheModule->getFunction(Name);
-    
-    // If F already has a body, reject this.
-    if (!F->empty()) {
-      ErrorF("redefinition of function");
-      return 0;
-    }
-    
-    // If F took a different number of args, reject.
-    if (F->arg_size() != Args.size()) {
-      ErrorF("redefinition of function with different # args");
-      return 0;
-    }
-  }
-  
-  // Set names for all arguments.
-  unsigned Idx = 0;
-  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
-       ++AI, ++Idx) {
-    AI->setName(Args[Idx]);
-    
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = AI;
-  }
-  
-  return F;
-}
-
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-  
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    // Optimize the function.
-    TheFPM->run(*TheFunction);
-    
-    return TheFunction;
-  }
-  
-  // Error reading body, remove function.
-  TheFunction->eraseFromParent();
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static ExecutionEngine *TheExecutionEngine;
-
-static void HandleDefinition() {
-  if (FunctionAST *F = ParseDefinition()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read function definition:");
-      LF->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleExtern() {
-  if (PrototypeAST *P = ParseExtern()) {
-    if (Function *F = P->Codegen()) {
-      fprintf(stderr, "Read extern: ");
-      F->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (FunctionAST *F = ParseTopLevelExpr()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read top-level expression:");
-      LF->dump();
-
-      // JIT the function, returning a function pointer.
-      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
-      
-      // Cast it to the right type (takes no arguments, returns a double) so we
-      // can call it as a native function.
-      double (*FP)() = (double (*)())(intptr_t)FPtr;
-      fprintf(stderr, "Evaluated to %f\n", FP());
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C" 
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
-  InitializeNativeTarget();
-  LLVMContext &Context = getGlobalContext();
-
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-
-  // Prime the first token.
-  fprintf(stderr, "ready> ");
-  getNextToken();
-
-  // Make the module, which holds all the code.
-  TheModule = new Module("my cool jit", Context);
-
-  // Create the JIT.  This takes ownership of the module.
-  std::string ErrStr;
-  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
-  if (!TheExecutionEngine) {
-    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
-    exit(1);
-  }
-
-  FunctionPassManager OurFPM(TheModule);
-
-  // Set up the optimizer pipeline.  Start with registering info about how the
-  // target lays out data structures.
-  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
-  // Provide basic AliasAnalysis support for GVN.
-  OurFPM.add(createBasicAliasAnalysisPass());
-  // Do simple "peephole" optimizations and bit-twiddling optzns.
-  OurFPM.add(createInstructionCombiningPass());
-  // Reassociate expressions.
-  OurFPM.add(createReassociatePass());
-  // Eliminate Common SubExpressions.
-  OurFPM.add(createGVNPass());
-  // Simplify the control flow graph (deleting unreachable blocks, etc).
-  OurFPM.add(createCFGSimplificationPass());
-
-  OurFPM.doInitialization();
-
-  // Set the global so the code gen can use this.
-  TheFPM = &OurFPM;
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-
-  TheFPM = 0;
-
-  // Print out all of the generated code.
-  TheModule->dump();
-
-  return 0;
-}
-</pre>
-</div>
-
-<a href="LangImpl5.html">Next: Extending the language: control flow</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl4.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl4.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl4.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl4.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,1063 @@
+==============================================
+Kaleidoscope: Adding JIT and Optimizer Support
+==============================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Chapter 4 Introduction
+======================
+
+Welcome to Chapter 4 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation
+of a simple language and added support for generating LLVM IR. This
+chapter describes two new techniques: adding optimizer support to your
+language, and adding JIT compiler support. These additions will
+demonstrate how to get nice, efficient code for the Kaleidoscope
+language.
+
+Trivial Constant Folding
+========================
+
+Our demonstration for Chapter 3 is elegant and easy to extend.
+Unfortunately, it does not produce wonderful code. The IRBuilder,
+however, does give us obvious optimizations when compiling simple code:
+
+::
+
+    ready> def test(x) 1+2+x;
+    Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 3.000000e+00, %x
+            ret double %addtmp
+    }
+
+This code is not a literal transcription of the AST built by parsing the
+input. That would be:
+
+::
+
+    ready> def test(x) 1+2+x;
+    Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 2.000000e+00, 1.000000e+00
+            %addtmp1 = fadd double %addtmp, %x
+            ret double %addtmp1
+    }
+
+Constant folding, as seen above, in particular, is a very common and
+very important optimization: so much so that many language implementors
+implement constant folding support in their AST representation.
+
+With LLVM, you don't need this support in the AST. Since all calls to
+build LLVM IR go through the LLVM IR builder, the builder itself checked
+to see if there was a constant folding opportunity when you call it. If
+so, it just does the constant fold and return the constant instead of
+creating an instruction.
+
+Well, that was easy :). In practice, we recommend always using
+``IRBuilder`` when generating code like this. It has no "syntactic
+overhead" for its use (you don't have to uglify your compiler with
+constant checks everywhere) and it can dramatically reduce the amount of
+LLVM IR that is generated in some cases (particular for languages with a
+macro preprocessor or that use a lot of constants).
+
+On the other hand, the ``IRBuilder`` is limited by the fact that it does
+all of its analysis inline with the code as it is built. If you take a
+slightly more complex example:
+
+::
+
+    ready> def test(x) (1+2+x)*(x+(1+2));
+    ready> Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 3.000000e+00, %x
+            %addtmp1 = fadd double %x, 3.000000e+00
+            %multmp = fmul double %addtmp, %addtmp1
+            ret double %multmp
+    }
+
+In this case, the LHS and RHS of the multiplication are the same value.
+We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``"
+instead of computing "``x+3``" twice.
+
+Unfortunately, no amount of local analysis will be able to detect and
+correct this. This requires two transformations: reassociation of
+expressions (to make the add's lexically identical) and Common
+Subexpression Elimination (CSE) to delete the redundant add instruction.
+Fortunately, LLVM provides a broad range of optimizations that you can
+use, in the form of "passes".
+
+LLVM Optimization Passes
+========================
+
+LLVM provides many optimization passes, which do many different sorts of
+things and have different tradeoffs. Unlike other systems, LLVM doesn't
+hold to the mistaken notion that one set of optimizations is right for
+all languages and for all situations. LLVM allows a compiler implementor
+to make complete decisions about what optimizations to use, in which
+order, and in what situation.
+
+As a concrete example, LLVM supports both "whole module" passes, which
+look across as large of body of code as they can (often a whole file,
+but if run at link time, this can be a substantial portion of the whole
+program). It also supports and includes "per-function" passes which just
+operate on a single function at a time, without looking at other
+functions. For more information on passes and how they are run, see the
+`How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the
+`List of LLVM Passes <../Passes.html>`_.
+
+For Kaleidoscope, we are currently generating functions on the fly, one
+at a time, as the user types them in. We aren't shooting for the
+ultimate optimization experience in this setting, but we also want to
+catch the easy and quick stuff where possible. As such, we will choose
+to run a few per-function optimizations as the user types the function
+in. If we wanted to make a "static Kaleidoscope compiler", we would use
+exactly the code we have now, except that we would defer running the
+optimizer until the entire file has been parsed.
+
+In order to get per-function optimizations going, we need to set up a
+`FunctionPassManager <../WritingAnLLVMPass.html#passmanager>`_ to hold
+and organize the LLVM optimizations that we want to run. Once we have
+that, we can add a set of optimizations to run. The code looks like
+this:
+
+.. code-block:: c++
+
+      FunctionPassManager OurFPM(TheModule);
+
+      // Set up the optimizer pipeline.  Start with registering info about how the
+      // target lays out data structures.
+      OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+      // Provide basic AliasAnalysis support for GVN.
+      OurFPM.add(createBasicAliasAnalysisPass());
+      // Do simple "peephole" optimizations and bit-twiddling optzns.
+      OurFPM.add(createInstructionCombiningPass());
+      // Reassociate expressions.
+      OurFPM.add(createReassociatePass());
+      // Eliminate Common SubExpressions.
+      OurFPM.add(createGVNPass());
+      // Simplify the control flow graph (deleting unreachable blocks, etc).
+      OurFPM.add(createCFGSimplificationPass());
+
+      OurFPM.doInitialization();
+
+      // Set the global so the code gen can use this.
+      TheFPM = &OurFPM;
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+This code defines a ``FunctionPassManager``, "``OurFPM``". It requires a
+pointer to the ``Module`` to construct itself. Once it is set up, we use
+a series of "add" calls to add a bunch of LLVM passes. The first pass is
+basically boilerplate, it adds a pass so that later optimizations know
+how the data structures in the program are laid out. The
+"``TheExecutionEngine``" variable is related to the JIT, which we will
+get to in the next section.
+
+In this case, we choose to add 4 optimization passes. The passes we
+chose here are a pretty standard set of "cleanup" optimizations that are
+useful for a wide variety of code. I won't delve into what they do but,
+believe me, they are a good starting place :).
+
+Once the PassManager is set up, we need to make use of it. We do this by
+running it after our newly created function is constructed (in
+``FunctionAST::Codegen``), but before it is returned to the client:
+
+.. code-block:: c++
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        // Optimize the function.
+        TheFPM->run(*TheFunction);
+
+        return TheFunction;
+      }
+
+As you can see, this is pretty straightforward. The
+``FunctionPassManager`` optimizes and updates the LLVM Function\* in
+place, improving (hopefully) its body. With this in place, we can try
+our test above again:
+
+::
+
+    ready> def test(x) (1+2+x)*(x+(1+2));
+    ready> Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double %x, 3.000000e+00
+            %multmp = fmul double %addtmp, %addtmp
+            ret double %multmp
+    }
+
+As expected, we now get our nicely optimized code, saving a floating
+point add instruction from every execution of this function.
+
+LLVM provides a wide variety of optimizations that can be used in
+certain circumstances. Some `documentation about the various
+passes <../Passes.html>`_ is available, but it isn't very complete.
+Another good source of ideas can come from looking at the passes that
+``Clang`` runs to get started. The "``opt``" tool allows you to
+experiment with passes from the command line, so you can see if they do
+anything.
+
+Now that we have reasonable code coming out of our front-end, lets talk
+about executing it!
+
+Adding a JIT Compiler
+=====================
+
+Code that is available in LLVM IR can have a wide variety of tools
+applied to it. For example, you can run optimizations on it (as we did
+above), you can dump it out in textual or binary forms, you can compile
+the code to an assembly file (.s) for some target, or you can JIT
+compile it. The nice thing about the LLVM IR representation is that it
+is the "common currency" between many different parts of the compiler.
+
+In this section, we'll add JIT compiler support to our interpreter. The
+basic idea that we want for Kaleidoscope is to have the user enter
+function bodies as they do now, but immediately evaluate the top-level
+expressions they type in. For example, if they type in "1 + 2;", we
+should evaluate and print out 3. If they define a function, they should
+be able to call it from the command line.
+
+In order to do this, we first declare and initialize the JIT. This is
+done by adding a global variable and a call in ``main``:
+
+.. code-block:: c++
+
+    static ExecutionEngine *TheExecutionEngine;
+    ...
+    int main() {
+      ..
+      // Create the JIT.  This takes ownership of the module.
+      TheExecutionEngine = EngineBuilder(TheModule).create();
+      ..
+    }
+
+This creates an abstract "Execution Engine" which can be either a JIT
+compiler or the LLVM interpreter. LLVM will automatically pick a JIT
+compiler for you if one is available for your platform, otherwise it
+will fall back to the interpreter.
+
+Once the ``ExecutionEngine`` is created, the JIT is ready to be used.
+There are a variety of APIs that are useful, but the simplest one is the
+"``getPointerToFunction(F)``" method. This method JIT compiles the
+specified LLVM Function and returns a function pointer to the generated
+machine code. In our case, this means that we can change the code that
+parses a top-level expression to look like this:
+
+.. code-block:: c++
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          LF->dump();  // Dump the function for exposition purposes.
+
+          // JIT the function, returning a function pointer.
+          void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+
+          // Cast it to the right type (takes no arguments, returns a double) so we
+          // can call it as a native function.
+          double (*FP)() = (double (*)())(intptr_t)FPtr;
+          fprintf(stderr, "Evaluated to %f\n", FP());
+        }
+
+Recall that we compile top-level expressions into a self-contained LLVM
+function that takes no arguments and returns the computed double.
+Because the LLVM JIT compiler matches the native platform ABI, this
+means that you can just cast the result pointer to a function pointer of
+that type and call it directly. This means, there is no difference
+between JIT compiled code and native machine code that is statically
+linked into your application.
+
+With just these two changes, lets see how Kaleidoscope works now!
+
+::
+
+    ready> 4+5;
+    Read top-level expression:
+    define double @0() {
+    entry:
+      ret double 9.000000e+00
+    }
+
+    Evaluated to 9.000000
+
+Well this looks like it is basically working. The dump of the function
+shows the "no argument function that always returns double" that we
+synthesize for each top-level expression that is typed in. This
+demonstrates very basic functionality, but can we do more?
+
+::
+
+    ready> def testfunc(x y) x + y*2;
+    Read function definition:
+    define double @testfunc(double %x, double %y) {
+    entry:
+      %multmp = fmul double %y, 2.000000e+00
+      %addtmp = fadd double %multmp, %x
+      ret double %addtmp
+    }
+
+    ready> testfunc(4, 10);
+    Read top-level expression:
+    define double @1() {
+    entry:
+      %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
+      ret double %calltmp
+    }
+
+    Evaluated to 24.000000
+
+This illustrates that we can now call user code, but there is something
+a bit subtle going on here. Note that we only invoke the JIT on the
+anonymous functions that *call testfunc*, but we never invoked it on
+*testfunc* itself. What actually happened here is that the JIT scanned
+for all non-JIT'd functions transitively called from the anonymous
+function and compiled all of them before returning from
+``getPointerToFunction()``.
+
+The JIT provides a number of other more advanced interfaces for things
+like freeing allocated machine code, rejit'ing functions to update them,
+etc. However, even with this simple code, we get some surprisingly
+powerful capabilities - check this out (I removed the dump of the
+anonymous functions, you should get the idea by now :) :
+
+::
+
+    ready> extern sin(x);
+    Read extern:
+    declare double @sin(double)
+
+    ready> extern cos(x);
+    Read extern:
+    declare double @cos(double)
+
+    ready> sin(1.0);
+    Read top-level expression:
+    define double @2() {
+    entry:
+      ret double 0x3FEAED548F090CEE
+    }
+
+    Evaluated to 0.841471
+
+    ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
+    Read function definition:
+    define double @foo(double %x) {
+    entry:
+      %calltmp = call double @sin(double %x)
+      %multmp = fmul double %calltmp, %calltmp
+      %calltmp2 = call double @cos(double %x)
+      %multmp4 = fmul double %calltmp2, %calltmp2
+      %addtmp = fadd double %multmp, %multmp4
+      ret double %addtmp
+    }
+
+    ready> foo(4.0);
+    Read top-level expression:
+    define double @3() {
+    entry:
+      %calltmp = call double @foo(double 4.000000e+00)
+      ret double %calltmp
+    }
+
+    Evaluated to 1.000000
+
+Whoa, how does the JIT know about sin and cos? The answer is
+surprisingly simple: in this example, the JIT started execution of a
+function and got to a function call. It realized that the function was
+not yet JIT compiled and invoked the standard set of routines to resolve
+the function. In this case, there is no body defined for the function,
+so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope
+process itself. Since "``sin``" is defined within the JIT's address
+space, it simply patches up calls in the module to call the libm version
+of ``sin`` directly.
+
+The LLVM JIT provides a number of interfaces (look in the
+``ExecutionEngine.h`` file) for controlling how unknown functions get
+resolved. It allows you to establish explicit mappings between IR
+objects and addresses (useful for LLVM global variables that you want to
+map to static tables, for example), allows you to dynamically decide on
+the fly based on the function name, and even allows you to have the JIT
+compile functions lazily the first time they're called.
+
+One interesting application of this is that we can now extend the
+language by writing arbitrary C++ code to implement operations. For
+example, if we add:
+
+.. code-block:: c++
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+Now we can produce simple output to the console by using things like:
+"``extern putchard(x); putchard(120);``", which prints a lowercase 'x'
+on the console (120 is the ASCII code for 'x'). Similar code could be
+used to implement file I/O, console input, and many other capabilities
+in Kaleidoscope.
+
+This completes the JIT and optimizer chapter of the Kaleidoscope
+tutorial. At this point, we can compile a non-Turing-complete
+programming language, optimize and JIT compile it in a user-driven way.
+Next up we'll look into `extending the language with control flow
+constructs <LangImpl5.html>`_, tackling some interesting LLVM IR issues
+along the way.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM JIT and optimizer. To build this example, use:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
+    # Run
+    ./toy
+
+If you are compiling this on Linux, make sure to add the "-rdynamic"
+option as well. This makes sure that the external functions are resolved
+properly at runtime.
+
+Here is the code:
+
+.. code-block:: c++
+
+    #include "llvm/DerivedTypes.h"
+    #include "llvm/ExecutionEngine/ExecutionEngine.h"
+    #include "llvm/ExecutionEngine/JIT.h"
+    #include "llvm/IRBuilder.h"
+    #include "llvm/LLVMContext.h"
+    #include "llvm/Module.h"
+    #include "llvm/PassManager.h"
+    #include "llvm/Analysis/Verifier.h"
+    #include "llvm/Analysis/Passes.h"
+    #include "llvm/DataLayout.h"
+    #include "llvm/Transforms/Scalar.h"
+    #include "llvm/Support/TargetSelect.h"
+    #include <cstdio>
+    #include <string>
+    #include <map>
+    #include <vector>
+    using namespace llvm;
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+      virtual Value *Codegen();
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+      virtual Value *Codegen();
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+      virtual Value *Codegen();
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes).
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+        : Name(name), Args(args) {}
+
+      Function *Codegen();
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+      Function *Codegen();
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      }
+    }
+
+    /// binoprhs
+    ///   ::= ('+' primary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the primary expression after the binary operator.
+        ExprAST *RHS = ParsePrimary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= primary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParsePrimary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    static PrototypeAST *ParsePrototype() {
+      if (CurTok != tok_identifier)
+        return ErrorP("Expected function name in prototype");
+
+      std::string FnName = IdentifierStr;
+      getNextToken();
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      return new PrototypeAST(FnName, ArgNames);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Code Generation
+    //===----------------------------------------------------------------------===//
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+    static FunctionPassManager *TheFPM;
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: return ErrorV("invalid binary operator");
+      }
+    }
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+
+      return F;
+    }
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        // Optimize the function.
+        TheFPM->run(*TheFunction);
+
+        return TheFunction;
+      }
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing and JIT Driver
+    //===----------------------------------------------------------------------===//
+
+    static ExecutionEngine *TheExecutionEngine;
+
+    static void HandleDefinition() {
+      if (FunctionAST *F = ParseDefinition()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read function definition:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (PrototypeAST *P = ParseExtern()) {
+        if (Function *F = P->Codegen()) {
+          fprintf(stderr, "Read extern: ");
+          F->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read top-level expression:");
+          LF->dump();
+
+          // JIT the function, returning a function pointer.
+          void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+
+          // Cast it to the right type (takes no arguments, returns a double) so we
+          // can call it as a native function.
+          double (*FP)() = (double (*)())(intptr_t)FPtr;
+          fprintf(stderr, "Evaluated to %f\n", FP());
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // "Library" functions that can be "extern'd" from user code.
+    //===----------------------------------------------------------------------===//
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      InitializeNativeTarget();
+      LLVMContext &Context = getGlobalContext();
+
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Make the module, which holds all the code.
+      TheModule = new Module("my cool jit", Context);
+
+      // Create the JIT.  This takes ownership of the module.
+      std::string ErrStr;
+      TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+      if (!TheExecutionEngine) {
+        fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+        exit(1);
+      }
+
+      FunctionPassManager OurFPM(TheModule);
+
+      // Set up the optimizer pipeline.  Start with registering info about how the
+      // target lays out data structures.
+      OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+      // Provide basic AliasAnalysis support for GVN.
+      OurFPM.add(createBasicAliasAnalysisPass());
+      // Do simple "peephole" optimizations and bit-twiddling optzns.
+      OurFPM.add(createInstructionCombiningPass());
+      // Reassociate expressions.
+      OurFPM.add(createReassociatePass());
+      // Eliminate Common SubExpressions.
+      OurFPM.add(createGVNPass());
+      // Simplify the control flow graph (deleting unreachable blocks, etc).
+      OurFPM.add(createCFGSimplificationPass());
+
+      OurFPM.doInitialization();
+
+      // Set the global so the code gen can use this.
+      TheFPM = &OurFPM;
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      TheFPM = 0;
+
+      // Print out all of the generated code.
+      TheModule->dump();
+
+      return 0;
+    }
+
+`Next: Extending the language: control flow <LangImpl5.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl5.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl5.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl5.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl5.html (removed)
@@ -1,1772 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Extending the Language: Control Flow</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Extending the Language: Control Flow</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 5
-  <ol>
-    <li><a href="#intro">Chapter 5 Introduction</a></li>
-    <li><a href="#ifthen">If/Then/Else</a>
-    <ol>
-      <li><a href="#iflexer">Lexer Extensions</a></li>
-      <li><a href="#ifast">AST Extensions</a></li>
-      <li><a href="#ifparser">Parser Extensions</a></li>
-      <li><a href="#ifir">LLVM IR</a></li>
-      <li><a href="#ifcodegen">Code Generation</a></li>
-    </ol>
-    </li>
-    <li><a href="#for">'for' Loop Expression</a>
-    <ol>
-      <li><a href="#forlexer">Lexer Extensions</a></li>
-      <li><a href="#forast">AST Extensions</a></li>
-      <li><a href="#forparser">Parser Extensions</a></li>
-      <li><a href="#forir">LLVM IR</a></li>
-      <li><a href="#forcodegen">Code Generation</a></li>
-    </ol>
-    </li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language: 
-User-defined Operators</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 5 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  Parts 1-4 described the implementation of the simple
-Kaleidoscope language and included support for generating LLVM IR, followed by
-optimizations and a JIT compiler.  Unfortunately, as presented, Kaleidoscope is
-mostly useless: it has no control flow other than call and return.  This means
-that you can't have conditional branches in the code, significantly limiting its
-power.  In this episode of "build that compiler", we'll extend Kaleidoscope to
-have an if/then/else expression plus a simple 'for' loop.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="ifthen">If/Then/Else</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Extending Kaleidoscope to support if/then/else is quite straightforward.  It
-basically requires adding support for this "new" concept to the lexer,
-parser, AST, and LLVM code emitter.  This example is nice, because it shows how
-easy it is to "grow" a language over time, incrementally extending it as new
-ideas are discovered.</p>
-
-<p>Before we get going on "how" we add this extension, lets talk about "what" we
-want.  The basic idea is that we want to be able to write this sort of thing:
-</p>
-
-<div class="doc_code">
-<pre>
-def fib(x)
-  if x < 3 then
-    1
-  else
-    fib(x-1)+fib(x-2);
-</pre>
-</div>
-
-<p>In Kaleidoscope, every construct is an expression: there are no statements.
-As such, the if/then/else expression needs to return a value like any other.
-Since we're using a mostly functional form, we'll have it evaluate its
-conditional, then return the 'then' or 'else' value based on how the condition
-was resolved.  This is very similar to the C "?:" expression.</p>
-
-<p>The semantics of the if/then/else expression is that it evaluates the
-condition to a boolean equality value: 0.0 is considered to be false and
-everything else is considered to be true.
-If the condition is true, the first subexpression is evaluated and returned, if
-the condition is false, the second subexpression is evaluated and returned.
-Since Kaleidoscope allows side-effects, this behavior is important to nail down.
-</p>
-
-<p>Now that we know what we "want", lets break this down into its constituent
-pieces.</p>
-
-<!-- ======================================================================= -->
-<h4><a name="iflexer">Lexer Extensions for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-
-<div>
-
-<p>The lexer extensions are straightforward.  First we add new enum values
-for the relevant tokens:</p>
-
-<div class="doc_code">
-<pre>
-  // control
-  tok_if = -6, tok_then = -7, tok_else = -8,
-</pre>
-</div>
-
-<p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
-stuff:</p>
-
-<div class="doc_code">
-<pre>
-    ...
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    <b>if (IdentifierStr == "if") return tok_if;
-    if (IdentifierStr == "then") return tok_then;
-    if (IdentifierStr == "else") return tok_else;</b>
-    return tok_identifier;
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifast">AST Extensions for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>To represent the new expression we add a new AST node for it:</p>
-
-<div class="doc_code">
-<pre>
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
-  ExprAST *Cond, *Then, *Else;
-public:
-  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
-    : Cond(cond), Then(then), Else(_else) {}
-  virtual Value *Codegen();
-};
-</pre>
-</div>
-
-<p>The AST node just has pointers to the various subexpressions.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifparser">Parser Extensions for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Now that we have the relevant tokens coming from the lexer and we have the
-AST node to build, our parsing logic is relatively straightforward.  First we
-define a new parsing function:</p>
-
-<div class="doc_code">
-<pre>
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
-  getNextToken();  // eat the if.
-  
-  // condition.
-  ExprAST *Cond = ParseExpression();
-  if (!Cond) return 0;
-  
-  if (CurTok != tok_then)
-    return Error("expected then");
-  getNextToken();  // eat the then
-  
-  ExprAST *Then = ParseExpression();
-  if (Then == 0) return 0;
-  
-  if (CurTok != tok_else)
-    return Error("expected else");
-  
-  getNextToken();
-  
-  ExprAST *Else = ParseExpression();
-  if (!Else) return 0;
-  
-  return new IfExprAST(Cond, Then, Else);
-}
-</pre>
-</div>
-
-<p>Next we hook it up as a primary expression:</p>
-
-<div class="doc_code">
-<pre>
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  <b>case tok_if:         return ParseIfExpr();</b>
-  }
-}
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifir">LLVM IR for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Now that we have it parsing and building the AST, the final piece is adding
-LLVM code generation support.  This is the most interesting part of the
-if/then/else example, because this is where it starts to introduce new concepts.
-All of the code above has been thoroughly described in previous chapters.
-</p>
-
-<p>To motivate the code we want to produce, lets take a look at a simple
-example.  Consider:</p>
-
-<div class="doc_code">
-<pre>
-extern foo();
-extern bar();
-def baz(x) if x then foo() else bar();
-</pre>
-</div>
-
-<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
-looks like this:</p>
-
-<div class="doc_code">
-<pre>
-declare double @foo()
-
-declare double @bar()
-
-define double @baz(double %x) {
-entry:
-  %ifcond = fcmp one double %x, 0.000000e+00
-  br i1 %ifcond, label %then, label %else
-
-then:		; preds = %entry
-  %calltmp = call double @foo()
-  br label %ifcont
-
-else:		; preds = %entry
-  %calltmp1 = call double @bar()
-  br label %ifcont
-
-ifcont:		; preds = %else, %then
-  %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
-  ret double %iftmp
-}
-</pre>
-</div>
-
-<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
-'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool.  If you put this LLVM IR
-into "t.ll" and run "<tt>llvm-as < t.ll | opt -analyze -view-cfg</tt>", <a
-href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
-see this graph:</p>
-
-<div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423" 
-height="315"></div>
-
-<p>Another way to get this is to call "<tt>F->viewCFG()</tt>" or
-"<tt>F->viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
-inserting actual calls into the code and recompiling or by calling these in the
-debugger.  LLVM has many nice features for visualizing various graphs.</p>
-
-<p>Getting back to the generated code, it is fairly simple: the entry block 
-evaluates the conditional expression ("x" in our case here) and compares the
-result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
-instruction ('one' is "Ordered and Not Equal").  Based on the result of this
-expression, the code jumps to either the "then" or "else" blocks, which contain
-the expressions for the true/false cases.</p>
-
-<p>Once the then/else blocks are finished executing, they both branch back to the
-'ifcont' block to execute the code that happens after the if/then/else.  In this
-case the only thing left to do is to return to the caller of the function.  The
-question then becomes: how does the code know which expression to return?</p>
-
-<p>The answer to this question involves an important SSA operation: the
-<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
-operation</a>.  If you're not familiar with SSA, <a 
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
-article</a> is a good introduction and there are various other introductions to
-it available on your favorite search engine.  The short version is that
-"execution" of the Phi operation requires "remembering" which block control came
-from.  The Phi operation takes on the value corresponding to the input control
-block.  In this case, if control comes in from the "then" block, it gets the
-value of "calltmp".  If control comes from the "else" block, it gets the value
-of "calltmp1".</p>
-
-<p>At this point, you are probably starting to think "Oh no! This means my
-simple and elegant front-end will have to start generating SSA form in order to
-use LLVM!".  Fortunately, this is not the case, and we strongly advise
-<em>not</em> implementing an SSA construction algorithm in your front-end
-unless there is an amazingly good reason to do so.  In practice, there are two
-sorts of values that float around in code written for your average imperative
-programming language that might need Phi nodes:</p>
-
-<ol>
-<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
-<li>Values that are implicit in the structure of your AST, such as the Phi node
-in this case.</li>
-</ol>
-
-<p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable 
-variables"), we'll talk about #1
-in depth.  For now, just believe me that you don't need SSA construction to
-handle this case.  For #2, you have the choice of using the techniques that we will 
-describe for #1, or you can insert Phi nodes directly, if convenient.  In this 
-case, it is really really easy to generate the Phi node, so we choose to do it
-directly.</p>
-
-<p>Okay, enough of the motivation and overview, lets generate code!</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="ifcodegen">Code Generation for If/Then/Else</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
-for <tt>IfExprAST</tt>:</p>
-
-<div class="doc_code">
-<pre>
-Value *IfExprAST::Codegen() {
-  Value *CondV = Cond->Codegen();
-  if (CondV == 0) return 0;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  CondV = Builder.CreateFCmpONE(CondV, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                "ifcond");
-</pre>
-</div>
-
-<p>This code is straightforward and similar to what we saw before.  We emit the
-expression for the condition, then compare that value to zero to get a truth
-value as a 1-bit (bool) value.</p>
-
-<div class="doc_code">
-<pre>
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  
-  // Create blocks for the then and else cases.  Insert the 'then' block at the
-  // end of the function.
-  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
-  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
-  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-
-  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-</pre>
-</div>
-
-<p>This code creates the basic blocks that are related to the if/then/else
-statement, and correspond directly to the blocks in the example above.  The
-first line gets the current Function object that is being built.  It
-gets this by asking the builder for the current BasicBlock, and asking that
-block for its "parent" (the function it is currently embedded into).</p>
-
-<p>Once it has that, it creates three blocks.  Note that it passes "TheFunction"
-into the constructor for the "then" block.  This causes the constructor to
-automatically insert the new block into the end of the specified function.  The
-other two blocks are created, but aren't yet inserted into the function.</p>
-
-<p>Once the blocks are created, we can emit the conditional branch that chooses
-between them.  Note that creating new blocks does not implicitly affect the
-IRBuilder, so it is still inserting into the block that the condition
-went into.  Also note that it is creating a branch to the "then" block and the
-"else" block, even though the "else" block isn't inserted into the function yet.
-This is all ok: it is the standard way that LLVM supports forward 
-references.</p>
-
-<div class="doc_code">
-<pre>
-  // Emit then value.
-  Builder.SetInsertPoint(ThenBB);
-  
-  Value *ThenV = Then->Codegen();
-  if (ThenV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
-  ThenBB = Builder.GetInsertBlock();
-</pre>
-</div>
-
-<p>After the conditional branch is inserted, we move the builder to start
-inserting into the "then" block.  Strictly speaking, this call moves the
-insertion point to be at the end of the specified block.  However, since the
-"then" block is empty, it also starts out by inserting at the beginning of the
-block.  :)</p>
-
-<p>Once the insertion point is set, we recursively codegen the "then" expression
-from the AST.  To finish off the "then" block, we create an unconditional branch
-to the merge block.  One interesting (and very important) aspect of the LLVM IR
-is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
-to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
-instruction</a> such as return or branch.  This means that all control flow,
-<em>including fall throughs</em> must be made explicit in the LLVM IR.  If you
-violate this rule, the verifier will emit an error.</p>
-
-<p>The final line here is quite subtle, but is very important.  The basic issue
-is that when we create the Phi node in the merge block, we need to set up the
-block/value pairs that indicate how the Phi will work.  Importantly, the Phi
-node expects to have an entry for each predecessor of the block in the CFG.  Why
-then, are we getting the current block when we just set it to ThenBB 5 lines
-above?  The problem is that the "Then" expression may actually itself change the
-block that the Builder is emitting into if, for example, it contains a nested
-"if/then/else" expression.  Because calling Codegen recursively could
-arbitrarily change the notion of the current block, we are required to get an
-up-to-date value for code that will set up the Phi node.</p>
-
-<div class="doc_code">
-<pre>
-  // Emit else block.
-  TheFunction->getBasicBlockList().push_back(ElseBB);
-  Builder.SetInsertPoint(ElseBB);
-  
-  Value *ElseV = Else->Codegen();
-  if (ElseV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
-  ElseBB = Builder.GetInsertBlock();
-</pre>
-</div>
-
-<p>Code generation for the 'else' block is basically identical to codegen for
-the 'then' block.  The only significant difference is the first line, which adds
-the 'else' block to the function.  Recall previously that the 'else' block was
-created, but not added to the function.  Now that the 'then' and 'else' blocks
-are emitted, we can finish up with the merge code:</p>
-
-<div class="doc_code">
-<pre>
-  // Emit merge block.
-  TheFunction->getBasicBlockList().push_back(MergeBB);
-  Builder.SetInsertPoint(MergeBB);
-  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
-                                  "iftmp");
-  
-  PN->addIncoming(ThenV, ThenBB);
-  PN->addIncoming(ElseV, ElseBB);
-  return PN;
-}
-</pre>
-</div>
-
-<p>The first two lines here are now familiar: the first adds the "merge" block
-to the Function object (it was previously floating, like the else block above).
-The second block changes the insertion point so that newly created code will go
-into the "merge" block.  Once that is done, we need to create the PHI node and
-set up the block/value pairs for the PHI.</p>
-
-<p>Finally, the CodeGen function returns the phi node as the value computed by
-the if/then/else expression.  In our example above, this returned value will 
-feed into the code for the top-level function, which will create the return
-instruction.</p>
-
-<p>Overall, we now have the ability to execute conditional code in
-Kaleidoscope.  With this extension, Kaleidoscope is a fairly complete language
-that can calculate a wide variety of numeric functions.  Next up we'll add
-another useful expression that is familiar from non-functional languages...</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="for">'for' Loop Expression</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we know how to add basic control flow constructs to the language,
-we have the tools to add more powerful things.  Lets add something more
-aggressive, a 'for' expression:</p>
-
-<div class="doc_code">
-<pre>
- extern putchard(char)
- def printstar(n)
-   for i = 1, i < n, 1.0 in
-     putchard(42);  # ascii 42 = '*'
-     
- # print 100 '*' characters
- printstar(100);
-</pre>
-</div>
-
-<p>This expression defines a new variable ("i" in this case) which iterates from
-a starting value, while the condition ("i < n" in this case) is true, 
-incrementing by an optional step value ("1.0" in this case).  If the step value
-is omitted, it defaults to 1.0.  While the loop is true, it executes its 
-body expression.  Because we don't have anything better to return, we'll just
-define the loop as always returning 0.0.  In the future when we have mutable
-variables, it will get more useful.</p>
-
-<p>As before, lets talk about the changes that we need to Kaleidoscope to
-support this.</p>
-
-<!-- ======================================================================= -->
-<h4><a name="forlexer">Lexer Extensions for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
-
-<div class="doc_code">
-<pre>
-  ... in enum Token ...
-  // control
-  tok_if = -6, tok_then = -7, tok_else = -8,
-<b>  tok_for = -9, tok_in = -10</b>
-
-  ... in gettok ...
-  if (IdentifierStr == "def") return tok_def;
-  if (IdentifierStr == "extern") return tok_extern;
-  if (IdentifierStr == "if") return tok_if;
-  if (IdentifierStr == "then") return tok_then;
-  if (IdentifierStr == "else") return tok_else;
-  <b>if (IdentifierStr == "for") return tok_for;
-  if (IdentifierStr == "in") return tok_in;</b>
-  return tok_identifier;
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forast">AST Extensions for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The AST node is just as simple.  It basically boils down to capturing
-the variable name and the constituent expressions in the node.</p>
-
-<div class="doc_code">
-<pre>
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
-  std::string VarName;
-  ExprAST *Start, *End, *Step, *Body;
-public:
-  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
-             ExprAST *step, ExprAST *body)
-    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
-  virtual Value *Codegen();
-};
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forparser">Parser Extensions for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The parser code is also fairly standard.  The only interesting thing here is
-handling of the optional step value.  The parser code handles it by checking to
-see if the second comma is present.  If not, it sets the step value to null in
-the AST node:</p>
-
-<div class="doc_code">
-<pre>
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
-  getNextToken();  // eat the for.
-
-  if (CurTok != tok_identifier)
-    return Error("expected identifier after for");
-  
-  std::string IdName = IdentifierStr;
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '=')
-    return Error("expected '=' after for");
-  getNextToken();  // eat '='.
-  
-  
-  ExprAST *Start = ParseExpression();
-  if (Start == 0) return 0;
-  if (CurTok != ',')
-    return Error("expected ',' after for start value");
-  getNextToken();
-  
-  ExprAST *End = ParseExpression();
-  if (End == 0) return 0;
-  
-  // The step value is optional.
-  ExprAST *Step = 0;
-  if (CurTok == ',') {
-    getNextToken();
-    Step = ParseExpression();
-    if (Step == 0) return 0;
-  }
-  
-  if (CurTok != tok_in)
-    return Error("expected 'in' after for");
-  getNextToken();  // eat 'in'.
-  
-  ExprAST *Body = ParseExpression();
-  if (Body == 0) return 0;
-
-  return new ForExprAST(IdName, Start, End, Step, Body);
-}
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forir">LLVM IR for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
-With the simple example above, we get this LLVM IR (note that this dump is
-generated with optimizations disabled for clarity):
-</p>
-
-<div class="doc_code">
-<pre>
-declare double @putchard(double)
-
-define double @printstar(double %n) {
-entry:
-  ; initial value = 1.0 (inlined into phi)
-  br label %loop
-
-loop:		; preds = %loop, %entry
-  %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
-  ; body
-  %calltmp = call double @putchard(double 4.200000e+01)
-  ; increment
-  %nextvar = fadd double %i, 1.000000e+00
-
-  ; termination test
-  %cmptmp = fcmp ult double %i, %n
-  %booltmp = uitofp i1 %cmptmp to double
-  %loopcond = fcmp one double %booltmp, 0.000000e+00
-  br i1 %loopcond, label %loop, label %afterloop
-
-afterloop:		; preds = %loop
-  ; loop always returns 0.0
-  ret double 0.000000e+00
-}
-</pre>
-</div>
-
-<p>This loop contains all the same constructs we saw before: a phi node, several
-expressions, and some basic blocks.  Lets see how this fits together.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="forcodegen">Code Generation for the 'for' Loop</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>The first part of Codegen is very simple: we just output the start expression
-for the loop value:</p>
-
-<div class="doc_code">
-<pre>
-Value *ForExprAST::Codegen() {
-  // Emit the start code first, without 'variable' in scope.
-  Value *StartVal = Start->Codegen();
-  if (StartVal == 0) return 0;
-</pre>
-</div>
-
-<p>With this out of the way, the next step is to set up the LLVM basic block
-for the start of the loop body.  In the case above, the whole loop body is one
-block, but remember that the body code itself could consist of multiple blocks
-(e.g. if it contains an if/then/else or a for/in expression).</p>
-
-<div class="doc_code">
-<pre>
-  // Make the new basic block for the loop header, inserting after current
-  // block.
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
-  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-  
-  // Insert an explicit fall through from the current block to the LoopBB.
-  Builder.CreateBr(LoopBB);
-</pre>
-</div>
-
-<p>This code is similar to what we saw for if/then/else.  Because we will need
-it to create the Phi node, we remember the block that falls through into the
-loop.  Once we have that, we create the actual block that starts the loop and
-create an unconditional branch for the fall-through between the two blocks.</p>
-  
-<div class="doc_code">
-<pre>
-  // Start insertion in LoopBB.
-  Builder.SetInsertPoint(LoopBB);
-  
-  // Start the PHI node with an entry for Start.
-  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
-  Variable->addIncoming(StartVal, PreheaderBB);
-</pre>
-</div>
-
-<p>Now that the "preheader" for the loop is set up, we switch to emitting code
-for the loop body.  To begin with, we move the insertion point and create the
-PHI node for the loop induction variable.  Since we already know the incoming
-value for the starting value, we add it to the Phi node.  Note that the Phi will
-eventually get a second value for the backedge, but we can't set it up yet
-(because it doesn't exist!).</p>
-
-<div class="doc_code">
-<pre>
-  // Within the loop, the variable is defined equal to the PHI node.  If it
-  // shadows an existing variable, we have to restore it, so save it now.
-  Value *OldVal = NamedValues[VarName];
-  NamedValues[VarName] = Variable;
-  
-  // Emit the body of the loop.  This, like any other expr, can change the
-  // current BB.  Note that we ignore the value computed by the body, but don't
-  // allow an error.
-  if (Body->Codegen() == 0)
-    return 0;
-</pre>
-</div>
-
-<p>Now the code starts to get more interesting.  Our 'for' loop introduces a new
-variable to the symbol table.  This means that our symbol table can now contain
-either function arguments or loop variables.  To handle this, before we codegen
-the body of the loop, we add the loop variable as the current value for its
-name.  Note that it is possible that there is a variable of the same name in the
-outer scope.  It would be easy to make this an error (emit an error and return
-null if there is already an entry for VarName) but we choose to allow shadowing
-of variables.  In order to handle this correctly, we remember the Value that
-we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
-no shadowed variable).</p>
-
-<p>Once the loop variable is set into the symbol table, the code recursively
-codegen's the body.  This allows the body to use the loop variable: any
-references to it will naturally find it in the symbol table.</p>
-
-<div class="doc_code">
-<pre>
-  // Emit the step value.
-  Value *StepVal;
-  if (Step) {
-    StepVal = Step->Codegen();
-    if (StepVal == 0) return 0;
-  } else {
-    // If not specified, use 1.0.
-    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
-  }
-  
-  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
-</pre>
-</div>
-
-<p>Now that the body is emitted, we compute the next value of the iteration
-variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>'
-will be the value of the loop variable on the next iteration of the loop.</p>
-
-<div class="doc_code">
-<pre>
-  // Compute the end condition.
-  Value *EndCond = End->Codegen();
-  if (EndCond == 0) return EndCond;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  EndCond = Builder.CreateFCmpONE(EndCond, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                  "loopcond");
-</pre>
-</div>
-
-<p>Finally, we evaluate the exit value of the loop, to determine whether the
-loop should exit.  This mirrors the condition evaluation for the if/then/else
-statement.</p>
-      
-<div class="doc_code">
-<pre>
-  // Create the "after loop" block and insert it.
-  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
-  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-  
-  // Insert the conditional branch into the end of LoopEndBB.
-  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-  
-  // Any new code will be inserted in AfterBB.
-  Builder.SetInsertPoint(AfterBB);
-</pre>
-</div>
-
-<p>With the code for the body of the loop complete, we just need to finish up
-the control flow for it.  This code remembers the end block (for the phi node),
-then creates the block for the loop exit ("afterloop").  Based on the value of
-the exit condition, it creates a conditional branch that chooses between
-executing the loop again and exiting the loop.  Any future code is emitted in
-the "afterloop" block, so it sets the insertion position to it.</p>
-  
-<div class="doc_code">
-<pre>
-  // Add a new entry to the PHI node for the backedge.
-  Variable->addIncoming(NextVar, LoopEndBB);
-  
-  // Restore the unshadowed variable.
-  if (OldVal)
-    NamedValues[VarName] = OldVal;
-  else
-    NamedValues.erase(VarName);
-  
-  // for expr always returns 0.0.
-  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-</pre>
-</div>
-
-<p>The final code handles various cleanups: now that we have the "NextVar"
-value, we can add the incoming value to the loop PHI node.  After that, we
-remove the loop variable from the symbol table, so that it isn't in scope after
-the for loop.  Finally, code generation of the for loop always returns 0.0, so
-that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
-
-<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
-the tutorial.  In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors
-to know.  In the next chapter of our saga, we will get a bit crazier and add
-<a href="LangImpl6.html">user-defined operators</a> to our poor innocent 
-language.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-if/then/else and for expressions..  To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/DerivedTypes.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Support/TargetSelect.h"
-#include <cstdio>
-#include <string>
-#include <map>
-#include <vector>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5,
-  
-  // control
-  tok_if = -6, tok_then = -7, tok_else = -8,
-  tok_for = -9, tok_in = -10
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    if (IdentifierStr == "if") return tok_if;
-    if (IdentifierStr == "then") return tok_then;
-    if (IdentifierStr == "else") return tok_else;
-    if (IdentifierStr == "for") return tok_for;
-    if (IdentifierStr == "in") return tok_in;
-    return tok_identifier;
-  }
-
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-  
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-  virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-  virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-  virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-  virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-  virtual Value *Codegen();
-};
-
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
-  ExprAST *Cond, *Then, *Else;
-public:
-  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
-  : Cond(cond), Then(then), Else(_else) {}
-  virtual Value *Codegen();
-};
-
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
-  std::string VarName;
-  ExprAST *Start, *End, *Step, *Body;
-public:
-  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
-             ExprAST *step, ExprAST *body)
-    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
-  virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
-    : Name(name), Args(args) {}
-  
-  Function *Codegen();
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-  
-  Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-  
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
-  getNextToken();  // eat the if.
-  
-  // condition.
-  ExprAST *Cond = ParseExpression();
-  if (!Cond) return 0;
-  
-  if (CurTok != tok_then)
-    return Error("expected then");
-  getNextToken();  // eat the then
-  
-  ExprAST *Then = ParseExpression();
-  if (Then == 0) return 0;
-  
-  if (CurTok != tok_else)
-    return Error("expected else");
-  
-  getNextToken();
-  
-  ExprAST *Else = ParseExpression();
-  if (!Else) return 0;
-  
-  return new IfExprAST(Cond, Then, Else);
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
-  getNextToken();  // eat the for.
-
-  if (CurTok != tok_identifier)
-    return Error("expected identifier after for");
-  
-  std::string IdName = IdentifierStr;
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '=')
-    return Error("expected '=' after for");
-  getNextToken();  // eat '='.
-  
-  
-  ExprAST *Start = ParseExpression();
-  if (Start == 0) return 0;
-  if (CurTok != ',')
-    return Error("expected ',' after for start value");
-  getNextToken();
-  
-  ExprAST *End = ParseExpression();
-  if (End == 0) return 0;
-  
-  // The step value is optional.
-  ExprAST *Step = 0;
-  if (CurTok == ',') {
-    getNextToken();
-    Step = ParseExpression();
-    if (Step == 0) return 0;
-  }
-  
-  if (CurTok != tok_in)
-    return Error("expected 'in' after for");
-  getNextToken();  // eat 'in'.
-  
-  ExprAST *Body = ParseExpression();
-  if (Body == 0) return 0;
-
-  return new ForExprAST(IdName, Start, End, Step, Body);
-}
-
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-///   ::= ifexpr
-///   ::= forexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  case tok_if:         return ParseIfExpr();
-  case tok_for:        return ParseForExpr();
-  }
-}
-
-/// binoprhs
-///   ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-    
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the primary expression after the binary operator.
-    ExprAST *RHS = ParsePrimary();
-    if (!RHS) return 0;
-    
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }
-}
-
-/// expression
-///   ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParsePrimary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-///   ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
-  if (CurTok != tok_identifier)
-    return ErrorP("Expected function name in prototype");
-
-  std::string FnName = IdentifierStr;
-  getNextToken();
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  return new PrototypeAST(FnName, ArgNames);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder<> Builder(getGlobalContext());
-static std::map<std::string, Value*> NamedValues;
-static FunctionPassManager *TheFPM;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  return V ? V : ErrorV("Unknown variable name");
-}
-
-Value *BinaryExprAST::Codegen() {
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  default: return ErrorV("invalid binary operator");
-  }
-}
-
-Value *CallExprAST::Codegen() {
-  // Look up the name in the global module table.
-  Function *CalleeF = TheModule->getFunction(Callee);
-  if (CalleeF == 0)
-    return ErrorV("Unknown function referenced");
-  
-  // If argument mismatch error.
-  if (CalleeF->arg_size() != Args.size())
-    return ErrorV("Incorrect # arguments passed");
-
-  std::vector<Value*> ArgsV;
-  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-    ArgsV.push_back(Args[i]->Codegen());
-    if (ArgsV.back() == 0) return 0;
-  }
-  
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-
-Value *IfExprAST::Codegen() {
-  Value *CondV = Cond->Codegen();
-  if (CondV == 0) return 0;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  CondV = Builder.CreateFCmpONE(CondV, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                "ifcond");
-  
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  
-  // Create blocks for the then and else cases.  Insert the 'then' block at the
-  // end of the function.
-  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
-  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
-  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-  
-  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-  
-  // Emit then value.
-  Builder.SetInsertPoint(ThenBB);
-  
-  Value *ThenV = Then->Codegen();
-  if (ThenV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
-  ThenBB = Builder.GetInsertBlock();
-  
-  // Emit else block.
-  TheFunction->getBasicBlockList().push_back(ElseBB);
-  Builder.SetInsertPoint(ElseBB);
-  
-  Value *ElseV = Else->Codegen();
-  if (ElseV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
-  ElseBB = Builder.GetInsertBlock();
-  
-  // Emit merge block.
-  TheFunction->getBasicBlockList().push_back(MergeBB);
-  Builder.SetInsertPoint(MergeBB);
-  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
-                                  "iftmp");
-  
-  PN->addIncoming(ThenV, ThenBB);
-  PN->addIncoming(ElseV, ElseBB);
-  return PN;
-}
-
-Value *ForExprAST::Codegen() {
-  // Output this as:
-  //   ...
-  //   start = startexpr
-  //   goto loop
-  // loop: 
-  //   variable = phi [start, loopheader], [nextvariable, loopend]
-  //   ...
-  //   bodyexpr
-  //   ...
-  // loopend:
-  //   step = stepexpr
-  //   nextvariable = variable + step
-  //   endcond = endexpr
-  //   br endcond, loop, endloop
-  // outloop:
-  
-  // Emit the start code first, without 'variable' in scope.
-  Value *StartVal = Start->Codegen();
-  if (StartVal == 0) return 0;
-  
-  // Make the new basic block for the loop header, inserting after current
-  // block.
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
-  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-  
-  // Insert an explicit fall through from the current block to the LoopBB.
-  Builder.CreateBr(LoopBB);
-
-  // Start insertion in LoopBB.
-  Builder.SetInsertPoint(LoopBB);
-  
-  // Start the PHI node with an entry for Start.
-  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
-  Variable->addIncoming(StartVal, PreheaderBB);
-  
-  // Within the loop, the variable is defined equal to the PHI node.  If it
-  // shadows an existing variable, we have to restore it, so save it now.
-  Value *OldVal = NamedValues[VarName];
-  NamedValues[VarName] = Variable;
-  
-  // Emit the body of the loop.  This, like any other expr, can change the
-  // current BB.  Note that we ignore the value computed by the body, but don't
-  // allow an error.
-  if (Body->Codegen() == 0)
-    return 0;
-  
-  // Emit the step value.
-  Value *StepVal;
-  if (Step) {
-    StepVal = Step->Codegen();
-    if (StepVal == 0) return 0;
-  } else {
-    // If not specified, use 1.0.
-    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
-  }
-  
-  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
-
-  // Compute the end condition.
-  Value *EndCond = End->Codegen();
-  if (EndCond == 0) return EndCond;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  EndCond = Builder.CreateFCmpONE(EndCond, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                  "loopcond");
-  
-  // Create the "after loop" block and insert it.
-  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
-  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-  
-  // Insert the conditional branch into the end of LoopEndBB.
-  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-  
-  // Any new code will be inserted in AfterBB.
-  Builder.SetInsertPoint(AfterBB);
-  
-  // Add a new entry to the PHI node for the backedge.
-  Variable->addIncoming(NextVar, LoopEndBB);
-  
-  // Restore the unshadowed variable.
-  if (OldVal)
-    NamedValues[VarName] = OldVal;
-  else
-    NamedValues.erase(VarName);
-
-  
-  // for expr always returns 0.0.
-  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-
-Function *PrototypeAST::Codegen() {
-  // Make the function type:  double(double,double) etc.
-  std::vector<Type*> Doubles(Args.size(),
-                             Type::getDoubleTy(getGlobalContext()));
-  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
-                                       Doubles, false);
-  
-  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-  
-  // If F conflicted, there was already something named 'Name'.  If it has a
-  // body, don't allow redefinition or reextern.
-  if (F->getName() != Name) {
-    // Delete the one we just made and get the existing one.
-    F->eraseFromParent();
-    F = TheModule->getFunction(Name);
-    
-    // If F already has a body, reject this.
-    if (!F->empty()) {
-      ErrorF("redefinition of function");
-      return 0;
-    }
-    
-    // If F took a different number of args, reject.
-    if (F->arg_size() != Args.size()) {
-      ErrorF("redefinition of function with different # args");
-      return 0;
-    }
-  }
-  
-  // Set names for all arguments.
-  unsigned Idx = 0;
-  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
-       ++AI, ++Idx) {
-    AI->setName(Args[Idx]);
-    
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = AI;
-  }
-  
-  return F;
-}
-
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-  
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    // Optimize the function.
-    TheFPM->run(*TheFunction);
-    
-    return TheFunction;
-  }
-  
-  // Error reading body, remove function.
-  TheFunction->eraseFromParent();
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static ExecutionEngine *TheExecutionEngine;
-
-static void HandleDefinition() {
-  if (FunctionAST *F = ParseDefinition()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read function definition:");
-      LF->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleExtern() {
-  if (PrototypeAST *P = ParseExtern()) {
-    if (Function *F = P->Codegen()) {
-      fprintf(stderr, "Read extern: ");
-      F->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (FunctionAST *F = ParseTopLevelExpr()) {
-    if (Function *LF = F->Codegen()) {
-      // JIT the function, returning a function pointer.
-      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
-      
-      // Cast it to the right type (takes no arguments, returns a double) so we
-      // can call it as a native function.
-      double (*FP)() = (double (*)())(intptr_t)FPtr;
-      fprintf(stderr, "Evaluated to %f\n", FP());
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C" 
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
-  InitializeNativeTarget();
-  LLVMContext &Context = getGlobalContext();
-
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-
-  // Prime the first token.
-  fprintf(stderr, "ready> ");
-  getNextToken();
-
-  // Make the module, which holds all the code.
-  TheModule = new Module("my cool jit", Context);
-
-  // Create the JIT.  This takes ownership of the module.
-  std::string ErrStr;
-  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
-  if (!TheExecutionEngine) {
-    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
-    exit(1);
-  }
-
-  FunctionPassManager OurFPM(TheModule);
-
-  // Set up the optimizer pipeline.  Start with registering info about how the
-  // target lays out data structures.
-  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
-  // Provide basic AliasAnalysis support for GVN.
-  OurFPM.add(createBasicAliasAnalysisPass());
-  // Do simple "peephole" optimizations and bit-twiddling optzns.
-  OurFPM.add(createInstructionCombiningPass());
-  // Reassociate expressions.
-  OurFPM.add(createReassociatePass());
-  // Eliminate Common SubExpressions.
-  OurFPM.add(createGVNPass());
-  // Simplify the control flow graph (deleting unreachable blocks, etc).
-  OurFPM.add(createCFGSimplificationPass());
-
-  OurFPM.doInitialization();
-
-  // Set the global so the code gen can use this.
-  TheFPM = &OurFPM;
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-
-  TheFPM = 0;
-
-  // Print out all of the generated code.
-  TheModule->dump();
-
-  return 0;
-}
-</pre>
-</div>
-
-<a href="LangImpl6.html">Next: Extending the language: user-defined operators</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl5.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl5.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl5.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl5.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,1609 @@
+==================================================
+Kaleidoscope: Extending the Language: Control Flow
+==================================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Chapter 5 Introduction
+======================
+
+Welcome to Chapter 5 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of
+the simple Kaleidoscope language and included support for generating
+LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as
+presented, Kaleidoscope is mostly useless: it has no control flow other
+than call and return. This means that you can't have conditional
+branches in the code, significantly limiting its power. In this episode
+of "build that compiler", we'll extend Kaleidoscope to have an
+if/then/else expression plus a simple 'for' loop.
+
+If/Then/Else
+============
+
+Extending Kaleidoscope to support if/then/else is quite straightforward.
+It basically requires adding support for this "new" concept to the
+lexer, parser, AST, and LLVM code emitter. This example is nice, because
+it shows how easy it is to "grow" a language over time, incrementally
+extending it as new ideas are discovered.
+
+Before we get going on "how" we add this extension, lets talk about
+"what" we want. The basic idea is that we want to be able to write this
+sort of thing:
+
+::
+
+    def fib(x)
+      if x < 3 then
+        1
+      else
+        fib(x-1)+fib(x-2);
+
+In Kaleidoscope, every construct is an expression: there are no
+statements. As such, the if/then/else expression needs to return a value
+like any other. Since we're using a mostly functional form, we'll have
+it evaluate its conditional, then return the 'then' or 'else' value
+based on how the condition was resolved. This is very similar to the C
+"?:" expression.
+
+The semantics of the if/then/else expression is that it evaluates the
+condition to a boolean equality value: 0.0 is considered to be false and
+everything else is considered to be true. If the condition is true, the
+first subexpression is evaluated and returned, if the condition is
+false, the second subexpression is evaluated and returned. Since
+Kaleidoscope allows side-effects, this behavior is important to nail
+down.
+
+Now that we know what we "want", lets break this down into its
+constituent pieces.
+
+Lexer Extensions for If/Then/Else
+---------------------------------
+
+The lexer extensions are straightforward. First we add new enum values
+for the relevant tokens:
+
+.. code-block:: c++
+
+      // control
+      tok_if = -6, tok_then = -7, tok_else = -8,
+
+Once we have that, we recognize the new keywords in the lexer. This is
+pretty simple stuff:
+
+.. code-block:: c++
+
+        ...
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        if (IdentifierStr == "if") return tok_if;
+        if (IdentifierStr == "then") return tok_then;
+        if (IdentifierStr == "else") return tok_else;
+        return tok_identifier;
+
+AST Extensions for If/Then/Else
+-------------------------------
+
+To represent the new expression we add a new AST node for it:
+
+.. code-block:: c++
+
+    /// IfExprAST - Expression class for if/then/else.
+    class IfExprAST : public ExprAST {
+      ExprAST *Cond, *Then, *Else;
+    public:
+      IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+        : Cond(cond), Then(then), Else(_else) {}
+      virtual Value *Codegen();
+    };
+
+The AST node just has pointers to the various subexpressions.
+
+Parser Extensions for If/Then/Else
+----------------------------------
+
+Now that we have the relevant tokens coming from the lexer and we have
+the AST node to build, our parsing logic is relatively straightforward.
+First we define a new parsing function:
+
+.. code-block:: c++
+
+    /// ifexpr ::= 'if' expression 'then' expression 'else' expression
+    static ExprAST *ParseIfExpr() {
+      getNextToken();  // eat the if.
+
+      // condition.
+      ExprAST *Cond = ParseExpression();
+      if (!Cond) return 0;
+
+      if (CurTok != tok_then)
+        return Error("expected then");
+      getNextToken();  // eat the then
+
+      ExprAST *Then = ParseExpression();
+      if (Then == 0) return 0;
+
+      if (CurTok != tok_else)
+        return Error("expected else");
+
+      getNextToken();
+
+      ExprAST *Else = ParseExpression();
+      if (!Else) return 0;
+
+      return new IfExprAST(Cond, Then, Else);
+    }
+
+Next we hook it up as a primary expression:
+
+.. code-block:: c++
+
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      case tok_if:         return ParseIfExpr();
+      }
+    }
+
+LLVM IR for If/Then/Else
+------------------------
+
+Now that we have it parsing and building the AST, the final piece is
+adding LLVM code generation support. This is the most interesting part
+of the if/then/else example, because this is where it starts to
+introduce new concepts. All of the code above has been thoroughly
+described in previous chapters.
+
+To motivate the code we want to produce, lets take a look at a simple
+example. Consider:
+
+::
+
+    extern foo();
+    extern bar();
+    def baz(x) if x then foo() else bar();
+
+If you disable optimizations, the code you'll (soon) get from
+Kaleidoscope looks like this:
+
+.. code-block:: llvm
+
+    declare double @foo()
+
+    declare double @bar()
+
+    define double @baz(double %x) {
+    entry:
+      %ifcond = fcmp one double %x, 0.000000e+00
+      br i1 %ifcond, label %then, label %else
+
+    then:       ; preds = %entry
+      %calltmp = call double @foo()
+      br label %ifcont
+
+    else:       ; preds = %entry
+      %calltmp1 = call double @bar()
+      br label %ifcont
+
+    ifcont:     ; preds = %else, %then
+      %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
+      ret double %iftmp
+    }
+
+To visualize the control flow graph, you can use a nifty feature of the
+LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM
+IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a
+window will pop up <../ProgrammersManual.html#ViewGraph>`_ and you'll
+see this graph:
+
+.. figure:: LangImpl5-cfg.png
+   :align: center
+   :alt: Example CFG
+
+   Example CFG
+
+Another way to get this is to call "``F->viewCFG()``" or
+"``F->viewCFGOnly()``" (where F is a "``Function*``") either by
+inserting actual calls into the code and recompiling or by calling these
+in the debugger. LLVM has many nice features for visualizing various
+graphs.
+
+Getting back to the generated code, it is fairly simple: the entry block
+evaluates the conditional expression ("x" in our case here) and compares
+the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered
+and Not Equal"). Based on the result of this expression, the code jumps
+to either the "then" or "else" blocks, which contain the expressions for
+the true/false cases.
+
+Once the then/else blocks are finished executing, they both branch back
+to the 'ifcont' block to execute the code that happens after the
+if/then/else. In this case the only thing left to do is to return to the
+caller of the function. The question then becomes: how does the code
+know which expression to return?
+
+The answer to this question involves an important SSA operation: the
+`Phi
+operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
+If you're not familiar with SSA, `the wikipedia
+article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+is a good introduction and there are various other introductions to it
+available on your favorite search engine. The short version is that
+"execution" of the Phi operation requires "remembering" which block
+control came from. The Phi operation takes on the value corresponding to
+the input control block. In this case, if control comes in from the
+"then" block, it gets the value of "calltmp". If control comes from the
+"else" block, it gets the value of "calltmp1".
+
+At this point, you are probably starting to think "Oh no! This means my
+simple and elegant front-end will have to start generating SSA form in
+order to use LLVM!". Fortunately, this is not the case, and we strongly
+advise *not* implementing an SSA construction algorithm in your
+front-end unless there is an amazingly good reason to do so. In
+practice, there are two sorts of values that float around in code
+written for your average imperative programming language that might need
+Phi nodes:
+
+#. Code that involves user variables: ``x = 1; x = x + 1;``
+#. Values that are implicit in the structure of your AST, such as the
+   Phi node in this case.
+
+In `Chapter 7 <LangImpl7.html>`_ of this tutorial ("mutable variables"),
+we'll talk about #1 in depth. For now, just believe me that you don't
+need SSA construction to handle this case. For #2, you have the choice
+of using the techniques that we will describe for #1, or you can insert
+Phi nodes directly, if convenient. In this case, it is really really
+easy to generate the Phi node, so we choose to do it directly.
+
+Okay, enough of the motivation and overview, lets generate code!
+
+Code Generation for If/Then/Else
+--------------------------------
+
+In order to generate code for this, we implement the ``Codegen`` method
+for ``IfExprAST``:
+
+.. code-block:: c++
+
+    Value *IfExprAST::Codegen() {
+      Value *CondV = Cond->Codegen();
+      if (CondV == 0) return 0;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      CondV = Builder.CreateFCmpONE(CondV,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                    "ifcond");
+
+This code is straightforward and similar to what we saw before. We emit
+the expression for the condition, then compare that value to zero to get
+a truth value as a 1-bit (bool) value.
+
+.. code-block:: c++
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Create blocks for the then and else cases.  Insert the 'then' block at the
+      // end of the function.
+      BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+      BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+      BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+      Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+This code creates the basic blocks that are related to the if/then/else
+statement, and correspond directly to the blocks in the example above.
+The first line gets the current Function object that is being built. It
+gets this by asking the builder for the current BasicBlock, and asking
+that block for its "parent" (the function it is currently embedded
+into).
+
+Once it has that, it creates three blocks. Note that it passes
+"TheFunction" into the constructor for the "then" block. This causes the
+constructor to automatically insert the new block into the end of the
+specified function. The other two blocks are created, but aren't yet
+inserted into the function.
+
+Once the blocks are created, we can emit the conditional branch that
+chooses between them. Note that creating new blocks does not implicitly
+affect the IRBuilder, so it is still inserting into the block that the
+condition went into. Also note that it is creating a branch to the
+"then" block and the "else" block, even though the "else" block isn't
+inserted into the function yet. This is all ok: it is the standard way
+that LLVM supports forward references.
+
+.. code-block:: c++
+
+      // Emit then value.
+      Builder.SetInsertPoint(ThenBB);
+
+      Value *ThenV = Then->Codegen();
+      if (ThenV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+      ThenBB = Builder.GetInsertBlock();
+
+After the conditional branch is inserted, we move the builder to start
+inserting into the "then" block. Strictly speaking, this call moves the
+insertion point to be at the end of the specified block. However, since
+the "then" block is empty, it also starts out by inserting at the
+beginning of the block. :)
+
+Once the insertion point is set, we recursively codegen the "then"
+expression from the AST. To finish off the "then" block, we create an
+unconditional branch to the merge block. One interesting (and very
+important) aspect of the LLVM IR is that it `requires all basic blocks
+to be "terminated" <../LangRef.html#functionstructure>`_ with a `control
+flow instruction <../LangRef.html#terminators>`_ such as return or
+branch. This means that all control flow, *including fall throughs* must
+be made explicit in the LLVM IR. If you violate this rule, the verifier
+will emit an error.
+
+The final line here is quite subtle, but is very important. The basic
+issue is that when we create the Phi node in the merge block, we need to
+set up the block/value pairs that indicate how the Phi will work.
+Importantly, the Phi node expects to have an entry for each predecessor
+of the block in the CFG. Why then, are we getting the current block when
+we just set it to ThenBB 5 lines above? The problem is that the "Then"
+expression may actually itself change the block that the Builder is
+emitting into if, for example, it contains a nested "if/then/else"
+expression. Because calling Codegen recursively could arbitrarily change
+the notion of the current block, we are required to get an up-to-date
+value for code that will set up the Phi node.
+
+.. code-block:: c++
+
+      // Emit else block.
+      TheFunction->getBasicBlockList().push_back(ElseBB);
+      Builder.SetInsertPoint(ElseBB);
+
+      Value *ElseV = Else->Codegen();
+      if (ElseV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+      ElseBB = Builder.GetInsertBlock();
+
+Code generation for the 'else' block is basically identical to codegen
+for the 'then' block. The only significant difference is the first line,
+which adds the 'else' block to the function. Recall previously that the
+'else' block was created, but not added to the function. Now that the
+'then' and 'else' blocks are emitted, we can finish up with the merge
+code:
+
+.. code-block:: c++
+
+      // Emit merge block.
+      TheFunction->getBasicBlockList().push_back(MergeBB);
+      Builder.SetInsertPoint(MergeBB);
+      PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+                                      "iftmp");
+
+      PN->addIncoming(ThenV, ThenBB);
+      PN->addIncoming(ElseV, ElseBB);
+      return PN;
+    }
+
+The first two lines here are now familiar: the first adds the "merge"
+block to the Function object (it was previously floating, like the else
+block above). The second block changes the insertion point so that newly
+created code will go into the "merge" block. Once that is done, we need
+to create the PHI node and set up the block/value pairs for the PHI.
+
+Finally, the CodeGen function returns the phi node as the value computed
+by the if/then/else expression. In our example above, this returned
+value will feed into the code for the top-level function, which will
+create the return instruction.
+
+Overall, we now have the ability to execute conditional code in
+Kaleidoscope. With this extension, Kaleidoscope is a fairly complete
+language that can calculate a wide variety of numeric functions. Next up
+we'll add another useful expression that is familiar from non-functional
+languages...
+
+'for' Loop Expression
+=====================
+
+Now that we know how to add basic control flow constructs to the
+language, we have the tools to add more powerful things. Lets add
+something more aggressive, a 'for' expression:
+
+::
+
+     extern putchard(char)
+     def printstar(n)
+       for i = 1, i < n, 1.0 in
+         putchard(42);  # ascii 42 = '*'
+
+     # print 100 '*' characters
+     printstar(100);
+
+This expression defines a new variable ("i" in this case) which iterates
+from a starting value, while the condition ("i < n" in this case) is
+true, incrementing by an optional step value ("1.0" in this case). If
+the step value is omitted, it defaults to 1.0. While the loop is true,
+it executes its body expression. Because we don't have anything better
+to return, we'll just define the loop as always returning 0.0. In the
+future when we have mutable variables, it will get more useful.
+
+As before, lets talk about the changes that we need to Kaleidoscope to
+support this.
+
+Lexer Extensions for the 'for' Loop
+-----------------------------------
+
+The lexer extensions are the same sort of thing as for if/then/else:
+
+.. code-block:: c++
+
+      ... in enum Token ...
+      // control
+      tok_if = -6, tok_then = -7, tok_else = -8,
+      tok_for = -9, tok_in = -10
+
+      ... in gettok ...
+      if (IdentifierStr == "def") return tok_def;
+      if (IdentifierStr == "extern") return tok_extern;
+      if (IdentifierStr == "if") return tok_if;
+      if (IdentifierStr == "then") return tok_then;
+      if (IdentifierStr == "else") return tok_else;
+      if (IdentifierStr == "for") return tok_for;
+      if (IdentifierStr == "in") return tok_in;
+      return tok_identifier;
+
+AST Extensions for the 'for' Loop
+---------------------------------
+
+The AST node is just as simple. It basically boils down to capturing the
+variable name and the constituent expressions in the node.
+
+.. code-block:: c++
+
+    /// ForExprAST - Expression class for for/in.
+    class ForExprAST : public ExprAST {
+      std::string VarName;
+      ExprAST *Start, *End, *Step, *Body;
+    public:
+      ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+                 ExprAST *step, ExprAST *body)
+        : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+      virtual Value *Codegen();
+    };
+
+Parser Extensions for the 'for' Loop
+------------------------------------
+
+The parser code is also fairly standard. The only interesting thing here
+is handling of the optional step value. The parser code handles it by
+checking to see if the second comma is present. If not, it sets the step
+value to null in the AST node:
+
+.. code-block:: c++
+
+    /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+    static ExprAST *ParseForExpr() {
+      getNextToken();  // eat the for.
+
+      if (CurTok != tok_identifier)
+        return Error("expected identifier after for");
+
+      std::string IdName = IdentifierStr;
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '=')
+        return Error("expected '=' after for");
+      getNextToken();  // eat '='.
+
+
+      ExprAST *Start = ParseExpression();
+      if (Start == 0) return 0;
+      if (CurTok != ',')
+        return Error("expected ',' after for start value");
+      getNextToken();
+
+      ExprAST *End = ParseExpression();
+      if (End == 0) return 0;
+
+      // The step value is optional.
+      ExprAST *Step = 0;
+      if (CurTok == ',') {
+        getNextToken();
+        Step = ParseExpression();
+        if (Step == 0) return 0;
+      }
+
+      if (CurTok != tok_in)
+        return Error("expected 'in' after for");
+      getNextToken();  // eat 'in'.
+
+      ExprAST *Body = ParseExpression();
+      if (Body == 0) return 0;
+
+      return new ForExprAST(IdName, Start, End, Step, Body);
+    }
+
+LLVM IR for the 'for' Loop
+--------------------------
+
+Now we get to the good part: the LLVM IR we want to generate for this
+thing. With the simple example above, we get this LLVM IR (note that
+this dump is generated with optimizations disabled for clarity):
+
+.. code-block:: llvm
+
+    declare double @putchard(double)
+
+    define double @printstar(double %n) {
+    entry:
+      ; initial value = 1.0 (inlined into phi)
+      br label %loop
+
+    loop:       ; preds = %loop, %entry
+      %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
+      ; body
+      %calltmp = call double @putchard(double 4.200000e+01)
+      ; increment
+      %nextvar = fadd double %i, 1.000000e+00
+
+      ; termination test
+      %cmptmp = fcmp ult double %i, %n
+      %booltmp = uitofp i1 %cmptmp to double
+      %loopcond = fcmp one double %booltmp, 0.000000e+00
+      br i1 %loopcond, label %loop, label %afterloop
+
+    afterloop:      ; preds = %loop
+      ; loop always returns 0.0
+      ret double 0.000000e+00
+    }
+
+This loop contains all the same constructs we saw before: a phi node,
+several expressions, and some basic blocks. Lets see how this fits
+together.
+
+Code Generation for the 'for' Loop
+----------------------------------
+
+The first part of Codegen is very simple: we just output the start
+expression for the loop value:
+
+.. code-block:: c++
+
+    Value *ForExprAST::Codegen() {
+      // Emit the start code first, without 'variable' in scope.
+      Value *StartVal = Start->Codegen();
+      if (StartVal == 0) return 0;
+
+With this out of the way, the next step is to set up the LLVM basic
+block for the start of the loop body. In the case above, the whole loop
+body is one block, but remember that the body code itself could consist
+of multiple blocks (e.g. if it contains an if/then/else or a for/in
+expression).
+
+.. code-block:: c++
+
+      // Make the new basic block for the loop header, inserting after current
+      // block.
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+      BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+      BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+      // Insert an explicit fall through from the current block to the LoopBB.
+      Builder.CreateBr(LoopBB);
+
+This code is similar to what we saw for if/then/else. Because we will
+need it to create the Phi node, we remember the block that falls through
+into the loop. Once we have that, we create the actual block that starts
+the loop and create an unconditional branch for the fall-through between
+the two blocks.
+
+.. code-block:: c++
+
+      // Start insertion in LoopBB.
+      Builder.SetInsertPoint(LoopBB);
+
+      // Start the PHI node with an entry for Start.
+      PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
+      Variable->addIncoming(StartVal, PreheaderBB);
+
+Now that the "preheader" for the loop is set up, we switch to emitting
+code for the loop body. To begin with, we move the insertion point and
+create the PHI node for the loop induction variable. Since we already
+know the incoming value for the starting value, we add it to the Phi
+node. Note that the Phi will eventually get a second value for the
+backedge, but we can't set it up yet (because it doesn't exist!).
+
+.. code-block:: c++
+
+      // Within the loop, the variable is defined equal to the PHI node.  If it
+      // shadows an existing variable, we have to restore it, so save it now.
+      Value *OldVal = NamedValues[VarName];
+      NamedValues[VarName] = Variable;
+
+      // Emit the body of the loop.  This, like any other expr, can change the
+      // current BB.  Note that we ignore the value computed by the body, but don't
+      // allow an error.
+      if (Body->Codegen() == 0)
+        return 0;
+
+Now the code starts to get more interesting. Our 'for' loop introduces a
+new variable to the symbol table. This means that our symbol table can
+now contain either function arguments or loop variables. To handle this,
+before we codegen the body of the loop, we add the loop variable as the
+current value for its name. Note that it is possible that there is a
+variable of the same name in the outer scope. It would be easy to make
+this an error (emit an error and return null if there is already an
+entry for VarName) but we choose to allow shadowing of variables. In
+order to handle this correctly, we remember the Value that we are
+potentially shadowing in ``OldVal`` (which will be null if there is no
+shadowed variable).
+
+Once the loop variable is set into the symbol table, the code
+recursively codegen's the body. This allows the body to use the loop
+variable: any references to it will naturally find it in the symbol
+table.
+
+.. code-block:: c++
+
+      // Emit the step value.
+      Value *StepVal;
+      if (Step) {
+        StepVal = Step->Codegen();
+        if (StepVal == 0) return 0;
+      } else {
+        // If not specified, use 1.0.
+        StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+      }
+
+      Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
+
+Now that the body is emitted, we compute the next value of the iteration
+variable by adding the step value, or 1.0 if it isn't present.
+'``NextVar``' will be the value of the loop variable on the next
+iteration of the loop.
+
+.. code-block:: c++
+
+      // Compute the end condition.
+      Value *EndCond = End->Codegen();
+      if (EndCond == 0) return EndCond;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      EndCond = Builder.CreateFCmpONE(EndCond,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                      "loopcond");
+
+Finally, we evaluate the exit value of the loop, to determine whether
+the loop should exit. This mirrors the condition evaluation for the
+if/then/else statement.
+
+.. code-block:: c++
+
+      // Create the "after loop" block and insert it.
+      BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+      BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+      // Insert the conditional branch into the end of LoopEndBB.
+      Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+      // Any new code will be inserted in AfterBB.
+      Builder.SetInsertPoint(AfterBB);
+
+With the code for the body of the loop complete, we just need to finish
+up the control flow for it. This code remembers the end block (for the
+phi node), then creates the block for the loop exit ("afterloop"). Based
+on the value of the exit condition, it creates a conditional branch that
+chooses between executing the loop again and exiting the loop. Any
+future code is emitted in the "afterloop" block, so it sets the
+insertion position to it.
+
+.. code-block:: c++
+
+      // Add a new entry to the PHI node for the backedge.
+      Variable->addIncoming(NextVar, LoopEndBB);
+
+      // Restore the unshadowed variable.
+      if (OldVal)
+        NamedValues[VarName] = OldVal;
+      else
+        NamedValues.erase(VarName);
+
+      // for expr always returns 0.0.
+      return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+    }
+
+The final code handles various cleanups: now that we have the "NextVar"
+value, we can add the incoming value to the loop PHI node. After that,
+we remove the loop variable from the symbol table, so that it isn't in
+scope after the for loop. Finally, code generation of the for loop
+always returns 0.0, so that is what we return from
+``ForExprAST::Codegen``.
+
+With this, we conclude the "adding control flow to Kaleidoscope" chapter
+of the tutorial. In this chapter we added two control flow constructs,
+and used them to motivate a couple of aspects of the LLVM IR that are
+important for front-end implementors to know. In the next chapter of our
+saga, we will get a bit crazier and add `user-defined
+operators <LangImpl6.html>`_ to our poor innocent language.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the if/then/else and for expressions.. To build this example, use:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
+    # Run
+    ./toy
+
+Here is the code:
+
+.. code-block:: c++
+
+    #include "llvm/DerivedTypes.h"
+    #include "llvm/ExecutionEngine/ExecutionEngine.h"
+    #include "llvm/ExecutionEngine/JIT.h"
+    #include "llvm/IRBuilder.h"
+    #include "llvm/LLVMContext.h"
+    #include "llvm/Module.h"
+    #include "llvm/PassManager.h"
+    #include "llvm/Analysis/Verifier.h"
+    #include "llvm/Analysis/Passes.h"
+    #include "llvm/DataLayout.h"
+    #include "llvm/Transforms/Scalar.h"
+    #include "llvm/Support/TargetSelect.h"
+    #include <cstdio>
+    #include <string>
+    #include <map>
+    #include <vector>
+    using namespace llvm;
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5,
+
+      // control
+      tok_if = -6, tok_then = -7, tok_else = -8,
+      tok_for = -9, tok_in = -10
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        if (IdentifierStr == "if") return tok_if;
+        if (IdentifierStr == "then") return tok_then;
+        if (IdentifierStr == "else") return tok_else;
+        if (IdentifierStr == "for") return tok_for;
+        if (IdentifierStr == "in") return tok_in;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+      virtual Value *Codegen();
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+      virtual Value *Codegen();
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+      virtual Value *Codegen();
+    };
+
+    /// IfExprAST - Expression class for if/then/else.
+    class IfExprAST : public ExprAST {
+      ExprAST *Cond, *Then, *Else;
+    public:
+      IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+      : Cond(cond), Then(then), Else(_else) {}
+      virtual Value *Codegen();
+    };
+
+    /// ForExprAST - Expression class for for/in.
+    class ForExprAST : public ExprAST {
+      std::string VarName;
+      ExprAST *Start, *End, *Step, *Body;
+    public:
+      ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+                 ExprAST *step, ExprAST *body)
+        : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+      virtual Value *Codegen();
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes).
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+        : Name(name), Args(args) {}
+
+      Function *Codegen();
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+      Function *Codegen();
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// ifexpr ::= 'if' expression 'then' expression 'else' expression
+    static ExprAST *ParseIfExpr() {
+      getNextToken();  // eat the if.
+
+      // condition.
+      ExprAST *Cond = ParseExpression();
+      if (!Cond) return 0;
+
+      if (CurTok != tok_then)
+        return Error("expected then");
+      getNextToken();  // eat the then
+
+      ExprAST *Then = ParseExpression();
+      if (Then == 0) return 0;
+
+      if (CurTok != tok_else)
+        return Error("expected else");
+
+      getNextToken();
+
+      ExprAST *Else = ParseExpression();
+      if (!Else) return 0;
+
+      return new IfExprAST(Cond, Then, Else);
+    }
+
+    /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+    static ExprAST *ParseForExpr() {
+      getNextToken();  // eat the for.
+
+      if (CurTok != tok_identifier)
+        return Error("expected identifier after for");
+
+      std::string IdName = IdentifierStr;
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '=')
+        return Error("expected '=' after for");
+      getNextToken();  // eat '='.
+
+
+      ExprAST *Start = ParseExpression();
+      if (Start == 0) return 0;
+      if (CurTok != ',')
+        return Error("expected ',' after for start value");
+      getNextToken();
+
+      ExprAST *End = ParseExpression();
+      if (End == 0) return 0;
+
+      // The step value is optional.
+      ExprAST *Step = 0;
+      if (CurTok == ',') {
+        getNextToken();
+        Step = ParseExpression();
+        if (Step == 0) return 0;
+      }
+
+      if (CurTok != tok_in)
+        return Error("expected 'in' after for");
+      getNextToken();  // eat 'in'.
+
+      ExprAST *Body = ParseExpression();
+      if (Body == 0) return 0;
+
+      return new ForExprAST(IdName, Start, End, Step, Body);
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    ///   ::= ifexpr
+    ///   ::= forexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      case tok_if:         return ParseIfExpr();
+      case tok_for:        return ParseForExpr();
+      }
+    }
+
+    /// binoprhs
+    ///   ::= ('+' primary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the primary expression after the binary operator.
+        ExprAST *RHS = ParsePrimary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= primary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParsePrimary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    static PrototypeAST *ParsePrototype() {
+      if (CurTok != tok_identifier)
+        return ErrorP("Expected function name in prototype");
+
+      std::string FnName = IdentifierStr;
+      getNextToken();
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      return new PrototypeAST(FnName, ArgNames);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Code Generation
+    //===----------------------------------------------------------------------===//
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+    static FunctionPassManager *TheFPM;
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: return ErrorV("invalid binary operator");
+      }
+    }
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+    Value *IfExprAST::Codegen() {
+      Value *CondV = Cond->Codegen();
+      if (CondV == 0) return 0;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      CondV = Builder.CreateFCmpONE(CondV,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                    "ifcond");
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Create blocks for the then and else cases.  Insert the 'then' block at the
+      // end of the function.
+      BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+      BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+      BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+      Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+      // Emit then value.
+      Builder.SetInsertPoint(ThenBB);
+
+      Value *ThenV = Then->Codegen();
+      if (ThenV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+      ThenBB = Builder.GetInsertBlock();
+
+      // Emit else block.
+      TheFunction->getBasicBlockList().push_back(ElseBB);
+      Builder.SetInsertPoint(ElseBB);
+
+      Value *ElseV = Else->Codegen();
+      if (ElseV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+      ElseBB = Builder.GetInsertBlock();
+
+      // Emit merge block.
+      TheFunction->getBasicBlockList().push_back(MergeBB);
+      Builder.SetInsertPoint(MergeBB);
+      PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+                                      "iftmp");
+
+      PN->addIncoming(ThenV, ThenBB);
+      PN->addIncoming(ElseV, ElseBB);
+      return PN;
+    }
+
+    Value *ForExprAST::Codegen() {
+      // Output this as:
+      //   ...
+      //   start = startexpr
+      //   goto loop
+      // loop:
+      //   variable = phi [start, loopheader], [nextvariable, loopend]
+      //   ...
+      //   bodyexpr
+      //   ...
+      // loopend:
+      //   step = stepexpr
+      //   nextvariable = variable + step
+      //   endcond = endexpr
+      //   br endcond, loop, endloop
+      // outloop:
+
+      // Emit the start code first, without 'variable' in scope.
+      Value *StartVal = Start->Codegen();
+      if (StartVal == 0) return 0;
+
+      // Make the new basic block for the loop header, inserting after current
+      // block.
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+      BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+      BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+      // Insert an explicit fall through from the current block to the LoopBB.
+      Builder.CreateBr(LoopBB);
+
+      // Start insertion in LoopBB.
+      Builder.SetInsertPoint(LoopBB);
+
+      // Start the PHI node with an entry for Start.
+      PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
+      Variable->addIncoming(StartVal, PreheaderBB);
+
+      // Within the loop, the variable is defined equal to the PHI node.  If it
+      // shadows an existing variable, we have to restore it, so save it now.
+      Value *OldVal = NamedValues[VarName];
+      NamedValues[VarName] = Variable;
+
+      // Emit the body of the loop.  This, like any other expr, can change the
+      // current BB.  Note that we ignore the value computed by the body, but don't
+      // allow an error.
+      if (Body->Codegen() == 0)
+        return 0;
+
+      // Emit the step value.
+      Value *StepVal;
+      if (Step) {
+        StepVal = Step->Codegen();
+        if (StepVal == 0) return 0;
+      } else {
+        // If not specified, use 1.0.
+        StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+      }
+
+      Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
+
+      // Compute the end condition.
+      Value *EndCond = End->Codegen();
+      if (EndCond == 0) return EndCond;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      EndCond = Builder.CreateFCmpONE(EndCond,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                      "loopcond");
+
+      // Create the "after loop" block and insert it.
+      BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+      BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+      // Insert the conditional branch into the end of LoopEndBB.
+      Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+      // Any new code will be inserted in AfterBB.
+      Builder.SetInsertPoint(AfterBB);
+
+      // Add a new entry to the PHI node for the backedge.
+      Variable->addIncoming(NextVar, LoopEndBB);
+
+      // Restore the unshadowed variable.
+      if (OldVal)
+        NamedValues[VarName] = OldVal;
+      else
+        NamedValues.erase(VarName);
+
+
+      // for expr always returns 0.0.
+      return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+    }
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+
+      return F;
+    }
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        // Optimize the function.
+        TheFPM->run(*TheFunction);
+
+        return TheFunction;
+      }
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing and JIT Driver
+    //===----------------------------------------------------------------------===//
+
+    static ExecutionEngine *TheExecutionEngine;
+
+    static void HandleDefinition() {
+      if (FunctionAST *F = ParseDefinition()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read function definition:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (PrototypeAST *P = ParseExtern()) {
+        if (Function *F = P->Codegen()) {
+          fprintf(stderr, "Read extern: ");
+          F->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          // JIT the function, returning a function pointer.
+          void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+
+          // Cast it to the right type (takes no arguments, returns a double) so we
+          // can call it as a native function.
+          double (*FP)() = (double (*)())(intptr_t)FPtr;
+          fprintf(stderr, "Evaluated to %f\n", FP());
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // "Library" functions that can be "extern'd" from user code.
+    //===----------------------------------------------------------------------===//
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      InitializeNativeTarget();
+      LLVMContext &Context = getGlobalContext();
+
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Make the module, which holds all the code.
+      TheModule = new Module("my cool jit", Context);
+
+      // Create the JIT.  This takes ownership of the module.
+      std::string ErrStr;
+      TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+      if (!TheExecutionEngine) {
+        fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+        exit(1);
+      }
+
+      FunctionPassManager OurFPM(TheModule);
+
+      // Set up the optimizer pipeline.  Start with registering info about how the
+      // target lays out data structures.
+      OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+      // Provide basic AliasAnalysis support for GVN.
+      OurFPM.add(createBasicAliasAnalysisPass());
+      // Do simple "peephole" optimizations and bit-twiddling optzns.
+      OurFPM.add(createInstructionCombiningPass());
+      // Reassociate expressions.
+      OurFPM.add(createReassociatePass());
+      // Eliminate Common SubExpressions.
+      OurFPM.add(createGVNPass());
+      // Simplify the control flow graph (deleting unreachable blocks, etc).
+      OurFPM.add(createCFGSimplificationPass());
+
+      OurFPM.doInitialization();
+
+      // Set the global so the code gen can use this.
+      TheFPM = &OurFPM;
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      TheFPM = 0;
+
+      // Print out all of the generated code.
+      TheModule->dump();
+
+      return 0;
+    }
+
+`Next: Extending the language: user-defined operators <LangImpl6.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl6.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl6.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl6.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl6.html (removed)
@@ -1,1829 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Extending the Language: User-defined Operators</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Extending the Language: User-defined Operators</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 6
-  <ol>
-    <li><a href="#intro">Chapter 6 Introduction</a></li>
-    <li><a href="#idea">User-defined Operators: the Idea</a></li>
-    <li><a href="#binary">User-defined Binary Operators</a></li>
-    <li><a href="#unary">User-defined Unary Operators</a></li>
-    <li><a href="#example">Kicking the Tires</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl7.html">Chapter 7</a>: Extending the Language: Mutable
-Variables / SSA Construction</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 6 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  At this point in our tutorial, we now have a fully
-functional language that is fairly minimal, but also useful.  There
-is still one big problem with it, however. Our language doesn't have many 
-useful operators (like division, logical negation, or even any comparisons 
-besides less-than).</p>
-
-<p>This chapter of the tutorial takes a wild digression into adding user-defined
-operators to the simple and beautiful Kaleidoscope language. This digression now gives 
-us a simple and ugly language in some ways, but also a powerful one at the same time.
-One of the great things about creating your own language is that you get to
-decide what is good or bad.  In this tutorial we'll assume that it is okay to
-use this as a way to show some interesting parsing techniques.</p>
-
-<p>At the end of this tutorial, we'll run through an example Kaleidoscope 
-application that <a href="#example">renders the Mandelbrot set</a>.  This gives 
-an example of what you can build with Kaleidoscope and its feature set.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="idea">User-defined Operators: the Idea</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-The "operator overloading" that we will add to Kaleidoscope is more general than
-languages like C++.  In C++, you are only allowed to redefine existing
-operators: you can't programatically change the grammar, introduce new
-operators, change precedence levels, etc.  In this chapter, we will add this
-capability to Kaleidoscope, which will let the user round out the set of
-operators that are supported.</p>
-
-<p>The point of going into user-defined operators in a tutorial like this is to
-show the power and flexibility of using a hand-written parser.  Thus far, the parser
-we have been implementing uses recursive descent for most parts of the grammar and 
-operator precedence parsing for the expressions.  See <a 
-href="LangImpl2.html">Chapter 2</a> for details.  Without using operator
-precedence parsing, it would be very difficult to allow the programmer to
-introduce new operators into the grammar: the grammar is dynamically extensible
-as the JIT runs.</p>
-
-<p>The two specific features we'll add are programmable unary operators (right
-now, Kaleidoscope has no unary operators at all) as well as binary operators.
-An example of this is:</p>
-
-<div class="doc_code">
-<pre>
-# Logical unary not.
-def unary!(v)
-  if v then
-    0
-  else
-    1;
-
-# Define > with the same precedence as <.
-def binary> 10 (LHS RHS)
-  RHS < LHS;
-
-# Binary "logical or", (note that it does not "short circuit")
-def binary| 5 (LHS RHS)
-  if LHS then
-    1
-  else if RHS then
-    1
-  else
-    0;
-
-# Define = with slightly lower precedence than relationals.
-def binary= 9 (LHS RHS)
-  !(LHS < RHS | LHS > RHS);
-</pre>
-</div>
-
-<p>Many languages aspire to being able to implement their standard runtime
-library in the language itself.  In Kaleidoscope, we can implement significant
-parts of the language in the library!</p>
-
-<p>We will break down implementation of these features into two parts:
-implementing support for user-defined binary operators and adding unary
-operators.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="binary">User-defined Binary Operators</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Adding support for user-defined binary operators is pretty simple with our
-current framework.  We'll first add support for the unary/binary keywords:</p>
-
-<div class="doc_code">
-<pre>
-enum Token {
-  ...
-  <b>// operators
-  tok_binary = -11, tok_unary = -12</b>
-};
-...
-static int gettok() {
-...
-    if (IdentifierStr == "for") return tok_for;
-    if (IdentifierStr == "in") return tok_in;
-    <b>if (IdentifierStr == "binary") return tok_binary;
-    if (IdentifierStr == "unary") return tok_unary;</b>
-    return tok_identifier;
-</pre>
-</div>
-
-<p>This just adds lexer support for the unary and binary keywords, like we
-did in <a href="LangImpl5.html#iflexer">previous chapters</a>.  One nice thing
-about our current AST, is that we represent binary operators with full generalisation
-by using their ASCII code as the opcode.  For our extended operators, we'll use this
-same representation, so we don't need any new AST or parser support.</p>
-
-<p>On the other hand, we have to be able to represent the definitions of these
-new operators, in the "def binary| 5" part of the function definition.  In our
-grammar so far, the "name" for the function definition is parsed as the
-"prototype" production and into the <tt>PrototypeAST</tt> AST node.  To
-represent our new user-defined operators as prototypes, we have to extend
-the  <tt>PrototypeAST</tt> AST node like this:</p>
-
-<div class="doc_code">
-<pre>
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its argument names as well as if it is an operator.
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-  <b>bool isOperator;
-  unsigned Precedence;  // Precedence if a binary op.</b>
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args,
-               <b>bool isoperator = false, unsigned prec = 0</b>)
-  : Name(name), Args(args), <b>isOperator(isoperator), Precedence(prec)</b> {}
-  
-  <b>bool isUnaryOp() const { return isOperator && Args.size() == 1; }
-  bool isBinaryOp() const { return isOperator && Args.size() == 2; }
-  
-  char getOperatorName() const {
-    assert(isUnaryOp() || isBinaryOp());
-    return Name[Name.size()-1];
-  }
-  
-  unsigned getBinaryPrecedence() const { return Precedence; }</b>
-  
-  Function *Codegen();
-};
-</pre>
-</div>
-
-<p>Basically, in addition to knowing a name for the prototype, we now keep track
-of whether it was an operator, and if it was, what precedence level the operator
-is at.  The precedence is only used for binary operators (as you'll see below,
-it just doesn't apply for unary operators).  Now that we have a way to represent
-the prototype for a user-defined operator, we need to parse it:</p>
-
-<div class="doc_code">
-<pre>
-/// prototype
-///   ::= id '(' id* ')'
-<b>///   ::= binary LETTER number? (id, id)</b>
-static PrototypeAST *ParsePrototype() {
-  std::string FnName;
-  
-  <b>unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
-  unsigned BinaryPrecedence = 30;</b>
-  
-  switch (CurTok) {
-  default:
-    return ErrorP("Expected function name in prototype");
-  case tok_identifier:
-    FnName = IdentifierStr;
-    Kind = 0;
-    getNextToken();
-    break;
-  <b>case tok_binary:
-    getNextToken();
-    if (!isascii(CurTok))
-      return ErrorP("Expected binary operator");
-    FnName = "binary";
-    FnName += (char)CurTok;
-    Kind = 2;
-    getNextToken();
-    
-    // Read the precedence if present.
-    if (CurTok == tok_number) {
-      if (NumVal < 1 || NumVal > 100)
-        return ErrorP("Invalid precedecnce: must be 1..100");
-      BinaryPrecedence = (unsigned)NumVal;
-      getNextToken();
-    }
-    break;</b>
-  }
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  <b>// Verify right number of names for operator.
-  if (Kind && ArgNames.size() != Kind)
-    return ErrorP("Invalid number of operands for operator");
-  
-  return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);</b>
-}
-</pre>
-</div>
-
-<p>This is all fairly straightforward parsing code, and we have already seen
-a lot of similar code in the past.  One interesting part about the code above is 
-the couple lines that set up <tt>FnName</tt> for binary operators.  This builds names 
-like "binary@" for a newly defined "@" operator.  This then takes advantage of the 
-fact that symbol names in the LLVM symbol table are allowed to have any character in
-them, including embedded nul characters.</p>
-
-<p>The next interesting thing to add, is codegen support for these binary operators.
-Given our current structure, this is a simple addition of a default case for our
-existing binary operator node:</p>
-
-<div class="doc_code">
-<pre>
-Value *BinaryExprAST::Codegen() {
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  <b>default: break;</b>
-  }
-  
-  <b>// If it wasn't a builtin binary operator, it must be a user defined one. Emit
-  // a call to it.
-  Function *F = TheModule->getFunction(std::string("binary")+Op);
-  assert(F && "binary operator not found!");
-  
-  Value *Ops[2] = { L, R };
-  return Builder.CreateCall(F, Ops, "binop");</b>
-}
-
-</pre>
-</div>
-
-<p>As you can see above, the new code is actually really simple.  It just does
-a lookup for the appropriate operator in the symbol table and generates a 
-function call to it.  Since user-defined operators are just built as normal
-functions (because the "prototype" boils down to a function with the right
-name) everything falls into place.</p>
-
-<p>The final piece of code we are missing, is a bit of top-level magic:</p>
-
-<div class="doc_code">
-<pre>
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-  
-  <b>// If this is an operator, install it.
-  if (Proto->isBinaryOp())
-    BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();</b>
-  
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  if (Value *RetVal = Body->Codegen()) {
-    ...
-</pre>
-</div>
-
-<p>Basically, before codegening a function, if it is a user-defined operator, we
-register it in the precedence table.  This allows the binary operator parsing
-logic we already have in place to handle it.  Since we are working on a fully-general operator precedence parser, this is all we need to do to "extend the grammar".</p>
-
-<p>Now we have useful user-defined binary operators.  This builds a lot
-on the previous framework we built for other operators.  Adding unary operators
-is a bit more challenging, because we don't have any framework for it yet - lets
-see what it takes.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="unary">User-defined Unary Operators</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Since we don't currently support unary operators in the Kaleidoscope
-language, we'll need to add everything to support them.  Above, we added simple
-support for the 'unary' keyword to the lexer.  In addition to that, we need an
-AST node:</p>
-
-<div class="doc_code">
-<pre>
-/// UnaryExprAST - Expression class for a unary operator.
-class UnaryExprAST : public ExprAST {
-  char Opcode;
-  ExprAST *Operand;
-public:
-  UnaryExprAST(char opcode, ExprAST *operand) 
-    : Opcode(opcode), Operand(operand) {}
-  virtual Value *Codegen();
-};
-</pre>
-</div>
-
-<p>This AST node is very simple and obvious by now.  It directly mirrors the
-binary operator AST node, except that it only has one child.  With this, we
-need to add the parsing logic.  Parsing a unary operator is pretty simple: we'll
-add a new function to do it:</p>
-
-<div class="doc_code">
-<pre>
-/// unary
-///   ::= primary
-///   ::= '!' unary
-static ExprAST *ParseUnary() {
-  // If the current token is not an operator, it must be a primary expr.
-  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
-    return ParsePrimary();
-  
-  // If this is a unary operator, read it.
-  int Opc = CurTok;
-  getNextToken();
-  if (ExprAST *Operand = ParseUnary())
-    return new UnaryExprAST(Opc, Operand);
-  return 0;
-}
-</pre>
-</div>
-
-<p>The grammar we add is pretty straightforward here.  If we see a unary
-operator when parsing a primary operator, we eat the operator as a prefix and
-parse the remaining piece as another unary operator.  This allows us to handle
-multiple unary operators (e.g. "!!x").  Note that unary operators can't have 
-ambiguous parses like binary operators can, so there is no need for precedence
-information.</p>
-
-<p>The problem with this function, is that we need to call ParseUnary from somewhere.
-To do this, we change previous callers of ParsePrimary to call ParseUnary
-instead:</p>
-
-<div class="doc_code">
-<pre>
-/// binoprhs
-///   ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  ...
-    <b>// Parse the unary expression after the binary operator.
-    ExprAST *RHS = ParseUnary();
-    if (!RHS) return 0;</b>
-  ...
-}
-/// expression
-///   ::= unary binoprhs
-///
-static ExprAST *ParseExpression() {
-  <b>ExprAST *LHS = ParseUnary();</b>
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-</pre>
-</div>
-
-<p>With these two simple changes, we are now able to parse unary operators and build the
-AST for them.  Next up, we need to add parser support for prototypes, to parse
-the unary operator prototype.  We extend the binary operator code above 
-with:</p>
-
-<div class="doc_code">
-<pre>
-/// prototype
-///   ::= id '(' id* ')'
-///   ::= binary LETTER number? (id, id)
-<b>///   ::= unary LETTER (id)</b>
-static PrototypeAST *ParsePrototype() {
-  std::string FnName;
-  
-  unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
-  unsigned BinaryPrecedence = 30;
-  
-  switch (CurTok) {
-  default:
-    return ErrorP("Expected function name in prototype");
-  case tok_identifier:
-    FnName = IdentifierStr;
-    Kind = 0;
-    getNextToken();
-    break;
-  <b>case tok_unary:
-    getNextToken();
-    if (!isascii(CurTok))
-      return ErrorP("Expected unary operator");
-    FnName = "unary";
-    FnName += (char)CurTok;
-    Kind = 1;
-    getNextToken();
-    break;</b>
-  case tok_binary:
-    ...
-</pre>
-</div>
-
-<p>As with binary operators, we name unary operators with a name that includes
-the operator character.  This assists us at code generation time.  Speaking of,
-the final piece we need to add is codegen support for unary operators.  It looks
-like this:</p>
-
-<div class="doc_code">
-<pre>
-Value *UnaryExprAST::Codegen() {
-  Value *OperandV = Operand->Codegen();
-  if (OperandV == 0) return 0;
-  
-  Function *F = TheModule->getFunction(std::string("unary")+Opcode);
-  if (F == 0)
-    return ErrorV("Unknown unary operator");
-  
-  return Builder.CreateCall(F, OperandV, "unop");
-}
-</pre>
-</div>
-
-<p>This code is similar to, but simpler than, the code for binary operators.  It
-is simpler primarily because it doesn't need to handle any predefined operators.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="example">Kicking the Tires</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>It is somewhat hard to believe, but with a few simple extensions we've
-covered in the last chapters, we have grown a real-ish language.  With this, we 
-can do a lot of interesting things, including I/O, math, and a bunch of other
-things.  For example, we can now add a nice sequencing operator (printd is
-defined to print out the specified value and a newline):</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>extern printd(x);</b>
-Read extern:
-declare double @printd(double)
-
-ready> <b>def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.</b>
-..
-ready> <b>printd(123) : printd(456) : printd(789);</b>
-123.000000
-456.000000
-789.000000
-Evaluated to 0.000000
-</pre>
-</div>
-
-<p>We can also define a bunch of other "primitive" operations, such as:</p>
-
-<div class="doc_code">
-<pre>
-# Logical unary not.
-def unary!(v)
-  if v then
-    0
-  else
-    1;
-    
-# Unary negate.
-def unary-(v)
-  0-v;
-
-# Define > with the same precedence as <.
-def binary> 10 (LHS RHS)
-  RHS < LHS;
-
-# Binary logical or, which does not short circuit. 
-def binary| 5 (LHS RHS)
-  if LHS then
-    1
-  else if RHS then
-    1
-  else
-    0;
-
-# Binary logical and, which does not short circuit. 
-def binary& 6 (LHS RHS)
-  if !LHS then
-    0
-  else
-    !!RHS;
-
-# Define = with slightly lower precedence than relationals.
-def binary = 9 (LHS RHS)
-  !(LHS < RHS | LHS > RHS);
-
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-</pre>
-</div>
-
-
-<p>Given the previous if/then/else support, we can also define interesting
-functions for I/O.  For example, the following prints out a character whose
-"density" reflects the value passed in: the lower the value, the denser the
-character:</p>
-
-<div class="doc_code">
-<pre>
-ready>
-<b>
-extern putchard(char)
-def printdensity(d)
-  if d > 8 then
-    putchard(32)  # ' '
-  else if d > 4 then
-    putchard(46)  # '.'
-  else if d > 2 then
-    putchard(43)  # '+'
-  else
-    putchard(42); # '*'</b>
-...
-ready> <b>printdensity(1): printdensity(2): printdensity(3):
-       printdensity(4): printdensity(5): printdensity(9):
-       putchard(10);</b>
-**++.
-Evaluated to 0.000000
-</pre>
-</div>
-
-<p>Based on these simple primitive operations, we can start to define more
-interesting things.  For example, here's a little function that solves for the
-number of iterations it takes a function in the complex plane to
-converge:</p>
-
-<div class="doc_code">
-<pre>
-# Determine whether the specific location diverges.
-# Solve for z = z^2 + c in the complex plane.
-def mandleconverger(real imag iters creal cimag)
-  if iters > 255 | (real*real + imag*imag > 4) then
-    iters
-  else
-    mandleconverger(real*real - imag*imag + creal,
-                    2*real*imag + cimag,
-                    iters+1, creal, cimag);
-
-# Return the number of iterations required for the iteration to escape
-def mandleconverge(real imag)
-  mandleconverger(real, imag, 0, real, imag);
-</pre>
-</div>
-
-<p>This "<code>z = z<sup>2</sup> + c</code>" function is a beautiful little
-creature that is the basis for computation of
-the <a href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>.
-Our <tt>mandelconverge</tt> function returns the number of iterations that it
-takes for a complex orbit to escape, saturating to 255.  This is not a very
-useful function by itself, but if you plot its value over a two-dimensional
-plane, you can see the Mandelbrot set.  Given that we are limited to using
-putchard here, our amazing graphical output is limited, but we can whip together
-something using the density plotter above:</p>
-
-<div class="doc_code">
-<pre>
-# Compute and plot the mandlebrot set with the specified 2 dimensional range
-# info.
-def mandelhelp(xmin xmax xstep   ymin ymax ystep)
-  for y = ymin, y < ymax, ystep in (
-    (for x = xmin, x < xmax, xstep in
-       printdensity(mandleconverge(x,y)))
-    : putchard(10)
-  )
- 
-# mandel - This is a convenient helper function for plotting the mandelbrot set
-# from the specified position with the specified Magnification.
-def mandel(realstart imagstart realmag imagmag) 
-  mandelhelp(realstart, realstart+realmag*78, realmag,
-             imagstart, imagstart+imagmag*40, imagmag);
-</pre>
-</div>
-
-<p>Given this, we can try plotting out the mandlebrot set!  Lets try it out:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
-*******************************+++++++++++*************************************
-*************************+++++++++++++++++++++++*******************************
-**********************+++++++++++++++++++++++++++++****************************
-*******************+++++++++++++++++++++.. ...++++++++*************************
-*****************++++++++++++++++++++++.... ...+++++++++***********************
-***************+++++++++++++++++++++++.....   ...+++++++++*********************
-**************+++++++++++++++++++++++....     ....+++++++++********************
-*************++++++++++++++++++++++......      .....++++++++*******************
-************+++++++++++++++++++++.......       .......+++++++******************
-***********+++++++++++++++++++....                ... .+++++++*****************
-**********+++++++++++++++++.......                     .+++++++****************
-*********++++++++++++++...........                    ...+++++++***************
-********++++++++++++............                      ...++++++++**************
-********++++++++++... ..........                        .++++++++**************
-*******+++++++++.....                                   .+++++++++*************
-*******++++++++......                                  ..+++++++++*************
-*******++++++.......                                   ..+++++++++*************
-*******+++++......                                     ..+++++++++*************
-*******.... ....                                      ...+++++++++*************
-*******.... .                                         ...+++++++++*************
-*******+++++......                                    ...+++++++++*************
-*******++++++.......                                   ..+++++++++*************
-*******++++++++......                                   .+++++++++*************
-*******+++++++++.....                                  ..+++++++++*************
-********++++++++++... ..........                        .++++++++**************
-********++++++++++++............                      ...++++++++**************
-*********++++++++++++++..........                     ...+++++++***************
-**********++++++++++++++++........                     .+++++++****************
-**********++++++++++++++++++++....                ... ..+++++++****************
-***********++++++++++++++++++++++.......       .......++++++++*****************
-************+++++++++++++++++++++++......      ......++++++++******************
-**************+++++++++++++++++++++++....      ....++++++++********************
-***************+++++++++++++++++++++++.....   ...+++++++++*********************
-*****************++++++++++++++++++++++....  ...++++++++***********************
-*******************+++++++++++++++++++++......++++++++*************************
-*********************++++++++++++++++++++++.++++++++***************************
-*************************+++++++++++++++++++++++*******************************
-******************************+++++++++++++************************************
-*******************************************************************************
-*******************************************************************************
-*******************************************************************************
-Evaluated to 0.000000
-ready> <b>mandel(-2, -1, 0.02, 0.04);</b>
-**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
-***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
-*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
-*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
-***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
-**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
-************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
-***********++++++++++++++++++++++++++++++++++++++++++++++++++........        . 
-**********++++++++++++++++++++++++++++++++++++++++++++++.............          
-********+++++++++++++++++++++++++++++++++++++++++++..................          
-*******+++++++++++++++++++++++++++++++++++++++.......................          
-******+++++++++++++++++++++++++++++++++++...........................           
-*****++++++++++++++++++++++++++++++++............................              
-*****++++++++++++++++++++++++++++...............................               
-****++++++++++++++++++++++++++......   .........................               
-***++++++++++++++++++++++++.........     ......    ...........                 
-***++++++++++++++++++++++............                                          
-**+++++++++++++++++++++..............                                          
-**+++++++++++++++++++................                                          
-*++++++++++++++++++.................                                           
-*++++++++++++++++............ ...                                              
-*++++++++++++++..............                                                  
-*+++....++++................                                                   
-*..........  ...........                                                       
-*                                                                              
-*..........  ...........                                                       
-*+++....++++................                                                   
-*++++++++++++++..............                                                  
-*++++++++++++++++............ ...                                              
-*++++++++++++++++++.................                                           
-**+++++++++++++++++++................                                          
-**+++++++++++++++++++++..............                                          
-***++++++++++++++++++++++............                                          
-***++++++++++++++++++++++++.........     ......    ...........                 
-****++++++++++++++++++++++++++......   .........................               
-*****++++++++++++++++++++++++++++...............................               
-*****++++++++++++++++++++++++++++++++............................              
-******+++++++++++++++++++++++++++++++++++...........................           
-*******+++++++++++++++++++++++++++++++++++++++.......................          
-********+++++++++++++++++++++++++++++++++++++++++++..................          
-Evaluated to 0.000000
-ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
-*******************************************************************************
-*******************************************************************************
-*******************************************************************************
-**********+++++++++++++++++++++************************************************
-*+++++++++++++++++++++++++++++++++++++++***************************************
-+++++++++++++++++++++++++++++++++++++++++++++**********************************
-++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
-++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
-+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
-+++++++++++++++++++++++++++++++....   ......+++++++++++++++++++****************
-+++++++++++++++++++++++++++++.......  ........+++++++++++++++++++**************
-++++++++++++++++++++++++++++........   ........++++++++++++++++++++************
-+++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++**********
-++++++++++++++++++++++++++...........        ....++++++++++++++++++++++********
-++++++++++++++++++++++++.............       .......++++++++++++++++++++++******
-+++++++++++++++++++++++.............        ........+++++++++++++++++++++++****
-++++++++++++++++++++++...........           ..........++++++++++++++++++++++***
-++++++++++++++++++++...........                .........++++++++++++++++++++++*
-++++++++++++++++++............                  ...........++++++++++++++++++++
-++++++++++++++++...............                 .............++++++++++++++++++
-++++++++++++++.................                 ...............++++++++++++++++
-++++++++++++..................                  .................++++++++++++++
-+++++++++..................                      .................+++++++++++++
-++++++........        .                               .........  ..++++++++++++
-++............                                         ......    ....++++++++++
-..............                                                    ...++++++++++
-..............                                                    ....+++++++++
-..............                                                    .....++++++++
-.............                                                    ......++++++++
-...........                                                     .......++++++++
-.........                                                       ........+++++++
-.........                                                       ........+++++++
-.........                                                           ....+++++++
-........                                                             ...+++++++
-.......                                                              ...+++++++
-                                                                    ....+++++++
-                                                                   .....+++++++
-                                                                    ....+++++++
-                                                                    ....+++++++
-                                                                    ....+++++++
-Evaluated to 0.000000
-ready> <b>^D</b>
-</pre>
-</div>
-
-<p>At this point, you may be starting to realize that Kaleidoscope is a real
-and powerful language.  It may not be self-similar :), but it can be used to
-plot things that are!</p>
-
-<p>With this, we conclude the "adding user-defined operators" chapter of the
-tutorial.  We have successfully augmented our language, adding the ability to extend the
-language in the library, and we have shown how this can be used to build a simple but
-interesting end-user application in Kaleidoscope.  At this point, Kaleidoscope
-can build a variety of applications that are functional and can call functions
-with side-effects, but it can't actually define and mutate a variable itself.
-</p>
-
-<p>Strikingly, variable mutation is an important feature of some
-languages, and it is not at all obvious how to <a href="LangImpl7.html">add
-support for mutable variables</a> without having to add an "SSA construction"
-phase to your front-end.  In the next chapter, we will describe how you can
-add variable mutation without building SSA in your front-end.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-if/then/else and for expressions..  To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>On some platforms, you will need to specify -rdynamic or -Wl,--export-dynamic
-when linking.  This ensures that symbols defined in the main executable are
-exported to the dynamic linker and so are available for symbol resolution at
-run time.  This is not needed if you compile your support code into a shared
-library, although doing that will cause problems on Windows.</p>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/DerivedTypes.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Support/TargetSelect.h"
-#include <cstdio>
-#include <string>
-#include <map>
-#include <vector>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5,
-  
-  // control
-  tok_if = -6, tok_then = -7, tok_else = -8,
-  tok_for = -9, tok_in = -10,
-  
-  // operators
-  tok_binary = -11, tok_unary = -12
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    if (IdentifierStr == "if") return tok_if;
-    if (IdentifierStr == "then") return tok_then;
-    if (IdentifierStr == "else") return tok_else;
-    if (IdentifierStr == "for") return tok_for;
-    if (IdentifierStr == "in") return tok_in;
-    if (IdentifierStr == "binary") return tok_binary;
-    if (IdentifierStr == "unary") return tok_unary;
-    return tok_identifier;
-  }
-
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-  
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-  virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-  virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-  virtual Value *Codegen();
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-class UnaryExprAST : public ExprAST {
-  char Opcode;
-  ExprAST *Operand;
-public:
-  UnaryExprAST(char opcode, ExprAST *operand) 
-    : Opcode(opcode), Operand(operand) {}
-  virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-  virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-  virtual Value *Codegen();
-};
-
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
-  ExprAST *Cond, *Then, *Else;
-public:
-  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
-  : Cond(cond), Then(then), Else(_else) {}
-  virtual Value *Codegen();
-};
-
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
-  std::string VarName;
-  ExprAST *Start, *End, *Step, *Body;
-public:
-  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
-             ExprAST *step, ExprAST *body)
-    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
-  virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes), as well as if it is an operator.
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-  bool isOperator;
-  unsigned Precedence;  // Precedence if a binary op.
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args,
-               bool isoperator = false, unsigned prec = 0)
-  : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
-  
-  bool isUnaryOp() const { return isOperator && Args.size() == 1; }
-  bool isBinaryOp() const { return isOperator && Args.size() == 2; }
-  
-  char getOperatorName() const {
-    assert(isUnaryOp() || isBinaryOp());
-    return Name[Name.size()-1];
-  }
-  
-  unsigned getBinaryPrecedence() const { return Precedence; }
-  
-  Function *Codegen();
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-  
-  Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-  
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
-  getNextToken();  // eat the if.
-  
-  // condition.
-  ExprAST *Cond = ParseExpression();
-  if (!Cond) return 0;
-  
-  if (CurTok != tok_then)
-    return Error("expected then");
-  getNextToken();  // eat the then
-  
-  ExprAST *Then = ParseExpression();
-  if (Then == 0) return 0;
-  
-  if (CurTok != tok_else)
-    return Error("expected else");
-  
-  getNextToken();
-  
-  ExprAST *Else = ParseExpression();
-  if (!Else) return 0;
-  
-  return new IfExprAST(Cond, Then, Else);
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
-  getNextToken();  // eat the for.
-
-  if (CurTok != tok_identifier)
-    return Error("expected identifier after for");
-  
-  std::string IdName = IdentifierStr;
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '=')
-    return Error("expected '=' after for");
-  getNextToken();  // eat '='.
-  
-  
-  ExprAST *Start = ParseExpression();
-  if (Start == 0) return 0;
-  if (CurTok != ',')
-    return Error("expected ',' after for start value");
-  getNextToken();
-  
-  ExprAST *End = ParseExpression();
-  if (End == 0) return 0;
-  
-  // The step value is optional.
-  ExprAST *Step = 0;
-  if (CurTok == ',') {
-    getNextToken();
-    Step = ParseExpression();
-    if (Step == 0) return 0;
-  }
-  
-  if (CurTok != tok_in)
-    return Error("expected 'in' after for");
-  getNextToken();  // eat 'in'.
-  
-  ExprAST *Body = ParseExpression();
-  if (Body == 0) return 0;
-
-  return new ForExprAST(IdName, Start, End, Step, Body);
-}
-
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-///   ::= ifexpr
-///   ::= forexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  case tok_if:         return ParseIfExpr();
-  case tok_for:        return ParseForExpr();
-  }
-}
-
-/// unary
-///   ::= primary
-///   ::= '!' unary
-static ExprAST *ParseUnary() {
-  // If the current token is not an operator, it must be a primary expr.
-  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
-    return ParsePrimary();
-  
-  // If this is a unary operator, read it.
-  int Opc = CurTok;
-  getNextToken();
-  if (ExprAST *Operand = ParseUnary())
-    return new UnaryExprAST(Opc, Operand);
-  return 0;
-}
-
-/// binoprhs
-///   ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-    
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the unary expression after the binary operator.
-    ExprAST *RHS = ParseUnary();
-    if (!RHS) return 0;
-    
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }
-}
-
-/// expression
-///   ::= unary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParseUnary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-///   ::= id '(' id* ')'
-///   ::= binary LETTER number? (id, id)
-///   ::= unary LETTER (id)
-static PrototypeAST *ParsePrototype() {
-  std::string FnName;
-  
-  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
-  unsigned BinaryPrecedence = 30;
-  
-  switch (CurTok) {
-  default:
-    return ErrorP("Expected function name in prototype");
-  case tok_identifier:
-    FnName = IdentifierStr;
-    Kind = 0;
-    getNextToken();
-    break;
-  case tok_unary:
-    getNextToken();
-    if (!isascii(CurTok))
-      return ErrorP("Expected unary operator");
-    FnName = "unary";
-    FnName += (char)CurTok;
-    Kind = 1;
-    getNextToken();
-    break;
-  case tok_binary:
-    getNextToken();
-    if (!isascii(CurTok))
-      return ErrorP("Expected binary operator");
-    FnName = "binary";
-    FnName += (char)CurTok;
-    Kind = 2;
-    getNextToken();
-    
-    // Read the precedence if present.
-    if (CurTok == tok_number) {
-      if (NumVal < 1 || NumVal > 100)
-        return ErrorP("Invalid precedecnce: must be 1..100");
-      BinaryPrecedence = (unsigned)NumVal;
-      getNextToken();
-    }
-    break;
-  }
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  // Verify right number of names for operator.
-  if (Kind && ArgNames.size() != Kind)
-    return ErrorP("Invalid number of operands for operator");
-  
-  return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder<> Builder(getGlobalContext());
-static std::map<std::string, Value*> NamedValues;
-static FunctionPassManager *TheFPM;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  return V ? V : ErrorV("Unknown variable name");
-}
-
-Value *UnaryExprAST::Codegen() {
-  Value *OperandV = Operand->Codegen();
-  if (OperandV == 0) return 0;
-  
-  Function *F = TheModule->getFunction(std::string("unary")+Opcode);
-  if (F == 0)
-    return ErrorV("Unknown unary operator");
-  
-  return Builder.CreateCall(F, OperandV, "unop");
-}
-
-Value *BinaryExprAST::Codegen() {
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  default: break;
-  }
-  
-  // If it wasn't a builtin binary operator, it must be a user defined one. Emit
-  // a call to it.
-  Function *F = TheModule->getFunction(std::string("binary")+Op);
-  assert(F && "binary operator not found!");
-  
-  Value *Ops[2] = { L, R };
-  return Builder.CreateCall(F, Ops, "binop");
-}
-
-Value *CallExprAST::Codegen() {
-  // Look up the name in the global module table.
-  Function *CalleeF = TheModule->getFunction(Callee);
-  if (CalleeF == 0)
-    return ErrorV("Unknown function referenced");
-  
-  // If argument mismatch error.
-  if (CalleeF->arg_size() != Args.size())
-    return ErrorV("Incorrect # arguments passed");
-
-  std::vector<Value*> ArgsV;
-  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-    ArgsV.push_back(Args[i]->Codegen());
-    if (ArgsV.back() == 0) return 0;
-  }
-  
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-
-Value *IfExprAST::Codegen() {
-  Value *CondV = Cond->Codegen();
-  if (CondV == 0) return 0;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  CondV = Builder.CreateFCmpONE(CondV, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                "ifcond");
-  
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  
-  // Create blocks for the then and else cases.  Insert the 'then' block at the
-  // end of the function.
-  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
-  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
-  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-  
-  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-  
-  // Emit then value.
-  Builder.SetInsertPoint(ThenBB);
-  
-  Value *ThenV = Then->Codegen();
-  if (ThenV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
-  ThenBB = Builder.GetInsertBlock();
-  
-  // Emit else block.
-  TheFunction->getBasicBlockList().push_back(ElseBB);
-  Builder.SetInsertPoint(ElseBB);
-  
-  Value *ElseV = Else->Codegen();
-  if (ElseV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
-  ElseBB = Builder.GetInsertBlock();
-  
-  // Emit merge block.
-  TheFunction->getBasicBlockList().push_back(MergeBB);
-  Builder.SetInsertPoint(MergeBB);
-  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
-                                  "iftmp");
-  
-  PN->addIncoming(ThenV, ThenBB);
-  PN->addIncoming(ElseV, ElseBB);
-  return PN;
-}
-
-Value *ForExprAST::Codegen() {
-  // Output this as:
-  //   ...
-  //   start = startexpr
-  //   goto loop
-  // loop: 
-  //   variable = phi [start, loopheader], [nextvariable, loopend]
-  //   ...
-  //   bodyexpr
-  //   ...
-  // loopend:
-  //   step = stepexpr
-  //   nextvariable = variable + step
-  //   endcond = endexpr
-  //   br endcond, loop, endloop
-  // outloop:
-  
-  // Emit the start code first, without 'variable' in scope.
-  Value *StartVal = Start->Codegen();
-  if (StartVal == 0) return 0;
-  
-  // Make the new basic block for the loop header, inserting after current
-  // block.
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
-  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-  
-  // Insert an explicit fall through from the current block to the LoopBB.
-  Builder.CreateBr(LoopBB);
-
-  // Start insertion in LoopBB.
-  Builder.SetInsertPoint(LoopBB);
-  
-  // Start the PHI node with an entry for Start.
-  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
-  Variable->addIncoming(StartVal, PreheaderBB);
-  
-  // Within the loop, the variable is defined equal to the PHI node.  If it
-  // shadows an existing variable, we have to restore it, so save it now.
-  Value *OldVal = NamedValues[VarName];
-  NamedValues[VarName] = Variable;
-  
-  // Emit the body of the loop.  This, like any other expr, can change the
-  // current BB.  Note that we ignore the value computed by the body, but don't
-  // allow an error.
-  if (Body->Codegen() == 0)
-    return 0;
-  
-  // Emit the step value.
-  Value *StepVal;
-  if (Step) {
-    StepVal = Step->Codegen();
-    if (StepVal == 0) return 0;
-  } else {
-    // If not specified, use 1.0.
-    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
-  }
-  
-  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
-
-  // Compute the end condition.
-  Value *EndCond = End->Codegen();
-  if (EndCond == 0) return EndCond;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  EndCond = Builder.CreateFCmpONE(EndCond, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                  "loopcond");
-  
-  // Create the "after loop" block and insert it.
-  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
-  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-  
-  // Insert the conditional branch into the end of LoopEndBB.
-  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-  
-  // Any new code will be inserted in AfterBB.
-  Builder.SetInsertPoint(AfterBB);
-  
-  // Add a new entry to the PHI node for the backedge.
-  Variable->addIncoming(NextVar, LoopEndBB);
-  
-  // Restore the unshadowed variable.
-  if (OldVal)
-    NamedValues[VarName] = OldVal;
-  else
-    NamedValues.erase(VarName);
-
-  
-  // for expr always returns 0.0.
-  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-
-Function *PrototypeAST::Codegen() {
-  // Make the function type:  double(double,double) etc.
-  std::vector<Type*> Doubles(Args.size(),
-                             Type::getDoubleTy(getGlobalContext()));
-  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
-                                       Doubles, false);
-  
-  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-  
-  // If F conflicted, there was already something named 'Name'.  If it has a
-  // body, don't allow redefinition or reextern.
-  if (F->getName() != Name) {
-    // Delete the one we just made and get the existing one.
-    F->eraseFromParent();
-    F = TheModule->getFunction(Name);
-    
-    // If F already has a body, reject this.
-    if (!F->empty()) {
-      ErrorF("redefinition of function");
-      return 0;
-    }
-    
-    // If F took a different number of args, reject.
-    if (F->arg_size() != Args.size()) {
-      ErrorF("redefinition of function with different # args");
-      return 0;
-    }
-  }
-  
-  // Set names for all arguments.
-  unsigned Idx = 0;
-  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
-       ++AI, ++Idx) {
-    AI->setName(Args[Idx]);
-    
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = AI;
-  }
-  
-  return F;
-}
-
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-  
-  // If this is an operator, install it.
-  if (Proto->isBinaryOp())
-    BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
-  
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    // Optimize the function.
-    TheFPM->run(*TheFunction);
-    
-    return TheFunction;
-  }
-  
-  // Error reading body, remove function.
-  TheFunction->eraseFromParent();
-
-  if (Proto->isBinaryOp())
-    BinopPrecedence.erase(Proto->getOperatorName());
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static ExecutionEngine *TheExecutionEngine;
-
-static void HandleDefinition() {
-  if (FunctionAST *F = ParseDefinition()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read function definition:");
-      LF->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleExtern() {
-  if (PrototypeAST *P = ParseExtern()) {
-    if (Function *F = P->Codegen()) {
-      fprintf(stderr, "Read extern: ");
-      F->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (FunctionAST *F = ParseTopLevelExpr()) {
-    if (Function *LF = F->Codegen()) {
-      // JIT the function, returning a function pointer.
-      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
-      
-      // Cast it to the right type (takes no arguments, returns a double) so we
-      // can call it as a native function.
-      double (*FP)() = (double (*)())(intptr_t)FPtr;
-      fprintf(stderr, "Evaluated to %f\n", FP());
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C" 
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C" 
-double printd(double X) {
-  printf("%f\n", X);
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
-  InitializeNativeTarget();
-  LLVMContext &Context = getGlobalContext();
-
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-
-  // Prime the first token.
-  fprintf(stderr, "ready> ");
-  getNextToken();
-
-  // Make the module, which holds all the code.
-  TheModule = new Module("my cool jit", Context);
-
-  // Create the JIT.  This takes ownership of the module.
-  std::string ErrStr;
-  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
-  if (!TheExecutionEngine) {
-    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
-    exit(1);
-  }
-
-  FunctionPassManager OurFPM(TheModule);
-
-  // Set up the optimizer pipeline.  Start with registering info about how the
-  // target lays out data structures.
-  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
-  // Provide basic AliasAnalysis support for GVN.
-  OurFPM.add(createBasicAliasAnalysisPass());
-  // Do simple "peephole" optimizations and bit-twiddling optzns.
-  OurFPM.add(createInstructionCombiningPass());
-  // Reassociate expressions.
-  OurFPM.add(createReassociatePass());
-  // Eliminate Common SubExpressions.
-  OurFPM.add(createGVNPass());
-  // Simplify the control flow graph (deleting unreachable blocks, etc).
-  OurFPM.add(createCFGSimplificationPass());
-
-  OurFPM.doInitialization();
-
-  // Set the global so the code gen can use this.
-  TheFPM = &OurFPM;
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-
-  TheFPM = 0;
-
-  // Print out all of the generated code.
-  TheModule->dump();
-
-  return 0;
-}
-</pre>
-</div>
-
-<a href="LangImpl7.html">Next: Extending the language: mutable variables / SSA construction</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl6.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl6.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl6.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl6.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,1728 @@
+============================================================
+Kaleidoscope: Extending the Language: User-defined Operators
+============================================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Chapter 6 Introduction
+======================
+
+Welcome to Chapter 6 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. At this point in our tutorial, we now
+have a fully functional language that is fairly minimal, but also
+useful. There is still one big problem with it, however. Our language
+doesn't have many useful operators (like division, logical negation, or
+even any comparisons besides less-than).
+
+This chapter of the tutorial takes a wild digression into adding
+user-defined operators to the simple and beautiful Kaleidoscope
+language. This digression now gives us a simple and ugly language in
+some ways, but also a powerful one at the same time. One of the great
+things about creating your own language is that you get to decide what
+is good or bad. In this tutorial we'll assume that it is okay to use
+this as a way to show some interesting parsing techniques.
+
+At the end of this tutorial, we'll run through an example Kaleidoscope
+application that `renders the Mandelbrot set <#example>`_. This gives an
+example of what you can build with Kaleidoscope and its feature set.
+
+User-defined Operators: the Idea
+================================
+
+The "operator overloading" that we will add to Kaleidoscope is more
+general than languages like C++. In C++, you are only allowed to
+redefine existing operators: you can't programatically change the
+grammar, introduce new operators, change precedence levels, etc. In this
+chapter, we will add this capability to Kaleidoscope, which will let the
+user round out the set of operators that are supported.
+
+The point of going into user-defined operators in a tutorial like this
+is to show the power and flexibility of using a hand-written parser.
+Thus far, the parser we have been implementing uses recursive descent
+for most parts of the grammar and operator precedence parsing for the
+expressions. See `Chapter 2 <LangImpl2.html>`_ for details. Without
+using operator precedence parsing, it would be very difficult to allow
+the programmer to introduce new operators into the grammar: the grammar
+is dynamically extensible as the JIT runs.
+
+The two specific features we'll add are programmable unary operators
+(right now, Kaleidoscope has no unary operators at all) as well as
+binary operators. An example of this is:
+
+::
+
+    # Logical unary not.
+    def unary!(v)
+      if v then
+        0
+      else
+        1;
+
+    # Define > with the same precedence as <.
+    def binary> 10 (LHS RHS)
+      RHS < LHS;
+
+    # Binary "logical or", (note that it does not "short circuit")
+    def binary| 5 (LHS RHS)
+      if LHS then
+        1
+      else if RHS then
+        1
+      else
+        0;
+
+    # Define = with slightly lower precedence than relationals.
+    def binary= 9 (LHS RHS)
+      !(LHS < RHS | LHS > RHS);
+
+Many languages aspire to being able to implement their standard runtime
+library in the language itself. In Kaleidoscope, we can implement
+significant parts of the language in the library!
+
+We will break down implementation of these features into two parts:
+implementing support for user-defined binary operators and adding unary
+operators.
+
+User-defined Binary Operators
+=============================
+
+Adding support for user-defined binary operators is pretty simple with
+our current framework. We'll first add support for the unary/binary
+keywords:
+
+.. code-block:: c++
+
+    enum Token {
+      ...
+      // operators
+      tok_binary = -11, tok_unary = -12
+    };
+    ...
+    static int gettok() {
+    ...
+        if (IdentifierStr == "for") return tok_for;
+        if (IdentifierStr == "in") return tok_in;
+        if (IdentifierStr == "binary") return tok_binary;
+        if (IdentifierStr == "unary") return tok_unary;
+        return tok_identifier;
+
+This just adds lexer support for the unary and binary keywords, like we
+did in `previous chapters <LangImpl5.html#iflexer>`_. One nice thing
+about our current AST, is that we represent binary operators with full
+generalisation by using their ASCII code as the opcode. For our extended
+operators, we'll use this same representation, so we don't need any new
+AST or parser support.
+
+On the other hand, we have to be able to represent the definitions of
+these new operators, in the "def binary\| 5" part of the function
+definition. In our grammar so far, the "name" for the function
+definition is parsed as the "prototype" production and into the
+``PrototypeAST`` AST node. To represent our new user-defined operators
+as prototypes, we have to extend the ``PrototypeAST`` AST node like
+this:
+
+.. code-block:: c++
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its argument names as well as if it is an operator.
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+      bool isOperator;
+      unsigned Precedence;  // Precedence if a binary op.
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+                   bool isoperator = false, unsigned prec = 0)
+      : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+      bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+      bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+      char getOperatorName() const {
+        assert(isUnaryOp() || isBinaryOp());
+        return Name[Name.size()-1];
+      }
+
+      unsigned getBinaryPrecedence() const { return Precedence; }
+
+      Function *Codegen();
+    };
+
+Basically, in addition to knowing a name for the prototype, we now keep
+track of whether it was an operator, and if it was, what precedence
+level the operator is at. The precedence is only used for binary
+operators (as you'll see below, it just doesn't apply for unary
+operators). Now that we have a way to represent the prototype for a
+user-defined operator, we need to parse it:
+
+.. code-block:: c++
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    ///   ::= binary LETTER number? (id, id)
+    static PrototypeAST *ParsePrototype() {
+      std::string FnName;
+
+      unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
+      unsigned BinaryPrecedence = 30;
+
+      switch (CurTok) {
+      default:
+        return ErrorP("Expected function name in prototype");
+      case tok_identifier:
+        FnName = IdentifierStr;
+        Kind = 0;
+        getNextToken();
+        break;
+      case tok_binary:
+        getNextToken();
+        if (!isascii(CurTok))
+          return ErrorP("Expected binary operator");
+        FnName = "binary";
+        FnName += (char)CurTok;
+        Kind = 2;
+        getNextToken();
+
+        // Read the precedence if present.
+        if (CurTok == tok_number) {
+          if (NumVal < 1 || NumVal > 100)
+            return ErrorP("Invalid precedecnce: must be 1..100");
+          BinaryPrecedence = (unsigned)NumVal;
+          getNextToken();
+        }
+        break;
+      }
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      // Verify right number of names for operator.
+      if (Kind && ArgNames.size() != Kind)
+        return ErrorP("Invalid number of operands for operator");
+
+      return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+    }
+
+This is all fairly straightforward parsing code, and we have already
+seen a lot of similar code in the past. One interesting part about the
+code above is the couple lines that set up ``FnName`` for binary
+operators. This builds names like "binary@" for a newly defined "@"
+operator. This then takes advantage of the fact that symbol names in the
+LLVM symbol table are allowed to have any character in them, including
+embedded nul characters.
+
+The next interesting thing to add, is codegen support for these binary
+operators. Given our current structure, this is a simple addition of a
+default case for our existing binary operator node:
+
+.. code-block:: c++
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: break;
+      }
+
+      // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+      // a call to it.
+      Function *F = TheModule->getFunction(std::string("binary")+Op);
+      assert(F && "binary operator not found!");
+
+      Value *Ops[2] = { L, R };
+      return Builder.CreateCall(F, Ops, "binop");
+    }
+
+As you can see above, the new code is actually really simple. It just
+does a lookup for the appropriate operator in the symbol table and
+generates a function call to it. Since user-defined operators are just
+built as normal functions (because the "prototype" boils down to a
+function with the right name) everything falls into place.
+
+The final piece of code we are missing, is a bit of top-level magic:
+
+.. code-block:: c++
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // If this is an operator, install it.
+      if (Proto->isBinaryOp())
+        BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+        ...
+
+Basically, before codegening a function, if it is a user-defined
+operator, we register it in the precedence table. This allows the binary
+operator parsing logic we already have in place to handle it. Since we
+are working on a fully-general operator precedence parser, this is all
+we need to do to "extend the grammar".
+
+Now we have useful user-defined binary operators. This builds a lot on
+the previous framework we built for other operators. Adding unary
+operators is a bit more challenging, because we don't have any framework
+for it yet - lets see what it takes.
+
+User-defined Unary Operators
+============================
+
+Since we don't currently support unary operators in the Kaleidoscope
+language, we'll need to add everything to support them. Above, we added
+simple support for the 'unary' keyword to the lexer. In addition to
+that, we need an AST node:
+
+.. code-block:: c++
+
+    /// UnaryExprAST - Expression class for a unary operator.
+    class UnaryExprAST : public ExprAST {
+      char Opcode;
+      ExprAST *Operand;
+    public:
+      UnaryExprAST(char opcode, ExprAST *operand)
+        : Opcode(opcode), Operand(operand) {}
+      virtual Value *Codegen();
+    };
+
+This AST node is very simple and obvious by now. It directly mirrors the
+binary operator AST node, except that it only has one child. With this,
+we need to add the parsing logic. Parsing a unary operator is pretty
+simple: we'll add a new function to do it:
+
+.. code-block:: c++
+
+    /// unary
+    ///   ::= primary
+    ///   ::= '!' unary
+    static ExprAST *ParseUnary() {
+      // If the current token is not an operator, it must be a primary expr.
+      if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+        return ParsePrimary();
+
+      // If this is a unary operator, read it.
+      int Opc = CurTok;
+      getNextToken();
+      if (ExprAST *Operand = ParseUnary())
+        return new UnaryExprAST(Opc, Operand);
+      return 0;
+    }
+
+The grammar we add is pretty straightforward here. If we see a unary
+operator when parsing a primary operator, we eat the operator as a
+prefix and parse the remaining piece as another unary operator. This
+allows us to handle multiple unary operators (e.g. "!!x"). Note that
+unary operators can't have ambiguous parses like binary operators can,
+so there is no need for precedence information.
+
+The problem with this function, is that we need to call ParseUnary from
+somewhere. To do this, we change previous callers of ParsePrimary to
+call ParseUnary instead:
+
+.. code-block:: c++
+
+    /// binoprhs
+    ///   ::= ('+' unary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      ...
+        // Parse the unary expression after the binary operator.
+        ExprAST *RHS = ParseUnary();
+        if (!RHS) return 0;
+      ...
+    }
+    /// expression
+    ///   ::= unary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParseUnary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+With these two simple changes, we are now able to parse unary operators
+and build the AST for them. Next up, we need to add parser support for
+prototypes, to parse the unary operator prototype. We extend the binary
+operator code above with:
+
+.. code-block:: c++
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    ///   ::= binary LETTER number? (id, id)
+    ///   ::= unary LETTER (id)
+    static PrototypeAST *ParsePrototype() {
+      std::string FnName;
+
+      unsigned Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
+      unsigned BinaryPrecedence = 30;
+
+      switch (CurTok) {
+      default:
+        return ErrorP("Expected function name in prototype");
+      case tok_identifier:
+        FnName = IdentifierStr;
+        Kind = 0;
+        getNextToken();
+        break;
+      case tok_unary:
+        getNextToken();
+        if (!isascii(CurTok))
+          return ErrorP("Expected unary operator");
+        FnName = "unary";
+        FnName += (char)CurTok;
+        Kind = 1;
+        getNextToken();
+        break;
+      case tok_binary:
+        ...
+
+As with binary operators, we name unary operators with a name that
+includes the operator character. This assists us at code generation
+time. Speaking of, the final piece we need to add is codegen support for
+unary operators. It looks like this:
+
+.. code-block:: c++
+
+    Value *UnaryExprAST::Codegen() {
+      Value *OperandV = Operand->Codegen();
+      if (OperandV == 0) return 0;
+
+      Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+      if (F == 0)
+        return ErrorV("Unknown unary operator");
+
+      return Builder.CreateCall(F, OperandV, "unop");
+    }
+
+This code is similar to, but simpler than, the code for binary
+operators. It is simpler primarily because it doesn't need to handle any
+predefined operators.
+
+Kicking the Tires
+=================
+
+It is somewhat hard to believe, but with a few simple extensions we've
+covered in the last chapters, we have grown a real-ish language. With
+this, we can do a lot of interesting things, including I/O, math, and a
+bunch of other things. For example, we can now add a nice sequencing
+operator (printd is defined to print out the specified value and a
+newline):
+
+::
+
+    ready> extern printd(x);
+    Read extern:
+    declare double @printd(double)
+
+    ready> def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.
+    ..
+    ready> printd(123) : printd(456) : printd(789);
+    123.000000
+    456.000000
+    789.000000
+    Evaluated to 0.000000
+
+We can also define a bunch of other "primitive" operations, such as:
+
+::
+
+    # Logical unary not.
+    def unary!(v)
+      if v then
+        0
+      else
+        1;
+
+    # Unary negate.
+    def unary-(v)
+      0-v;
+
+    # Define > with the same precedence as <.
+    def binary> 10 (LHS RHS)
+      RHS < LHS;
+
+    # Binary logical or, which does not short circuit.
+    def binary| 5 (LHS RHS)
+      if LHS then
+        1
+      else if RHS then
+        1
+      else
+        0;
+
+    # Binary logical and, which does not short circuit.
+    def binary& 6 (LHS RHS)
+      if !LHS then
+        0
+      else
+        !!RHS;
+
+    # Define = with slightly lower precedence than relationals.
+    def binary = 9 (LHS RHS)
+      !(LHS < RHS | LHS > RHS);
+
+    # Define ':' for sequencing: as a low-precedence operator that ignores operands
+    # and just returns the RHS.
+    def binary : 1 (x y) y;
+
+Given the previous if/then/else support, we can also define interesting
+functions for I/O. For example, the following prints out a character
+whose "density" reflects the value passed in: the lower the value, the
+denser the character:
+
+::
+
+    ready>
+
+    extern putchard(char)
+    def printdensity(d)
+      if d > 8 then
+        putchard(32)  # ' '
+      else if d > 4 then
+        putchard(46)  # '.'
+      else if d > 2 then
+        putchard(43)  # '+'
+      else
+        putchard(42); # '*'
+    ...
+    ready> printdensity(1): printdensity(2): printdensity(3):
+           printdensity(4): printdensity(5): printdensity(9):
+           putchard(10);
+    **++.
+    Evaluated to 0.000000
+
+Based on these simple primitive operations, we can start to define more
+interesting things. For example, here's a little function that solves
+for the number of iterations it takes a function in the complex plane to
+converge:
+
+::
+
+    # Determine whether the specific location diverges.
+    # Solve for z = z^2 + c in the complex plane.
+    def mandleconverger(real imag iters creal cimag)
+      if iters > 255 | (real*real + imag*imag > 4) then
+        iters
+      else
+        mandleconverger(real*real - imag*imag + creal,
+                        2*real*imag + cimag,
+                        iters+1, creal, cimag);
+
+    # Return the number of iterations required for the iteration to escape
+    def mandleconverge(real imag)
+      mandleconverger(real, imag, 0, real, imag);
+
+This "``z = z2 + c``" function is a beautiful little creature that is
+the basis for computation of the `Mandelbrot
+Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our
+``mandelconverge`` function returns the number of iterations that it
+takes for a complex orbit to escape, saturating to 255. This is not a
+very useful function by itself, but if you plot its value over a
+two-dimensional plane, you can see the Mandelbrot set. Given that we are
+limited to using putchard here, our amazing graphical output is limited,
+but we can whip together something using the density plotter above:
+
+::
+
+    # Compute and plot the mandlebrot set with the specified 2 dimensional range
+    # info.
+    def mandelhelp(xmin xmax xstep   ymin ymax ystep)
+      for y = ymin, y < ymax, ystep in (
+        (for x = xmin, x < xmax, xstep in
+           printdensity(mandleconverge(x,y)))
+        : putchard(10)
+      )
+
+    # mandel - This is a convenient helper function for plotting the mandelbrot set
+    # from the specified position with the specified Magnification.
+    def mandel(realstart imagstart realmag imagmag)
+      mandelhelp(realstart, realstart+realmag*78, realmag,
+                 imagstart, imagstart+imagmag*40, imagmag);
+
+Given this, we can try plotting out the mandlebrot set! Lets try it out:
+
+::
+
+    ready> mandel(-2.3, -1.3, 0.05, 0.07);
+    *******************************+++++++++++*************************************
+    *************************+++++++++++++++++++++++*******************************
+    **********************+++++++++++++++++++++++++++++****************************
+    *******************+++++++++++++++++++++.. ...++++++++*************************
+    *****************++++++++++++++++++++++.... ...+++++++++***********************
+    ***************+++++++++++++++++++++++.....   ...+++++++++*********************
+    **************+++++++++++++++++++++++....     ....+++++++++********************
+    *************++++++++++++++++++++++......      .....++++++++*******************
+    ************+++++++++++++++++++++.......       .......+++++++******************
+    ***********+++++++++++++++++++....                ... .+++++++*****************
+    **********+++++++++++++++++.......                     .+++++++****************
+    *********++++++++++++++...........                    ...+++++++***************
+    ********++++++++++++............                      ...++++++++**************
+    ********++++++++++... ..........                        .++++++++**************
+    *******+++++++++.....                                   .+++++++++*************
+    *******++++++++......                                  ..+++++++++*************
+    *******++++++.......                                   ..+++++++++*************
+    *******+++++......                                     ..+++++++++*************
+    *******.... ....                                      ...+++++++++*************
+    *******.... .                                         ...+++++++++*************
+    *******+++++......                                    ...+++++++++*************
+    *******++++++.......                                   ..+++++++++*************
+    *******++++++++......                                   .+++++++++*************
+    *******+++++++++.....                                  ..+++++++++*************
+    ********++++++++++... ..........                        .++++++++**************
+    ********++++++++++++............                      ...++++++++**************
+    *********++++++++++++++..........                     ...+++++++***************
+    **********++++++++++++++++........                     .+++++++****************
+    **********++++++++++++++++++++....                ... ..+++++++****************
+    ***********++++++++++++++++++++++.......       .......++++++++*****************
+    ************+++++++++++++++++++++++......      ......++++++++******************
+    **************+++++++++++++++++++++++....      ....++++++++********************
+    ***************+++++++++++++++++++++++.....   ...+++++++++*********************
+    *****************++++++++++++++++++++++....  ...++++++++***********************
+    *******************+++++++++++++++++++++......++++++++*************************
+    *********************++++++++++++++++++++++.++++++++***************************
+    *************************+++++++++++++++++++++++*******************************
+    ******************************+++++++++++++************************************
+    *******************************************************************************
+    *******************************************************************************
+    *******************************************************************************
+    Evaluated to 0.000000
+    ready> mandel(-2, -1, 0.02, 0.04);
+    **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
+    ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+    *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
+    *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
+    *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
+    ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
+    **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
+    ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
+    ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        .
+    **********++++++++++++++++++++++++++++++++++++++++++++++.............
+    ********+++++++++++++++++++++++++++++++++++++++++++..................
+    *******+++++++++++++++++++++++++++++++++++++++.......................
+    ******+++++++++++++++++++++++++++++++++++...........................
+    *****++++++++++++++++++++++++++++++++............................
+    *****++++++++++++++++++++++++++++...............................
+    ****++++++++++++++++++++++++++......   .........................
+    ***++++++++++++++++++++++++.........     ......    ...........
+    ***++++++++++++++++++++++............
+    **+++++++++++++++++++++..............
+    **+++++++++++++++++++................
+    *++++++++++++++++++.................
+    *++++++++++++++++............ ...
+    *++++++++++++++..............
+    *+++....++++................
+    *..........  ...........
+    *
+    *..........  ...........
+    *+++....++++................
+    *++++++++++++++..............
+    *++++++++++++++++............ ...
+    *++++++++++++++++++.................
+    **+++++++++++++++++++................
+    **+++++++++++++++++++++..............
+    ***++++++++++++++++++++++............
+    ***++++++++++++++++++++++++.........     ......    ...........
+    ****++++++++++++++++++++++++++......   .........................
+    *****++++++++++++++++++++++++++++...............................
+    *****++++++++++++++++++++++++++++++++............................
+    ******+++++++++++++++++++++++++++++++++++...........................
+    *******+++++++++++++++++++++++++++++++++++++++.......................
+    ********+++++++++++++++++++++++++++++++++++++++++++..................
+    Evaluated to 0.000000
+    ready> mandel(-0.9, -1.4, 0.02, 0.03);
+    *******************************************************************************
+    *******************************************************************************
+    *******************************************************************************
+    **********+++++++++++++++++++++************************************************
+    *+++++++++++++++++++++++++++++++++++++++***************************************
+    +++++++++++++++++++++++++++++++++++++++++++++**********************************
+    ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
+    ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
+    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
+    +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+    +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++****************
+    +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++**************
+    ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************
+    +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++**********
+    ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++********
+    ++++++++++++++++++++++++.............       .......++++++++++++++++++++++******
+    +++++++++++++++++++++++.............        ........+++++++++++++++++++++++****
+    ++++++++++++++++++++++...........           ..........++++++++++++++++++++++***
+    ++++++++++++++++++++...........                .........++++++++++++++++++++++*
+    ++++++++++++++++++............                  ...........++++++++++++++++++++
+    ++++++++++++++++...............                 .............++++++++++++++++++
+    ++++++++++++++.................                 ...............++++++++++++++++
+    ++++++++++++..................                  .................++++++++++++++
+    +++++++++..................                      .................+++++++++++++
+    ++++++........        .                               .........  ..++++++++++++
+    ++............                                         ......    ....++++++++++
+    ..............                                                    ...++++++++++
+    ..............                                                    ....+++++++++
+    ..............                                                    .....++++++++
+    .............                                                    ......++++++++
+    ...........                                                     .......++++++++
+    .........                                                       ........+++++++
+    .........                                                       ........+++++++
+    .........                                                           ....+++++++
+    ........                                                             ...+++++++
+    .......                                                              ...+++++++
+                                                                        ....+++++++
+                                                                       .....+++++++
+                                                                        ....+++++++
+                                                                        ....+++++++
+                                                                        ....+++++++
+    Evaluated to 0.000000
+    ready> ^D
+
+At this point, you may be starting to realize that Kaleidoscope is a
+real and powerful language. It may not be self-similar :), but it can be
+used to plot things that are!
+
+With this, we conclude the "adding user-defined operators" chapter of
+the tutorial. We have successfully augmented our language, adding the
+ability to extend the language in the library, and we have shown how
+this can be used to build a simple but interesting end-user application
+in Kaleidoscope. At this point, Kaleidoscope can build a variety of
+applications that are functional and can call functions with
+side-effects, but it can't actually define and mutate a variable itself.
+
+Strikingly, variable mutation is an important feature of some languages,
+and it is not at all obvious how to `add support for mutable
+variables <LangImpl7.html>`_ without having to add an "SSA construction"
+phase to your front-end. In the next chapter, we will describe how you
+can add variable mutation without building SSA in your front-end.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the if/then/else and for expressions.. To build this example, use:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
+    # Run
+    ./toy
+
+On some platforms, you will need to specify -rdynamic or
+-Wl,--export-dynamic when linking. This ensures that symbols defined in
+the main executable are exported to the dynamic linker and so are
+available for symbol resolution at run time. This is not needed if you
+compile your support code into a shared library, although doing that
+will cause problems on Windows.
+
+Here is the code:
+
+.. code-block:: c++
+
+    #include "llvm/DerivedTypes.h"
+    #include "llvm/ExecutionEngine/ExecutionEngine.h"
+    #include "llvm/ExecutionEngine/JIT.h"
+    #include "llvm/IRBuilder.h"
+    #include "llvm/LLVMContext.h"
+    #include "llvm/Module.h"
+    #include "llvm/PassManager.h"
+    #include "llvm/Analysis/Verifier.h"
+    #include "llvm/Analysis/Passes.h"
+    #include "llvm/DataLayout.h"
+    #include "llvm/Transforms/Scalar.h"
+    #include "llvm/Support/TargetSelect.h"
+    #include <cstdio>
+    #include <string>
+    #include <map>
+    #include <vector>
+    using namespace llvm;
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5,
+
+      // control
+      tok_if = -6, tok_then = -7, tok_else = -8,
+      tok_for = -9, tok_in = -10,
+
+      // operators
+      tok_binary = -11, tok_unary = -12
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        if (IdentifierStr == "if") return tok_if;
+        if (IdentifierStr == "then") return tok_then;
+        if (IdentifierStr == "else") return tok_else;
+        if (IdentifierStr == "for") return tok_for;
+        if (IdentifierStr == "in") return tok_in;
+        if (IdentifierStr == "binary") return tok_binary;
+        if (IdentifierStr == "unary") return tok_unary;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+      virtual Value *Codegen();
+    };
+
+    /// UnaryExprAST - Expression class for a unary operator.
+    class UnaryExprAST : public ExprAST {
+      char Opcode;
+      ExprAST *Operand;
+    public:
+      UnaryExprAST(char opcode, ExprAST *operand)
+        : Opcode(opcode), Operand(operand) {}
+      virtual Value *Codegen();
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+      virtual Value *Codegen();
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+      virtual Value *Codegen();
+    };
+
+    /// IfExprAST - Expression class for if/then/else.
+    class IfExprAST : public ExprAST {
+      ExprAST *Cond, *Then, *Else;
+    public:
+      IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+      : Cond(cond), Then(then), Else(_else) {}
+      virtual Value *Codegen();
+    };
+
+    /// ForExprAST - Expression class for for/in.
+    class ForExprAST : public ExprAST {
+      std::string VarName;
+      ExprAST *Start, *End, *Step, *Body;
+    public:
+      ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+                 ExprAST *step, ExprAST *body)
+        : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+      virtual Value *Codegen();
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes), as well as if it is an operator.
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+      bool isOperator;
+      unsigned Precedence;  // Precedence if a binary op.
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+                   bool isoperator = false, unsigned prec = 0)
+      : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+      bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+      bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+      char getOperatorName() const {
+        assert(isUnaryOp() || isBinaryOp());
+        return Name[Name.size()-1];
+      }
+
+      unsigned getBinaryPrecedence() const { return Precedence; }
+
+      Function *Codegen();
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+      Function *Codegen();
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// ifexpr ::= 'if' expression 'then' expression 'else' expression
+    static ExprAST *ParseIfExpr() {
+      getNextToken();  // eat the if.
+
+      // condition.
+      ExprAST *Cond = ParseExpression();
+      if (!Cond) return 0;
+
+      if (CurTok != tok_then)
+        return Error("expected then");
+      getNextToken();  // eat the then
+
+      ExprAST *Then = ParseExpression();
+      if (Then == 0) return 0;
+
+      if (CurTok != tok_else)
+        return Error("expected else");
+
+      getNextToken();
+
+      ExprAST *Else = ParseExpression();
+      if (!Else) return 0;
+
+      return new IfExprAST(Cond, Then, Else);
+    }
+
+    /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+    static ExprAST *ParseForExpr() {
+      getNextToken();  // eat the for.
+
+      if (CurTok != tok_identifier)
+        return Error("expected identifier after for");
+
+      std::string IdName = IdentifierStr;
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '=')
+        return Error("expected '=' after for");
+      getNextToken();  // eat '='.
+
+
+      ExprAST *Start = ParseExpression();
+      if (Start == 0) return 0;
+      if (CurTok != ',')
+        return Error("expected ',' after for start value");
+      getNextToken();
+
+      ExprAST *End = ParseExpression();
+      if (End == 0) return 0;
+
+      // The step value is optional.
+      ExprAST *Step = 0;
+      if (CurTok == ',') {
+        getNextToken();
+        Step = ParseExpression();
+        if (Step == 0) return 0;
+      }
+
+      if (CurTok != tok_in)
+        return Error("expected 'in' after for");
+      getNextToken();  // eat 'in'.
+
+      ExprAST *Body = ParseExpression();
+      if (Body == 0) return 0;
+
+      return new ForExprAST(IdName, Start, End, Step, Body);
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    ///   ::= ifexpr
+    ///   ::= forexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      case tok_if:         return ParseIfExpr();
+      case tok_for:        return ParseForExpr();
+      }
+    }
+
+    /// unary
+    ///   ::= primary
+    ///   ::= '!' unary
+    static ExprAST *ParseUnary() {
+      // If the current token is not an operator, it must be a primary expr.
+      if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+        return ParsePrimary();
+
+      // If this is a unary operator, read it.
+      int Opc = CurTok;
+      getNextToken();
+      if (ExprAST *Operand = ParseUnary())
+        return new UnaryExprAST(Opc, Operand);
+      return 0;
+    }
+
+    /// binoprhs
+    ///   ::= ('+' unary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the unary expression after the binary operator.
+        ExprAST *RHS = ParseUnary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= unary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParseUnary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    ///   ::= binary LETTER number? (id, id)
+    ///   ::= unary LETTER (id)
+    static PrototypeAST *ParsePrototype() {
+      std::string FnName;
+
+      unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+      unsigned BinaryPrecedence = 30;
+
+      switch (CurTok) {
+      default:
+        return ErrorP("Expected function name in prototype");
+      case tok_identifier:
+        FnName = IdentifierStr;
+        Kind = 0;
+        getNextToken();
+        break;
+      case tok_unary:
+        getNextToken();
+        if (!isascii(CurTok))
+          return ErrorP("Expected unary operator");
+        FnName = "unary";
+        FnName += (char)CurTok;
+        Kind = 1;
+        getNextToken();
+        break;
+      case tok_binary:
+        getNextToken();
+        if (!isascii(CurTok))
+          return ErrorP("Expected binary operator");
+        FnName = "binary";
+        FnName += (char)CurTok;
+        Kind = 2;
+        getNextToken();
+
+        // Read the precedence if present.
+        if (CurTok == tok_number) {
+          if (NumVal < 1 || NumVal > 100)
+            return ErrorP("Invalid precedecnce: must be 1..100");
+          BinaryPrecedence = (unsigned)NumVal;
+          getNextToken();
+        }
+        break;
+      }
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      // Verify right number of names for operator.
+      if (Kind && ArgNames.size() != Kind)
+        return ErrorP("Invalid number of operands for operator");
+
+      return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Code Generation
+    //===----------------------------------------------------------------------===//
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+    static FunctionPassManager *TheFPM;
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+    Value *UnaryExprAST::Codegen() {
+      Value *OperandV = Operand->Codegen();
+      if (OperandV == 0) return 0;
+
+      Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+      if (F == 0)
+        return ErrorV("Unknown unary operator");
+
+      return Builder.CreateCall(F, OperandV, "unop");
+    }
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: break;
+      }
+
+      // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+      // a call to it.
+      Function *F = TheModule->getFunction(std::string("binary")+Op);
+      assert(F && "binary operator not found!");
+
+      Value *Ops[2] = { L, R };
+      return Builder.CreateCall(F, Ops, "binop");
+    }
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+    Value *IfExprAST::Codegen() {
+      Value *CondV = Cond->Codegen();
+      if (CondV == 0) return 0;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      CondV = Builder.CreateFCmpONE(CondV,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                    "ifcond");
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Create blocks for the then and else cases.  Insert the 'then' block at the
+      // end of the function.
+      BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+      BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+      BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+      Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+      // Emit then value.
+      Builder.SetInsertPoint(ThenBB);
+
+      Value *ThenV = Then->Codegen();
+      if (ThenV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+      ThenBB = Builder.GetInsertBlock();
+
+      // Emit else block.
+      TheFunction->getBasicBlockList().push_back(ElseBB);
+      Builder.SetInsertPoint(ElseBB);
+
+      Value *ElseV = Else->Codegen();
+      if (ElseV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+      ElseBB = Builder.GetInsertBlock();
+
+      // Emit merge block.
+      TheFunction->getBasicBlockList().push_back(MergeBB);
+      Builder.SetInsertPoint(MergeBB);
+      PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+                                      "iftmp");
+
+      PN->addIncoming(ThenV, ThenBB);
+      PN->addIncoming(ElseV, ElseBB);
+      return PN;
+    }
+
+    Value *ForExprAST::Codegen() {
+      // Output this as:
+      //   ...
+      //   start = startexpr
+      //   goto loop
+      // loop:
+      //   variable = phi [start, loopheader], [nextvariable, loopend]
+      //   ...
+      //   bodyexpr
+      //   ...
+      // loopend:
+      //   step = stepexpr
+      //   nextvariable = variable + step
+      //   endcond = endexpr
+      //   br endcond, loop, endloop
+      // outloop:
+
+      // Emit the start code first, without 'variable' in scope.
+      Value *StartVal = Start->Codegen();
+      if (StartVal == 0) return 0;
+
+      // Make the new basic block for the loop header, inserting after current
+      // block.
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+      BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+      BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+      // Insert an explicit fall through from the current block to the LoopBB.
+      Builder.CreateBr(LoopBB);
+
+      // Start insertion in LoopBB.
+      Builder.SetInsertPoint(LoopBB);
+
+      // Start the PHI node with an entry for Start.
+      PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
+      Variable->addIncoming(StartVal, PreheaderBB);
+
+      // Within the loop, the variable is defined equal to the PHI node.  If it
+      // shadows an existing variable, we have to restore it, so save it now.
+      Value *OldVal = NamedValues[VarName];
+      NamedValues[VarName] = Variable;
+
+      // Emit the body of the loop.  This, like any other expr, can change the
+      // current BB.  Note that we ignore the value computed by the body, but don't
+      // allow an error.
+      if (Body->Codegen() == 0)
+        return 0;
+
+      // Emit the step value.
+      Value *StepVal;
+      if (Step) {
+        StepVal = Step->Codegen();
+        if (StepVal == 0) return 0;
+      } else {
+        // If not specified, use 1.0.
+        StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+      }
+
+      Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
+
+      // Compute the end condition.
+      Value *EndCond = End->Codegen();
+      if (EndCond == 0) return EndCond;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      EndCond = Builder.CreateFCmpONE(EndCond,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                      "loopcond");
+
+      // Create the "after loop" block and insert it.
+      BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+      BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+      // Insert the conditional branch into the end of LoopEndBB.
+      Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+      // Any new code will be inserted in AfterBB.
+      Builder.SetInsertPoint(AfterBB);
+
+      // Add a new entry to the PHI node for the backedge.
+      Variable->addIncoming(NextVar, LoopEndBB);
+
+      // Restore the unshadowed variable.
+      if (OldVal)
+        NamedValues[VarName] = OldVal;
+      else
+        NamedValues.erase(VarName);
+
+
+      // for expr always returns 0.0.
+      return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+    }
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+
+      return F;
+    }
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // If this is an operator, install it.
+      if (Proto->isBinaryOp())
+        BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        // Optimize the function.
+        TheFPM->run(*TheFunction);
+
+        return TheFunction;
+      }
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+
+      if (Proto->isBinaryOp())
+        BinopPrecedence.erase(Proto->getOperatorName());
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing and JIT Driver
+    //===----------------------------------------------------------------------===//
+
+    static ExecutionEngine *TheExecutionEngine;
+
+    static void HandleDefinition() {
+      if (FunctionAST *F = ParseDefinition()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read function definition:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (PrototypeAST *P = ParseExtern()) {
+        if (Function *F = P->Codegen()) {
+          fprintf(stderr, "Read extern: ");
+          F->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          // JIT the function, returning a function pointer.
+          void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+
+          // Cast it to the right type (takes no arguments, returns a double) so we
+          // can call it as a native function.
+          double (*FP)() = (double (*)())(intptr_t)FPtr;
+          fprintf(stderr, "Evaluated to %f\n", FP());
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // "Library" functions that can be "extern'd" from user code.
+    //===----------------------------------------------------------------------===//
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+    /// printd - printf that takes a double prints it as "%f\n", returning 0.
+    extern "C"
+    double printd(double X) {
+      printf("%f\n", X);
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      InitializeNativeTarget();
+      LLVMContext &Context = getGlobalContext();
+
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Make the module, which holds all the code.
+      TheModule = new Module("my cool jit", Context);
+
+      // Create the JIT.  This takes ownership of the module.
+      std::string ErrStr;
+      TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+      if (!TheExecutionEngine) {
+        fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+        exit(1);
+      }
+
+      FunctionPassManager OurFPM(TheModule);
+
+      // Set up the optimizer pipeline.  Start with registering info about how the
+      // target lays out data structures.
+      OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+      // Provide basic AliasAnalysis support for GVN.
+      OurFPM.add(createBasicAliasAnalysisPass());
+      // Do simple "peephole" optimizations and bit-twiddling optzns.
+      OurFPM.add(createInstructionCombiningPass());
+      // Reassociate expressions.
+      OurFPM.add(createReassociatePass());
+      // Eliminate Common SubExpressions.
+      OurFPM.add(createGVNPass());
+      // Simplify the control flow graph (deleting unreachable blocks, etc).
+      OurFPM.add(createCFGSimplificationPass());
+
+      OurFPM.doInitialization();
+
+      // Set the global so the code gen can use this.
+      TheFPM = &OurFPM;
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      TheFPM = 0;
+
+      // Print out all of the generated code.
+      TheModule->dump();
+
+      return 0;
+    }
+
+`Next: Extending the language: mutable variables / SSA
+construction <LangImpl7.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl7.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl7.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl7.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl7.html (removed)
@@ -1,2164 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
-         construction</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Extending the Language: Mutable Variables</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 7
-  <ol>
-    <li><a href="#intro">Chapter 7 Introduction</a></li>
-    <li><a href="#why">Why is this a hard problem?</a></li>
-    <li><a href="#memory">Memory in LLVM</a></li>
-    <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
-    <li><a href="#adjustments">Adjusting Existing Variables for
-     Mutation</a></li>
-    <li><a href="#assignment">New Assignment Operator</a></li>
-    <li><a href="#localvars">User-defined Local Variables</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
- tidbits</li>
-</ul>
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 7 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  In chapters 1 through 6, we've built a very
-respectable, albeit simple, <a 
-href="http://en.wikipedia.org/wiki/Functional_programming">functional
-programming language</a>.  In our journey, we learned some parsing techniques,
-how to build and represent an AST, how to build LLVM IR, and how to optimize
-the resultant code as well as JIT compile it.</p>
-
-<p>While Kaleidoscope is interesting as a functional language, the fact that it
-is functional makes it "too easy" to generate LLVM IR for it.  In particular, a 
-functional language makes it very easy to build LLVM IR directly in <a 
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
-Since LLVM requires that the input code be in SSA form, this is a very nice
-property and it is often unclear to newcomers how to generate code for an
-imperative language with mutable variables.</p>
-
-<p>The short (and happy) summary of this chapter is that there is no need for
-your front-end to build SSA form: LLVM provides highly tuned and well tested
-support for this, though the way it works is a bit unexpected for some.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="why">Why is this a hard problem?</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-To understand why mutable variables cause complexities in SSA construction, 
-consider this extremely simple C example:
-</p>
-
-<div class="doc_code">
-<pre>
-int G, H;
-int test(_Bool Condition) {
-  int X;
-  if (Condition)
-    X = G;
-  else
-    X = H;
-  return X;
-}
-</pre>
-</div>
-
-<p>In this case, we have the variable "X", whose value depends on the path 
-executed in the program.  Because there are two different possible values for X
-before the return instruction, a PHI node is inserted to merge the two values.
-The LLVM IR that we want for this example looks like this:</p>
-
-<div class="doc_code">
-<pre>
- at G = weak global i32 0   ; type of @G is i32*
- at H = weak global i32 0   ; type of @H is i32*
-
-define i32 @test(i1 %Condition) {
-entry:
-  br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
-  %X.0 = load i32* @G
-  br label %cond_next
-
-cond_false:
-  %X.1 = load i32* @H
-  br label %cond_next
-
-cond_next:
-  %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
-  ret i32 %X.2
-}
-</pre>
-</div>
-
-<p>In this example, the loads from the G and H global variables are explicit in
-the LLVM IR, and they live in the then/else branches of the if statement
-(cond_true/cond_false).  In order to merge the incoming values, the X.2 phi node
-in the cond_next block selects the right value to use based on where control 
-flow is coming from: if control flow comes from the cond_false block, X.2 gets
-the value of X.1.  Alternatively, if control flow comes from cond_true, it gets
-the value of X.0.  The intent of this chapter is not to explain the details of
-SSA form.  For more information, see one of the many <a 
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online 
-references</a>.</p>
-
-<p>The question for this article is "who places the phi nodes when lowering 
-assignments to mutable variables?".  The issue here is that LLVM 
-<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
-However, SSA construction requires non-trivial algorithms and data structures,
-so it is inconvenient and wasteful for every front-end to have to reproduce this
-logic.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="memory">Memory in LLVM</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The 'trick' here is that while LLVM does require all register values to be
-in SSA form, it does not require (or permit) memory objects to be in SSA form.
-In the example above, note that the loads from G and H are direct accesses to
-G and H: they are not renamed or versioned.  This differs from some other
-compiler systems, which do try to version memory objects.  In LLVM, instead of
-encoding dataflow analysis of memory into the LLVM IR, it is handled with <a 
-href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
-demand.</p>
-
-<p>
-With this in mind, the high-level idea is that we want to make a stack variable
-(which lives in memory, because it is on the stack) for each mutable object in
-a function.  To take advantage of this trick, we need to talk about how LLVM
-represents stack variables.
-</p>
-
-<p>In LLVM, all memory accesses are explicit with load/store instructions, and
-it is carefully designed not to have (or need) an "address-of" operator.  Notice
-how the type of the @G/@H global variables is actually "i32*" even though the 
-variable is defined as "i32".  What this means is that @G defines <em>space</em>
-for an i32 in the global data area, but its <em>name</em> actually refers to the
-address for that space.  Stack variables work the same way, except that instead of 
-being declared with global variable definitions, they are declared with the 
-<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
-
-<div class="doc_code">
-<pre>
-define i32 @example() {
-entry:
-  %X = alloca i32           ; type of %X is i32*.
-  ...
-  %tmp = load i32* %X       ; load the stack value %X from the stack.
-  %tmp2 = add i32 %tmp, 1   ; increment it
-  store i32 %tmp2, i32* %X  ; store it back
-  ...
-</pre>
-</div>
-
-<p>This code shows an example of how you can declare and manipulate a stack
-variable in the LLVM IR.  Stack memory allocated with the alloca instruction is
-fully general: you can pass the address of the stack slot to functions, you can
-store it in other variables, etc.  In our example above, we could rewrite the
-example to use the alloca technique to avoid using a PHI node:</p>
-
-<div class="doc_code">
-<pre>
- at G = weak global i32 0   ; type of @G is i32*
- at H = weak global i32 0   ; type of @H is i32*
-
-define i32 @test(i1 %Condition) {
-entry:
-  %X = alloca i32           ; type of %X is i32*.
-  br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
-  %X.0 = load i32* @G
-  store i32 %X.0, i32* %X   ; Update X
-  br label %cond_next
-
-cond_false:
-  %X.1 = load i32* @H
-  store i32 %X.1, i32* %X   ; Update X
-  br label %cond_next
-
-cond_next:
-  %X.2 = load i32* %X       ; Read X
-  ret i32 %X.2
-}
-</pre>
-</div>
-
-<p>With this, we have discovered a way to handle arbitrary mutable variables
-without the need to create Phi nodes at all:</p>
-
-<ol>
-<li>Each mutable variable becomes a stack allocation.</li>
-<li>Each read of the variable becomes a load from the stack.</li>
-<li>Each update of the variable becomes a store to the stack.</li>
-<li>Taking the address of a variable just uses the stack address directly.</li>
-</ol>
-
-<p>While this solution has solved our immediate problem, it introduced another
-one: we have now apparently introduced a lot of stack traffic for very simple
-and common operations, a major performance problem.  Fortunately for us, the
-LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
-this case, promoting allocas like this into SSA registers, inserting Phi nodes
-as appropriate.  If you run this example through the pass, for example, you'll
-get:</p>
-
-<div class="doc_code">
-<pre>
-$ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b>
- at G = weak global i32 0
- at H = weak global i32 0
-
-define i32 @test(i1 %Condition) {
-entry:
-  br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
-  %X.0 = load i32* @G
-  br label %cond_next
-
-cond_false:
-  %X.1 = load i32* @H
-  br label %cond_next
-
-cond_next:
-  %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
-  ret i32 %X.01
-}
-</pre>
-</div>
-
-<p>The mem2reg pass implements the standard "iterated dominance frontier"
-algorithm for constructing SSA form and has a number of optimizations that speed
-up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing 
-with mutable variables, and we highly recommend that you depend on it.  Note that
-mem2reg only works on variables in certain circumstances:</p>
-
-<ol>
-<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
-promotes them.  It does not apply to global variables or heap allocations.</li>
-
-<li>mem2reg only looks for alloca instructions in the entry block of the
-function.  Being in the entry block guarantees that the alloca is only executed
-once, which makes analysis simpler.</li>
-
-<li>mem2reg only promotes allocas whose uses are direct loads and stores.  If
-the address of the stack object is passed to a function, or if any funny pointer
-arithmetic is involved, the alloca will not be promoted.</li>
-
-<li>mem2reg only works on allocas of <a 
-href="../LangRef.html#t_classifications">first class</a> 
-values (such as pointers, scalars and vectors), and only if the array size
-of the allocation is 1 (or missing in the .ll file).  mem2reg is not capable of
-promoting structs or arrays to registers.  Note that the "scalarrepl" pass is
-more powerful and can promote structs, "unions", and arrays in many cases.</li>
-
-</ol>
-
-<p>
-All of these properties are easy to satisfy for most imperative languages, and
-we'll illustrate it below with Kaleidoscope.  The final question you may be
-asking is: should I bother with this nonsense for my front-end?  Wouldn't it be
-better if I just did SSA construction directly, avoiding use of the mem2reg
-optimization pass?  In short, we strongly recommend that you use this technique
-for building SSA form, unless there is an extremely good reason not to.  Using
-this technique is:</p>
-
-<ul>
-<li>Proven and well tested: llvm-gcc and clang both use this technique for local
-mutable variables.  As such, the most common clients of LLVM are using this to
-handle a bulk of their variables.  You can be sure that bugs are found fast and
-fixed early.</li>
-
-<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
-common cases as well as fully general.  For example, it has fast-paths for
-variables that are only used in a single block, variables that only have one
-assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
-</li>
-
-<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
-Debug information in LLVM</a> relies on having the address of the variable
-exposed so that debug info can be attached to it.  This technique dovetails 
-very naturally with this style of debug info.</li>
-</ul>
-
-<p>If nothing else, this makes it much easier to get your front-end up and 
-running, and is very simple to implement.  Lets extend Kaleidoscope with mutable
-variables now!
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="kalvars">Mutable Variables in Kaleidoscope</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we know the sort of problem we want to tackle, lets see what this
-looks like in the context of our little Kaleidoscope language.  We're going to
-add two features:</p>
-
-<ol>
-<li>The ability to mutate variables with the '=' operator.</li>
-<li>The ability to define new variables.</li>
-</ol>
-
-<p>While the first item is really what this is about, we only have variables
-for incoming arguments as well as for induction variables, and redefining those only
-goes so far :).  Also, the ability to define new variables is a
-useful thing regardless of whether you will be mutating them.  Here's a
-motivating example that shows how we could use these:</p>
-
-<div class="doc_code">
-<pre>
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-
-# Recursive fib, we could do this before.
-def fib(x)
-  if (x < 3) then
-    1
-  else
-    fib(x-1)+fib(x-2);
-
-# Iterative fib.
-def fibi(x)
-  <b>var a = 1, b = 1, c in</b>
-  (for i = 3, i < x in 
-     <b>c = a + b</b> :
-     <b>a = b</b> :
-     <b>b = c</b>) :
-  b;
-
-# Call it. 
-fibi(10);
-</pre>
-</div>
-
-<p>
-In order to mutate variables, we have to change our existing variables to use
-the "alloca trick".  Once we have that, we'll add our new operator, then extend
-Kaleidoscope to support new variable definitions.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="adjustments">Adjusting Existing Variables for Mutation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-The symbol table in Kaleidoscope is managed at code generation time by the 
-'<tt>NamedValues</tt>' map.  This map currently keeps track of the LLVM "Value*"
-that holds the double value for the named variable.  In order to support
-mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
-the <em>memory location</em> of the variable in question.  Note that this 
-change is a refactoring: it changes the structure of the code, but does not
-(by itself) change the behavior of the compiler.  All of these changes are 
-isolated in the Kaleidoscope code generator.</p>
-
-<p>
-At this point in Kaleidoscope's development, it only supports variables for two
-things: incoming arguments to functions and the induction variable of 'for'
-loops.  For consistency, we'll allow mutation of these variables in addition to
-other user-defined variables.  This means that these will both need memory
-locations.
-</p>
-
-<p>To start our transformation of Kaleidoscope, we'll change the NamedValues
-map so that it maps to AllocaInst* instead of Value*.  Once we do this, the C++ 
-compiler will tell us what parts of the code we need to update:</p>
-
-<div class="doc_code">
-<pre>
-static std::map<std::string, AllocaInst*> NamedValues;
-</pre>
-</div>
-
-<p>Also, since we will need to create these alloca's, we'll use a helper
-function that ensures that the allocas are created in the entry block of the
-function:</p>
-
-<div class="doc_code">
-<pre>
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function.  This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
-                                          const std::string &VarName) {
-  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
-                 TheFunction->getEntryBlock().begin());
-  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
-                           VarName.c_str());
-}
-</pre>
-</div>
-
-<p>This funny looking code creates an IRBuilder object that is pointing at
-the first instruction (.begin()) of the entry block.  It then creates an alloca
-with the expected name and returns it.  Because all values in Kaleidoscope are
-doubles, there is no need to pass in a type to use.</p>
-
-<p>With this in place, the first functionality change we want to make is to
-variable references.  In our new scheme, variables live on the stack, so code
-generating a reference to them actually needs to produce a load from the stack
-slot:</p>
-
-<div class="doc_code">
-<pre>
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  if (V == 0) return ErrorV("Unknown variable name");
-
-  <b>// Load the value.
-  return Builder.CreateLoad(V, Name.c_str());</b>
-}
-</pre>
-</div>
-
-<p>As you can see, this is pretty straightforward.  Now we need to update the
-things that define the variables to set up the alloca.  We'll start with 
-<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
-the unabridged code):</p>
-
-<div class="doc_code">
-<pre>
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-
-  <b>// Create an alloca for the variable in the entry block.
-  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
-  
-    // Emit the start code first, without 'variable' in scope.
-  Value *StartVal = Start->Codegen();
-  if (StartVal == 0) return 0;
-  
-  <b>// Store the value into the alloca.
-  Builder.CreateStore(StartVal, Alloca);</b>
-  ...
-
-  // Compute the end condition.
-  Value *EndCond = End->Codegen();
-  if (EndCond == 0) return EndCond;
-  
-  <b>// Reload, increment, and restore the alloca.  This handles the case where
-  // the body of the loop mutates the variable.
-  Value *CurVar = Builder.CreateLoad(Alloca);
-  Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
-  Builder.CreateStore(NextVar, Alloca);</b>
-  ...
-</pre>
-</div>
-
-<p>This code is virtually identical to the code <a 
-href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>.  The
-big difference is that we no longer have to construct a PHI node, and we use
-load/store to access the variable as needed.</p>
-
-<p>To support mutable argument variables, we need to also make allocas for them.
-The code for this is also pretty simple:</p>
-
-<div class="doc_code">
-<pre>
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F) {
-  Function::arg_iterator AI = F->arg_begin();
-  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
-    // Create an alloca for this variable.
-    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
-    // Store the initial value into the alloca.
-    Builder.CreateStore(AI, Alloca);
-
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = Alloca;
-  }
-}
-</pre>
-</div>
-
-<p>For each argument, we make an alloca, store the input value to the function
-into the alloca, and register the alloca as the memory location for the
-argument.  This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
-it sets up the entry block for the function.</p>
-
-<p>The final missing piece is adding the mem2reg pass, which allows us to get
-good codegen once again:</p>
-
-<div class="doc_code">
-<pre>
-    // Set up the optimizer pipeline.  Start with registering info about how the
-    // target lays out data structures.
-    OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
-    <b>// Promote allocas to registers.
-    OurFPM.add(createPromoteMemoryToRegisterPass());</b>
-    // Do simple "peephole" optimizations and bit-twiddling optzns.
-    OurFPM.add(createInstructionCombiningPass());
-    // Reassociate expressions.
-    OurFPM.add(createReassociatePass());
-</pre>
-</div>
-
-<p>It is interesting to see what the code looks like before and after the
-mem2reg optimization runs.  For example, this is the before/after code for our
-recursive fib function.  Before the optimization:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
-  <b>%x1 = alloca double
-  store double %x, double* %x1
-  %x2 = load double* %x1</b>
-  %cmptmp = fcmp ult double %x2, 3.000000e+00
-  %booltmp = uitofp i1 %cmptmp to double
-  %ifcond = fcmp one double %booltmp, 0.000000e+00
-  br i1 %ifcond, label %then, label %else
-
-then:		; preds = %entry
-  br label %ifcont
-
-else:		; preds = %entry
-  <b>%x3 = load double* %x1</b>
-  %subtmp = fsub double %x3, 1.000000e+00
-  %calltmp = call double @fib(double %subtmp)
-  <b>%x4 = load double* %x1</b>
-  %subtmp5 = fsub double %x4, 2.000000e+00
-  %calltmp6 = call double @fib(double %subtmp5)
-  %addtmp = fadd double %calltmp, %calltmp6
-  br label %ifcont
-
-ifcont:		; preds = %else, %then
-  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
-  ret double %iftmp
-}
-</pre>
-</div>
-
-<p>Here there is only one variable (x, the input argument) but you can still
-see the extremely simple-minded code generation strategy we are using.  In the
-entry block, an alloca is created, and the initial input value is stored into
-it.  Each reference to the variable does a reload from the stack.  Also, note
-that we didn't modify the if/then/else expression, so it still inserts a PHI
-node.  While we could make an alloca for it, it is actually easier to create a 
-PHI node for it, so we still just make the PHI.</p>
-
-<p>Here is the code after the mem2reg pass runs:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
-  %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
-  %booltmp = uitofp i1 %cmptmp to double
-  %ifcond = fcmp one double %booltmp, 0.000000e+00
-  br i1 %ifcond, label %then, label %else
-
-then:
-  br label %ifcont
-
-else:
-  %subtmp = fsub double <b>%x</b>, 1.000000e+00
-  %calltmp = call double @fib(double %subtmp)
-  %subtmp5 = fsub double <b>%x</b>, 2.000000e+00
-  %calltmp6 = call double @fib(double %subtmp5)
-  %addtmp = fadd double %calltmp, %calltmp6
-  br label %ifcont
-
-ifcont:		; preds = %else, %then
-  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
-  ret double %iftmp
-}
-</pre>
-</div>
-
-<p>This is a trivial case for mem2reg, since there are no redefinitions of the
-variable.  The point of showing this is to calm your tension about inserting
-such blatent inefficiencies :).</p>
-
-<p>After the rest of the optimizers run, we get:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
-  %cmptmp = fcmp ult double %x, 3.000000e+00
-  %booltmp = uitofp i1 %cmptmp to double
-  %ifcond = fcmp ueq double %booltmp, 0.000000e+00
-  br i1 %ifcond, label %else, label %ifcont
-
-else:
-  %subtmp = fsub double %x, 1.000000e+00
-  %calltmp = call double @fib(double %subtmp)
-  %subtmp5 = fsub double %x, 2.000000e+00
-  %calltmp6 = call double @fib(double %subtmp5)
-  %addtmp = fadd double %calltmp, %calltmp6
-  ret double %addtmp
-
-ifcont:
-  ret double 1.000000e+00
-}
-</pre>
-</div>
-
-<p>Here we see that the simplifycfg pass decided to clone the return instruction
-into the end of the 'else' block.  This allowed it to eliminate some branches
-and the PHI node.</p>
-
-<p>Now that all symbol table references are updated to use stack variables, 
-we'll add the assignment operator.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="assignment">New Assignment Operator</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>With our current framework, adding a new assignment operator is really
-simple.  We will parse it just like any other binary operator, but handle it
-internally (instead of allowing the user to define it).  The first step is to
-set a precedence:</p>
-
-<div class="doc_code">
-<pre>
- int main() {
-   // Install standard binary operators.
-   // 1 is lowest precedence.
-   <b>BinopPrecedence['='] = 2;</b>
-   BinopPrecedence['<'] = 10;
-   BinopPrecedence['+'] = 20;
-   BinopPrecedence['-'] = 20;
-</pre>
-</div>
-
-<p>Now that the parser knows the precedence of the binary operator, it takes
-care of all the parsing and AST generation.  We just need to implement codegen
-for the assignment operator.  This looks like:</p> 
-
-<div class="doc_code">
-<pre>
-Value *BinaryExprAST::Codegen() {
-  // Special case '=' because we don't want to emit the LHS as an expression.
-  if (Op == '=') {
-    // Assignment requires the LHS to be an identifier.
-    VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
-    if (!LHSE)
-      return ErrorV("destination of '=' must be a variable");
-</pre>
-</div>
-
-<p>Unlike the rest of the binary operators, our assignment operator doesn't
-follow the "emit LHS, emit RHS, do computation" model.  As such, it is handled
-as a special case before the other binary operators are handled.  The other 
-strange thing is that it requires the LHS to be a variable.  It is invalid to
-have "(x+1) = expr" - only things like "x = expr" are allowed.
-</p>
-
-<div class="doc_code">
-<pre>
-    // Codegen the RHS.
-    Value *Val = RHS->Codegen();
-    if (Val == 0) return 0;
-
-    // Look up the name.
-    Value *Variable = NamedValues[LHSE->getName()];
-    if (Variable == 0) return ErrorV("Unknown variable name");
-
-    Builder.CreateStore(Val, Variable);
-    return Val;
-  }
-  ...  
-</pre>
-</div>
-
-<p>Once we have the variable, codegen'ing the assignment is straightforward:
-we emit the RHS of the assignment, create a store, and return the computed
-value.  Returning a value allows for chained assignments like "X = (Y = Z)".</p>
-
-<p>Now that we have an assignment operator, we can mutate loop variables and
-arguments.  For example, we can now run code like this:</p>
-
-<div class="doc_code">
-<pre>
-# Function to print a double.
-extern printd(x);
-
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-
-def test(x)
-  printd(x) :
-  x = 4 :
-  printd(x);
-
-test(123);
-</pre>
-</div>
-
-<p>When run, this example prints "123" and then "4", showing that we did
-actually mutate the value!  Okay, we have now officially implemented our goal:
-getting this to work requires SSA construction in the general case.  However,
-to be really useful, we want the ability to define our own local variables, lets
-add this next! 
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="localvars">User-defined Local Variables</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Adding var/in is just like any other other extensions we made to 
-Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
-The first step for adding our new 'var/in' construct is to extend the lexer.
-As before, this is pretty trivial, the code looks like this:</p>
-
-<div class="doc_code">
-<pre>
-enum Token {
-  ...
-  <b>// var definition
-  tok_var = -13</b>
-...
-}
-...
-static int gettok() {
-...
-    if (IdentifierStr == "in") return tok_in;
-    if (IdentifierStr == "binary") return tok_binary;
-    if (IdentifierStr == "unary") return tok_unary;
-    <b>if (IdentifierStr == "var") return tok_var;</b>
-    return tok_identifier;
-...
-</pre>
-</div>
-
-<p>The next step is to define the AST node that we will construct.  For var/in,
-it looks like this:</p>
-
-<div class="doc_code">
-<pre>
-/// VarExprAST - Expression class for var/in
-class VarExprAST : public ExprAST {
-  std::vector<std::pair<std::string, ExprAST*> > VarNames;
-  ExprAST *Body;
-public:
-  VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
-             ExprAST *body)
-  : VarNames(varnames), Body(body) {}
-  
-  virtual Value *Codegen();
-};
-</pre>
-</div>
-
-<p>var/in allows a list of names to be defined all at once, and each name can
-optionally have an initializer value.  As such, we capture this information in
-the VarNames vector.  Also, var/in has a body, this body is allowed to access
-the variables defined by the var/in.</p>
-
-<p>With this in place, we can define the parser pieces.  The first thing we do is add
-it as a primary expression:</p>
-
-<div class="doc_code">
-<pre>
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-///   ::= ifexpr
-///   ::= forexpr
-<b>///   ::= varexpr</b>
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  case tok_if:         return ParseIfExpr();
-  case tok_for:        return ParseForExpr();
-  <b>case tok_var:        return ParseVarExpr();</b>
-  }
-}
-</pre>
-</div>
-
-<p>Next we define ParseVarExpr:</p>
-
-<div class="doc_code">
-<pre>
-/// varexpr ::= 'var' identifier ('=' expression)? 
-//                    (',' identifier ('=' expression)?)* 'in' expression
-static ExprAST *ParseVarExpr() {
-  getNextToken();  // eat the var.
-
-  std::vector<std::pair<std::string, ExprAST*> > VarNames;
-
-  // At least one variable name is required.
-  if (CurTok != tok_identifier)
-    return Error("expected identifier after var");
-</pre>
-</div>
-
-<p>The first part of this code parses the list of identifier/expr pairs into the
-local <tt>VarNames</tt> vector.  
-
-<div class="doc_code">
-<pre>
-  while (1) {
-    std::string Name = IdentifierStr;
-    getNextToken();  // eat identifier.
-
-    // Read the optional initializer.
-    ExprAST *Init = 0;
-    if (CurTok == '=') {
-      getNextToken(); // eat the '='.
-      
-      Init = ParseExpression();
-      if (Init == 0) return 0;
-    }
-    
-    VarNames.push_back(std::make_pair(Name, Init));
-    
-    // End of var list, exit loop.
-    if (CurTok != ',') break;
-    getNextToken(); // eat the ','.
-    
-    if (CurTok != tok_identifier)
-      return Error("expected identifier list after var");
-  }
-</pre>
-</div>
-
-<p>Once all the variables are parsed, we then parse the body and create the
-AST node:</p>
-
-<div class="doc_code">
-<pre>
-  // At this point, we have to have 'in'.
-  if (CurTok != tok_in)
-    return Error("expected 'in' keyword after 'var'");
-  getNextToken();  // eat 'in'.
-  
-  ExprAST *Body = ParseExpression();
-  if (Body == 0) return 0;
-  
-  return new VarExprAST(VarNames, Body);
-}
-</pre>
-</div>
-
-<p>Now that we can parse and represent the code, we need to support emission of
-LLVM IR for it.  This code starts out with:</p>
-
-<div class="doc_code">
-<pre>
-Value *VarExprAST::Codegen() {
-  std::vector<AllocaInst *> OldBindings;
-  
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-
-  // Register all variables and emit their initializer.
-  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
-    const std::string &VarName = VarNames[i].first;
-    ExprAST *Init = VarNames[i].second;
-</pre>
-</div>
-
-<p>Basically it loops over all the variables, installing them one at a time.
-For each variable we put into the symbol table, we remember the previous value
-that we replace in OldBindings.</p>
-
-<div class="doc_code">
-<pre>
-    // Emit the initializer before adding the variable to scope, this prevents
-    // the initializer from referencing the variable itself, and permits stuff
-    // like this:
-    //  var a = 1 in
-    //    var a = a in ...   # refers to outer 'a'.
-    Value *InitVal;
-    if (Init) {
-      InitVal = Init->Codegen();
-      if (InitVal == 0) return 0;
-    } else { // If not specified, use 0.0.
-      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
-    }
-    
-    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-    Builder.CreateStore(InitVal, Alloca);
-
-    // Remember the old variable binding so that we can restore the binding when
-    // we unrecurse.
-    OldBindings.push_back(NamedValues[VarName]);
-    
-    // Remember this binding.
-    NamedValues[VarName] = Alloca;
-  }
-</pre>
-</div>
-
-<p>There are more comments here than code.  The basic idea is that we emit the
-initializer, create the alloca, then update the symbol table to point to it.
-Once all the variables are installed in the symbol table, we evaluate the body
-of the var/in expression:</p>
-
-<div class="doc_code">
-<pre>
-  // Codegen the body, now that all vars are in scope.
-  Value *BodyVal = Body->Codegen();
-  if (BodyVal == 0) return 0;
-</pre>
-</div>
-
-<p>Finally, before returning, we restore the previous variable bindings:</p>
-
-<div class="doc_code">
-<pre>
-  // Pop all our variables from scope.
-  for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
-    NamedValues[VarNames[i].first] = OldBindings[i];
-
-  // Return the body computation.
-  return BodyVal;
-}
-</pre>
-</div>
-
-<p>The end result of all of this is that we get properly scoped variable 
-definitions, and we even (trivially) allow mutation of them :).</p>
-
-<p>With this, we completed what we set out to do.  Our nice iterative fib
-example from the intro compiles and runs just fine.  The mem2reg pass optimizes
-all of our stack variables into SSA registers, inserting PHI nodes where needed,
-and our front-end remains simple: no "iterated dominance frontier" computation
-anywhere in sight.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with mutable
-variables and var/in support.  To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/DerivedTypes.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Support/TargetSelect.h"
-#include <cstdio>
-#include <string>
-#include <map>
-#include <vector>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
-  tok_eof = -1,
-
-  // commands
-  tok_def = -2, tok_extern = -3,
-
-  // primary
-  tok_identifier = -4, tok_number = -5,
-  
-  // control
-  tok_if = -6, tok_then = -7, tok_else = -8,
-  tok_for = -9, tok_in = -10,
-  
-  // operators
-  tok_binary = -11, tok_unary = -12,
-  
-  // var definition
-  tok_var = -13
-};
-
-static std::string IdentifierStr;  // Filled in if tok_identifier
-static double NumVal;              // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
-  static int LastChar = ' ';
-
-  // Skip any whitespace.
-  while (isspace(LastChar))
-    LastChar = getchar();
-
-  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
-    IdentifierStr = LastChar;
-    while (isalnum((LastChar = getchar())))
-      IdentifierStr += LastChar;
-
-    if (IdentifierStr == "def") return tok_def;
-    if (IdentifierStr == "extern") return tok_extern;
-    if (IdentifierStr == "if") return tok_if;
-    if (IdentifierStr == "then") return tok_then;
-    if (IdentifierStr == "else") return tok_else;
-    if (IdentifierStr == "for") return tok_for;
-    if (IdentifierStr == "in") return tok_in;
-    if (IdentifierStr == "binary") return tok_binary;
-    if (IdentifierStr == "unary") return tok_unary;
-    if (IdentifierStr == "var") return tok_var;
-    return tok_identifier;
-  }
-
-  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
-    std::string NumStr;
-    do {
-      NumStr += LastChar;
-      LastChar = getchar();
-    } while (isdigit(LastChar) || LastChar == '.');
-
-    NumVal = strtod(NumStr.c_str(), 0);
-    return tok_number;
-  }
-
-  if (LastChar == '#') {
-    // Comment until end of line.
-    do LastChar = getchar();
-    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-    
-    if (LastChar != EOF)
-      return gettok();
-  }
-  
-  // Check for end of file.  Don't eat the EOF.
-  if (LastChar == EOF)
-    return tok_eof;
-
-  // Otherwise, just return the character as its ascii value.
-  int ThisChar = LastChar;
-  LastChar = getchar();
-  return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
-  virtual ~ExprAST() {}
-  virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
-  double Val;
-public:
-  NumberExprAST(double val) : Val(val) {}
-  virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
-  std::string Name;
-public:
-  VariableExprAST(const std::string &name) : Name(name) {}
-  const std::string &getName() const { return Name; }
-  virtual Value *Codegen();
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-class UnaryExprAST : public ExprAST {
-  char Opcode;
-  ExprAST *Operand;
-public:
-  UnaryExprAST(char opcode, ExprAST *operand) 
-    : Opcode(opcode), Operand(operand) {}
-  virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
-  char Op;
-  ExprAST *LHS, *RHS;
-public:
-  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
-    : Op(op), LHS(lhs), RHS(rhs) {}
-  virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
-  std::string Callee;
-  std::vector<ExprAST*> Args;
-public:
-  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
-    : Callee(callee), Args(args) {}
-  virtual Value *Codegen();
-};
-
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
-  ExprAST *Cond, *Then, *Else;
-public:
-  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
-  : Cond(cond), Then(then), Else(_else) {}
-  virtual Value *Codegen();
-};
-
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
-  std::string VarName;
-  ExprAST *Start, *End, *Step, *Body;
-public:
-  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
-             ExprAST *step, ExprAST *body)
-    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
-  virtual Value *Codegen();
-};
-
-/// VarExprAST - Expression class for var/in
-class VarExprAST : public ExprAST {
-  std::vector<std::pair<std::string, ExprAST*> > VarNames;
-  ExprAST *Body;
-public:
-  VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
-             ExprAST *body)
-  : VarNames(varnames), Body(body) {}
-  
-  virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes), as well as if it is an operator.
-class PrototypeAST {
-  std::string Name;
-  std::vector<std::string> Args;
-  bool isOperator;
-  unsigned Precedence;  // Precedence if a binary op.
-public:
-  PrototypeAST(const std::string &name, const std::vector<std::string> &args,
-               bool isoperator = false, unsigned prec = 0)
-  : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
-  
-  bool isUnaryOp() const { return isOperator && Args.size() == 1; }
-  bool isBinaryOp() const { return isOperator && Args.size() == 2; }
-  
-  char getOperatorName() const {
-    assert(isUnaryOp() || isBinaryOp());
-    return Name[Name.size()-1];
-  }
-  
-  unsigned getBinaryPrecedence() const { return Precedence; }
-  
-  Function *Codegen();
-  
-  void CreateArgumentAllocas(Function *F);
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
-  PrototypeAST *Proto;
-  ExprAST *Body;
-public:
-  FunctionAST(PrototypeAST *proto, ExprAST *body)
-    : Proto(proto), Body(body) {}
-  
-  Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser is looking at.  getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
-  return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
-  if (!isascii(CurTok))
-    return -1;
-  
-  // Make sure it's a declared binop.
-  int TokPrec = BinopPrecedence[CurTok];
-  if (TokPrec <= 0) return -1;
-  return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-///   ::= identifier
-///   ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
-  std::string IdName = IdentifierStr;
-  
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '(') // Simple variable ref.
-    return new VariableExprAST(IdName);
-  
-  // Call.
-  getNextToken();  // eat (
-  std::vector<ExprAST*> Args;
-  if (CurTok != ')') {
-    while (1) {
-      ExprAST *Arg = ParseExpression();
-      if (!Arg) return 0;
-      Args.push_back(Arg);
-
-      if (CurTok == ')') break;
-
-      if (CurTok != ',')
-        return Error("Expected ')' or ',' in argument list");
-      getNextToken();
-    }
-  }
-
-  // Eat the ')'.
-  getNextToken();
-  
-  return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
-  ExprAST *Result = new NumberExprAST(NumVal);
-  getNextToken(); // consume the number
-  return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
-  getNextToken();  // eat (.
-  ExprAST *V = ParseExpression();
-  if (!V) return 0;
-  
-  if (CurTok != ')')
-    return Error("expected ')'");
-  getNextToken();  // eat ).
-  return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
-  getNextToken();  // eat the if.
-  
-  // condition.
-  ExprAST *Cond = ParseExpression();
-  if (!Cond) return 0;
-  
-  if (CurTok != tok_then)
-    return Error("expected then");
-  getNextToken();  // eat the then
-  
-  ExprAST *Then = ParseExpression();
-  if (Then == 0) return 0;
-  
-  if (CurTok != tok_else)
-    return Error("expected else");
-  
-  getNextToken();
-  
-  ExprAST *Else = ParseExpression();
-  if (!Else) return 0;
-  
-  return new IfExprAST(Cond, Then, Else);
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
-  getNextToken();  // eat the for.
-
-  if (CurTok != tok_identifier)
-    return Error("expected identifier after for");
-  
-  std::string IdName = IdentifierStr;
-  getNextToken();  // eat identifier.
-  
-  if (CurTok != '=')
-    return Error("expected '=' after for");
-  getNextToken();  // eat '='.
-  
-  
-  ExprAST *Start = ParseExpression();
-  if (Start == 0) return 0;
-  if (CurTok != ',')
-    return Error("expected ',' after for start value");
-  getNextToken();
-  
-  ExprAST *End = ParseExpression();
-  if (End == 0) return 0;
-  
-  // The step value is optional.
-  ExprAST *Step = 0;
-  if (CurTok == ',') {
-    getNextToken();
-    Step = ParseExpression();
-    if (Step == 0) return 0;
-  }
-  
-  if (CurTok != tok_in)
-    return Error("expected 'in' after for");
-  getNextToken();  // eat 'in'.
-  
-  ExprAST *Body = ParseExpression();
-  if (Body == 0) return 0;
-
-  return new ForExprAST(IdName, Start, End, Step, Body);
-}
-
-/// varexpr ::= 'var' identifier ('=' expression)? 
-//                    (',' identifier ('=' expression)?)* 'in' expression
-static ExprAST *ParseVarExpr() {
-  getNextToken();  // eat the var.
-
-  std::vector<std::pair<std::string, ExprAST*> > VarNames;
-
-  // At least one variable name is required.
-  if (CurTok != tok_identifier)
-    return Error("expected identifier after var");
-  
-  while (1) {
-    std::string Name = IdentifierStr;
-    getNextToken();  // eat identifier.
-
-    // Read the optional initializer.
-    ExprAST *Init = 0;
-    if (CurTok == '=') {
-      getNextToken(); // eat the '='.
-      
-      Init = ParseExpression();
-      if (Init == 0) return 0;
-    }
-    
-    VarNames.push_back(std::make_pair(Name, Init));
-    
-    // End of var list, exit loop.
-    if (CurTok != ',') break;
-    getNextToken(); // eat the ','.
-    
-    if (CurTok != tok_identifier)
-      return Error("expected identifier list after var");
-  }
-  
-  // At this point, we have to have 'in'.
-  if (CurTok != tok_in)
-    return Error("expected 'in' keyword after 'var'");
-  getNextToken();  // eat 'in'.
-  
-  ExprAST *Body = ParseExpression();
-  if (Body == 0) return 0;
-  
-  return new VarExprAST(VarNames, Body);
-}
-
-/// primary
-///   ::= identifierexpr
-///   ::= numberexpr
-///   ::= parenexpr
-///   ::= ifexpr
-///   ::= forexpr
-///   ::= varexpr
-static ExprAST *ParsePrimary() {
-  switch (CurTok) {
-  default: return Error("unknown token when expecting an expression");
-  case tok_identifier: return ParseIdentifierExpr();
-  case tok_number:     return ParseNumberExpr();
-  case '(':            return ParseParenExpr();
-  case tok_if:         return ParseIfExpr();
-  case tok_for:        return ParseForExpr();
-  case tok_var:        return ParseVarExpr();
-  }
-}
-
-/// unary
-///   ::= primary
-///   ::= '!' unary
-static ExprAST *ParseUnary() {
-  // If the current token is not an operator, it must be a primary expr.
-  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
-    return ParsePrimary();
-  
-  // If this is a unary operator, read it.
-  int Opc = CurTok;
-  getNextToken();
-  if (ExprAST *Operand = ParseUnary())
-    return new UnaryExprAST(Opc, Operand);
-  return 0;
-}
-
-/// binoprhs
-///   ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
-  // If this is a binop, find its precedence.
-  while (1) {
-    int TokPrec = GetTokPrecedence();
-    
-    // If this is a binop that binds at least as tightly as the current binop,
-    // consume it, otherwise we are done.
-    if (TokPrec < ExprPrec)
-      return LHS;
-    
-    // Okay, we know this is a binop.
-    int BinOp = CurTok;
-    getNextToken();  // eat binop
-    
-    // Parse the unary expression after the binary operator.
-    ExprAST *RHS = ParseUnary();
-    if (!RHS) return 0;
-    
-    // If BinOp binds less tightly with RHS than the operator after RHS, let
-    // the pending operator take RHS as its LHS.
-    int NextPrec = GetTokPrecedence();
-    if (TokPrec < NextPrec) {
-      RHS = ParseBinOpRHS(TokPrec+1, RHS);
-      if (RHS == 0) return 0;
-    }
-    
-    // Merge LHS/RHS.
-    LHS = new BinaryExprAST(BinOp, LHS, RHS);
-  }
-}
-
-/// expression
-///   ::= unary binoprhs
-///
-static ExprAST *ParseExpression() {
-  ExprAST *LHS = ParseUnary();
-  if (!LHS) return 0;
-  
-  return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-///   ::= id '(' id* ')'
-///   ::= binary LETTER number? (id, id)
-///   ::= unary LETTER (id)
-static PrototypeAST *ParsePrototype() {
-  std::string FnName;
-  
-  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
-  unsigned BinaryPrecedence = 30;
-  
-  switch (CurTok) {
-  default:
-    return ErrorP("Expected function name in prototype");
-  case tok_identifier:
-    FnName = IdentifierStr;
-    Kind = 0;
-    getNextToken();
-    break;
-  case tok_unary:
-    getNextToken();
-    if (!isascii(CurTok))
-      return ErrorP("Expected unary operator");
-    FnName = "unary";
-    FnName += (char)CurTok;
-    Kind = 1;
-    getNextToken();
-    break;
-  case tok_binary:
-    getNextToken();
-    if (!isascii(CurTok))
-      return ErrorP("Expected binary operator");
-    FnName = "binary";
-    FnName += (char)CurTok;
-    Kind = 2;
-    getNextToken();
-    
-    // Read the precedence if present.
-    if (CurTok == tok_number) {
-      if (NumVal < 1 || NumVal > 100)
-        return ErrorP("Invalid precedecnce: must be 1..100");
-      BinaryPrecedence = (unsigned)NumVal;
-      getNextToken();
-    }
-    break;
-  }
-  
-  if (CurTok != '(')
-    return ErrorP("Expected '(' in prototype");
-  
-  std::vector<std::string> ArgNames;
-  while (getNextToken() == tok_identifier)
-    ArgNames.push_back(IdentifierStr);
-  if (CurTok != ')')
-    return ErrorP("Expected ')' in prototype");
-  
-  // success.
-  getNextToken();  // eat ')'.
-  
-  // Verify right number of names for operator.
-  if (Kind && ArgNames.size() != Kind)
-    return ErrorP("Invalid number of operands for operator");
-  
-  return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
-  getNextToken();  // eat def.
-  PrototypeAST *Proto = ParsePrototype();
-  if (Proto == 0) return 0;
-
-  if (ExprAST *E = ParseExpression())
-    return new FunctionAST(Proto, E);
-  return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
-  if (ExprAST *E = ParseExpression()) {
-    // Make an anonymous proto.
-    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
-    return new FunctionAST(Proto, E);
-  }
-  return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
-  getNextToken();  // eat extern.
-  return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder<> Builder(getGlobalContext());
-static std::map<std::string, AllocaInst*> NamedValues;
-static FunctionPassManager *TheFPM;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function.  This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
-                                          const std::string &VarName) {
-  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
-                 TheFunction->getEntryBlock().begin());
-  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
-                           VarName.c_str());
-}
-
-Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
-  // Look this variable up in the function.
-  Value *V = NamedValues[Name];
-  if (V == 0) return ErrorV("Unknown variable name");
-
-  // Load the value.
-  return Builder.CreateLoad(V, Name.c_str());
-}
-
-Value *UnaryExprAST::Codegen() {
-  Value *OperandV = Operand->Codegen();
-  if (OperandV == 0) return 0;
-  
-  Function *F = TheModule->getFunction(std::string("unary")+Opcode);
-  if (F == 0)
-    return ErrorV("Unknown unary operator");
-  
-  return Builder.CreateCall(F, OperandV, "unop");
-}
-
-Value *BinaryExprAST::Codegen() {
-  // Special case '=' because we don't want to emit the LHS as an expression.
-  if (Op == '=') {
-    // Assignment requires the LHS to be an identifier.
-    VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
-    if (!LHSE)
-      return ErrorV("destination of '=' must be a variable");
-    // Codegen the RHS.
-    Value *Val = RHS->Codegen();
-    if (Val == 0) return 0;
-
-    // Look up the name.
-    Value *Variable = NamedValues[LHSE->getName()];
-    if (Variable == 0) return ErrorV("Unknown variable name");
-
-    Builder.CreateStore(Val, Variable);
-    return Val;
-  }
-  
-  Value *L = LHS->Codegen();
-  Value *R = RHS->Codegen();
-  if (L == 0 || R == 0) return 0;
-  
-  switch (Op) {
-  case '+': return Builder.CreateFAdd(L, R, "addtmp");
-  case '-': return Builder.CreateFSub(L, R, "subtmp");
-  case '*': return Builder.CreateFMul(L, R, "multmp");
-  case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
-    // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
-                                "booltmp");
-  default: break;
-  }
-  
-  // If it wasn't a builtin binary operator, it must be a user defined one. Emit
-  // a call to it.
-  Function *F = TheModule->getFunction(std::string("binary")+Op);
-  assert(F && "binary operator not found!");
-  
-  Value *Ops[2] = { L, R };
-  return Builder.CreateCall(F, Ops, "binop");
-}
-
-Value *CallExprAST::Codegen() {
-  // Look up the name in the global module table.
-  Function *CalleeF = TheModule->getFunction(Callee);
-  if (CalleeF == 0)
-    return ErrorV("Unknown function referenced");
-  
-  // If argument mismatch error.
-  if (CalleeF->arg_size() != Args.size())
-    return ErrorV("Incorrect # arguments passed");
-
-  std::vector<Value*> ArgsV;
-  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
-    ArgsV.push_back(Args[i]->Codegen());
-    if (ArgsV.back() == 0) return 0;
-  }
-  
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-
-Value *IfExprAST::Codegen() {
-  Value *CondV = Cond->Codegen();
-  if (CondV == 0) return 0;
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  CondV = Builder.CreateFCmpONE(CondV, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                "ifcond");
-  
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-  
-  // Create blocks for the then and else cases.  Insert the 'then' block at the
-  // end of the function.
-  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
-  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
-  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-  
-  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-  
-  // Emit then value.
-  Builder.SetInsertPoint(ThenBB);
-  
-  Value *ThenV = Then->Codegen();
-  if (ThenV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
-  ThenBB = Builder.GetInsertBlock();
-  
-  // Emit else block.
-  TheFunction->getBasicBlockList().push_back(ElseBB);
-  Builder.SetInsertPoint(ElseBB);
-  
-  Value *ElseV = Else->Codegen();
-  if (ElseV == 0) return 0;
-  
-  Builder.CreateBr(MergeBB);
-  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
-  ElseBB = Builder.GetInsertBlock();
-  
-  // Emit merge block.
-  TheFunction->getBasicBlockList().push_back(MergeBB);
-  Builder.SetInsertPoint(MergeBB);
-  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
-                                  "iftmp");
-  
-  PN->addIncoming(ThenV, ThenBB);
-  PN->addIncoming(ElseV, ElseBB);
-  return PN;
-}
-
-Value *ForExprAST::Codegen() {
-  // Output this as:
-  //   var = alloca double
-  //   ...
-  //   start = startexpr
-  //   store start -> var
-  //   goto loop
-  // loop: 
-  //   ...
-  //   bodyexpr
-  //   ...
-  // loopend:
-  //   step = stepexpr
-  //   endcond = endexpr
-  //
-  //   curvar = load var
-  //   nextvar = curvar + step
-  //   store nextvar -> var
-  //   br endcond, loop, endloop
-  // outloop:
-  
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-
-  // Create an alloca for the variable in the entry block.
-  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-  
-  // Emit the start code first, without 'variable' in scope.
-  Value *StartVal = Start->Codegen();
-  if (StartVal == 0) return 0;
-  
-  // Store the value into the alloca.
-  Builder.CreateStore(StartVal, Alloca);
-  
-  // Make the new basic block for the loop header, inserting after current
-  // block.
-  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-  
-  // Insert an explicit fall through from the current block to the LoopBB.
-  Builder.CreateBr(LoopBB);
-
-  // Start insertion in LoopBB.
-  Builder.SetInsertPoint(LoopBB);
-  
-  // Within the loop, the variable is defined equal to the PHI node.  If it
-  // shadows an existing variable, we have to restore it, so save it now.
-  AllocaInst *OldVal = NamedValues[VarName];
-  NamedValues[VarName] = Alloca;
-  
-  // Emit the body of the loop.  This, like any other expr, can change the
-  // current BB.  Note that we ignore the value computed by the body, but don't
-  // allow an error.
-  if (Body->Codegen() == 0)
-    return 0;
-  
-  // Emit the step value.
-  Value *StepVal;
-  if (Step) {
-    StepVal = Step->Codegen();
-    if (StepVal == 0) return 0;
-  } else {
-    // If not specified, use 1.0.
-    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
-  }
-  
-  // Compute the end condition.
-  Value *EndCond = End->Codegen();
-  if (EndCond == 0) return EndCond;
-  
-  // Reload, increment, and restore the alloca.  This handles the case where
-  // the body of the loop mutates the variable.
-  Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
-  Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
-  Builder.CreateStore(NextVar, Alloca);
-  
-  // Convert condition to a bool by comparing equal to 0.0.
-  EndCond = Builder.CreateFCmpONE(EndCond, 
-                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
-                                  "loopcond");
-  
-  // Create the "after loop" block and insert it.
-  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-  
-  // Insert the conditional branch into the end of LoopEndBB.
-  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-  
-  // Any new code will be inserted in AfterBB.
-  Builder.SetInsertPoint(AfterBB);
-  
-  // Restore the unshadowed variable.
-  if (OldVal)
-    NamedValues[VarName] = OldVal;
-  else
-    NamedValues.erase(VarName);
-
-  
-  // for expr always returns 0.0.
-  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-
-Value *VarExprAST::Codegen() {
-  std::vector<AllocaInst *> OldBindings;
-  
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
-
-  // Register all variables and emit their initializer.
-  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
-    const std::string &VarName = VarNames[i].first;
-    ExprAST *Init = VarNames[i].second;
-    
-    // Emit the initializer before adding the variable to scope, this prevents
-    // the initializer from referencing the variable itself, and permits stuff
-    // like this:
-    //  var a = 1 in
-    //    var a = a in ...   # refers to outer 'a'.
-    Value *InitVal;
-    if (Init) {
-      InitVal = Init->Codegen();
-      if (InitVal == 0) return 0;
-    } else { // If not specified, use 0.0.
-      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
-    }
-    
-    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-    Builder.CreateStore(InitVal, Alloca);
-
-    // Remember the old variable binding so that we can restore the binding when
-    // we unrecurse.
-    OldBindings.push_back(NamedValues[VarName]);
-    
-    // Remember this binding.
-    NamedValues[VarName] = Alloca;
-  }
-  
-  // Codegen the body, now that all vars are in scope.
-  Value *BodyVal = Body->Codegen();
-  if (BodyVal == 0) return 0;
-  
-  // Pop all our variables from scope.
-  for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
-    NamedValues[VarNames[i].first] = OldBindings[i];
-
-  // Return the body computation.
-  return BodyVal;
-}
-
-Function *PrototypeAST::Codegen() {
-  // Make the function type:  double(double,double) etc.
-  std::vector<Type*> Doubles(Args.size(),
-                             Type::getDoubleTy(getGlobalContext()));
-  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
-                                       Doubles, false);
-  
-  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-  
-  // If F conflicted, there was already something named 'Name'.  If it has a
-  // body, don't allow redefinition or reextern.
-  if (F->getName() != Name) {
-    // Delete the one we just made and get the existing one.
-    F->eraseFromParent();
-    F = TheModule->getFunction(Name);
-    
-    // If F already has a body, reject this.
-    if (!F->empty()) {
-      ErrorF("redefinition of function");
-      return 0;
-    }
-    
-    // If F took a different number of args, reject.
-    if (F->arg_size() != Args.size()) {
-      ErrorF("redefinition of function with different # args");
-      return 0;
-    }
-  }
-  
-  // Set names for all arguments.
-  unsigned Idx = 0;
-  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
-       ++AI, ++Idx)
-    AI->setName(Args[Idx]);
-    
-  return F;
-}
-
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F) {
-  Function::arg_iterator AI = F->arg_begin();
-  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
-    // Create an alloca for this variable.
-    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
-    // Store the initial value into the alloca.
-    Builder.CreateStore(AI, Alloca);
-
-    // Add arguments to variable symbol table.
-    NamedValues[Args[Idx]] = Alloca;
-  }
-}
-
-Function *FunctionAST::Codegen() {
-  NamedValues.clear();
-  
-  Function *TheFunction = Proto->Codegen();
-  if (TheFunction == 0)
-    return 0;
-  
-  // If this is an operator, install it.
-  if (Proto->isBinaryOp())
-    BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
-  
-  // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
-  
-  // Add all arguments to the symbol table and create their allocas.
-  Proto->CreateArgumentAllocas(TheFunction);
-
-  if (Value *RetVal = Body->Codegen()) {
-    // Finish off the function.
-    Builder.CreateRet(RetVal);
-
-    // Validate the generated code, checking for consistency.
-    verifyFunction(*TheFunction);
-
-    // Optimize the function.
-    TheFPM->run(*TheFunction);
-    
-    return TheFunction;
-  }
-  
-  // Error reading body, remove function.
-  TheFunction->eraseFromParent();
-
-  if (Proto->isBinaryOp())
-    BinopPrecedence.erase(Proto->getOperatorName());
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static ExecutionEngine *TheExecutionEngine;
-
-static void HandleDefinition() {
-  if (FunctionAST *F = ParseDefinition()) {
-    if (Function *LF = F->Codegen()) {
-      fprintf(stderr, "Read function definition:");
-      LF->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleExtern() {
-  if (PrototypeAST *P = ParseExtern()) {
-    if (Function *F = P->Codegen()) {
-      fprintf(stderr, "Read extern: ");
-      F->dump();
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-static void HandleTopLevelExpression() {
-  // Evaluate a top-level expression into an anonymous function.
-  if (FunctionAST *F = ParseTopLevelExpr()) {
-    if (Function *LF = F->Codegen()) {
-      // JIT the function, returning a function pointer.
-      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
-      
-      // Cast it to the right type (takes no arguments, returns a double) so we
-      // can call it as a native function.
-      double (*FP)() = (double (*)())(intptr_t)FPtr;
-      fprintf(stderr, "Evaluated to %f\n", FP());
-    }
-  } else {
-    // Skip token for error recovery.
-    getNextToken();
-  }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
-  while (1) {
-    fprintf(stderr, "ready> ");
-    switch (CurTok) {
-    case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top-level semicolons.
-    case tok_def:    HandleDefinition(); break;
-    case tok_extern: HandleExtern(); break;
-    default:         HandleTopLevelExpression(); break;
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C" 
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C" 
-double printd(double X) {
-  printf("%f\n", X);
-  return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
-  InitializeNativeTarget();
-  LLVMContext &Context = getGlobalContext();
-
-  // Install standard binary operators.
-  // 1 is lowest precedence.
-  BinopPrecedence['='] = 2;
-  BinopPrecedence['<'] = 10;
-  BinopPrecedence['+'] = 20;
-  BinopPrecedence['-'] = 20;
-  BinopPrecedence['*'] = 40;  // highest.
-
-  // Prime the first token.
-  fprintf(stderr, "ready> ");
-  getNextToken();
-
-  // Make the module, which holds all the code.
-  TheModule = new Module("my cool jit", Context);
-
-  // Create the JIT.  This takes ownership of the module.
-  std::string ErrStr;
-  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
-  if (!TheExecutionEngine) {
-    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
-    exit(1);
-  }
-
-  FunctionPassManager OurFPM(TheModule);
-
-  // Set up the optimizer pipeline.  Start with registering info about how the
-  // target lays out data structures.
-  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
-  // Provide basic AliasAnalysis support for GVN.
-  OurFPM.add(createBasicAliasAnalysisPass());
-  // Promote allocas to registers.
-  OurFPM.add(createPromoteMemoryToRegisterPass());
-  // Do simple "peephole" optimizations and bit-twiddling optzns.
-  OurFPM.add(createInstructionCombiningPass());
-  // Reassociate expressions.
-  OurFPM.add(createReassociatePass());
-  // Eliminate Common SubExpressions.
-  OurFPM.add(createGVNPass());
-  // Simplify the control flow graph (deleting unreachable blocks, etc).
-  OurFPM.add(createCFGSimplificationPass());
-
-  OurFPM.doInitialization();
-
-  // Set the global so the code gen can use this.
-  TheFPM = &OurFPM;
-
-  // Run the main "interpreter loop" now.
-  MainLoop();
-
-  TheFPM = 0;
-
-  // Print out all of the generated code.
-  TheModule->dump();
-
-  return 0;
-}
-</pre>
-</div>
-
-<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl7.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl7.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl7.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl7.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,2005 @@
+=======================================================
+Kaleidoscope: Extending the Language: Mutable Variables
+=======================================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Chapter 7 Introduction
+======================
+
+Welcome to Chapter 7 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. In chapters 1 through 6, we've built a
+very respectable, albeit simple, `functional programming
+language <http://en.wikipedia.org/wiki/Functional_programming>`_. In our
+journey, we learned some parsing techniques, how to build and represent
+an AST, how to build LLVM IR, and how to optimize the resultant code as
+well as JIT compile it.
+
+While Kaleidoscope is interesting as a functional language, the fact
+that it is functional makes it "too easy" to generate LLVM IR for it. In
+particular, a functional language makes it very easy to build LLVM IR
+directly in `SSA
+form <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
+Since LLVM requires that the input code be in SSA form, this is a very
+nice property and it is often unclear to newcomers how to generate code
+for an imperative language with mutable variables.
+
+The short (and happy) summary of this chapter is that there is no need
+for your front-end to build SSA form: LLVM provides highly tuned and
+well tested support for this, though the way it works is a bit
+unexpected for some.
+
+Why is this a hard problem?
+===========================
+
+To understand why mutable variables cause complexities in SSA
+construction, consider this extremely simple C example:
+
+.. code-block:: c
+
+    int G, H;
+    int test(_Bool Condition) {
+      int X;
+      if (Condition)
+        X = G;
+      else
+        X = H;
+      return X;
+    }
+
+In this case, we have the variable "X", whose value depends on the path
+executed in the program. Because there are two different possible values
+for X before the return instruction, a PHI node is inserted to merge the
+two values. The LLVM IR that we want for this example looks like this:
+
+.. code-block:: llvm
+
+    @G = weak global i32 0   ; type of @G is i32*
+    @H = weak global i32 0   ; type of @H is i32*
+
+    define i32 @test(i1 %Condition) {
+    entry:
+      br i1 %Condition, label %cond_true, label %cond_false
+
+    cond_true:
+      %X.0 = load i32* @G
+      br label %cond_next
+
+    cond_false:
+      %X.1 = load i32* @H
+      br label %cond_next
+
+    cond_next:
+      %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
+      ret i32 %X.2
+    }
+
+In this example, the loads from the G and H global variables are
+explicit in the LLVM IR, and they live in the then/else branches of the
+if statement (cond\_true/cond\_false). In order to merge the incoming
+values, the X.2 phi node in the cond\_next block selects the right value
+to use based on where control flow is coming from: if control flow comes
+from the cond\_false block, X.2 gets the value of X.1. Alternatively, if
+control flow comes from cond\_true, it gets the value of X.0. The intent
+of this chapter is not to explain the details of SSA form. For more
+information, see one of the many `online
+references <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
+
+The question for this article is "who places the phi nodes when lowering
+assignments to mutable variables?". The issue here is that LLVM
+*requires* that its IR be in SSA form: there is no "non-ssa" mode for
+it. However, SSA construction requires non-trivial algorithms and data
+structures, so it is inconvenient and wasteful for every front-end to
+have to reproduce this logic.
+
+Memory in LLVM
+==============
+
+The 'trick' here is that while LLVM does require all register values to
+be in SSA form, it does not require (or permit) memory objects to be in
+SSA form. In the example above, note that the loads from G and H are
+direct accesses to G and H: they are not renamed or versioned. This
+differs from some other compiler systems, which do try to version memory
+objects. In LLVM, instead of encoding dataflow analysis of memory into
+the LLVM IR, it is handled with `Analysis
+Passes <../WritingAnLLVMPass.html>`_ which are computed on demand.
+
+With this in mind, the high-level idea is that we want to make a stack
+variable (which lives in memory, because it is on the stack) for each
+mutable object in a function. To take advantage of this trick, we need
+to talk about how LLVM represents stack variables.
+
+In LLVM, all memory accesses are explicit with load/store instructions,
+and it is carefully designed not to have (or need) an "address-of"
+operator. Notice how the type of the @G/@H global variables is actually
+"i32\*" even though the variable is defined as "i32". What this means is
+that @G defines *space* for an i32 in the global data area, but its
+*name* actually refers to the address for that space. Stack variables
+work the same way, except that instead of being declared with global
+variable definitions, they are declared with the `LLVM alloca
+instruction <../LangRef.html#i_alloca>`_:
+
+.. code-block:: llvm
+
+    define i32 @example() {
+    entry:
+      %X = alloca i32           ; type of %X is i32*.
+      ...
+      %tmp = load i32* %X       ; load the stack value %X from the stack.
+      %tmp2 = add i32 %tmp, 1   ; increment it
+      store i32 %tmp2, i32* %X  ; store it back
+      ...
+
+This code shows an example of how you can declare and manipulate a stack
+variable in the LLVM IR. Stack memory allocated with the alloca
+instruction is fully general: you can pass the address of the stack slot
+to functions, you can store it in other variables, etc. In our example
+above, we could rewrite the example to use the alloca technique to avoid
+using a PHI node:
+
+.. code-block:: llvm
+
+    @G = weak global i32 0   ; type of @G is i32*
+    @H = weak global i32 0   ; type of @H is i32*
+
+    define i32 @test(i1 %Condition) {
+    entry:
+      %X = alloca i32           ; type of %X is i32*.
+      br i1 %Condition, label %cond_true, label %cond_false
+
+    cond_true:
+      %X.0 = load i32* @G
+      store i32 %X.0, i32* %X   ; Update X
+      br label %cond_next
+
+    cond_false:
+      %X.1 = load i32* @H
+      store i32 %X.1, i32* %X   ; Update X
+      br label %cond_next
+
+    cond_next:
+      %X.2 = load i32* %X       ; Read X
+      ret i32 %X.2
+    }
+
+With this, we have discovered a way to handle arbitrary mutable
+variables without the need to create Phi nodes at all:
+
+#. Each mutable variable becomes a stack allocation.
+#. Each read of the variable becomes a load from the stack.
+#. Each update of the variable becomes a store to the stack.
+#. Taking the address of a variable just uses the stack address
+   directly.
+
+While this solution has solved our immediate problem, it introduced
+another one: we have now apparently introduced a lot of stack traffic
+for very simple and common operations, a major performance problem.
+Fortunately for us, the LLVM optimizer has a highly-tuned optimization
+pass named "mem2reg" that handles this case, promoting allocas like this
+into SSA registers, inserting Phi nodes as appropriate. If you run this
+example through the pass, for example, you'll get:
+
+.. code-block:: bash
+
+    $ llvm-as < example.ll | opt -mem2reg | llvm-dis
+    @G = weak global i32 0
+    @H = weak global i32 0
+
+    define i32 @test(i1 %Condition) {
+    entry:
+      br i1 %Condition, label %cond_true, label %cond_false
+
+    cond_true:
+      %X.0 = load i32* @G
+      br label %cond_next
+
+    cond_false:
+      %X.1 = load i32* @H
+      br label %cond_next
+
+    cond_next:
+      %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
+      ret i32 %X.01
+    }
+
+The mem2reg pass implements the standard "iterated dominance frontier"
+algorithm for constructing SSA form and has a number of optimizations
+that speed up (very common) degenerate cases. The mem2reg optimization
+pass is the answer to dealing with mutable variables, and we highly
+recommend that you depend on it. Note that mem2reg only works on
+variables in certain circumstances:
+
+#. mem2reg is alloca-driven: it looks for allocas and if it can handle
+   them, it promotes them. It does not apply to global variables or heap
+   allocations.
+#. mem2reg only looks for alloca instructions in the entry block of the
+   function. Being in the entry block guarantees that the alloca is only
+   executed once, which makes analysis simpler.
+#. mem2reg only promotes allocas whose uses are direct loads and stores.
+   If the address of the stack object is passed to a function, or if any
+   funny pointer arithmetic is involved, the alloca will not be
+   promoted.
+#. mem2reg only works on allocas of `first
+   class <../LangRef.html#t_classifications>`_ values (such as pointers,
+   scalars and vectors), and only if the array size of the allocation is
+   1 (or missing in the .ll file). mem2reg is not capable of promoting
+   structs or arrays to registers. Note that the "scalarrepl" pass is
+   more powerful and can promote structs, "unions", and arrays in many
+   cases.
+
+All of these properties are easy to satisfy for most imperative
+languages, and we'll illustrate it below with Kaleidoscope. The final
+question you may be asking is: should I bother with this nonsense for my
+front-end? Wouldn't it be better if I just did SSA construction
+directly, avoiding use of the mem2reg optimization pass? In short, we
+strongly recommend that you use this technique for building SSA form,
+unless there is an extremely good reason not to. Using this technique
+is:
+
+-  Proven and well tested: llvm-gcc and clang both use this technique
+   for local mutable variables. As such, the most common clients of LLVM
+   are using this to handle a bulk of their variables. You can be sure
+   that bugs are found fast and fixed early.
+-  Extremely Fast: mem2reg has a number of special cases that make it
+   fast in common cases as well as fully general. For example, it has
+   fast-paths for variables that are only used in a single block,
+   variables that only have one assignment point, good heuristics to
+   avoid insertion of unneeded phi nodes, etc.
+-  Needed for debug info generation: `Debug information in
+   LLVM <../SourceLevelDebugging.html>`_ relies on having the address of
+   the variable exposed so that debug info can be attached to it. This
+   technique dovetails very naturally with this style of debug info.
+
+If nothing else, this makes it much easier to get your front-end up and
+running, and is very simple to implement. Lets extend Kaleidoscope with
+mutable variables now!
+
+Mutable Variables in Kaleidoscope
+=================================
+
+Now that we know the sort of problem we want to tackle, lets see what
+this looks like in the context of our little Kaleidoscope language.
+We're going to add two features:
+
+#. The ability to mutate variables with the '=' operator.
+#. The ability to define new variables.
+
+While the first item is really what this is about, we only have
+variables for incoming arguments as well as for induction variables, and
+redefining those only goes so far :). Also, the ability to define new
+variables is a useful thing regardless of whether you will be mutating
+them. Here's a motivating example that shows how we could use these:
+
+::
+
+    # Define ':' for sequencing: as a low-precedence operator that ignores operands
+    # and just returns the RHS.
+    def binary : 1 (x y) y;
+
+    # Recursive fib, we could do this before.
+    def fib(x)
+      if (x < 3) then
+        1
+      else
+        fib(x-1)+fib(x-2);
+
+    # Iterative fib.
+    def fibi(x)
+      var a = 1, b = 1, c in
+      (for i = 3, i < x in
+         c = a + b :
+         a = b :
+         b = c) :
+      b;
+
+    # Call it.
+    fibi(10);
+
+In order to mutate variables, we have to change our existing variables
+to use the "alloca trick". Once we have that, we'll add our new
+operator, then extend Kaleidoscope to support new variable definitions.
+
+Adjusting Existing Variables for Mutation
+=========================================
+
+The symbol table in Kaleidoscope is managed at code generation time by
+the '``NamedValues``' map. This map currently keeps track of the LLVM
+"Value\*" that holds the double value for the named variable. In order
+to support mutation, we need to change this slightly, so that it
+``NamedValues`` holds the *memory location* of the variable in question.
+Note that this change is a refactoring: it changes the structure of the
+code, but does not (by itself) change the behavior of the compiler. All
+of these changes are isolated in the Kaleidoscope code generator.
+
+At this point in Kaleidoscope's development, it only supports variables
+for two things: incoming arguments to functions and the induction
+variable of 'for' loops. For consistency, we'll allow mutation of these
+variables in addition to other user-defined variables. This means that
+these will both need memory locations.
+
+To start our transformation of Kaleidoscope, we'll change the
+NamedValues map so that it maps to AllocaInst\* instead of Value\*. Once
+we do this, the C++ compiler will tell us what parts of the code we need
+to update:
+
+.. code-block:: c++
+
+    static std::map<std::string, AllocaInst*> NamedValues;
+
+Also, since we will need to create these alloca's, we'll use a helper
+function that ensures that the allocas are created in the entry block of
+the function:
+
+.. code-block:: c++
+
+    /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+    /// the function.  This is used for mutable variables etc.
+    static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+                                              const std::string &VarName) {
+      IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+                     TheFunction->getEntryBlock().begin());
+      return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+                               VarName.c_str());
+    }
+
+This funny looking code creates an IRBuilder object that is pointing at
+the first instruction (.begin()) of the entry block. It then creates an
+alloca with the expected name and returns it. Because all values in
+Kaleidoscope are doubles, there is no need to pass in a type to use.
+
+With this in place, the first functionality change we want to make is to
+variable references. In our new scheme, variables live on the stack, so
+code generating a reference to them actually needs to produce a load
+from the stack slot:
+
+.. code-block:: c++
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      if (V == 0) return ErrorV("Unknown variable name");
+
+      // Load the value.
+      return Builder.CreateLoad(V, Name.c_str());
+    }
+
+As you can see, this is pretty straightforward. Now we need to update
+the things that define the variables to set up the alloca. We'll start
+with ``ForExprAST::Codegen`` (see the `full code listing <#code>`_ for
+the unabridged code):
+
+.. code-block:: c++
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Create an alloca for the variable in the entry block.
+      AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+        // Emit the start code first, without 'variable' in scope.
+      Value *StartVal = Start->Codegen();
+      if (StartVal == 0) return 0;
+
+      // Store the value into the alloca.
+      Builder.CreateStore(StartVal, Alloca);
+      ...
+
+      // Compute the end condition.
+      Value *EndCond = End->Codegen();
+      if (EndCond == 0) return EndCond;
+
+      // Reload, increment, and restore the alloca.  This handles the case where
+      // the body of the loop mutates the variable.
+      Value *CurVar = Builder.CreateLoad(Alloca);
+      Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+      Builder.CreateStore(NextVar, Alloca);
+      ...
+
+This code is virtually identical to the code `before we allowed mutable
+variables <LangImpl5.html#forcodegen>`_. The big difference is that we
+no longer have to construct a PHI node, and we use load/store to access
+the variable as needed.
+
+To support mutable argument variables, we need to also make allocas for
+them. The code for this is also pretty simple:
+
+.. code-block:: c++
+
+    /// CreateArgumentAllocas - Create an alloca for each argument and register the
+    /// argument in the symbol table so that references to it will succeed.
+    void PrototypeAST::CreateArgumentAllocas(Function *F) {
+      Function::arg_iterator AI = F->arg_begin();
+      for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+        // Create an alloca for this variable.
+        AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+        // Store the initial value into the alloca.
+        Builder.CreateStore(AI, Alloca);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = Alloca;
+      }
+    }
+
+For each argument, we make an alloca, store the input value to the
+function into the alloca, and register the alloca as the memory location
+for the argument. This method gets invoked by ``FunctionAST::Codegen``
+right after it sets up the entry block for the function.
+
+The final missing piece is adding the mem2reg pass, which allows us to
+get good codegen once again:
+
+.. code-block:: c++
+
+        // Set up the optimizer pipeline.  Start with registering info about how the
+        // target lays out data structures.
+        OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+        // Promote allocas to registers.
+        OurFPM.add(createPromoteMemoryToRegisterPass());
+        // Do simple "peephole" optimizations and bit-twiddling optzns.
+        OurFPM.add(createInstructionCombiningPass());
+        // Reassociate expressions.
+        OurFPM.add(createReassociatePass());
+
+It is interesting to see what the code looks like before and after the
+mem2reg optimization runs. For example, this is the before/after code
+for our recursive fib function. Before the optimization:
+
+.. code-block:: llvm
+
+    define double @fib(double %x) {
+    entry:
+      %x1 = alloca double
+      store double %x, double* %x1
+      %x2 = load double* %x1
+      %cmptmp = fcmp ult double %x2, 3.000000e+00
+      %booltmp = uitofp i1 %cmptmp to double
+      %ifcond = fcmp one double %booltmp, 0.000000e+00
+      br i1 %ifcond, label %then, label %else
+
+    then:       ; preds = %entry
+      br label %ifcont
+
+    else:       ; preds = %entry
+      %x3 = load double* %x1
+      %subtmp = fsub double %x3, 1.000000e+00
+      %calltmp = call double @fib(double %subtmp)
+      %x4 = load double* %x1
+      %subtmp5 = fsub double %x4, 2.000000e+00
+      %calltmp6 = call double @fib(double %subtmp5)
+      %addtmp = fadd double %calltmp, %calltmp6
+      br label %ifcont
+
+    ifcont:     ; preds = %else, %then
+      %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
+      ret double %iftmp
+    }
+
+Here there is only one variable (x, the input argument) but you can
+still see the extremely simple-minded code generation strategy we are
+using. In the entry block, an alloca is created, and the initial input
+value is stored into it. Each reference to the variable does a reload
+from the stack. Also, note that we didn't modify the if/then/else
+expression, so it still inserts a PHI node. While we could make an
+alloca for it, it is actually easier to create a PHI node for it, so we
+still just make the PHI.
+
+Here is the code after the mem2reg pass runs:
+
+.. code-block:: llvm
+
+    define double @fib(double %x) {
+    entry:
+      %cmptmp = fcmp ult double %x, 3.000000e+00
+      %booltmp = uitofp i1 %cmptmp to double
+      %ifcond = fcmp one double %booltmp, 0.000000e+00
+      br i1 %ifcond, label %then, label %else
+
+    then:
+      br label %ifcont
+
+    else:
+      %subtmp = fsub double %x, 1.000000e+00
+      %calltmp = call double @fib(double %subtmp)
+      %subtmp5 = fsub double %x, 2.000000e+00
+      %calltmp6 = call double @fib(double %subtmp5)
+      %addtmp = fadd double %calltmp, %calltmp6
+      br label %ifcont
+
+    ifcont:     ; preds = %else, %then
+      %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
+      ret double %iftmp
+    }
+
+This is a trivial case for mem2reg, since there are no redefinitions of
+the variable. The point of showing this is to calm your tension about
+inserting such blatent inefficiencies :).
+
+After the rest of the optimizers run, we get:
+
+.. code-block:: llvm
+
+    define double @fib(double %x) {
+    entry:
+      %cmptmp = fcmp ult double %x, 3.000000e+00
+      %booltmp = uitofp i1 %cmptmp to double
+      %ifcond = fcmp ueq double %booltmp, 0.000000e+00
+      br i1 %ifcond, label %else, label %ifcont
+
+    else:
+      %subtmp = fsub double %x, 1.000000e+00
+      %calltmp = call double @fib(double %subtmp)
+      %subtmp5 = fsub double %x, 2.000000e+00
+      %calltmp6 = call double @fib(double %subtmp5)
+      %addtmp = fadd double %calltmp, %calltmp6
+      ret double %addtmp
+
+    ifcont:
+      ret double 1.000000e+00
+    }
+
+Here we see that the simplifycfg pass decided to clone the return
+instruction into the end of the 'else' block. This allowed it to
+eliminate some branches and the PHI node.
+
+Now that all symbol table references are updated to use stack variables,
+we'll add the assignment operator.
+
+New Assignment Operator
+=======================
+
+With our current framework, adding a new assignment operator is really
+simple. We will parse it just like any other binary operator, but handle
+it internally (instead of allowing the user to define it). The first
+step is to set a precedence:
+
+.. code-block:: c++
+
+     int main() {
+       // Install standard binary operators.
+       // 1 is lowest precedence.
+       BinopPrecedence['='] = 2;
+       BinopPrecedence['<'] = 10;
+       BinopPrecedence['+'] = 20;
+       BinopPrecedence['-'] = 20;
+
+Now that the parser knows the precedence of the binary operator, it
+takes care of all the parsing and AST generation. We just need to
+implement codegen for the assignment operator. This looks like:
+
+.. code-block:: c++
+
+    Value *BinaryExprAST::Codegen() {
+      // Special case '=' because we don't want to emit the LHS as an expression.
+      if (Op == '=') {
+        // Assignment requires the LHS to be an identifier.
+        VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
+        if (!LHSE)
+          return ErrorV("destination of '=' must be a variable");
+
+Unlike the rest of the binary operators, our assignment operator doesn't
+follow the "emit LHS, emit RHS, do computation" model. As such, it is
+handled as a special case before the other binary operators are handled.
+The other strange thing is that it requires the LHS to be a variable. It
+is invalid to have "(x+1) = expr" - only things like "x = expr" are
+allowed.
+
+.. code-block:: c++
+
+        // Codegen the RHS.
+        Value *Val = RHS->Codegen();
+        if (Val == 0) return 0;
+
+        // Look up the name.
+        Value *Variable = NamedValues[LHSE->getName()];
+        if (Variable == 0) return ErrorV("Unknown variable name");
+
+        Builder.CreateStore(Val, Variable);
+        return Val;
+      }
+      ...
+
+Once we have the variable, codegen'ing the assignment is
+straightforward: we emit the RHS of the assignment, create a store, and
+return the computed value. Returning a value allows for chained
+assignments like "X = (Y = Z)".
+
+Now that we have an assignment operator, we can mutate loop variables
+and arguments. For example, we can now run code like this:
+
+::
+
+    # Function to print a double.
+    extern printd(x);
+
+    # Define ':' for sequencing: as a low-precedence operator that ignores operands
+    # and just returns the RHS.
+    def binary : 1 (x y) y;
+
+    def test(x)
+      printd(x) :
+      x = 4 :
+      printd(x);
+
+    test(123);
+
+When run, this example prints "123" and then "4", showing that we did
+actually mutate the value! Okay, we have now officially implemented our
+goal: getting this to work requires SSA construction in the general
+case. However, to be really useful, we want the ability to define our
+own local variables, lets add this next!
+
+User-defined Local Variables
+============================
+
+Adding var/in is just like any other other extensions we made to
+Kaleidoscope: we extend the lexer, the parser, the AST and the code
+generator. The first step for adding our new 'var/in' construct is to
+extend the lexer. As before, this is pretty trivial, the code looks like
+this:
+
+.. code-block:: c++
+
+    enum Token {
+      ...
+      // var definition
+      tok_var = -13
+    ...
+    }
+    ...
+    static int gettok() {
+    ...
+        if (IdentifierStr == "in") return tok_in;
+        if (IdentifierStr == "binary") return tok_binary;
+        if (IdentifierStr == "unary") return tok_unary;
+        if (IdentifierStr == "var") return tok_var;
+        return tok_identifier;
+    ...
+
+The next step is to define the AST node that we will construct. For
+var/in, it looks like this:
+
+.. code-block:: c++
+
+    /// VarExprAST - Expression class for var/in
+    class VarExprAST : public ExprAST {
+      std::vector<std::pair<std::string, ExprAST*> > VarNames;
+      ExprAST *Body;
+    public:
+      VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+                 ExprAST *body)
+      : VarNames(varnames), Body(body) {}
+
+      virtual Value *Codegen();
+    };
+
+var/in allows a list of names to be defined all at once, and each name
+can optionally have an initializer value. As such, we capture this
+information in the VarNames vector. Also, var/in has a body, this body
+is allowed to access the variables defined by the var/in.
+
+With this in place, we can define the parser pieces. The first thing we
+do is add it as a primary expression:
+
+.. code-block:: c++
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    ///   ::= ifexpr
+    ///   ::= forexpr
+    ///   ::= varexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      case tok_if:         return ParseIfExpr();
+      case tok_for:        return ParseForExpr();
+      case tok_var:        return ParseVarExpr();
+      }
+    }
+
+Next we define ParseVarExpr:
+
+.. code-block:: c++
+
+    /// varexpr ::= 'var' identifier ('=' expression)?
+    //                    (',' identifier ('=' expression)?)* 'in' expression
+    static ExprAST *ParseVarExpr() {
+      getNextToken();  // eat the var.
+
+      std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+      // At least one variable name is required.
+      if (CurTok != tok_identifier)
+        return Error("expected identifier after var");
+
+The first part of this code parses the list of identifier/expr pairs
+into the local ``VarNames`` vector.
+
+.. code-block:: c++
+
+      while (1) {
+        std::string Name = IdentifierStr;
+        getNextToken();  // eat identifier.
+
+        // Read the optional initializer.
+        ExprAST *Init = 0;
+        if (CurTok == '=') {
+          getNextToken(); // eat the '='.
+
+          Init = ParseExpression();
+          if (Init == 0) return 0;
+        }
+
+        VarNames.push_back(std::make_pair(Name, Init));
+
+        // End of var list, exit loop.
+        if (CurTok != ',') break;
+        getNextToken(); // eat the ','.
+
+        if (CurTok != tok_identifier)
+          return Error("expected identifier list after var");
+      }
+
+Once all the variables are parsed, we then parse the body and create the
+AST node:
+
+.. code-block:: c++
+
+      // At this point, we have to have 'in'.
+      if (CurTok != tok_in)
+        return Error("expected 'in' keyword after 'var'");
+      getNextToken();  // eat 'in'.
+
+      ExprAST *Body = ParseExpression();
+      if (Body == 0) return 0;
+
+      return new VarExprAST(VarNames, Body);
+    }
+
+Now that we can parse and represent the code, we need to support
+emission of LLVM IR for it. This code starts out with:
+
+.. code-block:: c++
+
+    Value *VarExprAST::Codegen() {
+      std::vector<AllocaInst *> OldBindings;
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Register all variables and emit their initializer.
+      for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+        const std::string &VarName = VarNames[i].first;
+        ExprAST *Init = VarNames[i].second;
+
+Basically it loops over all the variables, installing them one at a
+time. For each variable we put into the symbol table, we remember the
+previous value that we replace in OldBindings.
+
+.. code-block:: c++
+
+        // Emit the initializer before adding the variable to scope, this prevents
+        // the initializer from referencing the variable itself, and permits stuff
+        // like this:
+        //  var a = 1 in
+        //    var a = a in ...   # refers to outer 'a'.
+        Value *InitVal;
+        if (Init) {
+          InitVal = Init->Codegen();
+          if (InitVal == 0) return 0;
+        } else { // If not specified, use 0.0.
+          InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+        }
+
+        AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+        Builder.CreateStore(InitVal, Alloca);
+
+        // Remember the old variable binding so that we can restore the binding when
+        // we unrecurse.
+        OldBindings.push_back(NamedValues[VarName]);
+
+        // Remember this binding.
+        NamedValues[VarName] = Alloca;
+      }
+
+There are more comments here than code. The basic idea is that we emit
+the initializer, create the alloca, then update the symbol table to
+point to it. Once all the variables are installed in the symbol table,
+we evaluate the body of the var/in expression:
+
+.. code-block:: c++
+
+      // Codegen the body, now that all vars are in scope.
+      Value *BodyVal = Body->Codegen();
+      if (BodyVal == 0) return 0;
+
+Finally, before returning, we restore the previous variable bindings:
+
+.. code-block:: c++
+
+      // Pop all our variables from scope.
+      for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+        NamedValues[VarNames[i].first] = OldBindings[i];
+
+      // Return the body computation.
+      return BodyVal;
+    }
+
+The end result of all of this is that we get properly scoped variable
+definitions, and we even (trivially) allow mutation of them :).
+
+With this, we completed what we set out to do. Our nice iterative fib
+example from the intro compiles and runs just fine. The mem2reg pass
+optimizes all of our stack variables into SSA registers, inserting PHI
+nodes where needed, and our front-end remains simple: no "iterated
+dominance frontier" computation anywhere in sight.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+mutable variables and var/in support. To build this example, use:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
+    # Run
+    ./toy
+
+Here is the code:
+
+.. code-block:: c++
+
+    #include "llvm/DerivedTypes.h"
+    #include "llvm/ExecutionEngine/ExecutionEngine.h"
+    #include "llvm/ExecutionEngine/JIT.h"
+    #include "llvm/IRBuilder.h"
+    #include "llvm/LLVMContext.h"
+    #include "llvm/Module.h"
+    #include "llvm/PassManager.h"
+    #include "llvm/Analysis/Verifier.h"
+    #include "llvm/Analysis/Passes.h"
+    #include "llvm/DataLayout.h"
+    #include "llvm/Transforms/Scalar.h"
+    #include "llvm/Support/TargetSelect.h"
+    #include <cstdio>
+    #include <string>
+    #include <map>
+    #include <vector>
+    using namespace llvm;
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5,
+
+      // control
+      tok_if = -6, tok_then = -7, tok_else = -8,
+      tok_for = -9, tok_in = -10,
+
+      // operators
+      tok_binary = -11, tok_unary = -12,
+
+      // var definition
+      tok_var = -13
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        if (IdentifierStr == "if") return tok_if;
+        if (IdentifierStr == "then") return tok_then;
+        if (IdentifierStr == "else") return tok_else;
+        if (IdentifierStr == "for") return tok_for;
+        if (IdentifierStr == "in") return tok_in;
+        if (IdentifierStr == "binary") return tok_binary;
+        if (IdentifierStr == "unary") return tok_unary;
+        if (IdentifierStr == "var") return tok_var;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+      const std::string &getName() const { return Name; }
+      virtual Value *Codegen();
+    };
+
+    /// UnaryExprAST - Expression class for a unary operator.
+    class UnaryExprAST : public ExprAST {
+      char Opcode;
+      ExprAST *Operand;
+    public:
+      UnaryExprAST(char opcode, ExprAST *operand)
+        : Opcode(opcode), Operand(operand) {}
+      virtual Value *Codegen();
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+      virtual Value *Codegen();
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+      virtual Value *Codegen();
+    };
+
+    /// IfExprAST - Expression class for if/then/else.
+    class IfExprAST : public ExprAST {
+      ExprAST *Cond, *Then, *Else;
+    public:
+      IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+      : Cond(cond), Then(then), Else(_else) {}
+      virtual Value *Codegen();
+    };
+
+    /// ForExprAST - Expression class for for/in.
+    class ForExprAST : public ExprAST {
+      std::string VarName;
+      ExprAST *Start, *End, *Step, *Body;
+    public:
+      ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+                 ExprAST *step, ExprAST *body)
+        : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+      virtual Value *Codegen();
+    };
+
+    /// VarExprAST - Expression class for var/in
+    class VarExprAST : public ExprAST {
+      std::vector<std::pair<std::string, ExprAST*> > VarNames;
+      ExprAST *Body;
+    public:
+      VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+                 ExprAST *body)
+      : VarNames(varnames), Body(body) {}
+
+      virtual Value *Codegen();
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes), as well as if it is an operator.
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+      bool isOperator;
+      unsigned Precedence;  // Precedence if a binary op.
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+                   bool isoperator = false, unsigned prec = 0)
+      : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+      bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+      bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+      char getOperatorName() const {
+        assert(isUnaryOp() || isBinaryOp());
+        return Name[Name.size()-1];
+      }
+
+      unsigned getBinaryPrecedence() const { return Precedence; }
+
+      Function *Codegen();
+
+      void CreateArgumentAllocas(Function *F);
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+      Function *Codegen();
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// ifexpr ::= 'if' expression 'then' expression 'else' expression
+    static ExprAST *ParseIfExpr() {
+      getNextToken();  // eat the if.
+
+      // condition.
+      ExprAST *Cond = ParseExpression();
+      if (!Cond) return 0;
+
+      if (CurTok != tok_then)
+        return Error("expected then");
+      getNextToken();  // eat the then
+
+      ExprAST *Then = ParseExpression();
+      if (Then == 0) return 0;
+
+      if (CurTok != tok_else)
+        return Error("expected else");
+
+      getNextToken();
+
+      ExprAST *Else = ParseExpression();
+      if (!Else) return 0;
+
+      return new IfExprAST(Cond, Then, Else);
+    }
+
+    /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+    static ExprAST *ParseForExpr() {
+      getNextToken();  // eat the for.
+
+      if (CurTok != tok_identifier)
+        return Error("expected identifier after for");
+
+      std::string IdName = IdentifierStr;
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '=')
+        return Error("expected '=' after for");
+      getNextToken();  // eat '='.
+
+
+      ExprAST *Start = ParseExpression();
+      if (Start == 0) return 0;
+      if (CurTok != ',')
+        return Error("expected ',' after for start value");
+      getNextToken();
+
+      ExprAST *End = ParseExpression();
+      if (End == 0) return 0;
+
+      // The step value is optional.
+      ExprAST *Step = 0;
+      if (CurTok == ',') {
+        getNextToken();
+        Step = ParseExpression();
+        if (Step == 0) return 0;
+      }
+
+      if (CurTok != tok_in)
+        return Error("expected 'in' after for");
+      getNextToken();  // eat 'in'.
+
+      ExprAST *Body = ParseExpression();
+      if (Body == 0) return 0;
+
+      return new ForExprAST(IdName, Start, End, Step, Body);
+    }
+
+    /// varexpr ::= 'var' identifier ('=' expression)?
+    //                    (',' identifier ('=' expression)?)* 'in' expression
+    static ExprAST *ParseVarExpr() {
+      getNextToken();  // eat the var.
+
+      std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+      // At least one variable name is required.
+      if (CurTok != tok_identifier)
+        return Error("expected identifier after var");
+
+      while (1) {
+        std::string Name = IdentifierStr;
+        getNextToken();  // eat identifier.
+
+        // Read the optional initializer.
+        ExprAST *Init = 0;
+        if (CurTok == '=') {
+          getNextToken(); // eat the '='.
+
+          Init = ParseExpression();
+          if (Init == 0) return 0;
+        }
+
+        VarNames.push_back(std::make_pair(Name, Init));
+
+        // End of var list, exit loop.
+        if (CurTok != ',') break;
+        getNextToken(); // eat the ','.
+
+        if (CurTok != tok_identifier)
+          return Error("expected identifier list after var");
+      }
+
+      // At this point, we have to have 'in'.
+      if (CurTok != tok_in)
+        return Error("expected 'in' keyword after 'var'");
+      getNextToken();  // eat 'in'.
+
+      ExprAST *Body = ParseExpression();
+      if (Body == 0) return 0;
+
+      return new VarExprAST(VarNames, Body);
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    ///   ::= ifexpr
+    ///   ::= forexpr
+    ///   ::= varexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      case tok_if:         return ParseIfExpr();
+      case tok_for:        return ParseForExpr();
+      case tok_var:        return ParseVarExpr();
+      }
+    }
+
+    /// unary
+    ///   ::= primary
+    ///   ::= '!' unary
+    static ExprAST *ParseUnary() {
+      // If the current token is not an operator, it must be a primary expr.
+      if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+        return ParsePrimary();
+
+      // If this is a unary operator, read it.
+      int Opc = CurTok;
+      getNextToken();
+      if (ExprAST *Operand = ParseUnary())
+        return new UnaryExprAST(Opc, Operand);
+      return 0;
+    }
+
+    /// binoprhs
+    ///   ::= ('+' unary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the unary expression after the binary operator.
+        ExprAST *RHS = ParseUnary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= unary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParseUnary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    ///   ::= binary LETTER number? (id, id)
+    ///   ::= unary LETTER (id)
+    static PrototypeAST *ParsePrototype() {
+      std::string FnName;
+
+      unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+      unsigned BinaryPrecedence = 30;
+
+      switch (CurTok) {
+      default:
+        return ErrorP("Expected function name in prototype");
+      case tok_identifier:
+        FnName = IdentifierStr;
+        Kind = 0;
+        getNextToken();
+        break;
+      case tok_unary:
+        getNextToken();
+        if (!isascii(CurTok))
+          return ErrorP("Expected unary operator");
+        FnName = "unary";
+        FnName += (char)CurTok;
+        Kind = 1;
+        getNextToken();
+        break;
+      case tok_binary:
+        getNextToken();
+        if (!isascii(CurTok))
+          return ErrorP("Expected binary operator");
+        FnName = "binary";
+        FnName += (char)CurTok;
+        Kind = 2;
+        getNextToken();
+
+        // Read the precedence if present.
+        if (CurTok == tok_number) {
+          if (NumVal < 1 || NumVal > 100)
+            return ErrorP("Invalid precedecnce: must be 1..100");
+          BinaryPrecedence = (unsigned)NumVal;
+          getNextToken();
+        }
+        break;
+      }
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      // Verify right number of names for operator.
+      if (Kind && ArgNames.size() != Kind)
+        return ErrorP("Invalid number of operands for operator");
+
+      return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Code Generation
+    //===----------------------------------------------------------------------===//
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, AllocaInst*> NamedValues;
+    static FunctionPassManager *TheFPM;
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+    /// the function.  This is used for mutable variables etc.
+    static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+                                              const std::string &VarName) {
+      IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+                     TheFunction->getEntryBlock().begin());
+      return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+                               VarName.c_str());
+    }
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      if (V == 0) return ErrorV("Unknown variable name");
+
+      // Load the value.
+      return Builder.CreateLoad(V, Name.c_str());
+    }
+
+    Value *UnaryExprAST::Codegen() {
+      Value *OperandV = Operand->Codegen();
+      if (OperandV == 0) return 0;
+
+      Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+      if (F == 0)
+        return ErrorV("Unknown unary operator");
+
+      return Builder.CreateCall(F, OperandV, "unop");
+    }
+
+    Value *BinaryExprAST::Codegen() {
+      // Special case '=' because we don't want to emit the LHS as an expression.
+      if (Op == '=') {
+        // Assignment requires the LHS to be an identifier.
+        VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
+        if (!LHSE)
+          return ErrorV("destination of '=' must be a variable");
+        // Codegen the RHS.
+        Value *Val = RHS->Codegen();
+        if (Val == 0) return 0;
+
+        // Look up the name.
+        Value *Variable = NamedValues[LHSE->getName()];
+        if (Variable == 0) return ErrorV("Unknown variable name");
+
+        Builder.CreateStore(Val, Variable);
+        return Val;
+      }
+
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: break;
+      }
+
+      // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+      // a call to it.
+      Function *F = TheModule->getFunction(std::string("binary")+Op);
+      assert(F && "binary operator not found!");
+
+      Value *Ops[2] = { L, R };
+      return Builder.CreateCall(F, Ops, "binop");
+    }
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+    Value *IfExprAST::Codegen() {
+      Value *CondV = Cond->Codegen();
+      if (CondV == 0) return 0;
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      CondV = Builder.CreateFCmpONE(CondV,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                    "ifcond");
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Create blocks for the then and else cases.  Insert the 'then' block at the
+      // end of the function.
+      BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+      BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+      BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+      Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+      // Emit then value.
+      Builder.SetInsertPoint(ThenBB);
+
+      Value *ThenV = Then->Codegen();
+      if (ThenV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+      ThenBB = Builder.GetInsertBlock();
+
+      // Emit else block.
+      TheFunction->getBasicBlockList().push_back(ElseBB);
+      Builder.SetInsertPoint(ElseBB);
+
+      Value *ElseV = Else->Codegen();
+      if (ElseV == 0) return 0;
+
+      Builder.CreateBr(MergeBB);
+      // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+      ElseBB = Builder.GetInsertBlock();
+
+      // Emit merge block.
+      TheFunction->getBasicBlockList().push_back(MergeBB);
+      Builder.SetInsertPoint(MergeBB);
+      PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+                                      "iftmp");
+
+      PN->addIncoming(ThenV, ThenBB);
+      PN->addIncoming(ElseV, ElseBB);
+      return PN;
+    }
+
+    Value *ForExprAST::Codegen() {
+      // Output this as:
+      //   var = alloca double
+      //   ...
+      //   start = startexpr
+      //   store start -> var
+      //   goto loop
+      // loop:
+      //   ...
+      //   bodyexpr
+      //   ...
+      // loopend:
+      //   step = stepexpr
+      //   endcond = endexpr
+      //
+      //   curvar = load var
+      //   nextvar = curvar + step
+      //   store nextvar -> var
+      //   br endcond, loop, endloop
+      // outloop:
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Create an alloca for the variable in the entry block.
+      AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+      // Emit the start code first, without 'variable' in scope.
+      Value *StartVal = Start->Codegen();
+      if (StartVal == 0) return 0;
+
+      // Store the value into the alloca.
+      Builder.CreateStore(StartVal, Alloca);
+
+      // Make the new basic block for the loop header, inserting after current
+      // block.
+      BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+      // Insert an explicit fall through from the current block to the LoopBB.
+      Builder.CreateBr(LoopBB);
+
+      // Start insertion in LoopBB.
+      Builder.SetInsertPoint(LoopBB);
+
+      // Within the loop, the variable is defined equal to the PHI node.  If it
+      // shadows an existing variable, we have to restore it, so save it now.
+      AllocaInst *OldVal = NamedValues[VarName];
+      NamedValues[VarName] = Alloca;
+
+      // Emit the body of the loop.  This, like any other expr, can change the
+      // current BB.  Note that we ignore the value computed by the body, but don't
+      // allow an error.
+      if (Body->Codegen() == 0)
+        return 0;
+
+      // Emit the step value.
+      Value *StepVal;
+      if (Step) {
+        StepVal = Step->Codegen();
+        if (StepVal == 0) return 0;
+      } else {
+        // If not specified, use 1.0.
+        StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+      }
+
+      // Compute the end condition.
+      Value *EndCond = End->Codegen();
+      if (EndCond == 0) return EndCond;
+
+      // Reload, increment, and restore the alloca.  This handles the case where
+      // the body of the loop mutates the variable.
+      Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+      Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+      Builder.CreateStore(NextVar, Alloca);
+
+      // Convert condition to a bool by comparing equal to 0.0.
+      EndCond = Builder.CreateFCmpONE(EndCond,
+                                  ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+                                      "loopcond");
+
+      // Create the "after loop" block and insert it.
+      BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+      // Insert the conditional branch into the end of LoopEndBB.
+      Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+      // Any new code will be inserted in AfterBB.
+      Builder.SetInsertPoint(AfterBB);
+
+      // Restore the unshadowed variable.
+      if (OldVal)
+        NamedValues[VarName] = OldVal;
+      else
+        NamedValues.erase(VarName);
+
+
+      // for expr always returns 0.0.
+      return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+    }
+
+    Value *VarExprAST::Codegen() {
+      std::vector<AllocaInst *> OldBindings;
+
+      Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+      // Register all variables and emit their initializer.
+      for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+        const std::string &VarName = VarNames[i].first;
+        ExprAST *Init = VarNames[i].second;
+
+        // Emit the initializer before adding the variable to scope, this prevents
+        // the initializer from referencing the variable itself, and permits stuff
+        // like this:
+        //  var a = 1 in
+        //    var a = a in ...   # refers to outer 'a'.
+        Value *InitVal;
+        if (Init) {
+          InitVal = Init->Codegen();
+          if (InitVal == 0) return 0;
+        } else { // If not specified, use 0.0.
+          InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+        }
+
+        AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+        Builder.CreateStore(InitVal, Alloca);
+
+        // Remember the old variable binding so that we can restore the binding when
+        // we unrecurse.
+        OldBindings.push_back(NamedValues[VarName]);
+
+        // Remember this binding.
+        NamedValues[VarName] = Alloca;
+      }
+
+      // Codegen the body, now that all vars are in scope.
+      Value *BodyVal = Body->Codegen();
+      if (BodyVal == 0) return 0;
+
+      // Pop all our variables from scope.
+      for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+        NamedValues[VarNames[i].first] = OldBindings[i];
+
+      // Return the body computation.
+      return BodyVal;
+    }
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx)
+        AI->setName(Args[Idx]);
+
+      return F;
+    }
+
+    /// CreateArgumentAllocas - Create an alloca for each argument and register the
+    /// argument in the symbol table so that references to it will succeed.
+    void PrototypeAST::CreateArgumentAllocas(Function *F) {
+      Function::arg_iterator AI = F->arg_begin();
+      for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+        // Create an alloca for this variable.
+        AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+        // Store the initial value into the alloca.
+        Builder.CreateStore(AI, Alloca);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = Alloca;
+      }
+    }
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // If this is an operator, install it.
+      if (Proto->isBinaryOp())
+        BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      // Add all arguments to the symbol table and create their allocas.
+      Proto->CreateArgumentAllocas(TheFunction);
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        // Optimize the function.
+        TheFPM->run(*TheFunction);
+
+        return TheFunction;
+      }
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+
+      if (Proto->isBinaryOp())
+        BinopPrecedence.erase(Proto->getOperatorName());
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing and JIT Driver
+    //===----------------------------------------------------------------------===//
+
+    static ExecutionEngine *TheExecutionEngine;
+
+    static void HandleDefinition() {
+      if (FunctionAST *F = ParseDefinition()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read function definition:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (PrototypeAST *P = ParseExtern()) {
+        if (Function *F = P->Codegen()) {
+          fprintf(stderr, "Read extern: ");
+          F->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          // JIT the function, returning a function pointer.
+          void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+
+          // Cast it to the right type (takes no arguments, returns a double) so we
+          // can call it as a native function.
+          double (*FP)() = (double (*)())(intptr_t)FPtr;
+          fprintf(stderr, "Evaluated to %f\n", FP());
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // "Library" functions that can be "extern'd" from user code.
+    //===----------------------------------------------------------------------===//
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+    /// printd - printf that takes a double prints it as "%f\n", returning 0.
+    extern "C"
+    double printd(double X) {
+      printf("%f\n", X);
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      InitializeNativeTarget();
+      LLVMContext &Context = getGlobalContext();
+
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['='] = 2;
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Make the module, which holds all the code.
+      TheModule = new Module("my cool jit", Context);
+
+      // Create the JIT.  This takes ownership of the module.
+      std::string ErrStr;
+      TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+      if (!TheExecutionEngine) {
+        fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+        exit(1);
+      }
+
+      FunctionPassManager OurFPM(TheModule);
+
+      // Set up the optimizer pipeline.  Start with registering info about how the
+      // target lays out data structures.
+      OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+      // Provide basic AliasAnalysis support for GVN.
+      OurFPM.add(createBasicAliasAnalysisPass());
+      // Promote allocas to registers.
+      OurFPM.add(createPromoteMemoryToRegisterPass());
+      // Do simple "peephole" optimizations and bit-twiddling optzns.
+      OurFPM.add(createInstructionCombiningPass());
+      // Reassociate expressions.
+      OurFPM.add(createReassociatePass());
+      // Eliminate Common SubExpressions.
+      OurFPM.add(createGVNPass());
+      // Simplify the control flow graph (deleting unreachable blocks, etc).
+      OurFPM.add(createCFGSimplificationPass());
+
+      OurFPM.doInitialization();
+
+      // Set the global so the code gen can use this.
+      TheFPM = &OurFPM;
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      TheFPM = 0;
+
+      // Print out all of the generated code.
+      TheModule->dump();
+
+      return 0;
+    }
+
+`Next: Conclusion and other useful LLVM tidbits <LangImpl8.html>`_
+

Removed: llvm/trunk/docs/tutorial/LangImpl8.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl8.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl8.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl8.html (removed)
@@ -1,359 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Conclusion and other useful LLVM tidbits</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Conclusion and other useful LLVM tidbits</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 8
-  <ol>
-    <li><a href="#conclusion">Tutorial Conclusion</a></li>
-    <li><a href="#llvmirproperties">Properties of LLVM IR</a>
-    <ul>
-      <li><a href="#targetindep">Target Independence</a></li>
-      <li><a href="#safety">Safety Guarantees</a></li>
-      <li><a href="#langspecific">Language-Specific Optimizations</a></li>
-    </ul>
-    </li>
-    <li><a href="#tipsandtricks">Tips and Tricks</a>
-    <ul>
-      <li><a href="#offsetofsizeof">Implementing portable 
-                                    offsetof/sizeof</a></li>
-      <li><a href="#gcstack">Garbage Collected Stack Frames</a></li>
-    </ul>
-    </li>
-  </ol>
-</li>
-</ul>
-
-
-<div class="doc_author">
-  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="conclusion">Tutorial Conclusion</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to the final chapter of the "<a href="index.html">Implementing a
-language with LLVM</a>" tutorial.  In the course of this tutorial, we have grown
-our little Kaleidoscope language from being a useless toy, to being a
-semi-interesting (but probably still useless) toy. :)</p>
-
-<p>It is interesting to see how far we've come, and how little code it has
-taken.  We built the entire lexer, parser, AST, code generator, and an 
-interactive run-loop (with a JIT!) by-hand in under 700 lines of
-(non-comment/non-blank) code.</p>
-
-<p>Our little language supports a couple of interesting features: it supports
-user defined binary and unary operators, it uses JIT compilation for immediate
-evaluation, and it supports a few control flow constructs with SSA construction.
-</p>
-
-<p>Part of the idea of this tutorial was to show you how easy and fun it can be
-to define, build, and play with languages.  Building a compiler need not be a
-scary or mystical process!  Now that you've seen some of the basics, I strongly
-encourage you to take the code and hack on it.  For example, try adding:</p>
-
-<ul>
-<li><b>global variables</b> - While global variables have questional value in
-modern software engineering, they are often useful when putting together quick
-little hacks like the Kaleidoscope compiler itself.  Fortunately, our current
-setup makes it very easy to add global variables: just have value lookup check
-to see if an unresolved variable is in the global variable symbol table before
-rejecting it.  To create a new global variable, make an instance of the LLVM
-<tt>GlobalVariable</tt> class.</li>
-
-<li><b>typed variables</b> - Kaleidoscope currently only supports variables of
-type double.  This gives the language a very nice elegance, because only
-supporting one type means that you never have to specify types.  Different
-languages have different ways of handling this.  The easiest way is to require
-the user to specify types for every variable definition, and record the type
-of the variable in the symbol table along with its Value*.</li>
-
-<li><b>arrays, structs, vectors, etc</b> - Once you add types, you can start
-extending the type system in all sorts of interesting ways.  Simple arrays are
-very easy and are quite useful for many different applications.  Adding them is
-mostly an exercise in learning how the LLVM <a 
-href="../LangRef.html#i_getelementptr">getelementptr</a> instruction works: it
-is so nifty/unconventional, it <a 
-href="../GetElementPtr.html">has its own FAQ</a>!  If you add support
-for recursive types (e.g. linked lists), make sure to read the <a 
-href="../ProgrammersManual.html#TypeResolve">section in the LLVM
-Programmer's Manual</a> that describes how to construct them.</li>
-
-<li><b>standard runtime</b> - Our current language allows the user to access
-arbitrary external functions, and we use it for things like "printd" and
-"putchard".  As you extend the language to add higher-level constructs, often
-these constructs make the most sense if they are lowered to calls into a
-language-supplied runtime.  For example, if you add hash tables to the language,
-it would probably make sense to add the routines to a runtime, instead of 
-inlining them all the way.</li>
-
-<li><b>memory management</b> - Currently we can only access the stack in
-Kaleidoscope.  It would also be useful to be able to allocate heap memory,
-either with calls to the standard libc malloc/free interface or with a garbage
-collector.  If you would like to use garbage collection, note that LLVM fully
-supports <a href="../GarbageCollection.html">Accurate Garbage Collection</a>
-including algorithms that move objects and need to scan/update the stack.</li>
-
-<li><b>debugger support</b> - LLVM supports generation of <a 
-href="../SourceLevelDebugging.html">DWARF Debug info</a> which is understood by
-common debuggers like GDB.  Adding support for debug info is fairly 
-straightforward.  The best way to understand it is to compile some C/C++ code
-with "<tt>llvm-gcc -g -O0</tt>" and taking a look at what it produces.</li>
-
-<li><b>exception handling support</b> - LLVM supports generation of <a 
-href="../ExceptionHandling.html">zero cost exceptions</a> which interoperate
-with code compiled in other languages.  You could also generate code by
-implicitly making every function return an error value and checking it.  You 
-could also make explicit use of setjmp/longjmp.  There are many different ways
-to go here.</li>
-
-<li><b>object orientation, generics, database access, complex numbers,
-geometric programming, ...</b> - Really, there is
-no end of crazy features that you can add to the language.</li>
-
-<li><b>unusual domains</b> - We've been talking about applying LLVM to a domain
-that many people are interested in: building a compiler for a specific language.
-However, there are many other domains that can use compiler technology that are
-not typically considered.  For example, LLVM has been used to implement OpenGL
-graphics acceleration, translate C++ code to ActionScript, and many other
-cute and clever things.  Maybe you will be the first to JIT compile a regular
-expression interpreter into native code with LLVM?</li>
-
-</ul>
-
-<p>
-Have fun - try doing something crazy and unusual.  Building a language like
-everyone else always has, is much less fun than trying something a little crazy
-or off the wall and seeing how it turns out.  If you get stuck or want to talk
-about it, feel free to email the <a 
-href="http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev">llvmdev mailing 
-list</a>: it has lots of people who are interested in languages and are often
-willing to help out.
-</p>
-
-<p>Before we end this tutorial, I want to talk about some "tips and tricks" for generating
-LLVM IR.  These are some of the more subtle things that may not be obvious, but
-are very useful if you want to take advantage of LLVM's capabilities.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="llvmirproperties">Properties of the LLVM IR</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>We have a couple common questions about code in the LLVM IR form - lets just
-get these out of the way right now, shall we?</p>
-
-<!-- ======================================================================= -->
-<h4><a name="targetindep">Target Independence</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Kaleidoscope is an example of a "portable language": any program written in
-Kaleidoscope will work the same way on any target that it runs on.  Many other
-languages have this property, e.g. lisp, java, haskell, javascript, python, etc
-(note that while these languages are portable, not all their libraries are).</p>
-
-<p>One nice aspect of LLVM is that it is often capable of preserving target
-independence in the IR: you can take the LLVM IR for a Kaleidoscope-compiled 
-program and run it on any target that LLVM supports, even emitting C code and
-compiling that on targets that LLVM doesn't support natively.  You can trivially
-tell that the Kaleidoscope compiler generates target-independent code because it
-never queries for any target-specific information when generating code.</p>
-
-<p>The fact that LLVM provides a compact, target-independent, representation for
-code gets a lot of people excited.  Unfortunately, these people are usually
-thinking about C or a language from the C family when they are asking questions
-about language portability.  I say "unfortunately", because there is really no
-way to make (fully general) C code portable, other than shipping the source code
-around (and of course, C source code is not actually portable in general
-either - ever port a really old application from 32- to 64-bits?).</p>
-
-<p>The problem with C (again, in its full generality) is that it is heavily
-laden with target specific assumptions.  As one simple example, the preprocessor
-often destructively removes target-independence from the code when it processes
-the input text:</p>
-
-<div class="doc_code">
-<pre>
-#ifdef __i386__
-  int X = 1;
-#else
-  int X = 42;
-#endif
-</pre>
-</div>
-
-<p>While it is possible to engineer more and more complex solutions to problems
-like this, it cannot be solved in full generality in a way that is better than shipping
-the actual source code.</p>
-
-<p>That said, there are interesting subsets of C that can be made portable.  If
-you are willing to fix primitive types to a fixed size (say int = 32-bits, 
-and long = 64-bits), don't care about ABI compatibility with existing binaries,
-and are willing to give up some other minor features, you can have portable
-code.  This can make sense for specialized domains such as an
-in-kernel language.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="safety">Safety Guarantees</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Many of the languages above are also "safe" languages: it is impossible for
-a program written in Java to corrupt its address space and crash the process
-(assuming the JVM has no bugs).
-Safety is an interesting property that requires a combination of language
-design, runtime support, and often operating system support.</p>
-
-<p>It is certainly possible to implement a safe language in LLVM, but LLVM IR
-does not itself guarantee safety.  The LLVM IR allows unsafe pointer casts,
-use after free bugs, buffer over-runs, and a variety of other problems.  Safety
-needs to be implemented as a layer on top of LLVM and, conveniently, several
-groups have investigated this.  Ask on the <a 
-href="http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev">llvmdev mailing 
-list</a> if you are interested in more details.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="langspecific">Language-Specific Optimizations</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>One thing about LLVM that turns off many people is that it does not solve all
-the world's problems in one system (sorry 'world hunger', someone else will have
-to solve you some other day).  One specific complaint is that people perceive
-LLVM as being incapable of performing high-level language-specific optimization:
-LLVM "loses too much information".</p>
-
-<p>Unfortunately, this is really not the place to give you a full and unified
-version of "Chris Lattner's theory of compiler design".  Instead, I'll make a
-few observations:</p>
-
-<p>First, you're right that LLVM does lose information.  For example, as of this
-writing, there is no way to distinguish in the LLVM IR whether an SSA-value came
-from a C "int" or a C "long" on an ILP32 machine (other than debug info).  Both
-get compiled down to an 'i32' value and the information about what it came from
-is lost.  The more general issue here, is that the LLVM type system uses
-"structural equivalence" instead of "name equivalence".  Another place this
-surprises people is if you have two types in a high-level language that have the
-same structure (e.g. two different structs that have a single int field): these
-types will compile down into a single LLVM type and it will be impossible to
-tell what it came from.</p>
-
-<p>Second, while LLVM does lose information, LLVM is not a fixed target: we 
-continue to enhance and improve it in many different ways.  In addition to
-adding new features (LLVM did not always support exceptions or debug info), we
-also extend the IR to capture important information for optimization (e.g.
-whether an argument is sign or zero extended, information about pointers
-aliasing, etc).  Many of the enhancements are user-driven: people want LLVM to
-include some specific feature, so they go ahead and extend it.</p>
-
-<p>Third, it is <em>possible and easy</em> to add language-specific
-optimizations, and you have a number of choices in how to do it.  As one trivial
-example, it is easy to add language-specific optimization passes that
-"know" things about code compiled for a language.  In the case of the C family,
-there is an optimization pass that "knows" about the standard C library
-functions.  If you call "exit(0)" in main(), it knows that it is safe to
-optimize that into "return 0;" because C specifies what the 'exit'
-function does.</p>
-
-<p>In addition to simple library knowledge, it is possible to embed a variety of
-other language-specific information into the LLVM IR.  If you have a specific
-need and run into a wall, please bring the topic up on the llvmdev list.  At the
-very worst, you can always treat LLVM as if it were a "dumb code generator" and
-implement the high-level optimizations you desire in your front-end, on the
-language-specific AST.
-</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="tipsandtricks">Tips and Tricks</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>There is a variety of useful tips and tricks that you come to know after
-working on/with LLVM that aren't obvious at first glance.  Instead of letting
-everyone rediscover them, this section talks about some of these issues.</p>
-
-<!-- ======================================================================= -->
-<h4><a name="offsetofsizeof">Implementing portable offsetof/sizeof</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>One interesting thing that comes up, if you are trying to keep the code 
-generated by your compiler "target independent", is that you often need to know
-the size of some LLVM type or the offset of some field in an llvm structure.
-For example, you might need to pass the size of a type into a function that
-allocates memory.</p>
-
-<p>Unfortunately, this can vary widely across targets: for example the width of
-a pointer is trivially target-specific.  However, there is a <a 
-href="http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt">clever
-way to use the getelementptr instruction</a> that allows you to compute this
-in a portable way.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4><a name="gcstack">Garbage Collected Stack Frames</a></h4>
-<!-- ======================================================================= -->
-
-<div>
-
-<p>Some languages want to explicitly manage their stack frames, often so that
-they are garbage collected or to allow easy implementation of closures.  There
-are often better ways to implement these features than explicit stack frames,
-but <a 
-href="http://nondot.org/sabre/LLVMNotes/ExplicitlyManagedStackFrames.txt">LLVM
-does support them,</a> if you want.  It requires your front-end to convert the
-code into <a 
-href="http://en.wikipedia.org/wiki/Continuation-passing_style">Continuation
-Passing Style</a> and the use of tail calls (which LLVM also supports).</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/LangImpl8.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl8.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl8.rst (added)
+++ llvm/trunk/docs/tutorial/LangImpl8.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,269 @@
+======================================================
+Kaleidoscope: Conclusion and other useful LLVM tidbits
+======================================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_
+
+Tutorial Conclusion
+===================
+
+Welcome to the final chapter of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. In the course of this tutorial, we have
+grown our little Kaleidoscope language from being a useless toy, to
+being a semi-interesting (but probably still useless) toy. :)
+
+It is interesting to see how far we've come, and how little code it has
+taken. We built the entire lexer, parser, AST, code generator, and an
+interactive run-loop (with a JIT!) by-hand in under 700 lines of
+(non-comment/non-blank) code.
+
+Our little language supports a couple of interesting features: it
+supports user defined binary and unary operators, it uses JIT
+compilation for immediate evaluation, and it supports a few control flow
+constructs with SSA construction.
+
+Part of the idea of this tutorial was to show you how easy and fun it
+can be to define, build, and play with languages. Building a compiler
+need not be a scary or mystical process! Now that you've seen some of
+the basics, I strongly encourage you to take the code and hack on it.
+For example, try adding:
+
+-  **global variables** - While global variables have questional value
+   in modern software engineering, they are often useful when putting
+   together quick little hacks like the Kaleidoscope compiler itself.
+   Fortunately, our current setup makes it very easy to add global
+   variables: just have value lookup check to see if an unresolved
+   variable is in the global variable symbol table before rejecting it.
+   To create a new global variable, make an instance of the LLVM
+   ``GlobalVariable`` class.
+-  **typed variables** - Kaleidoscope currently only supports variables
+   of type double. This gives the language a very nice elegance, because
+   only supporting one type means that you never have to specify types.
+   Different languages have different ways of handling this. The easiest
+   way is to require the user to specify types for every variable
+   definition, and record the type of the variable in the symbol table
+   along with its Value\*.
+-  **arrays, structs, vectors, etc** - Once you add types, you can start
+   extending the type system in all sorts of interesting ways. Simple
+   arrays are very easy and are quite useful for many different
+   applications. Adding them is mostly an exercise in learning how the
+   LLVM `getelementptr <../LangRef.html#i_getelementptr>`_ instruction
+   works: it is so nifty/unconventional, it `has its own
+   FAQ <../GetElementPtr.html>`_! If you add support for recursive types
+   (e.g. linked lists), make sure to read the `section in the LLVM
+   Programmer's Manual <../ProgrammersManual.html#TypeResolve>`_ that
+   describes how to construct them.
+-  **standard runtime** - Our current language allows the user to access
+   arbitrary external functions, and we use it for things like "printd"
+   and "putchard". As you extend the language to add higher-level
+   constructs, often these constructs make the most sense if they are
+   lowered to calls into a language-supplied runtime. For example, if
+   you add hash tables to the language, it would probably make sense to
+   add the routines to a runtime, instead of inlining them all the way.
+-  **memory management** - Currently we can only access the stack in
+   Kaleidoscope. It would also be useful to be able to allocate heap
+   memory, either with calls to the standard libc malloc/free interface
+   or with a garbage collector. If you would like to use garbage
+   collection, note that LLVM fully supports `Accurate Garbage
+   Collection <../GarbageCollection.html>`_ including algorithms that
+   move objects and need to scan/update the stack.
+-  **debugger support** - LLVM supports generation of `DWARF Debug
+   info <../SourceLevelDebugging.html>`_ which is understood by common
+   debuggers like GDB. Adding support for debug info is fairly
+   straightforward. The best way to understand it is to compile some
+   C/C++ code with "``llvm-gcc -g -O0``" and taking a look at what it
+   produces.
+-  **exception handling support** - LLVM supports generation of `zero
+   cost exceptions <../ExceptionHandling.html>`_ which interoperate with
+   code compiled in other languages. You could also generate code by
+   implicitly making every function return an error value and checking
+   it. You could also make explicit use of setjmp/longjmp. There are
+   many different ways to go here.
+-  **object orientation, generics, database access, complex numbers,
+   geometric programming, ...** - Really, there is no end of crazy
+   features that you can add to the language.
+-  **unusual domains** - We've been talking about applying LLVM to a
+   domain that many people are interested in: building a compiler for a
+   specific language. However, there are many other domains that can use
+   compiler technology that are not typically considered. For example,
+   LLVM has been used to implement OpenGL graphics acceleration,
+   translate C++ code to ActionScript, and many other cute and clever
+   things. Maybe you will be the first to JIT compile a regular
+   expression interpreter into native code with LLVM?
+
+Have fun - try doing something crazy and unusual. Building a language
+like everyone else always has, is much less fun than trying something a
+little crazy or off the wall and seeing how it turns out. If you get
+stuck or want to talk about it, feel free to email the `llvmdev mailing
+list <http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev>`_: it has lots
+of people who are interested in languages and are often willing to help
+out.
+
+Before we end this tutorial, I want to talk about some "tips and tricks"
+for generating LLVM IR. These are some of the more subtle things that
+may not be obvious, but are very useful if you want to take advantage of
+LLVM's capabilities.
+
+Properties of the LLVM IR
+=========================
+
+We have a couple common questions about code in the LLVM IR form - lets
+just get these out of the way right now, shall we?
+
+Target Independence
+-------------------
+
+Kaleidoscope is an example of a "portable language": any program written
+in Kaleidoscope will work the same way on any target that it runs on.
+Many other languages have this property, e.g. lisp, java, haskell,
+javascript, python, etc (note that while these languages are portable,
+not all their libraries are).
+
+One nice aspect of LLVM is that it is often capable of preserving target
+independence in the IR: you can take the LLVM IR for a
+Kaleidoscope-compiled program and run it on any target that LLVM
+supports, even emitting C code and compiling that on targets that LLVM
+doesn't support natively. You can trivially tell that the Kaleidoscope
+compiler generates target-independent code because it never queries for
+any target-specific information when generating code.
+
+The fact that LLVM provides a compact, target-independent,
+representation for code gets a lot of people excited. Unfortunately,
+these people are usually thinking about C or a language from the C
+family when they are asking questions about language portability. I say
+"unfortunately", because there is really no way to make (fully general)
+C code portable, other than shipping the source code around (and of
+course, C source code is not actually portable in general either - ever
+port a really old application from 32- to 64-bits?).
+
+The problem with C (again, in its full generality) is that it is heavily
+laden with target specific assumptions. As one simple example, the
+preprocessor often destructively removes target-independence from the
+code when it processes the input text:
+
+.. code-block:: c
+
+    #ifdef __i386__
+      int X = 1;
+    #else
+      int X = 42;
+    #endif
+
+While it is possible to engineer more and more complex solutions to
+problems like this, it cannot be solved in full generality in a way that
+is better than shipping the actual source code.
+
+That said, there are interesting subsets of C that can be made portable.
+If you are willing to fix primitive types to a fixed size (say int =
+32-bits, and long = 64-bits), don't care about ABI compatibility with
+existing binaries, and are willing to give up some other minor features,
+you can have portable code. This can make sense for specialized domains
+such as an in-kernel language.
+
+Safety Guarantees
+-----------------
+
+Many of the languages above are also "safe" languages: it is impossible
+for a program written in Java to corrupt its address space and crash the
+process (assuming the JVM has no bugs). Safety is an interesting
+property that requires a combination of language design, runtime
+support, and often operating system support.
+
+It is certainly possible to implement a safe language in LLVM, but LLVM
+IR does not itself guarantee safety. The LLVM IR allows unsafe pointer
+casts, use after free bugs, buffer over-runs, and a variety of other
+problems. Safety needs to be implemented as a layer on top of LLVM and,
+conveniently, several groups have investigated this. Ask on the `llvmdev
+mailing list <http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev>`_ if
+you are interested in more details.
+
+Language-Specific Optimizations
+-------------------------------
+
+One thing about LLVM that turns off many people is that it does not
+solve all the world's problems in one system (sorry 'world hunger',
+someone else will have to solve you some other day). One specific
+complaint is that people perceive LLVM as being incapable of performing
+high-level language-specific optimization: LLVM "loses too much
+information".
+
+Unfortunately, this is really not the place to give you a full and
+unified version of "Chris Lattner's theory of compiler design". Instead,
+I'll make a few observations:
+
+First, you're right that LLVM does lose information. For example, as of
+this writing, there is no way to distinguish in the LLVM IR whether an
+SSA-value came from a C "int" or a C "long" on an ILP32 machine (other
+than debug info). Both get compiled down to an 'i32' value and the
+information about what it came from is lost. The more general issue
+here, is that the LLVM type system uses "structural equivalence" instead
+of "name equivalence". Another place this surprises people is if you
+have two types in a high-level language that have the same structure
+(e.g. two different structs that have a single int field): these types
+will compile down into a single LLVM type and it will be impossible to
+tell what it came from.
+
+Second, while LLVM does lose information, LLVM is not a fixed target: we
+continue to enhance and improve it in many different ways. In addition
+to adding new features (LLVM did not always support exceptions or debug
+info), we also extend the IR to capture important information for
+optimization (e.g. whether an argument is sign or zero extended,
+information about pointers aliasing, etc). Many of the enhancements are
+user-driven: people want LLVM to include some specific feature, so they
+go ahead and extend it.
+
+Third, it is *possible and easy* to add language-specific optimizations,
+and you have a number of choices in how to do it. As one trivial
+example, it is easy to add language-specific optimization passes that
+"know" things about code compiled for a language. In the case of the C
+family, there is an optimization pass that "knows" about the standard C
+library functions. If you call "exit(0)" in main(), it knows that it is
+safe to optimize that into "return 0;" because C specifies what the
+'exit' function does.
+
+In addition to simple library knowledge, it is possible to embed a
+variety of other language-specific information into the LLVM IR. If you
+have a specific need and run into a wall, please bring the topic up on
+the llvmdev list. At the very worst, you can always treat LLVM as if it
+were a "dumb code generator" and implement the high-level optimizations
+you desire in your front-end, on the language-specific AST.
+
+Tips and Tricks
+===============
+
+There is a variety of useful tips and tricks that you come to know after
+working on/with LLVM that aren't obvious at first glance. Instead of
+letting everyone rediscover them, this section talks about some of these
+issues.
+
+Implementing portable offsetof/sizeof
+-------------------------------------
+
+One interesting thing that comes up, if you are trying to keep the code
+generated by your compiler "target independent", is that you often need
+to know the size of some LLVM type or the offset of some field in an
+llvm structure. For example, you might need to pass the size of a type
+into a function that allocates memory.
+
+Unfortunately, this can vary widely across targets: for example the
+width of a pointer is trivially target-specific. However, there is a
+`clever way to use the getelementptr
+instruction <http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt>`_
+that allows you to compute this in a portable way.
+
+Garbage Collected Stack Frames
+------------------------------
+
+Some languages want to explicitly manage their stack frames, often so
+that they are garbage collected or to allow easy implementation of
+closures. There are often better ways to implement these features than
+explicit stack frames, but `LLVM does support
+them, <http://nondot.org/sabre/LLVMNotes/ExplicitlyManagedStackFrames.txt>`_
+if you want. It requires your front-end to convert the code into
+`Continuation Passing
+Style <http://en.wikipedia.org/wiki/Continuation-passing_style>`_ and
+the use of tail calls (which LLVM also supports).
+

Removed: llvm/trunk/docs/tutorial/OCamlLangImpl1.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl1.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl1.html (original)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl1.html (removed)
@@ -1,365 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Tutorial Introduction and the Lexer</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <meta name="author" content="Erick Tryzelaar">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Tutorial Introduction and the Lexer</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 1
-  <ol>
-    <li><a href="#intro">Tutorial Introduction</a></li>
-    <li><a href="#language">The Basic Language</a></li>
-    <li><a href="#lexer">The Lexer</a></li>
-  </ol>
-</li>
-<li><a href="OCamlLangImpl2.html">Chapter 2</a>: Implementing a Parser and
-AST</li>
-</ul>
-
-<div class="doc_author">
-	<p>
-		Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a>
-		and <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a>
-	</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Tutorial Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to the "Implementing a language with LLVM" tutorial.  This tutorial
-runs through the implementation of a simple language, showing how fun and
-easy it can be.  This tutorial will get you up and started as well as help to
-build a framework you can extend to other languages.  The code in this tutorial
-can also be used as a playground to hack on other LLVM specific things.
-</p>
-
-<p>
-The goal of this tutorial is to progressively unveil our language, describing
-how it is built up over time.  This will let us cover a fairly broad range of
-language design and LLVM-specific usage issues, showing and explaining the code
-for it all along the way, without overwhelming you with tons of details up
-front.</p>
-
-<p>It is useful to point out ahead of time that this tutorial is really about
-teaching compiler techniques and LLVM specifically, <em>not</em> about teaching
-modern and sane software engineering principles.  In practice, this means that
-we'll take a number of shortcuts to simplify the exposition.  For example, the
-code leaks memory, uses global variables all over the place, doesn't use nice
-design patterns like <a
-href="http://en.wikipedia.org/wiki/Visitor_pattern">visitors</a>, etc... but it
-is very simple.  If you dig in and use the code as a basis for future projects,
-fixing these deficiencies shouldn't be hard.</p>
-
-<p>I've tried to put this tutorial together in a way that makes chapters easy to
-skip over if you are already familiar with or are uninterested in the various
-pieces.  The structure of the tutorial is:
-</p>
-
-<ul>
-<li><b><a href="#language">Chapter #1</a>: Introduction to the Kaleidoscope
-language, and the definition of its Lexer</b> - This shows where we are going
-and the basic functionality that we want it to do.  In order to make this
-tutorial maximally understandable and hackable, we choose to implement
-everything in Objective Caml instead of using lexer and parser generators.
-LLVM obviously works just fine with such tools, feel free to use one if you
-prefer.</li>
-<li><b><a href="OCamlLangImpl2.html">Chapter #2</a>: Implementing a Parser and
-AST</b> - With the lexer in place, we can talk about parsing techniques and
-basic AST construction.  This tutorial describes recursive descent parsing and
-operator precedence parsing.  Nothing in Chapters 1 or 2 is LLVM-specific,
-the code doesn't even link in LLVM at this point. :)</li>
-<li><b><a href="OCamlLangImpl3.html">Chapter #3</a>: Code generation to LLVM
-IR</b> - With the AST ready, we can show off how easy generation of LLVM IR
-really is.</li>
-<li><b><a href="OCamlLangImpl4.html">Chapter #4</a>: Adding JIT and Optimizer
-Support</b> - Because a lot of people are interested in using LLVM as a JIT,
-we'll dive right into it and show you the 3 lines it takes to add JIT support.
-LLVM is also useful in many other ways, but this is one simple and "sexy" way
-to shows off its power. :)</li>
-<li><b><a href="OCamlLangImpl5.html">Chapter #5</a>: Extending the Language:
-Control Flow</b> - With the language up and running, we show how to extend it
-with control flow operations (if/then/else and a 'for' loop).  This gives us a
-chance to talk about simple SSA construction and control flow.</li>
-<li><b><a href="OCamlLangImpl6.html">Chapter #6</a>: Extending the Language:
-User-defined Operators</b> - This is a silly but fun chapter that talks about
-extending the language to let the user program define their own arbitrary
-unary and binary operators (with assignable precedence!).  This lets us build a
-significant piece of the "language" as library routines.</li>
-<li><b><a href="OCamlLangImpl7.html">Chapter #7</a>: Extending the Language:
-Mutable Variables</b> - This chapter talks about adding user-defined local
-variables along with an assignment operator.  The interesting part about this
-is how easy and trivial it is to construct SSA form in LLVM: no, LLVM does
-<em>not</em> require your front-end to construct SSA form!</li>
-<li><b><a href="OCamlLangImpl8.html">Chapter #8</a>: Conclusion and other
-useful LLVM tidbits</b> - This chapter wraps up the series by talking about
-potential ways to extend the language, but also includes a bunch of pointers to
-info about "special topics" like adding garbage collection support, exceptions,
-debugging, support for "spaghetti stacks", and a bunch of other tips and
-tricks.</li>
-
-</ul>
-
-<p>By the end of the tutorial, we'll have written a bit less than 700 lines of
-non-comment, non-blank, lines of code.  With this small amount of code, we'll
-have built up a very reasonable compiler for a non-trivial language including
-a hand-written lexer, parser, AST, as well as code generation support with a JIT
-compiler.  While other systems may have interesting "hello world" tutorials,
-I think the breadth of this tutorial is a great testament to the strengths of
-LLVM and why you should consider it if you're interested in language or compiler
-design.</p>
-
-<p>A note about this tutorial: we expect you to extend the language and play
-with it on your own.  Take the code and go crazy hacking away at it, compilers
-don't need to be scary creatures - it can be a lot of fun to play with
-languages!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="language">The Basic Language</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>This tutorial will be illustrated with a toy language that we'll call
-"<a href="http://en.wikipedia.org/wiki/Kaleidoscope">Kaleidoscope</a>" (derived
-from "meaning beautiful, form, and view").
-Kaleidoscope is a procedural language that allows you to define functions, use
-conditionals, math, etc.  Over the course of the tutorial, we'll extend
-Kaleidoscope to support the if/then/else construct, a for loop, user defined
-operators, JIT compilation with a simple command line interface, etc.</p>
-
-<p>Because we want to keep things simple, the only datatype in Kaleidoscope is a
-64-bit floating point type (aka 'float' in O'Caml parlance).  As such, all
-values are implicitly double precision and the language doesn't require type
-declarations.  This gives the language a very nice and simple syntax.  For
-example, the following simple example computes <a
-href="http://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci numbers:</a></p>
-
-<div class="doc_code">
-<pre>
-# Compute the x'th fibonacci number.
-def fib(x)
-  if x < 3 then
-    1
-  else
-    fib(x-1)+fib(x-2)
-
-# This expression will compute the 40th number.
-fib(40)
-</pre>
-</div>
-
-<p>We also allow Kaleidoscope to call into standard library functions (the LLVM
-JIT makes this completely trivial).  This means that you can use the 'extern'
-keyword to define a function before you use it (this is also useful for mutually
-recursive functions).  For example:</p>
-
-<div class="doc_code">
-<pre>
-extern sin(arg);
-extern cos(arg);
-extern atan2(arg1 arg2);
-
-atan2(sin(.4), cos(42))
-</pre>
-</div>
-
-<p>A more interesting example is included in Chapter 6 where we write a little
-Kaleidoscope application that <a href="OCamlLangImpl6.html#example">displays
-a Mandelbrot Set</a> at various levels of magnification.</p>
-
-<p>Lets dive into the implementation of this language!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="lexer">The Lexer</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>When it comes to implementing a language, the first thing needed is
-the ability to process a text file and recognize what it says.  The traditional
-way to do this is to use a "<a
-href="http://en.wikipedia.org/wiki/Lexical_analysis">lexer</a>" (aka 'scanner')
-to break the input up into "tokens".  Each token returned by the lexer includes
-a token code and potentially some metadata (e.g. the numeric value of a number).
-First, we define the possibilities:
-</p>
-
-<div class="doc_code">
-<pre>
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
-  (* commands *)
-  | Def | Extern
-
-  (* primary *)
-  | Ident of string | Number of float
-
-  (* unknown *)
-  | Kwd of char
-</pre>
-</div>
-
-<p>Each token returned by our lexer will be one of the token variant values.
-An unknown character like '+' will be returned as <tt>Token.Kwd '+'</tt>.  If
-the curr token is an identifier, the value will be <tt>Token.Ident s</tt>.  If
-the current token is a numeric literal (like 1.0), the value will be
-<tt>Token.Number 1.0</tt>.
-</p>
-
-<p>The actual implementation of the lexer is a collection of functions driven
-by a function named <tt>Lexer.lex</tt>.  The <tt>Lexer.lex</tt> function is
-called to return the next token from standard input.  We will use
-<a href="http://caml.inria.fr/pub/docs/manual-camlp4/index.html">Camlp4</a>
-to simplify the tokenization of the standard input.  Its definition starts
-as:</p>
-
-<div class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
-  (* Skip any whitespace. *)
-  | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
-</pre>
-</div>
-
-<p>
-<tt>Lexer.lex</tt> works by recursing over a <tt>char Stream.t</tt> to read
-characters one at a time from the standard input.  It eats them as it recognizes
-them and stores them in in a <tt>Token.token</tt> variant.  The first thing that
-it has to do is ignore whitespace between tokens.  This is accomplished with the
-recursive call above.</p>
-
-<p>The next thing <tt>Lexer.lex</tt> needs to do is recognize identifiers and
-specific keywords like "def".  Kaleidoscope does this with a pattern match
-and a helper function.<p>
-
-<div class="doc_code">
-<pre>
-  (* identifier: [a-zA-Z][a-zA-Z0-9] *)
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-
-...
-
-and lex_ident buffer = parser
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-  | [< stream=lex >] ->
-      match Buffer.contents buffer with
-      | "def" -> [< 'Token.Def; stream >]
-      | "extern" -> [< 'Token.Extern; stream >]
-      | id -> [< 'Token.Ident id; stream >]
-</pre>
-</div>
-
-<p>Numeric values are similar:</p>
-
-<div class="doc_code">
-<pre>
-  (* number: [0-9.]+ *)
-  | [< ' ('0' .. '9' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-
-...
-
-and lex_number buffer = parser
-  | [< ' ('0' .. '9' | '.' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-  | [< stream=lex >] ->
-      [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
-</pre>
-</div>
-
-<p>This is all pretty straight-forward code for processing input.  When reading
-a numeric value from input, we use the ocaml <tt>float_of_string</tt> function
-to convert it to a numeric value that we store in <tt>Token.Number</tt>.  Note
-that this isn't doing sufficient error checking: it will raise <tt>Failure</tt>
-if the string "1.23.45.67".  Feel free to extend it :).  Next we handle
-comments:
-</p>
-
-<div class="doc_code">
-<pre>
-  (* Comment until end of line. *)
-  | [< ' ('#'); stream >] ->
-      lex_comment stream
-
-...
-
-and lex_comment = parser
-  | [< ' ('\n'); stream=lex >] -> stream
-  | [< 'c; e=lex_comment >] -> e
-  | [< >] -> [< >]
-</pre>
-</div>
-
-<p>We handle comments by skipping to the end of the line and then return the
-next token.  Finally, if the input doesn't match one of the above cases, it is
-either an operator character like '+' or the end of the file.  These are handled
-with this code:</p>
-
-<div class="doc_code">
-<pre>
-  (* Otherwise, just return the character as its ascii value. *)
-  | [< 'c; stream >] ->
-      [< 'Token.Kwd c; lex stream >]
-
-  (* end of stream. *)
-  | [< >] -> [< >]
-</pre>
-</div>
-
-<p>With this, we have the complete lexer for the basic Kaleidoscope language
-(the <a href="OCamlLangImpl2.html#code">full code listing</a> for the Lexer is
-available in the <a href="OCamlLangImpl2.html">next chapter</a> of the
-tutorial).  Next we'll <a href="OCamlLangImpl2.html">build a simple parser that
-uses this to build an Abstract Syntax Tree</a>.  When we have that, we'll
-include a driver so that you can use the lexer and parser together.
-</p>
-
-<a href="OCamlLangImpl2.html">Next: Implementing a Parser and AST</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/OCamlLangImpl1.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl1.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl1.rst (added)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl1.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,288 @@
+=================================================
+Kaleidoscope: Tutorial Introduction and the Lexer
+=================================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_ and `Erick
+Tryzelaar <mailto:idadesub at users.sourceforge.net>`_
+
+Tutorial Introduction
+=====================
+
+Welcome to the "Implementing a language with LLVM" tutorial. This
+tutorial runs through the implementation of a simple language, showing
+how fun and easy it can be. This tutorial will get you up and started as
+well as help to build a framework you can extend to other languages. The
+code in this tutorial can also be used as a playground to hack on other
+LLVM specific things.
+
+The goal of this tutorial is to progressively unveil our language,
+describing how it is built up over time. This will let us cover a fairly
+broad range of language design and LLVM-specific usage issues, showing
+and explaining the code for it all along the way, without overwhelming
+you with tons of details up front.
+
+It is useful to point out ahead of time that this tutorial is really
+about teaching compiler techniques and LLVM specifically, *not* about
+teaching modern and sane software engineering principles. In practice,
+this means that we'll take a number of shortcuts to simplify the
+exposition. For example, the code leaks memory, uses global variables
+all over the place, doesn't use nice design patterns like
+`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
+it is very simple. If you dig in and use the code as a basis for future
+projects, fixing these deficiencies shouldn't be hard.
+
+I've tried to put this tutorial together in a way that makes chapters
+easy to skip over if you are already familiar with or are uninterested
+in the various pieces. The structure of the tutorial is:
+
+-  `Chapter #1 <#language>`_: Introduction to the Kaleidoscope
+   language, and the definition of its Lexer - This shows where we are
+   going and the basic functionality that we want it to do. In order to
+   make this tutorial maximally understandable and hackable, we choose
+   to implement everything in Objective Caml instead of using lexer and
+   parser generators. LLVM obviously works just fine with such tools,
+   feel free to use one if you prefer.
+-  `Chapter #2 <OCamlLangImpl2.html>`_: Implementing a Parser and
+   AST - With the lexer in place, we can talk about parsing techniques
+   and basic AST construction. This tutorial describes recursive descent
+   parsing and operator precedence parsing. Nothing in Chapters 1 or 2
+   is LLVM-specific, the code doesn't even link in LLVM at this point.
+   :)
+-  `Chapter #3 <OCamlLangImpl3.html>`_: Code generation to LLVM IR -
+   With the AST ready, we can show off how easy generation of LLVM IR
+   really is.
+-  `Chapter #4 <OCamlLangImpl4.html>`_: Adding JIT and Optimizer
+   Support - Because a lot of people are interested in using LLVM as a
+   JIT, we'll dive right into it and show you the 3 lines it takes to
+   add JIT support. LLVM is also useful in many other ways, but this is
+   one simple and "sexy" way to shows off its power. :)
+-  `Chapter #5 <OCamlLangImpl5.html>`_: Extending the Language:
+   Control Flow - With the language up and running, we show how to
+   extend it with control flow operations (if/then/else and a 'for'
+   loop). This gives us a chance to talk about simple SSA construction
+   and control flow.
+-  `Chapter #6 <OCamlLangImpl6.html>`_: Extending the Language:
+   User-defined Operators - This is a silly but fun chapter that talks
+   about extending the language to let the user program define their own
+   arbitrary unary and binary operators (with assignable precedence!).
+   This lets us build a significant piece of the "language" as library
+   routines.
+-  `Chapter #7 <OCamlLangImpl7.html>`_: Extending the Language:
+   Mutable Variables - This chapter talks about adding user-defined
+   local variables along with an assignment operator. The interesting
+   part about this is how easy and trivial it is to construct SSA form
+   in LLVM: no, LLVM does *not* require your front-end to construct SSA
+   form!
+-  `Chapter #8 <OCamlLangImpl8.html>`_: Conclusion and other useful
+   LLVM tidbits - This chapter wraps up the series by talking about
+   potential ways to extend the language, but also includes a bunch of
+   pointers to info about "special topics" like adding garbage
+   collection support, exceptions, debugging, support for "spaghetti
+   stacks", and a bunch of other tips and tricks.
+
+By the end of the tutorial, we'll have written a bit less than 700 lines
+of non-comment, non-blank, lines of code. With this small amount of
+code, we'll have built up a very reasonable compiler for a non-trivial
+language including a hand-written lexer, parser, AST, as well as code
+generation support with a JIT compiler. While other systems may have
+interesting "hello world" tutorials, I think the breadth of this
+tutorial is a great testament to the strengths of LLVM and why you
+should consider it if you're interested in language or compiler design.
+
+A note about this tutorial: we expect you to extend the language and
+play with it on your own. Take the code and go crazy hacking away at it,
+compilers don't need to be scary creatures - it can be a lot of fun to
+play with languages!
+
+The Basic Language
+==================
+
+This tutorial will be illustrated with a toy language that we'll call
+"`Kaleidoscope <http://en.wikipedia.org/wiki/Kaleidoscope>`_" (derived
+from "meaning beautiful, form, and view"). Kaleidoscope is a procedural
+language that allows you to define functions, use conditionals, math,
+etc. Over the course of the tutorial, we'll extend Kaleidoscope to
+support the if/then/else construct, a for loop, user defined operators,
+JIT compilation with a simple command line interface, etc.
+
+Because we want to keep things simple, the only datatype in Kaleidoscope
+is a 64-bit floating point type (aka 'float' in O'Caml parlance). As
+such, all values are implicitly double precision and the language
+doesn't require type declarations. This gives the language a very nice
+and simple syntax. For example, the following simple example computes
+`Fibonacci numbers: <http://en.wikipedia.org/wiki/Fibonacci_number>`_
+
+::
+
+    # Compute the x'th fibonacci number.
+    def fib(x)
+      if x < 3 then
+        1
+      else
+        fib(x-1)+fib(x-2)
+
+    # This expression will compute the 40th number.
+    fib(40)
+
+We also allow Kaleidoscope to call into standard library functions (the
+LLVM JIT makes this completely trivial). This means that you can use the
+'extern' keyword to define a function before you use it (this is also
+useful for mutually recursive functions). For example:
+
+::
+
+    extern sin(arg);
+    extern cos(arg);
+    extern atan2(arg1 arg2);
+
+    atan2(sin(.4), cos(42))
+
+A more interesting example is included in Chapter 6 where we write a
+little Kaleidoscope application that `displays a Mandelbrot
+Set <OCamlLangImpl6.html#example>`_ at various levels of magnification.
+
+Lets dive into the implementation of this language!
+
+The Lexer
+=========
+
+When it comes to implementing a language, the first thing needed is the
+ability to process a text file and recognize what it says. The
+traditional way to do this is to use a
+"`lexer <http://en.wikipedia.org/wiki/Lexical_analysis>`_" (aka
+'scanner') to break the input up into "tokens". Each token returned by
+the lexer includes a token code and potentially some metadata (e.g. the
+numeric value of a number). First, we define the possibilities:
+
+.. code-block:: ocaml
+
+    (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+     * these others for known things. *)
+    type token =
+      (* commands *)
+      | Def | Extern
+
+      (* primary *)
+      | Ident of string | Number of float
+
+      (* unknown *)
+      | Kwd of char
+
+Each token returned by our lexer will be one of the token variant
+values. An unknown character like '+' will be returned as
+``Token.Kwd '+'``. If the curr token is an identifier, the value will be
+``Token.Ident s``. If the current token is a numeric literal (like 1.0),
+the value will be ``Token.Number 1.0``.
+
+The actual implementation of the lexer is a collection of functions
+driven by a function named ``Lexer.lex``. The ``Lexer.lex`` function is
+called to return the next token from standard input. We will use
+`Camlp4 <http://caml.inria.fr/pub/docs/manual-camlp4/index.html>`_ to
+simplify the tokenization of the standard input. Its definition starts
+as:
+
+.. code-block:: ocaml
+
+    (*===----------------------------------------------------------------------===
+     * Lexer
+     *===----------------------------------------------------------------------===*)
+
+    let rec lex = parser
+      (* Skip any whitespace. *)
+      | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+``Lexer.lex`` works by recursing over a ``char Stream.t`` to read
+characters one at a time from the standard input. It eats them as it
+recognizes them and stores them in in a ``Token.token`` variant. The
+first thing that it has to do is ignore whitespace between tokens. This
+is accomplished with the recursive call above.
+
+The next thing ``Lexer.lex`` needs to do is recognize identifiers and
+specific keywords like "def". Kaleidoscope does this with a pattern
+match and a helper function.
+
+.. code-block:: ocaml
+
+      (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+      | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+          let buffer = Buffer.create 1 in
+          Buffer.add_char buffer c;
+          lex_ident buffer stream
+
+    ...
+
+    and lex_ident buffer = parser
+      | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+          Buffer.add_char buffer c;
+          lex_ident buffer stream
+      | [< stream=lex >] ->
+          match Buffer.contents buffer with
+          | "def" -> [< 'Token.Def; stream >]
+          | "extern" -> [< 'Token.Extern; stream >]
+          | id -> [< 'Token.Ident id; stream >]
+
+Numeric values are similar:
+
+.. code-block:: ocaml
+
+      (* number: [0-9.]+ *)
+      | [< ' ('0' .. '9' as c); stream >] ->
+          let buffer = Buffer.create 1 in
+          Buffer.add_char buffer c;
+          lex_number buffer stream
+
+    ...
+
+    and lex_number buffer = parser
+      | [< ' ('0' .. '9' | '.' as c); stream >] ->
+          Buffer.add_char buffer c;
+          lex_number buffer stream
+      | [< stream=lex >] ->
+          [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+This is all pretty straight-forward code for processing input. When
+reading a numeric value from input, we use the ocaml ``float_of_string``
+function to convert it to a numeric value that we store in
+``Token.Number``. Note that this isn't doing sufficient error checking:
+it will raise ``Failure`` if the string "1.23.45.67". Feel free to
+extend it :). Next we handle comments:
+
+.. code-block:: ocaml
+
+      (* Comment until end of line. *)
+      | [< ' ('#'); stream >] ->
+          lex_comment stream
+
+    ...
+
+    and lex_comment = parser
+      | [< ' ('\n'); stream=lex >] -> stream
+      | [< 'c; e=lex_comment >] -> e
+      | [< >] -> [< >]
+
+We handle comments by skipping to the end of the line and then return
+the next token. Finally, if the input doesn't match one of the above
+cases, it is either an operator character like '+' or the end of the
+file. These are handled with this code:
+
+.. code-block:: ocaml
+
+      (* Otherwise, just return the character as its ascii value. *)
+      | [< 'c; stream >] ->
+          [< 'Token.Kwd c; lex stream >]
+
+      (* end of stream. *)
+      | [< >] -> [< >]
+
+With this, we have the complete lexer for the basic Kaleidoscope
+language (the `full code listing <OCamlLangImpl2.html#code>`_ for the
+Lexer is available in the `next chapter <OCamlLangImpl2.html>`_ of the
+tutorial). Next we'll `build a simple parser that uses this to build an
+Abstract Syntax Tree <OCamlLangImpl2.html>`_. When we have that, we'll
+include a driver so that you can use the lexer and parser together.
+
+`Next: Implementing a Parser and AST <OCamlLangImpl2.html>`_
+

Removed: llvm/trunk/docs/tutorial/OCamlLangImpl2.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl2.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl2.html (original)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl2.html (removed)
@@ -1,1043 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Implementing a Parser and AST</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <meta name="author" content="Erick Tryzelaar">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Implementing a Parser and AST</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 2
-  <ol>
-    <li><a href="#intro">Chapter 2 Introduction</a></li>
-    <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
-    <li><a href="#parserbasics">Parser Basics</a></li>
-    <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
-    <li><a href="#parserbinops">Binary Expression Parsing</a></li>
-    <li><a href="#parsertop">Parsing the Rest</a></li>
-    <li><a href="#driver">The Driver</a></li>
-    <li><a href="#conclusions">Conclusions</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="OCamlLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
-</ul>
-
-<div class="doc_author">
-	<p>
-		Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a>
-		and <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a>
-	</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 2 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
-with LLVM in Objective Caml</a>" tutorial.  This chapter shows you how to use
-the lexer, built in <a href="OCamlLangImpl1.html">Chapter 1</a>, to build a
-full <a href="http://en.wikipedia.org/wiki/Parsing">parser</a> for our
-Kaleidoscope language.  Once we have a parser, we'll define and build an <a
-href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax
-Tree</a> (AST).</p>
-
-<p>The parser we will build uses a combination of <a
-href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
-Parsing</a> and <a href=
-"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
-Parsing</a> to parse the Kaleidoscope language (the latter for
-binary expressions and the former for everything else).  Before we get to
-parsing though, lets talk about the output of the parser: the Abstract Syntax
-Tree.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="ast">The Abstract Syntax Tree (AST)</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The AST for a program captures its behavior in such a way that it is easy for
-later stages of the compiler (e.g. code generation) to interpret.  We basically
-want one object for each construct in the language, and the AST should closely
-model the language.  In Kaleidoscope, we have expressions, a prototype, and a
-function object.  We'll start with expressions first:</p>
-
-<div class="doc_code">
-<pre>
-(* expr - Base type for all expression nodes. *)
-type expr =
-  (* variant for numeric literals like "1.0". *)
-  | Number of float
-</pre>
-</div>
-
-<p>The code above shows the definition of the base ExprAST class and one
-subclass which we use for numeric literals.  The important thing to note about
-this code is that the Number variant captures the numeric value of the
-literal as an instance variable. This allows later phases of the compiler to
-know what the stored numeric value is.</p>
-
-<p>Right now we only create the AST,  so there are no useful functions on
-them.  It would be very easy to add a function to pretty print the code,
-for example.  Here are the other expression AST node definitions that we'll use
-in the basic form of the Kaleidoscope language:
-</p>
-
-<div class="doc_code">
-<pre>
-  (* variant for referencing a variable, like "a". *)
-  | Variable of string
-
-  (* variant for a binary operator. *)
-  | Binary of char * expr * expr
-
-  (* variant for function calls. *)
-  | Call of string * expr array
-</pre>
-</div>
-
-<p>This is all (intentionally) rather straight-forward: variables capture the
-variable name, binary operators capture their opcode (e.g. '+'), and calls
-capture a function name as well as a list of any argument expressions.  One thing
-that is nice about our AST is that it captures the language features without
-talking about the syntax of the language.  Note that there is no discussion about
-precedence of binary operators, lexical structure, etc.</p>
-
-<p>For our basic language, these are all of the expression nodes we'll define.
-Because it doesn't have conditional control flow, it isn't Turing-complete;
-we'll fix that in a later installment.  The two things we need next are a way
-to talk about the interface to a function, and a way to talk about functions
-themselves:</p>
-
-<div class="doc_code">
-<pre>
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</div>
-
-<p>In Kaleidoscope, functions are typed with just a count of their arguments.
-Since all values are double precision floating point, the type of each argument
-doesn't need to be stored anywhere.  In a more aggressive and realistic
-language, the "expr" variants would probably have a type field.</p>
-
-<p>With this scaffolding, we can now talk about parsing expressions and function
-bodies in Kaleidoscope.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserbasics">Parser Basics</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we have an AST to build, we need to define the parser code to build
-it.  The idea here is that we want to parse something like "x+y" (which is
-returned as three tokens by the lexer) into an AST that could be generated with
-calls like this:</p>
-
-<div class="doc_code">
-<pre>
-  let x = Variable "x" in
-  let y = Variable "y" in
-  let result = Binary ('+', x, y) in
-  ...
-</pre>
-</div>
-
-<p>
-The error handling routines make use of the builtin <tt>Stream.Failure</tt> and
-<tt>Stream.Error</tt>s.  <tt>Stream.Failure</tt> is raised when the parser is
-unable to find any matching token in the first position of a pattern.
-<tt>Stream.Error</tt> is raised when the first token matches, but the rest do
-not.  The error recovery in our parser will not be the best and is not
-particular user-friendly, but it will be enough for our tutorial.  These
-exceptions make it easier to handle errors in routines that have various return
-types.</p>
-
-<p>With these basic types and exceptions, we can implement the first
-piece of our grammar: numeric literals.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserprimexprs">Basic Expression Parsing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>We start with numeric literals, because they are the simplest to process.
-For each production in our grammar, we'll define a function which parses that
-production.  We call this class of expressions "primary" expressions, for
-reasons that will become more clear <a href="OCamlLangImpl6.html#unary">
-later in the tutorial</a>.  In order to parse an arbitrary primary expression,
-we need to determine what sort of expression it is.  For numeric literals, we
-have:</p>
-
-<div class="doc_code">
-<pre>
-(* primary
- *   ::= identifier
- *   ::= numberexpr
- *   ::= parenexpr *)
-parse_primary = parser
-  (* numberexpr ::= number *)
-  | [< 'Token.Number n >] -> Ast.Number n
-</pre>
-</div>
-
-<p>This routine is very simple: it expects to be called when the current token
-is a <tt>Token.Number</tt> token.  It takes the current number value, creates
-a <tt>Ast.Number</tt> node, advances the lexer to the next token, and finally
-returns.</p>
-
-<p>There are some interesting aspects to this.  The most important one is that
-this routine eats all of the tokens that correspond to the production and
-returns the lexer buffer with the next token (which is not part of the grammar
-production) ready to go.  This is a fairly standard way to go for recursive
-descent parsers.  For a better example, the parenthesis operator is defined like
-this:</p>
-
-<div class="doc_code">
-<pre>
-  (* parenexpr ::= '(' expression ')' *)
-  | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
-</pre>
-</div>
-
-<p>This function illustrates a number of interesting things about the
-parser:</p>
-
-<p>
-1) It shows how we use the <tt>Stream.Error</tt> exception.  When called, this
-function expects that the current token is a '(' token, but after parsing the
-subexpression, it is possible that there is no ')' waiting.  For example, if
-the user types in "(4 x" instead of "(4)", the parser should emit an error.
-Because errors can occur, the parser needs a way to indicate that they
-happened. In our parser, we use the camlp4 shortcut syntax <tt>token ?? "parse
-error"</tt>, where if the token before the <tt>??</tt> does not match, then
-<tt>Stream.Error "parse error"</tt> will be raised.</p>
-
-<p>2) Another interesting aspect of this function is that it uses recursion by
-calling <tt>Parser.parse_primary</tt> (we will soon see that
-<tt>Parser.parse_primary</tt> can call <tt>Parser.parse_primary</tt>).  This is
-powerful because it allows us to handle recursive grammars, and keeps each
-production very simple.  Note that parentheses do not cause construction of AST
-nodes themselves.  While we could do it this way, the most important role of
-parentheses are to guide the parser and provide grouping.  Once the parser
-constructs the AST, parentheses are not needed.</p>
-
-<p>The next simple production is for handling variable references and function
-calls:</p>
-
-<div class="doc_code">
-<pre>
-  (* identifierexpr
-   *   ::= identifier
-   *   ::= identifier '(' argumentexpr ')' *)
-  | [< 'Token.Ident id; stream >] ->
-      let rec parse_args accumulator = parser
-        | [< e=parse_expr; stream >] ->
-            begin parser
-              | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
-              | [< >] -> e :: accumulator
-            end stream
-        | [< >] -> accumulator
-      in
-      let rec parse_ident id = parser
-        (* Call. *)
-        | [< 'Token.Kwd '(';
-             args=parse_args [];
-             'Token.Kwd ')' ?? "expected ')'">] ->
-            Ast.Call (id, Array.of_list (List.rev args))
-
-        (* Simple variable ref. *)
-        | [< >] -> Ast.Variable id
-      in
-      parse_ident id stream
-</pre>
-</div>
-
-<p>This routine follows the same style as the other routines.  (It expects to be
-called if the current token is a <tt>Token.Ident</tt> token).  It also has
-recursion and error handling.  One interesting aspect of this is that it uses
-<em>look-ahead</em> to determine if the current identifier is a stand alone
-variable reference or if it is a function call expression.  It handles this by
-checking to see if the token after the identifier is a '(' token, constructing
-either a <tt>Ast.Variable</tt> or <tt>Ast.Call</tt> node as appropriate.
-</p>
-
-<p>We finish up by raising an exception if we received a token we didn't
-expect:</p>
-
-<div class="doc_code">
-<pre>
-  | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
-</pre>
-</div>
-
-<p>Now that basic expressions are handled, we need to handle binary expressions.
-They are a bit more complex.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserbinops">Binary Expression Parsing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Binary expressions are significantly harder to parse because they are often
-ambiguous.  For example, when given the string "x+y*z", the parser can choose
-to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from
-mathematics, we expect the later parse, because "*" (multiplication) has
-higher <em>precedence</em> than "+" (addition).</p>
-
-<p>There are many ways to handle this, but an elegant and efficient way is to
-use <a href=
-"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
-Parsing</a>.  This parsing technique uses the precedence of binary operators to
-guide recursion.  To start with, we need a table of precedences:</p>
-
-<div class="doc_code">
-<pre>
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
-
-...
-
-let main () =
-  (* Install standard binary operators.
-   * 1 is the lowest precedence. *)
-  Hashtbl.add Parser.binop_precedence '<' 10;
-  Hashtbl.add Parser.binop_precedence '+' 20;
-  Hashtbl.add Parser.binop_precedence '-' 20;
-  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
-  ...
-</pre>
-</div>
-
-<p>For the basic form of Kaleidoscope, we will only support 4 binary operators
-(this can obviously be extended by you, our brave and intrepid reader).  The
-<tt>Parser.precedence</tt> function returns the precedence for the current
-token, or -1 if the token is not a binary operator.  Having a <tt>Hashtbl.t</tt>
-makes it easy to add new operators and makes it clear that the algorithm doesn't
-depend on the specific operators involved, but it would be easy enough to
-eliminate the <tt>Hashtbl.t</tt> and do the comparisons in the
-<tt>Parser.precedence</tt> function.  (Or just use a fixed-size array).</p>
-
-<p>With the helper above defined, we can now start parsing binary expressions.
-The basic idea of operator precedence parsing is to break down an expression
-with potentially ambiguous binary operators into pieces.  Consider ,for example,
-the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this
-as a stream of primary expressions separated by binary operators.  As such,
-it will first parse the leading primary expression "a", then it will see the
-pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses
-are primary expressions, the binary expression parser doesn't need to worry
-about nested subexpressions like (c+d) at all.
-</p>
-
-<p>
-To start, an expression is a primary expression potentially followed by a
-sequence of [binop,primaryexpr] pairs:</p>
-
-<div class="doc_code">
-<pre>
-(* expression
- *   ::= primary binoprhs *)
-and parse_expr = parser
-  | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
-</pre>
-</div>
-
-<p><tt>Parser.parse_bin_rhs</tt> is the function that parses the sequence of
-pairs for us.  It takes a precedence and a pointer to an expression for the part
-that has been parsed so far.   Note that "x" is a perfectly valid expression: As
-such, "binoprhs" is allowed to be empty, in which case it returns the expression
-that is passed into it. In our example above, the code passes the expression for
-"a" into <tt>Parser.parse_bin_rhs</tt> and the current token is "+".</p>
-
-<p>The precedence value passed into <tt>Parser.parse_bin_rhs</tt> indicates the
-<em>minimal operator precedence</em> that the function is allowed to eat.  For
-example, if the current pair stream is [+, x] and <tt>Parser.parse_bin_rhs</tt>
-is passed in a precedence of 40, it will not consume any tokens (because the
-precedence of '+' is only 20).  With this in mind, <tt>Parser.parse_bin_rhs</tt>
-starts with:</p>
-
-<div class="doc_code">
-<pre>
-(* binoprhs
- *   ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
-  match Stream.peek stream with
-  (* If this is a binop, find its precedence. *)
-  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
-      let token_prec = precedence c in
-
-      (* If this is a binop that binds at least as tightly as the current binop,
-       * consume it, otherwise we are done. *)
-      if token_prec < expr_prec then lhs else begin
-</pre>
-</div>
-
-<p>This code gets the precedence of the current token and checks to see if if is
-too low.  Because we defined invalid tokens to have a precedence of -1, this
-check implicitly knows that the pair-stream ends when the token stream runs out
-of binary operators.  If this check succeeds, we know that the token is a binary
-operator and that it will be included in this expression:</p>
-
-<div class="doc_code">
-<pre>
-        (* Eat the binop. *)
-        Stream.junk stream;
-
-        (* Okay, we know this is a binop. *)
-        let rhs =
-          match Stream.peek stream with
-          | Some (Token.Kwd c2) ->
-</pre>
-</div>
-
-<p>As such, this code eats (and remembers) the binary operator and then parses
-the primary expression that follows.  This builds up the whole pair, the first of
-which is [+, b] for the running example.</p>
-
-<p>Now that we parsed the left-hand side of an expression and one pair of the
-RHS sequence, we have to decide which way the expression associates.  In
-particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)".
-To determine this, we look ahead at "binop" to determine its precedence and
-compare it to BinOp's precedence (which is '+' in this case):</p>
-
-<div class="doc_code">
-<pre>
-              (* If BinOp binds less tightly with rhs than the operator after
-               * rhs, let the pending operator take rhs as its lhs. *)
-              let next_prec = precedence c2 in
-              if token_prec < next_prec
-</pre>
-</div>
-
-<p>If the precedence of the binop to the right of "RHS" is lower or equal to the
-precedence of our current operator, then we know that the parentheses associate
-as "(a+b) binop ...".  In our example, the current operator is "+" and the next
-operator is "+", we know that they have the same precedence.  In this case we'll
-create the AST node for "a+b", and then continue parsing:</p>
-
-<div class="doc_code">
-<pre>
-          ... if body omitted ...
-        in
-
-        (* Merge lhs/rhs. *)
-        let lhs = Ast.Binary (c, lhs, rhs) in
-        parse_bin_rhs expr_prec lhs stream
-      end
-</pre>
-</div>
-
-<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
-iteration of the loop, with "+" as the current token.  The code above will eat,
-remember, and parse "(c+d)" as the primary expression, which makes the
-current pair equal to [+, (c+d)].  It will then evaluate the 'if' conditional above with
-"*" as the binop to the right of the primary.  In this case, the precedence of "*" is
-higher than the precedence of "+" so the if condition will be entered.</p>
-
-<p>The critical question left here is "how can the if condition parse the right
-hand side in full"?  In particular, to build the AST correctly for our example,
-it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to
-do this is surprisingly simple (code from the above two blocks duplicated for
-context):</p>
-
-<div class="doc_code">
-<pre>
-          match Stream.peek stream with
-          | Some (Token.Kwd c2) ->
-              (* If BinOp binds less tightly with rhs than the operator after
-               * rhs, let the pending operator take rhs as its lhs. *)
-              if token_prec < precedence c2
-              then <b>parse_bin_rhs (token_prec + 1) rhs stream</b>
-              else rhs
-          | _ -> rhs
-        in
-
-        (* Merge lhs/rhs. *)
-        let lhs = Ast.Binary (c, lhs, rhs) in
-        parse_bin_rhs expr_prec lhs stream
-      end
-</pre>
-</div>
-
-<p>At this point, we know that the binary operator to the RHS of our primary
-has higher precedence than the binop we are currently parsing.  As such, we know
-that any sequence of pairs whose operators are all higher precedence than "+"
-should be parsed together and returned as "RHS".  To do this, we recursively
-invoke the <tt>Parser.parse_bin_rhs</tt> function specifying "token_prec+1" as
-the minimum precedence required for it to continue.  In our example above, this
-will cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set
-as the RHS of the '+' expression.</p>
-
-<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
-and added to the AST.  With this little bit of code (14 non-trivial lines), we
-correctly handle fully general binary expression parsing in a very elegant way.
-This was a whirlwind tour of this code, and it is somewhat subtle.  I recommend
-running through it with a few tough examples to see how it works.
-</p>
-
-<p>This wraps up handling of expressions.  At this point, we can point the
-parser at an arbitrary token stream and build an expression from it, stopping
-at the first token that is not part of the expression.  Next up we need to
-handle function definitions, etc.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parsertop">Parsing the Rest</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-The next thing missing is handling of function prototypes.  In Kaleidoscope,
-these are used both for 'extern' function declarations as well as function body
-definitions.  The code to do this is straight-forward and not very interesting
-(once you've survived expressions):
-</p>
-
-<div class="doc_code">
-<pre>
-(* prototype
- *   ::= id '(' id* ')' *)
-let parse_prototype =
-  let rec parse_args accumulator = parser
-    | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
-    | [< >] -> accumulator
-  in
-
-  parser
-  | [< 'Token.Ident id;
-       'Token.Kwd '(' ?? "expected '(' in prototype";
-       args=parse_args [];
-       'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
-      (* success. *)
-      Ast.Prototype (id, Array.of_list (List.rev args))
-
-  | [< >] ->
-      raise (Stream.Error "expected function name in prototype")
-</pre>
-</div>
-
-<p>Given this, a function definition is very simple, just a prototype plus
-an expression to implement the body:</p>
-
-<div class="doc_code">
-<pre>
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
-  | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
-      Ast.Function (p, e)
-</pre>
-</div>
-
-<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
-well as to support forward declaration of user functions.  These 'extern's are just
-prototypes with no body:</p>
-
-<div class="doc_code">
-<pre>
-(*  external ::= 'extern' prototype *)
-let parse_extern = parser
-  | [< 'Token.Extern; e=parse_prototype >] -> e
-</pre>
-</div>
-
-<p>Finally, we'll also let the user type in arbitrary top-level expressions and
-evaluate them on the fly.  We will handle this by defining anonymous nullary
-(zero argument) functions for them:</p>
-
-<div class="doc_code">
-<pre>
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
-  | [< e=parse_expr >] ->
-      (* Make an anonymous proto. *)
-      Ast.Function (Ast.Prototype ("", [||]), e)
-</pre>
-</div>
-
-<p>Now that we have all the pieces, let's build a little driver that will let us
-actually <em>execute</em> this code we've built!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="driver">The Driver</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The driver for this simply invokes all of the parsing pieces with a top-level
-dispatch loop.  There isn't much interesting here, so I'll just include the
-top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level
-Parsing" section.</p>
-
-<div class="doc_code">
-<pre>
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop stream =
-  match Stream.peek stream with
-  | None -> ()
-
-  (* ignore top-level semicolons. *)
-  | Some (Token.Kwd ';') ->
-      Stream.junk stream;
-      main_loop stream
-
-  | Some token ->
-      begin
-        try match token with
-        | Token.Def ->
-            ignore(Parser.parse_definition stream);
-            print_endline "parsed a function definition.";
-        | Token.Extern ->
-            ignore(Parser.parse_extern stream);
-            print_endline "parsed an extern.";
-        | _ ->
-            (* Evaluate a top-level expression into an anonymous function. *)
-            ignore(Parser.parse_toplevel stream);
-            print_endline "parsed a top-level expr";
-        with Stream.Error s ->
-          (* Skip token for error recovery. *)
-          Stream.junk stream;
-          print_endline s;
-      end;
-      print_string "ready> "; flush stdout;
-      main_loop stream
-</pre>
-</div>
-
-<p>The most interesting part of this is that we ignore top-level semicolons.
-Why is this, you ask?  The basic reason is that if you type "4 + 5" at the
-command line, the parser doesn't know whether that is the end of what you will type
-or not.  For example, on the next line you could type "def foo..." in which case
-4+5 is the end of a top-level expression.  Alternatively you could type "* 6",
-which would continue the expression.  Having top-level semicolons allows you to
-type "4+5;", and the parser will know you are done.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="conclusions">Conclusions</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>With just under 300 lines of commented code (240 lines of non-comment,
-non-blank code), we fully defined our minimal language, including a lexer,
-parser, and AST builder.  With this done, the executable will validate
-Kaleidoscope code and tell us if it is grammatically invalid.  For
-example, here is a sample interaction:</p>
-
-<div class="doc_code">
-<pre>
-$ <b>./toy.byte</b>
-ready> <b>def foo(x y) x+foo(y, 4.0);</b>
-Parsed a function definition.
-ready> <b>def foo(x y) x+y y;</b>
-Parsed a function definition.
-Parsed a top-level expr
-ready> <b>def foo(x y) x+y );</b>
-Parsed a function definition.
-Error: unknown token when expecting an expression
-ready> <b>extern sin(a);</b>
-ready> Parsed an extern
-ready> <b>^D</b>
-$
-</pre>
-</div>
-
-<p>There is a lot of room for extension here.  You can define new AST nodes,
-extend the language in many ways, etc.  In the <a href="OCamlLangImpl3.html">
-next installment</a>, we will describe how to generate LLVM Intermediate
-Representation (IR) from the AST.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for this and the previous chapter.
-Note that it is fully self-contained: you don't need LLVM or any external
-libraries at all for this.  (Besides the ocaml standard libraries, of
-course.)  To build this, just compile with:</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-ocamlbuild toy.byte
-# Run
-./toy.byte
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<dl>
-<dt>_tags:</dt>
-<dd class="doc_code">
-<pre>
-<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
-</pre>
-</dd>
-
-<dt>token.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer Tokens
- *===----------------------------------------------------------------------===*)
-
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
-  (* commands *)
-  | Def | Extern
-
-  (* primary *)
-  | Ident of string | Number of float
-
-  (* unknown *)
-  | Kwd of char
-</pre>
-</dd>
-
-<dt>lexer.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
-  (* Skip any whitespace. *)
-  | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
-
-  (* identifier: [a-zA-Z][a-zA-Z0-9] *)
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-
-  (* number: [0-9.]+ *)
-  | [< ' ('0' .. '9' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-
-  (* Comment until end of line. *)
-  | [< ' ('#'); stream >] ->
-      lex_comment stream
-
-  (* Otherwise, just return the character as its ascii value. *)
-  | [< 'c; stream >] ->
-      [< 'Token.Kwd c; lex stream >]
-
-  (* end of stream. *)
-  | [< >] -> [< >]
-
-and lex_number buffer = parser
-  | [< ' ('0' .. '9' | '.' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-  | [< stream=lex >] ->
-      [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
-
-and lex_ident buffer = parser
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-  | [< stream=lex >] ->
-      match Buffer.contents buffer with
-      | "def" -> [< 'Token.Def; stream >]
-      | "extern" -> [< 'Token.Extern; stream >]
-      | id -> [< 'Token.Ident id; stream >]
-
-and lex_comment = parser
-  | [< ' ('\n'); stream=lex >] -> stream
-  | [< 'c; e=lex_comment >] -> e
-  | [< >] -> [< >]
-</pre>
-</dd>
-
-<dt>ast.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Abstract Syntax Tree (aka Parse Tree)
- *===----------------------------------------------------------------------===*)
-
-(* expr - Base type for all expression nodes. *)
-type expr =
-  (* variant for numeric literals like "1.0". *)
-  | Number of float
-
-  (* variant for referencing a variable, like "a". *)
-  | Variable of string
-
-  (* variant for a binary operator. *)
-  | Binary of char * expr * expr
-
-  (* variant for function calls. *)
-  | Call of string * expr array
-
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</dd>
-
-<dt>parser.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===---------------------------------------------------------------------===
- * Parser
- *===---------------------------------------------------------------------===*)
-
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
-
-(* primary
- *   ::= identifier
- *   ::= numberexpr
- *   ::= parenexpr *)
-let rec parse_primary = parser
-  (* numberexpr ::= number *)
-  | [< 'Token.Number n >] -> Ast.Number n
-
-  (* parenexpr ::= '(' expression ')' *)
-  | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
-
-  (* identifierexpr
-   *   ::= identifier
-   *   ::= identifier '(' argumentexpr ')' *)
-  | [< 'Token.Ident id; stream >] ->
-      let rec parse_args accumulator = parser
-        | [< e=parse_expr; stream >] ->
-            begin parser
-              | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
-              | [< >] -> e :: accumulator
-            end stream
-        | [< >] -> accumulator
-      in
-      let rec parse_ident id = parser
-        (* Call. *)
-        | [< 'Token.Kwd '(';
-             args=parse_args [];
-             'Token.Kwd ')' ?? "expected ')'">] ->
-            Ast.Call (id, Array.of_list (List.rev args))
-
-        (* Simple variable ref. *)
-        | [< >] -> Ast.Variable id
-      in
-      parse_ident id stream
-
-  | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
-
-(* binoprhs
- *   ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
-  match Stream.peek stream with
-  (* If this is a binop, find its precedence. *)
-  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
-      let token_prec = precedence c in
-
-      (* If this is a binop that binds at least as tightly as the current binop,
-       * consume it, otherwise we are done. *)
-      if token_prec < expr_prec then lhs else begin
-        (* Eat the binop. *)
-        Stream.junk stream;
-
-        (* Parse the primary expression after the binary operator. *)
-        let rhs = parse_primary stream in
-
-        (* Okay, we know this is a binop. *)
-        let rhs =
-          match Stream.peek stream with
-          | Some (Token.Kwd c2) ->
-              (* If BinOp binds less tightly with rhs than the operator after
-               * rhs, let the pending operator take rhs as its lhs. *)
-              let next_prec = precedence c2 in
-              if token_prec < next_prec
-              then parse_bin_rhs (token_prec + 1) rhs stream
-              else rhs
-          | _ -> rhs
-        in
-
-        (* Merge lhs/rhs. *)
-        let lhs = Ast.Binary (c, lhs, rhs) in
-        parse_bin_rhs expr_prec lhs stream
-      end
-  | _ -> lhs
-
-(* expression
- *   ::= primary binoprhs *)
-and parse_expr = parser
-  | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
-
-(* prototype
- *   ::= id '(' id* ')' *)
-let parse_prototype =
-  let rec parse_args accumulator = parser
-    | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
-    | [< >] -> accumulator
-  in
-
-  parser
-  | [< 'Token.Ident id;
-       'Token.Kwd '(' ?? "expected '(' in prototype";
-       args=parse_args [];
-       'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
-      (* success. *)
-      Ast.Prototype (id, Array.of_list (List.rev args))
-
-  | [< >] ->
-      raise (Stream.Error "expected function name in prototype")
-
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
-  | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
-      Ast.Function (p, e)
-
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
-  | [< e=parse_expr >] ->
-      (* Make an anonymous proto. *)
-      Ast.Function (Ast.Prototype ("", [||]), e)
-
-(*  external ::= 'extern' prototype *)
-let parse_extern = parser
-  | [< 'Token.Extern; e=parse_prototype >] -> e
-</pre>
-</dd>
-
-<dt>toplevel.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Top-Level parsing and JIT Driver
- *===----------------------------------------------------------------------===*)
-
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop stream =
-  match Stream.peek stream with
-  | None -> ()
-
-  (* ignore top-level semicolons. *)
-  | Some (Token.Kwd ';') ->
-      Stream.junk stream;
-      main_loop stream
-
-  | Some token ->
-      begin
-        try match token with
-        | Token.Def ->
-            ignore(Parser.parse_definition stream);
-            print_endline "parsed a function definition.";
-        | Token.Extern ->
-            ignore(Parser.parse_extern stream);
-            print_endline "parsed an extern.";
-        | _ ->
-            (* Evaluate a top-level expression into an anonymous function. *)
-            ignore(Parser.parse_toplevel stream);
-            print_endline "parsed a top-level expr";
-        with Stream.Error s ->
-          (* Skip token for error recovery. *)
-          Stream.junk stream;
-          print_endline s;
-      end;
-      print_string "ready> "; flush stdout;
-      main_loop stream
-</pre>
-</dd>
-
-<dt>toy.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Main driver code.
- *===----------------------------------------------------------------------===*)
-
-let main () =
-  (* Install standard binary operators.
-   * 1 is the lowest precedence. *)
-  Hashtbl.add Parser.binop_precedence '<' 10;
-  Hashtbl.add Parser.binop_precedence '+' 20;
-  Hashtbl.add Parser.binop_precedence '-' 20;
-  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
-
-  (* Prime the first token. *)
-  print_string "ready> "; flush stdout;
-  let stream = Lexer.lex (Stream.of_channel stdin) in
-
-  (* Run the main "interpreter loop" now. *)
-  Toplevel.main_loop stream;
-;;
-
-main ()
-</pre>
-</dd>
-</dl>
-
-<a href="OCamlLangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a>
-  <a href="mailto:erickt at users.sourceforge.net">Erick Tryzelaar</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/OCamlLangImpl2.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl2.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl2.rst (added)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl2.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,899 @@
+===========================================
+Kaleidoscope: Implementing a Parser and AST
+===========================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_ and `Erick
+Tryzelaar <mailto:idadesub at users.sourceforge.net>`_
+
+Chapter 2 Introduction
+======================
+
+Welcome to Chapter 2 of the "`Implementing a language with LLVM in
+Objective Caml <index.html>`_" tutorial. This chapter shows you how to
+use the lexer, built in `Chapter 1 <OCamlLangImpl1.html>`_, to build a
+full `parser <http://en.wikipedia.org/wiki/Parsing>`_ for our
+Kaleidoscope language. Once we have a parser, we'll define and build an
+`Abstract Syntax
+Tree <http://en.wikipedia.org/wiki/Abstract_syntax_tree>`_ (AST).
+
+The parser we will build uses a combination of `Recursive Descent
+Parsing <http://en.wikipedia.org/wiki/Recursive_descent_parser>`_ and
+`Operator-Precedence
+Parsing <http://en.wikipedia.org/wiki/Operator-precedence_parser>`_ to
+parse the Kaleidoscope language (the latter for binary expressions and
+the former for everything else). Before we get to parsing though, lets
+talk about the output of the parser: the Abstract Syntax Tree.
+
+The Abstract Syntax Tree (AST)
+==============================
+
+The AST for a program captures its behavior in such a way that it is
+easy for later stages of the compiler (e.g. code generation) to
+interpret. We basically want one object for each construct in the
+language, and the AST should closely model the language. In
+Kaleidoscope, we have expressions, a prototype, and a function object.
+We'll start with expressions first:
+
+.. code-block:: ocaml
+
+    (* expr - Base type for all expression nodes. *)
+    type expr =
+      (* variant for numeric literals like "1.0". *)
+      | Number of float
+
+The code above shows the definition of the base ExprAST class and one
+subclass which we use for numeric literals. The important thing to note
+about this code is that the Number variant captures the numeric value of
+the literal as an instance variable. This allows later phases of the
+compiler to know what the stored numeric value is.
+
+Right now we only create the AST, so there are no useful functions on
+them. It would be very easy to add a function to pretty print the code,
+for example. Here are the other expression AST node definitions that
+we'll use in the basic form of the Kaleidoscope language:
+
+.. code-block:: ocaml
+
+      (* variant for referencing a variable, like "a". *)
+      | Variable of string
+
+      (* variant for a binary operator. *)
+      | Binary of char * expr * expr
+
+      (* variant for function calls. *)
+      | Call of string * expr array
+
+This is all (intentionally) rather straight-forward: variables capture
+the variable name, binary operators capture their opcode (e.g. '+'), and
+calls capture a function name as well as a list of any argument
+expressions. One thing that is nice about our AST is that it captures
+the language features without talking about the syntax of the language.
+Note that there is no discussion about precedence of binary operators,
+lexical structure, etc.
+
+For our basic language, these are all of the expression nodes we'll
+define. Because it doesn't have conditional control flow, it isn't
+Turing-complete; we'll fix that in a later installment. The two things
+we need next are a way to talk about the interface to a function, and a
+way to talk about functions themselves:
+
+.. code-block:: ocaml
+
+    (* proto - This type represents the "prototype" for a function, which captures
+     * its name, and its argument names (thus implicitly the number of arguments the
+     * function takes). *)
+    type proto = Prototype of string * string array
+
+    (* func - This type represents a function definition itself. *)
+    type func = Function of proto * expr
+
+In Kaleidoscope, functions are typed with just a count of their
+arguments. Since all values are double precision floating point, the
+type of each argument doesn't need to be stored anywhere. In a more
+aggressive and realistic language, the "expr" variants would probably
+have a type field.
+
+With this scaffolding, we can now talk about parsing expressions and
+function bodies in Kaleidoscope.
+
+Parser Basics
+=============
+
+Now that we have an AST to build, we need to define the parser code to
+build it. The idea here is that we want to parse something like "x+y"
+(which is returned as three tokens by the lexer) into an AST that could
+be generated with calls like this:
+
+.. code-block:: ocaml
+
+      let x = Variable "x" in
+      let y = Variable "y" in
+      let result = Binary ('+', x, y) in
+      ...
+
+The error handling routines make use of the builtin ``Stream.Failure``
+and ``Stream.Error``s. ``Stream.Failure`` is raised when the parser is
+unable to find any matching token in the first position of a pattern.
+``Stream.Error`` is raised when the first token matches, but the rest do
+not. The error recovery in our parser will not be the best and is not
+particular user-friendly, but it will be enough for our tutorial. These
+exceptions make it easier to handle errors in routines that have various
+return types.
+
+With these basic types and exceptions, we can implement the first piece
+of our grammar: numeric literals.
+
+Basic Expression Parsing
+========================
+
+We start with numeric literals, because they are the simplest to
+process. For each production in our grammar, we'll define a function
+which parses that production. We call this class of expressions
+"primary" expressions, for reasons that will become more clear `later in
+the tutorial <OCamlLangImpl6.html#unary>`_. In order to parse an
+arbitrary primary expression, we need to determine what sort of
+expression it is. For numeric literals, we have:
+
+.. code-block:: ocaml
+
+    (* primary
+     *   ::= identifier
+     *   ::= numberexpr
+     *   ::= parenexpr *)
+    parse_primary = parser
+      (* numberexpr ::= number *)
+      | [< 'Token.Number n >] -> Ast.Number n
+
+This routine is very simple: it expects to be called when the current
+token is a ``Token.Number`` token. It takes the current number value,
+creates a ``Ast.Number`` node, advances the lexer to the next token, and
+finally returns.
+
+There are some interesting aspects to this. The most important one is
+that this routine eats all of the tokens that correspond to the
+production and returns the lexer buffer with the next token (which is
+not part of the grammar production) ready to go. This is a fairly
+standard way to go for recursive descent parsers. For a better example,
+the parenthesis operator is defined like this:
+
+.. code-block:: ocaml
+
+      (* parenexpr ::= '(' expression ')' *)
+      | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+This function illustrates a number of interesting things about the
+parser:
+
+1) It shows how we use the ``Stream.Error`` exception. When called, this
+function expects that the current token is a '(' token, but after
+parsing the subexpression, it is possible that there is no ')' waiting.
+For example, if the user types in "(4 x" instead of "(4)", the parser
+should emit an error. Because errors can occur, the parser needs a way
+to indicate that they happened. In our parser, we use the camlp4
+shortcut syntax ``token ?? "parse error"``, where if the token before
+the ``??`` does not match, then ``Stream.Error "parse error"`` will be
+raised.
+
+2) Another interesting aspect of this function is that it uses recursion
+by calling ``Parser.parse_primary`` (we will soon see that
+``Parser.parse_primary`` can call ``Parser.parse_primary``). This is
+powerful because it allows us to handle recursive grammars, and keeps
+each production very simple. Note that parentheses do not cause
+construction of AST nodes themselves. While we could do it this way, the
+most important role of parentheses are to guide the parser and provide
+grouping. Once the parser constructs the AST, parentheses are not
+needed.
+
+The next simple production is for handling variable references and
+function calls:
+
+.. code-block:: ocaml
+
+      (* identifierexpr
+       *   ::= identifier
+       *   ::= identifier '(' argumentexpr ')' *)
+      | [< 'Token.Ident id; stream >] ->
+          let rec parse_args accumulator = parser
+            | [< e=parse_expr; stream >] ->
+                begin parser
+                  | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                  | [< >] -> e :: accumulator
+                end stream
+            | [< >] -> accumulator
+          in
+          let rec parse_ident id = parser
+            (* Call. *)
+            | [< 'Token.Kwd '(';
+                 args=parse_args [];
+                 'Token.Kwd ')' ?? "expected ')'">] ->
+                Ast.Call (id, Array.of_list (List.rev args))
+
+            (* Simple variable ref. *)
+            | [< >] -> Ast.Variable id
+          in
+          parse_ident id stream
+
+This routine follows the same style as the other routines. (It expects
+to be called if the current token is a ``Token.Ident`` token). It also
+has recursion and error handling. One interesting aspect of this is that
+it uses *look-ahead* to determine if the current identifier is a stand
+alone variable reference or if it is a function call expression. It
+handles this by checking to see if the token after the identifier is a
+'(' token, constructing either a ``Ast.Variable`` or ``Ast.Call`` node
+as appropriate.
+
+We finish up by raising an exception if we received a token we didn't
+expect:
+
+.. code-block:: ocaml
+
+      | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+Now that basic expressions are handled, we need to handle binary
+expressions. They are a bit more complex.
+
+Binary Expression Parsing
+=========================
+
+Binary expressions are significantly harder to parse because they are
+often ambiguous. For example, when given the string "x+y\*z", the parser
+can choose to parse it as either "(x+y)\*z" or "x+(y\*z)". With common
+definitions from mathematics, we expect the later parse, because "\*"
+(multiplication) has higher *precedence* than "+" (addition).
+
+There are many ways to handle this, but an elegant and efficient way is
+to use `Operator-Precedence
+Parsing <http://en.wikipedia.org/wiki/Operator-precedence_parser>`_.
+This parsing technique uses the precedence of binary operators to guide
+recursion. To start with, we need a table of precedences:
+
+.. code-block:: ocaml
+
+    (* binop_precedence - This holds the precedence for each binary operator that is
+     * defined *)
+    let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+    (* precedence - Get the precedence of the pending binary operator token. *)
+    let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+    ...
+
+    let main () =
+      (* Install standard binary operators.
+       * 1 is the lowest precedence. *)
+      Hashtbl.add Parser.binop_precedence '<' 10;
+      Hashtbl.add Parser.binop_precedence '+' 20;
+      Hashtbl.add Parser.binop_precedence '-' 20;
+      Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+      ...
+
+For the basic form of Kaleidoscope, we will only support 4 binary
+operators (this can obviously be extended by you, our brave and intrepid
+reader). The ``Parser.precedence`` function returns the precedence for
+the current token, or -1 if the token is not a binary operator. Having a
+``Hashtbl.t`` makes it easy to add new operators and makes it clear that
+the algorithm doesn't depend on the specific operators involved, but it
+would be easy enough to eliminate the ``Hashtbl.t`` and do the
+comparisons in the ``Parser.precedence`` function. (Or just use a
+fixed-size array).
+
+With the helper above defined, we can now start parsing binary
+expressions. The basic idea of operator precedence parsing is to break
+down an expression with potentially ambiguous binary operators into
+pieces. Consider ,for example, the expression "a+b+(c+d)\*e\*f+g".
+Operator precedence parsing considers this as a stream of primary
+expressions separated by binary operators. As such, it will first parse
+the leading primary expression "a", then it will see the pairs [+, b]
+[+, (c+d)] [\*, e] [\*, f] and [+, g]. Note that because parentheses are
+primary expressions, the binary expression parser doesn't need to worry
+about nested subexpressions like (c+d) at all.
+
+To start, an expression is a primary expression potentially followed by
+a sequence of [binop,primaryexpr] pairs:
+
+.. code-block:: ocaml
+
+    (* expression
+     *   ::= primary binoprhs *)
+    and parse_expr = parser
+      | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+``Parser.parse_bin_rhs`` is the function that parses the sequence of
+pairs for us. It takes a precedence and a pointer to an expression for
+the part that has been parsed so far. Note that "x" is a perfectly valid
+expression: As such, "binoprhs" is allowed to be empty, in which case it
+returns the expression that is passed into it. In our example above, the
+code passes the expression for "a" into ``Parser.parse_bin_rhs`` and the
+current token is "+".
+
+The precedence value passed into ``Parser.parse_bin_rhs`` indicates the
+*minimal operator precedence* that the function is allowed to eat. For
+example, if the current pair stream is [+, x] and
+``Parser.parse_bin_rhs`` is passed in a precedence of 40, it will not
+consume any tokens (because the precedence of '+' is only 20). With this
+in mind, ``Parser.parse_bin_rhs`` starts with:
+
+.. code-block:: ocaml
+
+    (* binoprhs
+     *   ::= ('+' primary)* *)
+    and parse_bin_rhs expr_prec lhs stream =
+      match Stream.peek stream with
+      (* If this is a binop, find its precedence. *)
+      | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+          let token_prec = precedence c in
+
+          (* If this is a binop that binds at least as tightly as the current binop,
+           * consume it, otherwise we are done. *)
+          if token_prec < expr_prec then lhs else begin
+
+This code gets the precedence of the current token and checks to see if
+if is too low. Because we defined invalid tokens to have a precedence of
+-1, this check implicitly knows that the pair-stream ends when the token
+stream runs out of binary operators. If this check succeeds, we know
+that the token is a binary operator and that it will be included in this
+expression:
+
+.. code-block:: ocaml
+
+            (* Eat the binop. *)
+            Stream.junk stream;
+
+            (* Okay, we know this is a binop. *)
+            let rhs =
+              match Stream.peek stream with
+              | Some (Token.Kwd c2) ->
+
+As such, this code eats (and remembers) the binary operator and then
+parses the primary expression that follows. This builds up the whole
+pair, the first of which is [+, b] for the running example.
+
+Now that we parsed the left-hand side of an expression and one pair of
+the RHS sequence, we have to decide which way the expression associates.
+In particular, we could have "(a+b) binop unparsed" or "a + (b binop
+unparsed)". To determine this, we look ahead at "binop" to determine its
+precedence and compare it to BinOp's precedence (which is '+' in this
+case):
+
+.. code-block:: ocaml
+
+                  (* If BinOp binds less tightly with rhs than the operator after
+                   * rhs, let the pending operator take rhs as its lhs. *)
+                  let next_prec = precedence c2 in
+                  if token_prec < next_prec
+
+If the precedence of the binop to the right of "RHS" is lower or equal
+to the precedence of our current operator, then we know that the
+parentheses associate as "(a+b) binop ...". In our example, the current
+operator is "+" and the next operator is "+", we know that they have the
+same precedence. In this case we'll create the AST node for "a+b", and
+then continue parsing:
+
+.. code-block:: ocaml
+
+              ... if body omitted ...
+            in
+
+            (* Merge lhs/rhs. *)
+            let lhs = Ast.Binary (c, lhs, rhs) in
+            parse_bin_rhs expr_prec lhs stream
+          end
+
+In our example above, this will turn "a+b+" into "(a+b)" and execute the
+next iteration of the loop, with "+" as the current token. The code
+above will eat, remember, and parse "(c+d)" as the primary expression,
+which makes the current pair equal to [+, (c+d)]. It will then evaluate
+the 'if' conditional above with "\*" as the binop to the right of the
+primary. In this case, the precedence of "\*" is higher than the
+precedence of "+" so the if condition will be entered.
+
+The critical question left here is "how can the if condition parse the
+right hand side in full"? In particular, to build the AST correctly for
+our example, it needs to get all of "(c+d)\*e\*f" as the RHS expression
+variable. The code to do this is surprisingly simple (code from the
+above two blocks duplicated for context):
+
+.. code-block:: ocaml
+
+              match Stream.peek stream with
+              | Some (Token.Kwd c2) ->
+                  (* If BinOp binds less tightly with rhs than the operator after
+                   * rhs, let the pending operator take rhs as its lhs. *)
+                  if token_prec < precedence c2
+                  then parse_bin_rhs (token_prec + 1) rhs stream
+                  else rhs
+              | _ -> rhs
+            in
+
+            (* Merge lhs/rhs. *)
+            let lhs = Ast.Binary (c, lhs, rhs) in
+            parse_bin_rhs expr_prec lhs stream
+          end
+
+At this point, we know that the binary operator to the RHS of our
+primary has higher precedence than the binop we are currently parsing.
+As such, we know that any sequence of pairs whose operators are all
+higher precedence than "+" should be parsed together and returned as
+"RHS". To do this, we recursively invoke the ``Parser.parse_bin_rhs``
+function specifying "token\_prec+1" as the minimum precedence required
+for it to continue. In our example above, this will cause it to return
+the AST node for "(c+d)\*e\*f" as RHS, which is then set as the RHS of
+the '+' expression.
+
+Finally, on the next iteration of the while loop, the "+g" piece is
+parsed and added to the AST. With this little bit of code (14
+non-trivial lines), we correctly handle fully general binary expression
+parsing in a very elegant way. This was a whirlwind tour of this code,
+and it is somewhat subtle. I recommend running through it with a few
+tough examples to see how it works.
+
+This wraps up handling of expressions. At this point, we can point the
+parser at an arbitrary token stream and build an expression from it,
+stopping at the first token that is not part of the expression. Next up
+we need to handle function definitions, etc.
+
+Parsing the Rest
+================
+
+The next thing missing is handling of function prototypes. In
+Kaleidoscope, these are used both for 'extern' function declarations as
+well as function body definitions. The code to do this is
+straight-forward and not very interesting (once you've survived
+expressions):
+
+.. code-block:: ocaml
+
+    (* prototype
+     *   ::= id '(' id* ')' *)
+    let parse_prototype =
+      let rec parse_args accumulator = parser
+        | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+        | [< >] -> accumulator
+      in
+
+      parser
+      | [< 'Token.Ident id;
+           'Token.Kwd '(' ?? "expected '(' in prototype";
+           args=parse_args [];
+           'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+          (* success. *)
+          Ast.Prototype (id, Array.of_list (List.rev args))
+
+      | [< >] ->
+          raise (Stream.Error "expected function name in prototype")
+
+Given this, a function definition is very simple, just a prototype plus
+an expression to implement the body:
+
+.. code-block:: ocaml
+
+    (* definition ::= 'def' prototype expression *)
+    let parse_definition = parser
+      | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+          Ast.Function (p, e)
+
+In addition, we support 'extern' to declare functions like 'sin' and
+'cos' as well as to support forward declaration of user functions. These
+'extern's are just prototypes with no body:
+
+.. code-block:: ocaml
+
+    (*  external ::= 'extern' prototype *)
+    let parse_extern = parser
+      | [< 'Token.Extern; e=parse_prototype >] -> e
+
+Finally, we'll also let the user type in arbitrary top-level expressions
+and evaluate them on the fly. We will handle this by defining anonymous
+nullary (zero argument) functions for them:
+
+.. code-block:: ocaml
+
+    (* toplevelexpr ::= expression *)
+    let parse_toplevel = parser
+      | [< e=parse_expr >] ->
+          (* Make an anonymous proto. *)
+          Ast.Function (Ast.Prototype ("", [||]), e)
+
+Now that we have all the pieces, let's build a little driver that will
+let us actually *execute* this code we've built!
+
+The Driver
+==========
+
+The driver for this simply invokes all of the parsing pieces with a
+top-level dispatch loop. There isn't much interesting here, so I'll just
+include the top-level loop. See `below <#code>`_ for full code in the
+"Top-Level Parsing" section.
+
+.. code-block:: ocaml
+
+    (* top ::= definition | external | expression | ';' *)
+    let rec main_loop stream =
+      match Stream.peek stream with
+      | None -> ()
+
+      (* ignore top-level semicolons. *)
+      | Some (Token.Kwd ';') ->
+          Stream.junk stream;
+          main_loop stream
+
+      | Some token ->
+          begin
+            try match token with
+            | Token.Def ->
+                ignore(Parser.parse_definition stream);
+                print_endline "parsed a function definition.";
+            | Token.Extern ->
+                ignore(Parser.parse_extern stream);
+                print_endline "parsed an extern.";
+            | _ ->
+                (* Evaluate a top-level expression into an anonymous function. *)
+                ignore(Parser.parse_toplevel stream);
+                print_endline "parsed a top-level expr";
+            with Stream.Error s ->
+              (* Skip token for error recovery. *)
+              Stream.junk stream;
+              print_endline s;
+          end;
+          print_string "ready> "; flush stdout;
+          main_loop stream
+
+The most interesting part of this is that we ignore top-level
+semicolons. Why is this, you ask? The basic reason is that if you type
+"4 + 5" at the command line, the parser doesn't know whether that is the
+end of what you will type or not. For example, on the next line you
+could type "def foo..." in which case 4+5 is the end of a top-level
+expression. Alternatively you could type "\* 6", which would continue
+the expression. Having top-level semicolons allows you to type "4+5;",
+and the parser will know you are done.
+
+Conclusions
+===========
+
+With just under 300 lines of commented code (240 lines of non-comment,
+non-blank code), we fully defined our minimal language, including a
+lexer, parser, and AST builder. With this done, the executable will
+validate Kaleidoscope code and tell us if it is grammatically invalid.
+For example, here is a sample interaction:
+
+.. code-block:: bash
+
+    $ ./toy.byte
+    ready> def foo(x y) x+foo(y, 4.0);
+    Parsed a function definition.
+    ready> def foo(x y) x+y y;
+    Parsed a function definition.
+    Parsed a top-level expr
+    ready> def foo(x y) x+y );
+    Parsed a function definition.
+    Error: unknown token when expecting an expression
+    ready> extern sin(a);
+    ready> Parsed an extern
+    ready> ^D
+    $
+
+There is a lot of room for extension here. You can define new AST nodes,
+extend the language in many ways, etc. In the `next
+installment <OCamlLangImpl3.html>`_, we will describe how to generate
+LLVM Intermediate Representation (IR) from the AST.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for this and the previous chapter.
+Note that it is fully self-contained: you don't need LLVM or any
+external libraries at all for this. (Besides the ocaml standard
+libraries, of course.) To build this, just compile with:
+
+.. code-block:: bash
+
+    # Compile
+    ocamlbuild toy.byte
+    # Run
+    ./toy.byte
+
+Here is the code:
+
+\_tags:
+    ::
+
+        <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
+
+token.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer Tokens
+         *===----------------------------------------------------------------------===*)
+
+        (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+         * these others for known things. *)
+        type token =
+          (* commands *)
+          | Def | Extern
+
+          (* primary *)
+          | Ident of string | Number of float
+
+          (* unknown *)
+          | Kwd of char
+
+lexer.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer
+         *===----------------------------------------------------------------------===*)
+
+        let rec lex = parser
+          (* Skip any whitespace. *)
+          | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+          (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+
+          (* number: [0-9.]+ *)
+          | [< ' ('0' .. '9' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+
+          (* Comment until end of line. *)
+          | [< ' ('#'); stream >] ->
+              lex_comment stream
+
+          (* Otherwise, just return the character as its ascii value. *)
+          | [< 'c; stream >] ->
+              [< 'Token.Kwd c; lex stream >]
+
+          (* end of stream. *)
+          | [< >] -> [< >]
+
+        and lex_number buffer = parser
+          | [< ' ('0' .. '9' | '.' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+          | [< stream=lex >] ->
+              [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+        and lex_ident buffer = parser
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+          | [< stream=lex >] ->
+              match Buffer.contents buffer with
+              | "def" -> [< 'Token.Def; stream >]
+              | "extern" -> [< 'Token.Extern; stream >]
+              | id -> [< 'Token.Ident id; stream >]
+
+        and lex_comment = parser
+          | [< ' ('\n'); stream=lex >] -> stream
+          | [< 'c; e=lex_comment >] -> e
+          | [< >] -> [< >]
+
+ast.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Abstract Syntax Tree (aka Parse Tree)
+         *===----------------------------------------------------------------------===*)
+
+        (* expr - Base type for all expression nodes. *)
+        type expr =
+          (* variant for numeric literals like "1.0". *)
+          | Number of float
+
+          (* variant for referencing a variable, like "a". *)
+          | Variable of string
+
+          (* variant for a binary operator. *)
+          | Binary of char * expr * expr
+
+          (* variant for function calls. *)
+          | Call of string * expr array
+
+        (* proto - This type represents the "prototype" for a function, which captures
+         * its name, and its argument names (thus implicitly the number of arguments the
+         * function takes). *)
+        type proto = Prototype of string * string array
+
+        (* func - This type represents a function definition itself. *)
+        type func = Function of proto * expr
+
+parser.ml:
+    .. code-block:: ocaml
+
+        (*===---------------------------------------------------------------------===
+         * Parser
+         *===---------------------------------------------------------------------===*)
+
+        (* binop_precedence - This holds the precedence for each binary operator that is
+         * defined *)
+        let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+        (* precedence - Get the precedence of the pending binary operator token. *)
+        let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+        (* primary
+         *   ::= identifier
+         *   ::= numberexpr
+         *   ::= parenexpr *)
+        let rec parse_primary = parser
+          (* numberexpr ::= number *)
+          | [< 'Token.Number n >] -> Ast.Number n
+
+          (* parenexpr ::= '(' expression ')' *)
+          | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+          (* identifierexpr
+           *   ::= identifier
+           *   ::= identifier '(' argumentexpr ')' *)
+          | [< 'Token.Ident id; stream >] ->
+              let rec parse_args accumulator = parser
+                | [< e=parse_expr; stream >] ->
+                    begin parser
+                      | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                      | [< >] -> e :: accumulator
+                    end stream
+                | [< >] -> accumulator
+              in
+              let rec parse_ident id = parser
+                (* Call. *)
+                | [< 'Token.Kwd '(';
+                     args=parse_args [];
+                     'Token.Kwd ')' ?? "expected ')'">] ->
+                    Ast.Call (id, Array.of_list (List.rev args))
+
+                (* Simple variable ref. *)
+                | [< >] -> Ast.Variable id
+              in
+              parse_ident id stream
+
+          | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+        (* binoprhs
+         *   ::= ('+' primary)* *)
+        and parse_bin_rhs expr_prec lhs stream =
+          match Stream.peek stream with
+          (* If this is a binop, find its precedence. *)
+          | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+              let token_prec = precedence c in
+
+              (* If this is a binop that binds at least as tightly as the current binop,
+               * consume it, otherwise we are done. *)
+              if token_prec < expr_prec then lhs else begin
+                (* Eat the binop. *)
+                Stream.junk stream;
+
+                (* Parse the primary expression after the binary operator. *)
+                let rhs = parse_primary stream in
+
+                (* Okay, we know this is a binop. *)
+                let rhs =
+                  match Stream.peek stream with
+                  | Some (Token.Kwd c2) ->
+                      (* If BinOp binds less tightly with rhs than the operator after
+                       * rhs, let the pending operator take rhs as its lhs. *)
+                      let next_prec = precedence c2 in
+                      if token_prec < next_prec
+                      then parse_bin_rhs (token_prec + 1) rhs stream
+                      else rhs
+                  | _ -> rhs
+                in
+
+                (* Merge lhs/rhs. *)
+                let lhs = Ast.Binary (c, lhs, rhs) in
+                parse_bin_rhs expr_prec lhs stream
+              end
+          | _ -> lhs
+
+        (* expression
+         *   ::= primary binoprhs *)
+        and parse_expr = parser
+          | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+        (* prototype
+         *   ::= id '(' id* ')' *)
+        let parse_prototype =
+          let rec parse_args accumulator = parser
+            | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+            | [< >] -> accumulator
+          in
+
+          parser
+          | [< 'Token.Ident id;
+               'Token.Kwd '(' ?? "expected '(' in prototype";
+               args=parse_args [];
+               'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+              (* success. *)
+              Ast.Prototype (id, Array.of_list (List.rev args))
+
+          | [< >] ->
+              raise (Stream.Error "expected function name in prototype")
+
+        (* definition ::= 'def' prototype expression *)
+        let parse_definition = parser
+          | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+              Ast.Function (p, e)
+
+        (* toplevelexpr ::= expression *)
+        let parse_toplevel = parser
+          | [< e=parse_expr >] ->
+              (* Make an anonymous proto. *)
+              Ast.Function (Ast.Prototype ("", [||]), e)
+
+        (*  external ::= 'extern' prototype *)
+        let parse_extern = parser
+          | [< 'Token.Extern; e=parse_prototype >] -> e
+
+toplevel.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Top-Level parsing and JIT Driver
+         *===----------------------------------------------------------------------===*)
+
+        (* top ::= definition | external | expression | ';' *)
+        let rec main_loop stream =
+          match Stream.peek stream with
+          | None -> ()
+
+          (* ignore top-level semicolons. *)
+          | Some (Token.Kwd ';') ->
+              Stream.junk stream;
+              main_loop stream
+
+          | Some token ->
+              begin
+                try match token with
+                | Token.Def ->
+                    ignore(Parser.parse_definition stream);
+                    print_endline "parsed a function definition.";
+                | Token.Extern ->
+                    ignore(Parser.parse_extern stream);
+                    print_endline "parsed an extern.";
+                | _ ->
+                    (* Evaluate a top-level expression into an anonymous function. *)
+                    ignore(Parser.parse_toplevel stream);
+                    print_endline "parsed a top-level expr";
+                with Stream.Error s ->
+                  (* Skip token for error recovery. *)
+                  Stream.junk stream;
+                  print_endline s;
+              end;
+              print_string "ready> "; flush stdout;
+              main_loop stream
+
+toy.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Main driver code.
+         *===----------------------------------------------------------------------===*)
+
+        let main () =
+          (* Install standard binary operators.
+           * 1 is the lowest precedence. *)
+          Hashtbl.add Parser.binop_precedence '<' 10;
+          Hashtbl.add Parser.binop_precedence '+' 20;
+          Hashtbl.add Parser.binop_precedence '-' 20;
+          Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+
+          (* Prime the first token. *)
+          print_string "ready> "; flush stdout;
+          let stream = Lexer.lex (Stream.of_channel stdin) in
+
+          (* Run the main "interpreter loop" now. *)
+          Toplevel.main_loop stream;
+        ;;
+
+        main ()
+
+`Next: Implementing Code Generation to LLVM IR <OCamlLangImpl3.html>`_
+

Removed: llvm/trunk/docs/tutorial/OCamlLangImpl3.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl3.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl3.html (original)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl3.html (removed)
@@ -1,1093 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <meta name="author" content="Erick Tryzelaar">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Code generation to LLVM IR</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 3
-  <ol>
-    <li><a href="#intro">Chapter 3 Introduction</a></li>
-    <li><a href="#basics">Code Generation Setup</a></li>
-    <li><a href="#exprs">Expression Code Generation</a></li>
-    <li><a href="#funcs">Function Code Generation</a></li>
-    <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="OCamlLangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
-Support</li>
-</ul>
-
-<div class="doc_author">
-	<p>
-		Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a>
-		and <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a>
-	</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 3 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  This chapter shows you how to transform the <a
-href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into
-LLVM IR.  This will teach you a little bit about how LLVM does things, as well
-as demonstrate how easy it is to use.  It's much more work to build a lexer and
-parser than it is to generate LLVM IR code. :)
-</p>
-
-<p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or
-LLVM SVN to work.  LLVM 2.2 and before will not work with it.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="basics">Code Generation Setup</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-In order to generate LLVM IR, we want some simple setup to get started.  First
-we define virtual code generation (codegen) methods in each AST class:</p>
-
-<div class="doc_code">
-<pre>
-let rec codegen_expr = function
-  | Ast.Number n -> ...
-  | Ast.Variable name -> ...
-</pre>
-</div>
-
-<p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node
-along with all the things it depends on, and they all return an LLVM Value
-object.  "Value" is the class used to represent a "<a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
-Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
-of SSA values is that their value is computed as the related instruction
-executes, and it does not get a new value until (and if) the instruction
-re-executes.  In other words, there is no way to "change" an SSA value.  For
-more information, please read up on <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
-Assignment</a> - the concepts are really quite natural once you grok them.</p>
-
-<p>The
-second thing we want is an "Error" exception like we used for the parser, which
-will be used to report errors found during code generation (for example, use of
-an undeclared parameter):</p>
-
-<div class="doc_code">
-<pre>
-exception Error of string
-
-let context = global_context ()
-let the_module = create_module context "my cool jit"
-let builder = builder context
-let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
-let double_type = double_type context
-</pre>
-</div>
-
-<p>The static variables will be used during code generation.
-<tt>Codgen.the_module</tt> is the LLVM construct that contains all of the
-functions and global variables in a chunk of code.  In many ways, it is the
-top-level structure that the LLVM IR uses to contain code.</p>
-
-<p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to
-generate LLVM instructions.  Instances of the <a
-href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
-class keep track of the current place to insert instructions and has methods to
-create new instructions.</p>
-
-<p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined
-in the current scope and what their LLVM representation is.  (In other words, it
-is a symbol table for the code).  In this form of Kaleidoscope, the only things
-that can be referenced are function parameters.  As such, function parameters
-will be in this map when generating code for their function body.</p>
-
-<p>
-With these basics in place, we can start talking about how to generate code for
-each expression.  Note that this assumes that the <tt>Codgen.builder</tt> has
-been set up to generate code <em>into</em> something.  For now, we'll assume
-that this has already been done, and we'll just use it to emit code.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="exprs">Expression Code Generation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Generating LLVM code for expression nodes is very straightforward: less
-than 30 lines of commented code for all four of our expression nodes.  First
-we'll do numeric literals:</p>
-
-<div class="doc_code">
-<pre>
-  | Ast.Number n -> const_float double_type n
-</pre>
-</div>
-
-<p>In the LLVM IR, numeric constants are represented with the
-<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
-internally (<tt>APFloat</tt> has the capability of holding floating point
-constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
-creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
-that constants are all uniqued together and shared.  For this reason, the API
-uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
-
-<div class="doc_code">
-<pre>
-  | Ast.Variable name ->
-      (try Hashtbl.find named_values name with
-        | Not_found -> raise (Error "unknown variable name"))
-</pre>
-</div>
-
-<p>References to variables are also quite simple using LLVM.  In the simple
-version of Kaleidoscope, we assume that the variable has already been emitted
-somewhere and its value is available.  In practice, the only values that can be
-in the <tt>Codegen.named_values</tt> map are function arguments.  This code
-simply checks to see that the specified name is in the map (if not, an unknown
-variable is being referenced) and returns the value for it.  In future chapters,
-we'll add support for <a href="LangImpl5.html#for">loop induction variables</a>
-in the symbol table, and for <a href="LangImpl7.html#localvars">local
-variables</a>.</p>
-
-<div class="doc_code">
-<pre>
-  | Ast.Binary (op, lhs, rhs) ->
-      let lhs_val = codegen_expr lhs in
-      let rhs_val = codegen_expr rhs in
-      begin
-        match op with
-        | '+' -> build_fadd lhs_val rhs_val "addtmp" builder
-        | '-' -> build_fsub lhs_val rhs_val "subtmp" builder
-        | '*' -> build_fmul lhs_val rhs_val "multmp" builder
-        | '<' ->
-            (* Convert bool 0/1 to double 0.0 or 1.0 *)
-            let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
-            build_uitofp i double_type "booltmp" builder
-        | _ -> raise (Error "invalid binary operator")
-      end
-</pre>
-</div>
-
-<p>Binary operators start to get more interesting.  The basic idea here is that
-we recursively emit code for the left-hand side of the expression, then the
-right-hand side, then we compute the result of the binary expression.  In this
-code, we do a simple switch on the opcode to create the right LLVM instruction.
-</p>
-
-<p>In the example above, the LLVM builder class is starting to show its value.
-IRBuilder knows where to insert the newly created instruction, all you have to
-do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>),
-which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally
-provide a name for the generated instruction.</p>
-
-<p>One nice thing about LLVM is that the name is just a hint.  For instance, if
-the code above emits multiple "addtmp" variables, LLVM will automatically
-provide each one with an increasing, unique numeric suffix.  Local value names
-for instructions are purely optional, but it makes it much easier to read the
-IR dumps.</p>
-
-<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
-strict rules: for example, the Left and Right operators of
-an <a href="../LangRef.html#i_add">add instruction</a> must have the same
-type, and the result type of the add must match the operand types.  Because
-all values in Kaleidoscope are doubles, this makes for very simple code for add,
-sub and mul.</p>
-
-<p>On the other hand, LLVM specifies that the <a
-href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
-(a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
-a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
-converts its input integer into a floating point value by treating the input
-as an unsigned value.  In contrast, if we used the <a
-href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<'
-operator would return 0.0 and -1.0, depending on the input value.</p>
-
-<div class="doc_code">
-<pre>
-  | Ast.Call (callee, args) ->
-      (* Look up the name in the module table. *)
-      let callee =
-        match lookup_function callee the_module with
-        | Some callee -> callee
-        | None -> raise (Error "unknown function referenced")
-      in
-      let params = params callee in
-
-      (* If argument mismatch error. *)
-      if Array.length params == Array.length args then () else
-        raise (Error "incorrect # arguments passed");
-      let args = Array.map codegen_expr args in
-      build_call callee args "calltmp" builder
-</pre>
-</div>
-
-<p>Code generation for function calls is quite straightforward with LLVM.  The
-code above initially does a function name lookup in the LLVM Module's symbol
-table.  Recall that the LLVM Module is the container that holds all of the
-functions we are JIT'ing.  By giving each function the same name as what the
-user specifies, we can use the LLVM symbol table to resolve function names for
-us.</p>
-
-<p>Once we have the function to call, we recursively codegen each argument that
-is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
-instruction</a>.  Note that LLVM uses the native C calling conventions by
-default, allowing these calls to also call into standard library functions like
-"sin" and "cos", with no additional effort.</p>
-
-<p>This wraps up our handling of the four basic expressions that we have so far
-in Kaleidoscope.  Feel free to go in and add some more.  For example, by
-browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
-several other interesting instructions that are really easy to plug into our
-basic framework.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="funcs">Function Code Generation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Code generation for prototypes and functions must handle a number of
-details, which make their code less beautiful than expression code
-generation, but allows us to illustrate some important points.  First, lets
-talk about code generation for prototypes: they are used both for function
-bodies and external function declarations.  The code starts with:</p>
-
-<div class="doc_code">
-<pre>
-let codegen_proto = function
-  | Ast.Prototype (name, args) ->
-      (* Make the function type: double(double,double) etc. *)
-      let doubles = Array.make (Array.length args) double_type in
-      let ft = function_type double_type doubles in
-      let f =
-        match lookup_function name the_module with
-</pre>
-</div>
-
-<p>This code packs a lot of power into a few lines.  Note first that this
-function returns a "Function*" instead of a "Value*" (although at the moment
-they both are modeled by <tt>llvalue</tt> in ocaml).  Because a "prototype"
-really talks about the external interface for a function (not the value computed
-by an expression), it makes sense for it to return the LLVM Function it
-corresponds to when codegen'd.</p>
-
-<p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt>
-that should be used for a given Prototype.  Since all function arguments in
-Kaleidoscope are of type double, the first line creates a vector of "N" LLVM
-double types.  It then uses the <tt>Llvm.function_type</tt> method to create a
-function type that takes "N" doubles as arguments, returns one double as a
-result, and that is not vararg (that uses the function
-<tt>Llvm.var_arg_function_type</tt>).  Note that Types in LLVM are uniqued just
-like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p>
-
-<p>The final line above checks if the function has already been defined in
-<tt>Codegen.the_module</tt>. If not, we will create it.</p>
-
-<div class="doc_code">
-<pre>
-        | None -> declare_function name ft the_module
-</pre>
-</div>
-
-<p>This indicates the type and name to use, as well as which module to insert
-into.  By default we assume a function has
-<tt>Llvm.Linkage.ExternalLinkage</tt>.  "<a href="LangRef.html#linkage">external
-linkage</a>" means that the function may be defined outside the current module
-and/or that it is callable by functions outside the module.  The "<tt>name</tt>"
-passed in is the name the user specified: this name is registered in
-"<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call
-code above.</p>
-
-<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
-first, we want to allow 'extern'ing a function more than once, as long as the
-prototypes for the externs match (since all arguments have the same type, we
-just have to check that the number of arguments match).  Second, we want to
-allow 'extern'ing a function and then defining a body for it.  This is useful
-when defining mutually recursive functions.</p>
-
-<div class="doc_code">
-<pre>
-        (* If 'f' conflicted, there was already something named 'name'. If it
-         * has a body, don't allow redefinition or reextern. *)
-        | Some f ->
-            (* If 'f' already has a body, reject this. *)
-            if Array.length (basic_blocks f) == 0 then () else
-              raise (Error "redefinition of function");
-
-            (* If 'f' took a different number of arguments, reject. *)
-            if Array.length (params f) == Array.length args then () else
-              raise (Error "redefinition of function with different # args");
-            f
-      in
-</pre>
-</div>
-
-<p>In order to verify the logic above, we first check to see if the pre-existing
-function is "empty".  In this case, empty means that it has no basic blocks in
-it, which means it has no body.  If it has no body, it is a forward
-declaration.  Since we don't allow anything after a full definition of the
-function, the code rejects this case.  If the previous reference to a function
-was an 'extern', we simply verify that the number of arguments for that
-definition and this one match up.  If not, we emit an error.</p>
-
-<div class="doc_code">
-<pre>
-      (* Set names for all arguments. *)
-      Array.iteri (fun i a ->
-        let n = args.(i) in
-        set_value_name n a;
-        Hashtbl.add named_values n a;
-      ) (params f);
-      f
-</pre>
-</div>
-
-<p>The last bit of code for prototypes loops over all of the arguments in the
-function, setting the name of the LLVM Argument objects to match, and registering
-the arguments in the <tt>Codegen.named_values</tt> map for future use by the
-<tt>Ast.Variable</tt> variant.  Once this is set up, it returns the Function
-object to the caller.  Note that we don't check for conflicting
-argument names here (e.g. "extern foo(a b a)").  Doing so would be very
-straight-forward with the mechanics we have already used above.</p>
-
-<div class="doc_code">
-<pre>
-let codegen_func = function
-  | Ast.Function (proto, body) ->
-      Hashtbl.clear named_values;
-      let the_function = codegen_proto proto in
-</pre>
-</div>
-
-<p>Code generation for function definitions starts out simply enough: we just
-codegen the prototype (Proto) and verify that it is ok.  We then clear out the
-<tt>Codegen.named_values</tt> map to make sure that there isn't anything in it
-from the last function we compiled.  Code generation of the prototype ensures
-that there is an LLVM Function object that is ready to go for us.</p>
-
-<div class="doc_code">
-<pre>
-      (* Create a new basic block to start insertion into. *)
-      let bb = append_block context "entry" the_function in
-      position_at_end bb builder;
-
-      try
-        let ret_val = codegen_expr body in
-</pre>
-</div>
-
-<p>Now we get to the point where the <tt>Codegen.builder</tt> is set up.  The
-first line creates a new
-<a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named
-"entry"), which is inserted into <tt>the_function</tt>.  The second line then
-tells the builder that new instructions should be inserted into the end of the
-new basic block.  Basic blocks in LLVM are an important part of functions that
-define the <a
-href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
-Since we don't have any control flow, our functions will only contain one
-block at this point.  We'll fix this in <a href="OCamlLangImpl5.html">Chapter
-5</a> :).</p>
-
-<div class="doc_code">
-<pre>
-        let ret_val = codegen_expr body in
-
-        (* Finish off the function. *)
-        let _ = build_ret ret_val builder in
-
-        (* Validate the generated code, checking for consistency. *)
-        Llvm_analysis.assert_valid_function the_function;
-
-        the_function
-</pre>
-</div>
-
-<p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt>
-method for the root expression of the function.  If no error happens, this emits
-code to compute the expression into the entry block and returns the value that
-was computed.  Assuming no error, we then create an LLVM <a
-href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
-Once the function is built, we call
-<tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM.  This
-function does a variety of consistency checks on the generated code, to
-determine if our compiler is doing everything right.  Using this is important:
-it can catch a lot of bugs.  Once the function is finished and validated, we
-return it.</p>
-
-<div class="doc_code">
-<pre>
-      with e ->
-        delete_function the_function;
-        raise e
-</pre>
-</div>
-
-<p>The only piece left here is handling of the error case.  For simplicity, we
-handle this by merely deleting the function we produced with the
-<tt>Llvm.delete_function</tt> method.  This allows the user to redefine a
-function that they incorrectly typed in before: if we didn't delete it, it
-would live in the symbol table, with a body, preventing future redefinition.</p>
-
-<p>This code does have a bug, though.  Since the <tt>Codegen.codegen_proto</tt>
-can return a previously defined forward declaration, our code can actually delete
-a forward declaration.  There are a number of ways to fix this bug, see what you
-can come up with!  Here is a testcase:</p>
-
-<div class="doc_code">
-<pre>
-extern foo(a b);     # ok, defines foo.
-def foo(a b) c;      # error, 'c' is invalid.
-def bar() foo(1, 2); # error, unknown function "foo"
-</pre>
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="driver">Driver Changes and Closing Thoughts</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-For now, code generation to LLVM doesn't really get us much, except that we can
-look at the pretty IR calls.  The sample code inserts calls to Codegen into the
-"<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR.  This gives a
-nice way to look at the LLVM IR for simple functions.  For example:
-</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>4+5</b>;
-Read top-level expression:
-define double @""() {
-entry:
-        %addtmp = fadd double 4.000000e+00, 5.000000e+00
-        ret double %addtmp
-}
-</pre>
-</div>
-
-<p>Note how the parser turns the top-level expression into anonymous functions
-for us.  This will be handy when we add <a href="OCamlLangImpl4.html#jit">JIT
-support</a> in the next chapter.  Also note that the code is very literally
-transcribed, no optimizations are being performed.  We will
-<a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly
-in the next chapter.</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b>
-Read function definition:
-define double @foo(double %a, double %b) {
-entry:
-        %multmp = fmul double %a, %a
-        %multmp1 = fmul double 2.000000e+00, %a
-        %multmp2 = fmul double %multmp1, %b
-        %addtmp = fadd double %multmp, %multmp2
-        %multmp3 = fmul double %b, %b
-        %addtmp4 = fadd double %addtmp, %multmp3
-        ret double %addtmp4
-}
-</pre>
-</div>
-
-<p>This shows some simple arithmetic. Notice the striking similarity to the
-LLVM builder calls that we use to create the instructions.</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
-Read function definition:
-define double @bar(double %a) {
-entry:
-        %calltmp = call double @foo(double %a, double 4.000000e+00)
-        %calltmp1 = call double @bar(double 3.133700e+04)
-        %addtmp = fadd double %calltmp, %calltmp1
-        ret double %addtmp
-}
-</pre>
-</div>
-
-<p>This shows some function calls.  Note that this function will take a long
-time to execute if you call it.  In the future we'll add conditional control
-flow to actually make recursion useful :).</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>extern cos(x);</b>
-Read extern:
-declare double @cos(double)
-
-ready> <b>cos(1.234);</b>
-Read top-level expression:
-define double @""() {
-entry:
-        %calltmp = call double @cos(double 1.234000e+00)
-        ret double %calltmp
-}
-</pre>
-</div>
-
-<p>This shows an extern for the libm "cos" function, and a call to it.</p>
-
-
-<div class="doc_code">
-<pre>
-ready> <b>^D</b>
-; ModuleID = 'my cool jit'
-
-define double @""() {
-entry:
-        %addtmp = fadd double 4.000000e+00, 5.000000e+00
-        ret double %addtmp
-}
-
-define double @foo(double %a, double %b) {
-entry:
-        %multmp = fmul double %a, %a
-        %multmp1 = fmul double 2.000000e+00, %a
-        %multmp2 = fmul double %multmp1, %b
-        %addtmp = fadd double %multmp, %multmp2
-        %multmp3 = fmul double %b, %b
-        %addtmp4 = fadd double %addtmp, %multmp3
-        ret double %addtmp4
-}
-
-define double @bar(double %a) {
-entry:
-        %calltmp = call double @foo(double %a, double 4.000000e+00)
-        %calltmp1 = call double @bar(double 3.133700e+04)
-        %addtmp = fadd double %calltmp, %calltmp1
-        ret double %addtmp
-}
-
-declare double @cos(double)
-
-define double @""() {
-entry:
-        %calltmp = call double @cos(double 1.234000e+00)
-        ret double %calltmp
-}
-</pre>
-</div>
-
-<p>When you quit the current demo, it dumps out the IR for the entire module
-generated.  Here you can see the big picture with all the functions referencing
-each other.</p>
-
-<p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
-describe how to <a href="OCamlLangImpl4.html">add JIT codegen and optimizer
-support</a> to this so we can actually start running code!</p>
-
-</div>
-
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-LLVM code generator.    Because this uses the LLVM libraries, we need to link
-them in.  To do this, we use the <a
-href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
-our makefile/command line about which options to use:</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-ocamlbuild toy.byte
-# Run
-./toy.byte
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<dl>
-<dt>_tags:</dt>
-<dd class="doc_code">
-<pre>
-<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
-<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
-</pre>
-</dd>
-
-<dt>myocamlbuild.ml:</dt>
-<dd class="doc_code">
-<pre>
-open Ocamlbuild_plugin;;
-
-ocaml_lib ~extern:true "llvm";;
-ocaml_lib ~extern:true "llvm_analysis";;
-
-flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
-</pre>
-</dd>
-
-<dt>token.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer Tokens
- *===----------------------------------------------------------------------===*)
-
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
-  (* commands *)
-  | Def | Extern
-
-  (* primary *)
-  | Ident of string | Number of float
-
-  (* unknown *)
-  | Kwd of char
-</pre>
-</dd>
-
-<dt>lexer.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
-  (* Skip any whitespace. *)
-  | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
-
-  (* identifier: [a-zA-Z][a-zA-Z0-9] *)
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-
-  (* number: [0-9.]+ *)
-  | [< ' ('0' .. '9' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-
-  (* Comment until end of line. *)
-  | [< ' ('#'); stream >] ->
-      lex_comment stream
-
-  (* Otherwise, just return the character as its ascii value. *)
-  | [< 'c; stream >] ->
-      [< 'Token.Kwd c; lex stream >]
-
-  (* end of stream. *)
-  | [< >] -> [< >]
-
-and lex_number buffer = parser
-  | [< ' ('0' .. '9' | '.' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-  | [< stream=lex >] ->
-      [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
-
-and lex_ident buffer = parser
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-  | [< stream=lex >] ->
-      match Buffer.contents buffer with
-      | "def" -> [< 'Token.Def; stream >]
-      | "extern" -> [< 'Token.Extern; stream >]
-      | id -> [< 'Token.Ident id; stream >]
-
-and lex_comment = parser
-  | [< ' ('\n'); stream=lex >] -> stream
-  | [< 'c; e=lex_comment >] -> e
-  | [< >] -> [< >]
-</pre>
-</dd>
-
-<dt>ast.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Abstract Syntax Tree (aka Parse Tree)
- *===----------------------------------------------------------------------===*)
-
-(* expr - Base type for all expression nodes. *)
-type expr =
-  (* variant for numeric literals like "1.0". *)
-  | Number of float
-
-  (* variant for referencing a variable, like "a". *)
-  | Variable of string
-
-  (* variant for a binary operator. *)
-  | Binary of char * expr * expr
-
-  (* variant for function calls. *)
-  | Call of string * expr array
-
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</dd>
-
-<dt>parser.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===---------------------------------------------------------------------===
- * Parser
- *===---------------------------------------------------------------------===*)
-
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
-
-(* primary
- *   ::= identifier
- *   ::= numberexpr
- *   ::= parenexpr *)
-let rec parse_primary = parser
-  (* numberexpr ::= number *)
-  | [< 'Token.Number n >] -> Ast.Number n
-
-  (* parenexpr ::= '(' expression ')' *)
-  | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
-
-  (* identifierexpr
-   *   ::= identifier
-   *   ::= identifier '(' argumentexpr ')' *)
-  | [< 'Token.Ident id; stream >] ->
-      let rec parse_args accumulator = parser
-        | [< e=parse_expr; stream >] ->
-            begin parser
-              | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
-              | [< >] -> e :: accumulator
-            end stream
-        | [< >] -> accumulator
-      in
-      let rec parse_ident id = parser
-        (* Call. *)
-        | [< 'Token.Kwd '(';
-             args=parse_args [];
-             'Token.Kwd ')' ?? "expected ')'">] ->
-            Ast.Call (id, Array.of_list (List.rev args))
-
-        (* Simple variable ref. *)
-        | [< >] -> Ast.Variable id
-      in
-      parse_ident id stream
-
-  | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
-
-(* binoprhs
- *   ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
-  match Stream.peek stream with
-  (* If this is a binop, find its precedence. *)
-  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
-      let token_prec = precedence c in
-
-      (* If this is a binop that binds at least as tightly as the current binop,
-       * consume it, otherwise we are done. *)
-      if token_prec < expr_prec then lhs else begin
-        (* Eat the binop. *)
-        Stream.junk stream;
-
-        (* Parse the primary expression after the binary operator. *)
-        let rhs = parse_primary stream in
-
-        (* Okay, we know this is a binop. *)
-        let rhs =
-          match Stream.peek stream with
-          | Some (Token.Kwd c2) ->
-              (* If BinOp binds less tightly with rhs than the operator after
-               * rhs, let the pending operator take rhs as its lhs. *)
-              let next_prec = precedence c2 in
-              if token_prec < next_prec
-              then parse_bin_rhs (token_prec + 1) rhs stream
-              else rhs
-          | _ -> rhs
-        in
-
-        (* Merge lhs/rhs. *)
-        let lhs = Ast.Binary (c, lhs, rhs) in
-        parse_bin_rhs expr_prec lhs stream
-      end
-  | _ -> lhs
-
-(* expression
- *   ::= primary binoprhs *)
-and parse_expr = parser
-  | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
-
-(* prototype
- *   ::= id '(' id* ')' *)
-let parse_prototype =
-  let rec parse_args accumulator = parser
-    | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
-    | [< >] -> accumulator
-  in
-
-  parser
-  | [< 'Token.Ident id;
-       'Token.Kwd '(' ?? "expected '(' in prototype";
-       args=parse_args [];
-       'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
-      (* success. *)
-      Ast.Prototype (id, Array.of_list (List.rev args))
-
-  | [< >] ->
-      raise (Stream.Error "expected function name in prototype")
-
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
-  | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
-      Ast.Function (p, e)
-
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
-  | [< e=parse_expr >] ->
-      (* Make an anonymous proto. *)
-      Ast.Function (Ast.Prototype ("", [||]), e)
-
-(*  external ::= 'extern' prototype *)
-let parse_extern = parser
-  | [< 'Token.Extern; e=parse_prototype >] -> e
-</pre>
-</dd>
-
-<dt>codegen.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Code Generation
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-
-exception Error of string
-
-let context = global_context ()
-let the_module = create_module context "my cool jit"
-let builder = builder context
-let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
-let double_type = double_type context
-
-let rec codegen_expr = function
-  | Ast.Number n -> const_float double_type n
-  | Ast.Variable name ->
-      (try Hashtbl.find named_values name with
-        | Not_found -> raise (Error "unknown variable name"))
-  | Ast.Binary (op, lhs, rhs) ->
-      let lhs_val = codegen_expr lhs in
-      let rhs_val = codegen_expr rhs in
-      begin
-        match op with
-        | '+' -> build_add lhs_val rhs_val "addtmp" builder
-        | '-' -> build_sub lhs_val rhs_val "subtmp" builder
-        | '*' -> build_mul lhs_val rhs_val "multmp" builder
-        | '<' ->
-            (* Convert bool 0/1 to double 0.0 or 1.0 *)
-            let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
-            build_uitofp i double_type "booltmp" builder
-        | _ -> raise (Error "invalid binary operator")
-      end
-  | Ast.Call (callee, args) ->
-      (* Look up the name in the module table. *)
-      let callee =
-        match lookup_function callee the_module with
-        | Some callee -> callee
-        | None -> raise (Error "unknown function referenced")
-      in
-      let params = params callee in
-
-      (* If argument mismatch error. *)
-      if Array.length params == Array.length args then () else
-        raise (Error "incorrect # arguments passed");
-      let args = Array.map codegen_expr args in
-      build_call callee args "calltmp" builder
-
-let codegen_proto = function
-  | Ast.Prototype (name, args) ->
-      (* Make the function type: double(double,double) etc. *)
-      let doubles = Array.make (Array.length args) double_type in
-      let ft = function_type double_type doubles in
-      let f =
-        match lookup_function name the_module with
-        | None -> declare_function name ft the_module
-
-        (* If 'f' conflicted, there was already something named 'name'. If it
-         * has a body, don't allow redefinition or reextern. *)
-        | Some f ->
-            (* If 'f' already has a body, reject this. *)
-            if block_begin f <> At_end f then
-              raise (Error "redefinition of function");
-
-            (* If 'f' took a different number of arguments, reject. *)
-            if element_type (type_of f) <> ft then
-              raise (Error "redefinition of function with different # args");
-            f
-      in
-
-      (* Set names for all arguments. *)
-      Array.iteri (fun i a ->
-        let n = args.(i) in
-        set_value_name n a;
-        Hashtbl.add named_values n a;
-      ) (params f);
-      f
-
-let codegen_func = function
-  | Ast.Function (proto, body) ->
-      Hashtbl.clear named_values;
-      let the_function = codegen_proto proto in
-
-      (* Create a new basic block to start insertion into. *)
-      let bb = append_block context "entry" the_function in
-      position_at_end bb builder;
-
-      try
-        let ret_val = codegen_expr body in
-
-        (* Finish off the function. *)
-        let _ = build_ret ret_val builder in
-
-        (* Validate the generated code, checking for consistency. *)
-        Llvm_analysis.assert_valid_function the_function;
-
-        the_function
-      with e ->
-        delete_function the_function;
-        raise e
-</pre>
-</dd>
-
-<dt>toplevel.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Top-Level parsing and JIT Driver
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop stream =
-  match Stream.peek stream with
-  | None -> ()
-
-  (* ignore top-level semicolons. *)
-  | Some (Token.Kwd ';') ->
-      Stream.junk stream;
-      main_loop stream
-
-  | Some token ->
-      begin
-        try match token with
-        | Token.Def ->
-            let e = Parser.parse_definition stream in
-            print_endline "parsed a function definition.";
-            dump_value (Codegen.codegen_func e);
-        | Token.Extern ->
-            let e = Parser.parse_extern stream in
-            print_endline "parsed an extern.";
-            dump_value (Codegen.codegen_proto e);
-        | _ ->
-            (* Evaluate a top-level expression into an anonymous function. *)
-            let e = Parser.parse_toplevel stream in
-            print_endline "parsed a top-level expr";
-            dump_value (Codegen.codegen_func e);
-        with Stream.Error s | Codegen.Error s ->
-          (* Skip token for error recovery. *)
-          Stream.junk stream;
-          print_endline s;
-      end;
-      print_string "ready> "; flush stdout;
-      main_loop stream
-</pre>
-</dd>
-
-<dt>toy.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Main driver code.
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-
-let main () =
-  (* Install standard binary operators.
-   * 1 is the lowest precedence. *)
-  Hashtbl.add Parser.binop_precedence '<' 10;
-  Hashtbl.add Parser.binop_precedence '+' 20;
-  Hashtbl.add Parser.binop_precedence '-' 20;
-  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
-
-  (* Prime the first token. *)
-  print_string "ready> "; flush stdout;
-  let stream = Lexer.lex (Stream.of_channel stdin) in
-
-  (* Run the main "interpreter loop" now. *)
-  Toplevel.main_loop stream;
-
-  (* Print out all the generated code. *)
-  dump_module Codegen.the_module
-;;
-
-main ()
-</pre>
-</dd>
-</dl>
-
-<a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/OCamlLangImpl3.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl3.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl3.rst (added)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl3.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,964 @@
+========================================
+Kaleidoscope: Code generation to LLVM IR
+========================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_ and `Erick
+Tryzelaar <mailto:idadesub at users.sourceforge.net>`_
+
+Chapter 3 Introduction
+======================
+
+Welcome to Chapter 3 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. This chapter shows you how to transform
+the `Abstract Syntax Tree <OCamlLangImpl2.html>`_, built in Chapter 2,
+into LLVM IR. This will teach you a little bit about how LLVM does
+things, as well as demonstrate how easy it is to use. It's much more
+work to build a lexer and parser than it is to generate LLVM IR code. :)
+
+**Please note**: the code in this chapter and later require LLVM 2.3 or
+LLVM SVN to work. LLVM 2.2 and before will not work with it.
+
+Code Generation Setup
+=====================
+
+In order to generate LLVM IR, we want some simple setup to get started.
+First we define virtual code generation (codegen) methods in each AST
+class:
+
+.. code-block:: ocaml
+
+    let rec codegen_expr = function
+      | Ast.Number n -> ...
+      | Ast.Variable name -> ...
+
+The ``Codegen.codegen_expr`` function says to emit IR for that AST node
+along with all the things it depends on, and they all return an LLVM
+Value object. "Value" is the class used to represent a "`Static Single
+Assignment
+(SSA) <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+register" or "SSA value" in LLVM. The most distinct aspect of SSA values
+is that their value is computed as the related instruction executes, and
+it does not get a new value until (and if) the instruction re-executes.
+In other words, there is no way to "change" an SSA value. For more
+information, please read up on `Static Single
+Assignment <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+- the concepts are really quite natural once you grok them.
+
+The second thing we want is an "Error" exception like we used for the
+parser, which will be used to report errors found during code generation
+(for example, use of an undeclared parameter):
+
+.. code-block:: ocaml
+
+    exception Error of string
+
+    let context = global_context ()
+    let the_module = create_module context "my cool jit"
+    let builder = builder context
+    let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+    let double_type = double_type context
+
+The static variables will be used during code generation.
+``Codgen.the_module`` is the LLVM construct that contains all of the
+functions and global variables in a chunk of code. In many ways, it is
+the top-level structure that the LLVM IR uses to contain code.
+
+The ``Codegen.builder`` object is a helper object that makes it easy to
+generate LLVM instructions. Instances of the
+```IRBuilder`` <http://llvm.org/doxygen/IRBuilder_8h-source.html>`_
+class keep track of the current place to insert instructions and has
+methods to create new instructions.
+
+The ``Codegen.named_values`` map keeps track of which values are defined
+in the current scope and what their LLVM representation is. (In other
+words, it is a symbol table for the code). In this form of Kaleidoscope,
+the only things that can be referenced are function parameters. As such,
+function parameters will be in this map when generating code for their
+function body.
+
+With these basics in place, we can start talking about how to generate
+code for each expression. Note that this assumes that the
+``Codgen.builder`` has been set up to generate code *into* something.
+For now, we'll assume that this has already been done, and we'll just
+use it to emit code.
+
+Expression Code Generation
+==========================
+
+Generating LLVM code for expression nodes is very straightforward: less
+than 30 lines of commented code for all four of our expression nodes.
+First we'll do numeric literals:
+
+.. code-block:: ocaml
+
+      | Ast.Number n -> const_float double_type n
+
+In the LLVM IR, numeric constants are represented with the
+``ConstantFP`` class, which holds the numeric value in an ``APFloat``
+internally (``APFloat`` has the capability of holding floating point
+constants of Arbitrary Precision). This code basically just creates
+and returns a ``ConstantFP``. Note that in the LLVM IR that constants
+are all uniqued together and shared. For this reason, the API uses "the
+foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".
+
+.. code-block:: ocaml
+
+      | Ast.Variable name ->
+          (try Hashtbl.find named_values name with
+            | Not_found -> raise (Error "unknown variable name"))
+
+References to variables are also quite simple using LLVM. In the simple
+version of Kaleidoscope, we assume that the variable has already been
+emitted somewhere and its value is available. In practice, the only
+values that can be in the ``Codegen.named_values`` map are function
+arguments. This code simply checks to see that the specified name is in
+the map (if not, an unknown variable is being referenced) and returns
+the value for it. In future chapters, we'll add support for `loop
+induction variables <LangImpl5.html#for>`_ in the symbol table, and for
+`local variables <LangImpl7.html#localvars>`_.
+
+.. code-block:: ocaml
+
+      | Ast.Binary (op, lhs, rhs) ->
+          let lhs_val = codegen_expr lhs in
+          let rhs_val = codegen_expr rhs in
+          begin
+            match op with
+            | '+' -> build_fadd lhs_val rhs_val "addtmp" builder
+            | '-' -> build_fsub lhs_val rhs_val "subtmp" builder
+            | '*' -> build_fmul lhs_val rhs_val "multmp" builder
+            | '<' ->
+                (* Convert bool 0/1 to double 0.0 or 1.0 *)
+                let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+                build_uitofp i double_type "booltmp" builder
+            | _ -> raise (Error "invalid binary operator")
+          end
+
+Binary operators start to get more interesting. The basic idea here is
+that we recursively emit code for the left-hand side of the expression,
+then the right-hand side, then we compute the result of the binary
+expression. In this code, we do a simple switch on the opcode to create
+the right LLVM instruction.
+
+In the example above, the LLVM builder class is starting to show its
+value. IRBuilder knows where to insert the newly created instruction,
+all you have to do is specify what instruction to create (e.g. with
+``Llvm.create_add``), which operands to use (``lhs`` and ``rhs`` here)
+and optionally provide a name for the generated instruction.
+
+One nice thing about LLVM is that the name is just a hint. For instance,
+if the code above emits multiple "addtmp" variables, LLVM will
+automatically provide each one with an increasing, unique numeric
+suffix. Local value names for instructions are purely optional, but it
+makes it much easier to read the IR dumps.
+
+`LLVM instructions <../LangRef.html#instref>`_ are constrained by strict
+rules: for example, the Left and Right operators of an `add
+instruction <../LangRef.html#i_add>`_ must have the same type, and the
+result type of the add must match the operand types. Because all values
+in Kaleidoscope are doubles, this makes for very simple code for add,
+sub and mul.
+
+On the other hand, LLVM specifies that the `fcmp
+instruction <../LangRef.html#i_fcmp>`_ always returns an 'i1' value (a
+one bit integer). The problem with this is that Kaleidoscope wants the
+value to be a 0.0 or 1.0 value. In order to get these semantics, we
+combine the fcmp instruction with a `uitofp
+instruction <../LangRef.html#i_uitofp>`_. This instruction converts its
+input integer into a floating point value by treating the input as an
+unsigned value. In contrast, if we used the `sitofp
+instruction <../LangRef.html#i_sitofp>`_, the Kaleidoscope '<' operator
+would return 0.0 and -1.0, depending on the input value.
+
+.. code-block:: ocaml
+
+      | Ast.Call (callee, args) ->
+          (* Look up the name in the module table. *)
+          let callee =
+            match lookup_function callee the_module with
+            | Some callee -> callee
+            | None -> raise (Error "unknown function referenced")
+          in
+          let params = params callee in
+
+          (* If argument mismatch error. *)
+          if Array.length params == Array.length args then () else
+            raise (Error "incorrect # arguments passed");
+          let args = Array.map codegen_expr args in
+          build_call callee args "calltmp" builder
+
+Code generation for function calls is quite straightforward with LLVM.
+The code above initially does a function name lookup in the LLVM
+Module's symbol table. Recall that the LLVM Module is the container that
+holds all of the functions we are JIT'ing. By giving each function the
+same name as what the user specifies, we can use the LLVM symbol table
+to resolve function names for us.
+
+Once we have the function to call, we recursively codegen each argument
+that is to be passed in, and create an LLVM `call
+instruction <../LangRef.html#i_call>`_. Note that LLVM uses the native C
+calling conventions by default, allowing these calls to also call into
+standard library functions like "sin" and "cos", with no additional
+effort.
+
+This wraps up our handling of the four basic expressions that we have so
+far in Kaleidoscope. Feel free to go in and add some more. For example,
+by browsing the `LLVM language reference <../LangRef.html>`_ you'll find
+several other interesting instructions that are really easy to plug into
+our basic framework.
+
+Function Code Generation
+========================
+
+Code generation for prototypes and functions must handle a number of
+details, which make their code less beautiful than expression code
+generation, but allows us to illustrate some important points. First,
+lets talk about code generation for prototypes: they are used both for
+function bodies and external function declarations. The code starts
+with:
+
+.. code-block:: ocaml
+
+    let codegen_proto = function
+      | Ast.Prototype (name, args) ->
+          (* Make the function type: double(double,double) etc. *)
+          let doubles = Array.make (Array.length args) double_type in
+          let ft = function_type double_type doubles in
+          let f =
+            match lookup_function name the_module with
+
+This code packs a lot of power into a few lines. Note first that this
+function returns a "Function\*" instead of a "Value\*" (although at the
+moment they both are modeled by ``llvalue`` in ocaml). Because a
+"prototype" really talks about the external interface for a function
+(not the value computed by an expression), it makes sense for it to
+return the LLVM Function it corresponds to when codegen'd.
+
+The call to ``Llvm.function_type`` creates the ``Llvm.llvalue`` that
+should be used for a given Prototype. Since all function arguments in
+Kaleidoscope are of type double, the first line creates a vector of "N"
+LLVM double types. It then uses the ``Llvm.function_type`` method to
+create a function type that takes "N" doubles as arguments, returns one
+double as a result, and that is not vararg (that uses the function
+``Llvm.var_arg_function_type``). Note that Types in LLVM are uniqued
+just like ``Constant``'s are, so you don't "new" a type, you "get" it.
+
+The final line above checks if the function has already been defined in
+``Codegen.the_module``. If not, we will create it.
+
+.. code-block:: ocaml
+
+            | None -> declare_function name ft the_module
+
+This indicates the type and name to use, as well as which module to
+insert into. By default we assume a function has
+``Llvm.Linkage.ExternalLinkage``. "`external
+linkage <LangRef.html#linkage>`_" means that the function may be defined
+outside the current module and/or that it is callable by functions
+outside the module. The "``name``" passed in is the name the user
+specified: this name is registered in "``Codegen.the_module``"s symbol
+table, which is used by the function call code above.
+
+In Kaleidoscope, I choose to allow redefinitions of functions in two
+cases: first, we want to allow 'extern'ing a function more than once, as
+long as the prototypes for the externs match (since all arguments have
+the same type, we just have to check that the number of arguments
+match). Second, we want to allow 'extern'ing a function and then
+defining a body for it. This is useful when defining mutually recursive
+functions.
+
+.. code-block:: ocaml
+
+            (* If 'f' conflicted, there was already something named 'name'. If it
+             * has a body, don't allow redefinition or reextern. *)
+            | Some f ->
+                (* If 'f' already has a body, reject this. *)
+                if Array.length (basic_blocks f) == 0 then () else
+                  raise (Error "redefinition of function");
+
+                (* If 'f' took a different number of arguments, reject. *)
+                if Array.length (params f) == Array.length args then () else
+                  raise (Error "redefinition of function with different # args");
+                f
+          in
+
+In order to verify the logic above, we first check to see if the
+pre-existing function is "empty". In this case, empty means that it has
+no basic blocks in it, which means it has no body. If it has no body, it
+is a forward declaration. Since we don't allow anything after a full
+definition of the function, the code rejects this case. If the previous
+reference to a function was an 'extern', we simply verify that the
+number of arguments for that definition and this one match up. If not,
+we emit an error.
+
+.. code-block:: ocaml
+
+          (* Set names for all arguments. *)
+          Array.iteri (fun i a ->
+            let n = args.(i) in
+            set_value_name n a;
+            Hashtbl.add named_values n a;
+          ) (params f);
+          f
+
+The last bit of code for prototypes loops over all of the arguments in
+the function, setting the name of the LLVM Argument objects to match,
+and registering the arguments in the ``Codegen.named_values`` map for
+future use by the ``Ast.Variable`` variant. Once this is set up, it
+returns the Function object to the caller. Note that we don't check for
+conflicting argument names here (e.g. "extern foo(a b a)"). Doing so
+would be very straight-forward with the mechanics we have already used
+above.
+
+.. code-block:: ocaml
+
+    let codegen_func = function
+      | Ast.Function (proto, body) ->
+          Hashtbl.clear named_values;
+          let the_function = codegen_proto proto in
+
+Code generation for function definitions starts out simply enough: we
+just codegen the prototype (Proto) and verify that it is ok. We then
+clear out the ``Codegen.named_values`` map to make sure that there isn't
+anything in it from the last function we compiled. Code generation of
+the prototype ensures that there is an LLVM Function object that is
+ready to go for us.
+
+.. code-block:: ocaml
+
+          (* Create a new basic block to start insertion into. *)
+          let bb = append_block context "entry" the_function in
+          position_at_end bb builder;
+
+          try
+            let ret_val = codegen_expr body in
+
+Now we get to the point where the ``Codegen.builder`` is set up. The
+first line creates a new `basic
+block <http://en.wikipedia.org/wiki/Basic_block>`_ (named "entry"),
+which is inserted into ``the_function``. The second line then tells the
+builder that new instructions should be inserted into the end of the new
+basic block. Basic blocks in LLVM are an important part of functions
+that define the `Control Flow
+Graph <http://en.wikipedia.org/wiki/Control_flow_graph>`_. Since we
+don't have any control flow, our functions will only contain one block
+at this point. We'll fix this in `Chapter 5 <OCamlLangImpl5.html>`_ :).
+
+.. code-block:: ocaml
+
+            let ret_val = codegen_expr body in
+
+            (* Finish off the function. *)
+            let _ = build_ret ret_val builder in
+
+            (* Validate the generated code, checking for consistency. *)
+            Llvm_analysis.assert_valid_function the_function;
+
+            the_function
+
+Once the insertion point is set up, we call the ``Codegen.codegen_func``
+method for the root expression of the function. If no error happens,
+this emits code to compute the expression into the entry block and
+returns the value that was computed. Assuming no error, we then create
+an LLVM `ret instruction <../LangRef.html#i_ret>`_, which completes the
+function. Once the function is built, we call
+``Llvm_analysis.assert_valid_function``, which is provided by LLVM. This
+function does a variety of consistency checks on the generated code, to
+determine if our compiler is doing everything right. Using this is
+important: it can catch a lot of bugs. Once the function is finished and
+validated, we return it.
+
+.. code-block:: ocaml
+
+          with e ->
+            delete_function the_function;
+            raise e
+
+The only piece left here is handling of the error case. For simplicity,
+we handle this by merely deleting the function we produced with the
+``Llvm.delete_function`` method. This allows the user to redefine a
+function that they incorrectly typed in before: if we didn't delete it,
+it would live in the symbol table, with a body, preventing future
+redefinition.
+
+This code does have a bug, though. Since the ``Codegen.codegen_proto``
+can return a previously defined forward declaration, our code can
+actually delete a forward declaration. There are a number of ways to fix
+this bug, see what you can come up with! Here is a testcase:
+
+::
+
+    extern foo(a b);     # ok, defines foo.
+    def foo(a b) c;      # error, 'c' is invalid.
+    def bar() foo(1, 2); # error, unknown function "foo"
+
+Driver Changes and Closing Thoughts
+===================================
+
+For now, code generation to LLVM doesn't really get us much, except that
+we can look at the pretty IR calls. The sample code inserts calls to
+Codegen into the "``Toplevel.main_loop``", and then dumps out the LLVM
+IR. This gives a nice way to look at the LLVM IR for simple functions.
+For example:
+
+::
+
+    ready> 4+5;
+    Read top-level expression:
+    define double @""() {
+    entry:
+            %addtmp = fadd double 4.000000e+00, 5.000000e+00
+            ret double %addtmp
+    }
+
+Note how the parser turns the top-level expression into anonymous
+functions for us. This will be handy when we add `JIT
+support <OCamlLangImpl4.html#jit>`_ in the next chapter. Also note that
+the code is very literally transcribed, no optimizations are being
+performed. We will `add
+optimizations <OCamlLangImpl4.html#trivialconstfold>`_ explicitly in the
+next chapter.
+
+::
+
+    ready> def foo(a b) a*a + 2*a*b + b*b;
+    Read function definition:
+    define double @foo(double %a, double %b) {
+    entry:
+            %multmp = fmul double %a, %a
+            %multmp1 = fmul double 2.000000e+00, %a
+            %multmp2 = fmul double %multmp1, %b
+            %addtmp = fadd double %multmp, %multmp2
+            %multmp3 = fmul double %b, %b
+            %addtmp4 = fadd double %addtmp, %multmp3
+            ret double %addtmp4
+    }
+
+This shows some simple arithmetic. Notice the striking similarity to the
+LLVM builder calls that we use to create the instructions.
+
+::
+
+    ready> def bar(a) foo(a, 4.0) + bar(31337);
+    Read function definition:
+    define double @bar(double %a) {
+    entry:
+            %calltmp = call double @foo(double %a, double 4.000000e+00)
+            %calltmp1 = call double @bar(double 3.133700e+04)
+            %addtmp = fadd double %calltmp, %calltmp1
+            ret double %addtmp
+    }
+
+This shows some function calls. Note that this function will take a long
+time to execute if you call it. In the future we'll add conditional
+control flow to actually make recursion useful :).
+
+::
+
+    ready> extern cos(x);
+    Read extern:
+    declare double @cos(double)
+
+    ready> cos(1.234);
+    Read top-level expression:
+    define double @""() {
+    entry:
+            %calltmp = call double @cos(double 1.234000e+00)
+            ret double %calltmp
+    }
+
+This shows an extern for the libm "cos" function, and a call to it.
+
+::
+
+    ready> ^D
+    ; ModuleID = 'my cool jit'
+
+    define double @""() {
+    entry:
+            %addtmp = fadd double 4.000000e+00, 5.000000e+00
+            ret double %addtmp
+    }
+
+    define double @foo(double %a, double %b) {
+    entry:
+            %multmp = fmul double %a, %a
+            %multmp1 = fmul double 2.000000e+00, %a
+            %multmp2 = fmul double %multmp1, %b
+            %addtmp = fadd double %multmp, %multmp2
+            %multmp3 = fmul double %b, %b
+            %addtmp4 = fadd double %addtmp, %multmp3
+            ret double %addtmp4
+    }
+
+    define double @bar(double %a) {
+    entry:
+            %calltmp = call double @foo(double %a, double 4.000000e+00)
+            %calltmp1 = call double @bar(double 3.133700e+04)
+            %addtmp = fadd double %calltmp, %calltmp1
+            ret double %addtmp
+    }
+
+    declare double @cos(double)
+
+    define double @""() {
+    entry:
+            %calltmp = call double @cos(double 1.234000e+00)
+            ret double %calltmp
+    }
+
+When you quit the current demo, it dumps out the IR for the entire
+module generated. Here you can see the big picture with all the
+functions referencing each other.
+
+This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
+we'll describe how to `add JIT codegen and optimizer
+support <OCamlLangImpl4.html>`_ to this so we can actually start running
+code!
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM code generator. Because this uses the LLVM libraries, we need
+to link them in. To do this, we use the
+`llvm-config <http://llvm.org/cmds/llvm-config.html>`_ tool to inform
+our makefile/command line about which options to use:
+
+.. code-block:: bash
+
+    # Compile
+    ocamlbuild toy.byte
+    # Run
+    ./toy.byte
+
+Here is the code:
+
+\_tags:
+    ::
+
+        <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
+        <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
+
+myocamlbuild.ml:
+    .. code-block:: ocaml
+
+        open Ocamlbuild_plugin;;
+
+        ocaml_lib ~extern:true "llvm";;
+        ocaml_lib ~extern:true "llvm_analysis";;
+
+        flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
+
+token.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer Tokens
+         *===----------------------------------------------------------------------===*)
+
+        (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+         * these others for known things. *)
+        type token =
+          (* commands *)
+          | Def | Extern
+
+          (* primary *)
+          | Ident of string | Number of float
+
+          (* unknown *)
+          | Kwd of char
+
+lexer.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer
+         *===----------------------------------------------------------------------===*)
+
+        let rec lex = parser
+          (* Skip any whitespace. *)
+          | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+          (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+
+          (* number: [0-9.]+ *)
+          | [< ' ('0' .. '9' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+
+          (* Comment until end of line. *)
+          | [< ' ('#'); stream >] ->
+              lex_comment stream
+
+          (* Otherwise, just return the character as its ascii value. *)
+          | [< 'c; stream >] ->
+              [< 'Token.Kwd c; lex stream >]
+
+          (* end of stream. *)
+          | [< >] -> [< >]
+
+        and lex_number buffer = parser
+          | [< ' ('0' .. '9' | '.' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+          | [< stream=lex >] ->
+              [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+        and lex_ident buffer = parser
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+          | [< stream=lex >] ->
+              match Buffer.contents buffer with
+              | "def" -> [< 'Token.Def; stream >]
+              | "extern" -> [< 'Token.Extern; stream >]
+              | id -> [< 'Token.Ident id; stream >]
+
+        and lex_comment = parser
+          | [< ' ('\n'); stream=lex >] -> stream
+          | [< 'c; e=lex_comment >] -> e
+          | [< >] -> [< >]
+
+ast.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Abstract Syntax Tree (aka Parse Tree)
+         *===----------------------------------------------------------------------===*)
+
+        (* expr - Base type for all expression nodes. *)
+        type expr =
+          (* variant for numeric literals like "1.0". *)
+          | Number of float
+
+          (* variant for referencing a variable, like "a". *)
+          | Variable of string
+
+          (* variant for a binary operator. *)
+          | Binary of char * expr * expr
+
+          (* variant for function calls. *)
+          | Call of string * expr array
+
+        (* proto - This type represents the "prototype" for a function, which captures
+         * its name, and its argument names (thus implicitly the number of arguments the
+         * function takes). *)
+        type proto = Prototype of string * string array
+
+        (* func - This type represents a function definition itself. *)
+        type func = Function of proto * expr
+
+parser.ml:
+    .. code-block:: ocaml
+
+        (*===---------------------------------------------------------------------===
+         * Parser
+         *===---------------------------------------------------------------------===*)
+
+        (* binop_precedence - This holds the precedence for each binary operator that is
+         * defined *)
+        let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+        (* precedence - Get the precedence of the pending binary operator token. *)
+        let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+        (* primary
+         *   ::= identifier
+         *   ::= numberexpr
+         *   ::= parenexpr *)
+        let rec parse_primary = parser
+          (* numberexpr ::= number *)
+          | [< 'Token.Number n >] -> Ast.Number n
+
+          (* parenexpr ::= '(' expression ')' *)
+          | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+          (* identifierexpr
+           *   ::= identifier
+           *   ::= identifier '(' argumentexpr ')' *)
+          | [< 'Token.Ident id; stream >] ->
+              let rec parse_args accumulator = parser
+                | [< e=parse_expr; stream >] ->
+                    begin parser
+                      | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                      | [< >] -> e :: accumulator
+                    end stream
+                | [< >] -> accumulator
+              in
+              let rec parse_ident id = parser
+                (* Call. *)
+                | [< 'Token.Kwd '(';
+                     args=parse_args [];
+                     'Token.Kwd ')' ?? "expected ')'">] ->
+                    Ast.Call (id, Array.of_list (List.rev args))
+
+                (* Simple variable ref. *)
+                | [< >] -> Ast.Variable id
+              in
+              parse_ident id stream
+
+          | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+        (* binoprhs
+         *   ::= ('+' primary)* *)
+        and parse_bin_rhs expr_prec lhs stream =
+          match Stream.peek stream with
+          (* If this is a binop, find its precedence. *)
+          | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+              let token_prec = precedence c in
+
+              (* If this is a binop that binds at least as tightly as the current binop,
+               * consume it, otherwise we are done. *)
+              if token_prec < expr_prec then lhs else begin
+                (* Eat the binop. *)
+                Stream.junk stream;
+
+                (* Parse the primary expression after the binary operator. *)
+                let rhs = parse_primary stream in
+
+                (* Okay, we know this is a binop. *)
+                let rhs =
+                  match Stream.peek stream with
+                  | Some (Token.Kwd c2) ->
+                      (* If BinOp binds less tightly with rhs than the operator after
+                       * rhs, let the pending operator take rhs as its lhs. *)
+                      let next_prec = precedence c2 in
+                      if token_prec < next_prec
+                      then parse_bin_rhs (token_prec + 1) rhs stream
+                      else rhs
+                  | _ -> rhs
+                in
+
+                (* Merge lhs/rhs. *)
+                let lhs = Ast.Binary (c, lhs, rhs) in
+                parse_bin_rhs expr_prec lhs stream
+              end
+          | _ -> lhs
+
+        (* expression
+         *   ::= primary binoprhs *)
+        and parse_expr = parser
+          | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+        (* prototype
+         *   ::= id '(' id* ')' *)
+        let parse_prototype =
+          let rec parse_args accumulator = parser
+            | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+            | [< >] -> accumulator
+          in
+
+          parser
+          | [< 'Token.Ident id;
+               'Token.Kwd '(' ?? "expected '(' in prototype";
+               args=parse_args [];
+               'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+              (* success. *)
+              Ast.Prototype (id, Array.of_list (List.rev args))
+
+          | [< >] ->
+              raise (Stream.Error "expected function name in prototype")
+
+        (* definition ::= 'def' prototype expression *)
+        let parse_definition = parser
+          | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+              Ast.Function (p, e)
+
+        (* toplevelexpr ::= expression *)
+        let parse_toplevel = parser
+          | [< e=parse_expr >] ->
+              (* Make an anonymous proto. *)
+              Ast.Function (Ast.Prototype ("", [||]), e)
+
+        (*  external ::= 'extern' prototype *)
+        let parse_extern = parser
+          | [< 'Token.Extern; e=parse_prototype >] -> e
+
+codegen.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Code Generation
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+
+        exception Error of string
+
+        let context = global_context ()
+        let the_module = create_module context "my cool jit"
+        let builder = builder context
+        let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+        let double_type = double_type context
+
+        let rec codegen_expr = function
+          | Ast.Number n -> const_float double_type n
+          | Ast.Variable name ->
+              (try Hashtbl.find named_values name with
+                | Not_found -> raise (Error "unknown variable name"))
+          | Ast.Binary (op, lhs, rhs) ->
+              let lhs_val = codegen_expr lhs in
+              let rhs_val = codegen_expr rhs in
+              begin
+                match op with
+                | '+' -> build_add lhs_val rhs_val "addtmp" builder
+                | '-' -> build_sub lhs_val rhs_val "subtmp" builder
+                | '*' -> build_mul lhs_val rhs_val "multmp" builder
+                | '<' ->
+                    (* Convert bool 0/1 to double 0.0 or 1.0 *)
+                    let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+                    build_uitofp i double_type "booltmp" builder
+                | _ -> raise (Error "invalid binary operator")
+              end
+          | Ast.Call (callee, args) ->
+              (* Look up the name in the module table. *)
+              let callee =
+                match lookup_function callee the_module with
+                | Some callee -> callee
+                | None -> raise (Error "unknown function referenced")
+              in
+              let params = params callee in
+
+              (* If argument mismatch error. *)
+              if Array.length params == Array.length args then () else
+                raise (Error "incorrect # arguments passed");
+              let args = Array.map codegen_expr args in
+              build_call callee args "calltmp" builder
+
+        let codegen_proto = function
+          | Ast.Prototype (name, args) ->
+              (* Make the function type: double(double,double) etc. *)
+              let doubles = Array.make (Array.length args) double_type in
+              let ft = function_type double_type doubles in
+              let f =
+                match lookup_function name the_module with
+                | None -> declare_function name ft the_module
+
+                (* If 'f' conflicted, there was already something named 'name'. If it
+                 * has a body, don't allow redefinition or reextern. *)
+                | Some f ->
+                    (* If 'f' already has a body, reject this. *)
+                    if block_begin f <> At_end f then
+                      raise (Error "redefinition of function");
+
+                    (* If 'f' took a different number of arguments, reject. *)
+                    if element_type (type_of f) <> ft then
+                      raise (Error "redefinition of function with different # args");
+                    f
+              in
+
+              (* Set names for all arguments. *)
+              Array.iteri (fun i a ->
+                let n = args.(i) in
+                set_value_name n a;
+                Hashtbl.add named_values n a;
+              ) (params f);
+              f
+
+        let codegen_func = function
+          | Ast.Function (proto, body) ->
+              Hashtbl.clear named_values;
+              let the_function = codegen_proto proto in
+
+              (* Create a new basic block to start insertion into. *)
+              let bb = append_block context "entry" the_function in
+              position_at_end bb builder;
+
+              try
+                let ret_val = codegen_expr body in
+
+                (* Finish off the function. *)
+                let _ = build_ret ret_val builder in
+
+                (* Validate the generated code, checking for consistency. *)
+                Llvm_analysis.assert_valid_function the_function;
+
+                the_function
+              with e ->
+                delete_function the_function;
+                raise e
+
+toplevel.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Top-Level parsing and JIT Driver
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+
+        (* top ::= definition | external | expression | ';' *)
+        let rec main_loop stream =
+          match Stream.peek stream with
+          | None -> ()
+
+          (* ignore top-level semicolons. *)
+          | Some (Token.Kwd ';') ->
+              Stream.junk stream;
+              main_loop stream
+
+          | Some token ->
+              begin
+                try match token with
+                | Token.Def ->
+                    let e = Parser.parse_definition stream in
+                    print_endline "parsed a function definition.";
+                    dump_value (Codegen.codegen_func e);
+                | Token.Extern ->
+                    let e = Parser.parse_extern stream in
+                    print_endline "parsed an extern.";
+                    dump_value (Codegen.codegen_proto e);
+                | _ ->
+                    (* Evaluate a top-level expression into an anonymous function. *)
+                    let e = Parser.parse_toplevel stream in
+                    print_endline "parsed a top-level expr";
+                    dump_value (Codegen.codegen_func e);
+                with Stream.Error s | Codegen.Error s ->
+                  (* Skip token for error recovery. *)
+                  Stream.junk stream;
+                  print_endline s;
+              end;
+              print_string "ready> "; flush stdout;
+              main_loop stream
+
+toy.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Main driver code.
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+
+        let main () =
+          (* Install standard binary operators.
+           * 1 is the lowest precedence. *)
+          Hashtbl.add Parser.binop_precedence '<' 10;
+          Hashtbl.add Parser.binop_precedence '+' 20;
+          Hashtbl.add Parser.binop_precedence '-' 20;
+          Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+
+          (* Prime the first token. *)
+          print_string "ready> "; flush stdout;
+          let stream = Lexer.lex (Stream.of_channel stdin) in
+
+          (* Run the main "interpreter loop" now. *)
+          Toplevel.main_loop stream;
+
+          (* Print out all the generated code. *)
+          dump_module Codegen.the_module
+        ;;
+
+        main ()
+
+`Next: Adding JIT and Optimizer Support <OCamlLangImpl4.html>`_
+

Removed: llvm/trunk/docs/tutorial/OCamlLangImpl4.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl4.html?rev=169342&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl4.html (original)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl4.html (removed)
@@ -1,1026 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
-                      "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
-  <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-  <meta name="author" content="Chris Lattner">
-  <meta name="author" content="Erick Tryzelaar">
-  <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 4
-  <ol>
-    <li><a href="#intro">Chapter 4 Introduction</a></li>
-    <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
-    <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
-    <li><a href="#jit">Adding a JIT Compiler</a></li>
-    <li><a href="#code">Full Code Listing</a></li>
-  </ol>
-</li>
-<li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control
-Flow</li>
-</ul>
-
-<div class="doc_author">
-	<p>
-		Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a>
-		and <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a>
-	</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 4 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
-language and added support for generating LLVM IR.  This chapter describes
-two new techniques: adding optimizer support to your language, and adding JIT
-compiler support.  These additions will demonstrate how to get nice, efficient code
-for the Kaleidoscope language.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p><b>Note:</b> the default <tt>IRBuilder</tt> now always includes the constant 
-folding optimisations below.<p>
-
-<p>
-Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
-it does not produce wonderful code.  For example, when compiling simple code,
-we don't get obvious optimizations:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) 1+2+x;</b>
-Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double 1.000000e+00, 2.000000e+00
-        %addtmp1 = fadd double %addtmp, %x
-        ret double %addtmp1
-}
-</pre>
-</div>
-
-<p>This code is a very, very literal transcription of the AST built by parsing
-the input. As such, this transcription lacks optimizations like constant folding
-(we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other
-more important optimizations.  Constant folding, in particular, is a very common
-and very important optimization: so much so that many language implementors
-implement constant folding support in their AST representation.</p>
-
-<p>With LLVM, you don't need this support in the AST.  Since all calls to build
-LLVM IR go through the LLVM builder, it would be nice if the builder itself
-checked to see if there was a constant folding opportunity when you call it.
-If so, it could just do the constant fold and return the constant instead of
-creating an instruction.  This is exactly what the <tt>LLVMFoldingBuilder</tt>
-class does.
-
-<p>All we did was switch from <tt>LLVMBuilder</tt> to
-<tt>LLVMFoldingBuilder</tt>.  Though we change no other code, we now have all of our
-instructions implicitly constant folded without us having to do anything
-about it.  For example, the input above now compiles to:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) 1+2+x;</b>
-Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double 3.000000e+00, %x
-        ret double %addtmp
-}
-</pre>
-</div>
-
-<p>Well, that was easy :).  In practice, we recommend always using
-<tt>LLVMFoldingBuilder</tt> when generating code like this.  It has no
-"syntactic overhead" for its use (you don't have to uglify your compiler with
-constant checks everywhere) and it can dramatically reduce the amount of
-LLVM IR that is generated in some cases (particular for languages with a macro
-preprocessor or that use a lot of constants).</p>
-
-<p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact
-that it does all of its analysis inline with the code as it is built.  If you
-take a slightly more complex example:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) (1+2+x)*(x+(1+2));</b>
-ready> Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double 3.000000e+00, %x
-        %addtmp1 = fadd double %x, 3.000000e+00
-        %multmp = fmul double %addtmp, %addtmp1
-        ret double %multmp
-}
-</pre>
-</div>
-
-<p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
-really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
-of computing "<tt>x*3</tt>" twice.</p>
-
-<p>Unfortunately, no amount of local analysis will be able to detect and correct
-this.  This requires two transformations: reassociation of expressions (to
-make the add's lexically identical) and Common Subexpression Elimination (CSE)
-to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
-range of optimizations that you can use, in the form of "passes".</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>LLVM provides many optimization passes, which do many different sorts of
-things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
-to the mistaken notion that one set of optimizations is right for all languages
-and for all situations.  LLVM allows a compiler implementor to make complete
-decisions about what optimizations to use, in which order, and in what
-situation.</p>
-
-<p>As a concrete example, LLVM supports both "whole module" passes, which look
-across as large of body of code as they can (often a whole file, but if run
-at link time, this can be a substantial portion of the whole program).  It also
-supports and includes "per-function" passes which just operate on a single
-function at a time, without looking at other functions.  For more information
-on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
-to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
-Passes</a>.</p>
-
-<p>For Kaleidoscope, we are currently generating functions on the fly, one at
-a time, as the user types them in.  We aren't shooting for the ultimate
-optimization experience in this setting, but we also want to catch the easy and
-quick stuff where possible.  As such, we will choose to run a few per-function
-optimizations as the user types the function in.  If we wanted to make a "static
-Kaleidoscope compiler", we would use exactly the code we have now, except that
-we would defer running the optimizer until the entire file has been parsed.</p>
-
-<p>In order to get per-function optimizations going, we need to set up a
-<a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and
-organize the LLVM optimizations that we want to run.  Once we have that, we can
-add a set of optimizations to run.  The code looks like this:</p>
-
-<div class="doc_code">
-<pre>
-  (* Create the JIT. *)
-  let the_execution_engine = ExecutionEngine.create Codegen.the_module in
-  let the_fpm = PassManager.create_function Codegen.the_module in
-
-  (* Set up the optimizer pipeline.  Start with registering info about how the
-   * target lays out data structures. *)
-  DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
-
-  (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
-  add_instruction_combining the_fpm;
-
-  (* reassociate expressions. *)
-  add_reassociation the_fpm;
-
-  (* Eliminate Common SubExpressions. *)
-  add_gvn the_fpm;
-
-  (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
-  add_cfg_simplification the_fpm;
-
-  ignore (PassManager.initialize the_fpm);
-
-  (* Run the main "interpreter loop" now. *)
-  Toplevel.main_loop the_fpm the_execution_engine stream;
-</pre>
-</div>
-
-<p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>".  It
-requires a pointer to the <tt>the_module</tt> to construct itself.  Once it is
-set up, we use a series of "add" calls to add a bunch of LLVM passes.  The
-first pass is basically boilerplate, it adds a pass so that later optimizations
-know how the data structures in the program are laid out.  The
-"<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
-get to in the next section.</p>
-
-<p>In this case, we choose to add 4 optimization passes.  The passes we chose
-here are a pretty standard set of "cleanup" optimizations that are useful for
-a wide variety of code.  I won't delve into what they do but, believe me,
-they are a good starting place :).</p>
-
-<p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it.
-We do this by running it after our newly created function is constructed (in
-<tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p>
-
-<div class="doc_code">
-<pre>
-let codegen_func the_fpm = function
-      ...
-      try
-        let ret_val = codegen_expr body in
-
-        (* Finish off the function. *)
-        let _ = build_ret ret_val builder in
-
-        (* Validate the generated code, checking for consistency. *)
-        Llvm_analysis.assert_valid_function the_function;
-
-        (* Optimize the function. *)
-        let _ = PassManager.run_function the_function the_fpm in
-
-        the_function
-</pre>
-</div>
-
-<p>As you can see, this is pretty straightforward.  The <tt>the_fpm</tt>
-optimizes and updates the LLVM Function* in place, improving (hopefully) its
-body.  With this in place, we can try our test above again:</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def test(x) (1+2+x)*(x+(1+2));</b>
-ready> Read function definition:
-define double @test(double %x) {
-entry:
-        %addtmp = fadd double %x, 3.000000e+00
-        %multmp = fmul double %addtmp, %addtmp
-        ret double %multmp
-}
-</pre>
-</div>
-
-<p>As expected, we now get our nicely optimized code, saving a floating point
-add instruction from every execution of this function.</p>
-
-<p>LLVM provides a wide variety of optimizations that can be used in certain
-circumstances.  Some <a href="../Passes.html">documentation about the various
-passes</a> is available, but it isn't very complete.  Another good source of
-ideas can come from looking at the passes that <tt>Clang</tt> runs to get
-started.  The "<tt>opt</tt>" tool allows you to experiment with passes from the
-command line, so you can see if they do anything.</p>
-
-<p>Now that we have reasonable code coming out of our front-end, lets talk about
-executing it!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="jit">Adding a JIT Compiler</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Code that is available in LLVM IR can have a wide variety of tools
-applied to it.  For example, you can run optimizations on it (as we did above),
-you can dump it out in textual or binary forms, you can compile the code to an
-assembly file (.s) for some target, or you can JIT compile it.  The nice thing
-about the LLVM IR representation is that it is the "common currency" between
-many different parts of the compiler.
-</p>
-
-<p>In this section, we'll add JIT compiler support to our interpreter.  The
-basic idea that we want for Kaleidoscope is to have the user enter function
-bodies as they do now, but immediately evaluate the top-level expressions they
-type in.  For example, if they type in "1 + 2;", we should evaluate and print
-out 3.  If they define a function, they should be able to call it from the
-command line.</p>
-
-<p>In order to do this, we first declare and initialize the JIT.  This is done
-by adding a global variable and a call in <tt>main</tt>:</p>
-
-<div class="doc_code">
-<pre>
-...
-let main () =
-  ...
-  <b>(* Create the JIT. *)
-  let the_execution_engine = ExecutionEngine.create Codegen.the_module in</b>
-  ...
-</pre>
-</div>
-
-<p>This creates an abstract "Execution Engine" which can be either a JIT
-compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
-for you if one is available for your platform, otherwise it will fall back to
-the interpreter.</p>
-
-<p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT
-is ready to be used.  There are a variety of APIs that are useful, but the
-simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
-function.  This method JIT compiles the specified LLVM Function and returns a
-function pointer to the generated machine code.  In our case, this means that we
-can change the code that parses a top-level expression to look like this:</p>
-
-<div class="doc_code">
-<pre>
-            (* Evaluate a top-level expression into an anonymous function. *)
-            let e = Parser.parse_toplevel stream in
-            print_endline "parsed a top-level expr";
-            let the_function = Codegen.codegen_func the_fpm e in
-            dump_value the_function;
-
-            (* JIT the function, returning a function pointer. *)
-            let result = ExecutionEngine.run_function the_function [||]
-              the_execution_engine in
-
-            print_string "Evaluated to ";
-            print_float (GenericValue.as_float Codegen.double_type result);
-            print_newline ();
-</pre>
-</div>
-
-<p>Recall that we compile top-level expressions into a self-contained LLVM
-function that takes no arguments and returns the computed double.  Because the
-LLVM JIT compiler matches the native platform ABI, this means that you can just
-cast the result pointer to a function pointer of that type and call it directly.
-This means, there is no difference between JIT compiled code and native machine
-code that is statically linked into your application.</p>
-
-<p>With just these two changes, lets see how Kaleidoscope works now!</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>4+5;</b>
-define double @""() {
-entry:
-        ret double 9.000000e+00
-}
-
-<em>Evaluated to 9.000000</em>
-</pre>
-</div>
-
-<p>Well this looks like it is basically working.  The dump of the function
-shows the "no argument function that always returns double" that we synthesize
-for each top level expression that is typed in.  This demonstrates very basic
-functionality, but can we do more?</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>def testfunc(x y) x + y*2; </b>
-Read function definition:
-define double @testfunc(double %x, double %y) {
-entry:
-        %multmp = fmul double %y, 2.000000e+00
-        %addtmp = fadd double %multmp, %x
-        ret double %addtmp
-}
-
-ready> <b>testfunc(4, 10);</b>
-define double @""() {
-entry:
-        %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
-        ret double %calltmp
-}
-
-<em>Evaluated to 24.000000</em>
-</pre>
-</div>
-
-<p>This illustrates that we can now call user code, but there is something a bit
-subtle going on here.  Note that we only invoke the JIT on the anonymous
-functions that <em>call testfunc</em>, but we never invoked it
-on <em>testfunc</em> itself.  What actually happened here is that the JIT
-scanned for all non-JIT'd functions transitively called from the anonymous
-function and compiled all of them before returning
-from <tt>run_function</tt>.</p>
-
-<p>The JIT provides a number of other more advanced interfaces for things like
-freeing allocated machine code, rejit'ing functions to update them, etc.
-However, even with this simple code, we get some surprisingly powerful
-capabilities - check this out (I removed the dump of the anonymous functions,
-you should get the idea by now :) :</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>extern sin(x);</b>
-Read extern:
-declare double @sin(double)
-
-ready> <b>extern cos(x);</b>
-Read extern:
-declare double @cos(double)
-
-ready> <b>sin(1.0);</b>
-<em>Evaluated to 0.841471</em>
-
-ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
-Read function definition:
-define double @foo(double %x) {
-entry:
-        %calltmp = call double @sin(double %x)
-        %multmp = fmul double %calltmp, %calltmp
-        %calltmp2 = call double @cos(double %x)
-        %multmp4 = fmul double %calltmp2, %calltmp2
-        %addtmp = fadd double %multmp, %multmp4
-        ret double %addtmp
-}
-
-ready> <b>foo(4.0);</b>
-<em>Evaluated to 1.000000</em>
-</pre>
-</div>
-
-<p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
-simple: in this example, the JIT started execution of a function and got to a
-function call.  It realized that the function was not yet JIT compiled and
-invoked the standard set of routines to resolve the function.  In this case,
-there is no body defined for the function, so the JIT ended up calling
-"<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself.  Since
-"<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
-calls in the module to call the libm version of <tt>sin</tt> directly.</p>
-
-<p>The LLVM JIT provides a number of interfaces (look in the
-<tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions
-get resolved.  It allows you to establish explicit mappings between IR objects
-and addresses (useful for LLVM global variables that you want to map to static
-tables, for example), allows you to dynamically decide on the fly based on the
-function name, and even allows you to have the JIT compile functions lazily the
-first time they're called.</p>
-
-<p>One interesting application of this is that we can now extend the language
-by writing arbitrary C code to implement operations.  For example, if we add:
-</p>
-
-<div class="doc_code">
-<pre>
-/* putchard - putchar that takes a double and returns 0. */
-extern "C"
-double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-</pre>
-</div>
-
-<p>Now we can produce simple output to the console by using things like:
-"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
-the console (120 is the ASCII code for 'x').  Similar code could be used to
-implement file I/O, console input, and many other capabilities in
-Kaleidoscope.</p>
-
-<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
-this point, we can compile a non-Turing-complete programming language, optimize
-and JIT compile it in a user-driven way.  Next up we'll look into <a
-href="OCamlLangImpl5.html">extending the language with control flow
-constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-LLVM JIT and optimizer.  To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-ocamlbuild toy.byte
-# Run
-./toy.byte
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<dl>
-<dt>_tags:</dt>
-<dd class="doc_code">
-<pre>
-<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
-<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
-<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
-<*.{byte,native}>: use_llvm_scalar_opts, use_bindings
-</pre>
-</dd>
-
-<dt>myocamlbuild.ml:</dt>
-<dd class="doc_code">
-<pre>
-open Ocamlbuild_plugin;;
-
-ocaml_lib ~extern:true "llvm";;
-ocaml_lib ~extern:true "llvm_analysis";;
-ocaml_lib ~extern:true "llvm_executionengine";;
-ocaml_lib ~extern:true "llvm_target";;
-ocaml_lib ~extern:true "llvm_scalar_opts";;
-
-flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
-dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
-</pre>
-</dd>
-
-<dt>token.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer Tokens
- *===----------------------------------------------------------------------===*)
-
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
-  (* commands *)
-  | Def | Extern
-
-  (* primary *)
-  | Ident of string | Number of float
-
-  (* unknown *)
-  | Kwd of char
-</pre>
-</dd>
-
-<dt>lexer.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
-  (* Skip any whitespace. *)
-  | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
-
-  (* identifier: [a-zA-Z][a-zA-Z0-9] *)
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-
-  (* number: [0-9.]+ *)
-  | [< ' ('0' .. '9' as c); stream >] ->
-      let buffer = Buffer.create 1 in
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-
-  (* Comment until end of line. *)
-  | [< ' ('#'); stream >] ->
-      lex_comment stream
-
-  (* Otherwise, just return the character as its ascii value. *)
-  | [< 'c; stream >] ->
-      [< 'Token.Kwd c; lex stream >]
-
-  (* end of stream. *)
-  | [< >] -> [< >]
-
-and lex_number buffer = parser
-  | [< ' ('0' .. '9' | '.' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_number buffer stream
-  | [< stream=lex >] ->
-      [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
-
-and lex_ident buffer = parser
-  | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
-      Buffer.add_char buffer c;
-      lex_ident buffer stream
-  | [< stream=lex >] ->
-      match Buffer.contents buffer with
-      | "def" -> [< 'Token.Def; stream >]
-      | "extern" -> [< 'Token.Extern; stream >]
-      | id -> [< 'Token.Ident id; stream >]
-
-and lex_comment = parser
-  | [< ' ('\n'); stream=lex >] -> stream
-  | [< 'c; e=lex_comment >] -> e
-  | [< >] -> [< >]
-</pre>
-</dd>
-
-<dt>ast.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Abstract Syntax Tree (aka Parse Tree)
- *===----------------------------------------------------------------------===*)
-
-(* expr - Base type for all expression nodes. *)
-type expr =
-  (* variant for numeric literals like "1.0". *)
-  | Number of float
-
-  (* variant for referencing a variable, like "a". *)
-  | Variable of string
-
-  (* variant for a binary operator. *)
-  | Binary of char * expr * expr
-
-  (* variant for function calls. *)
-  | Call of string * expr array
-
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</dd>
-
-<dt>parser.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===---------------------------------------------------------------------===
- * Parser
- *===---------------------------------------------------------------------===*)
-
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
-
-(* primary
- *   ::= identifier
- *   ::= numberexpr
- *   ::= parenexpr *)
-let rec parse_primary = parser
-  (* numberexpr ::= number *)
-  | [< 'Token.Number n >] -> Ast.Number n
-
-  (* parenexpr ::= '(' expression ')' *)
-  | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
-
-  (* identifierexpr
-   *   ::= identifier
-   *   ::= identifier '(' argumentexpr ')' *)
-  | [< 'Token.Ident id; stream >] ->
-      let rec parse_args accumulator = parser
-        | [< e=parse_expr; stream >] ->
-            begin parser
-              | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
-              | [< >] -> e :: accumulator
-            end stream
-        | [< >] -> accumulator
-      in
-      let rec parse_ident id = parser
-        (* Call. *)
-        | [< 'Token.Kwd '(';
-             args=parse_args [];
-             'Token.Kwd ')' ?? "expected ')'">] ->
-            Ast.Call (id, Array.of_list (List.rev args))
-
-        (* Simple variable ref. *)
-        | [< >] -> Ast.Variable id
-      in
-      parse_ident id stream
-
-  | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
-
-(* binoprhs
- *   ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
-  match Stream.peek stream with
-  (* If this is a binop, find its precedence. *)
-  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
-      let token_prec = precedence c in
-
-      (* If this is a binop that binds at least as tightly as the current binop,
-       * consume it, otherwise we are done. *)
-      if token_prec < expr_prec then lhs else begin
-        (* Eat the binop. *)
-        Stream.junk stream;
-
-        (* Parse the primary expression after the binary operator. *)
-        let rhs = parse_primary stream in
-
-        (* Okay, we know this is a binop. *)
-        let rhs =
-          match Stream.peek stream with
-          | Some (Token.Kwd c2) ->
-              (* If BinOp binds less tightly with rhs than the operator after
-               * rhs, let the pending operator take rhs as its lhs. *)
-              let next_prec = precedence c2 in
-              if token_prec < next_prec
-              then parse_bin_rhs (token_prec + 1) rhs stream
-              else rhs
-          | _ -> rhs
-        in
-
-        (* Merge lhs/rhs. *)
-        let lhs = Ast.Binary (c, lhs, rhs) in
-        parse_bin_rhs expr_prec lhs stream
-      end
-  | _ -> lhs
-
-(* expression
- *   ::= primary binoprhs *)
-and parse_expr = parser
-  | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
-
-(* prototype
- *   ::= id '(' id* ')' *)
-let parse_prototype =
-  let rec parse_args accumulator = parser
-    | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
-    | [< >] -> accumulator
-  in
-
-  parser
-  | [< 'Token.Ident id;
-       'Token.Kwd '(' ?? "expected '(' in prototype";
-       args=parse_args [];
-       'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
-      (* success. *)
-      Ast.Prototype (id, Array.of_list (List.rev args))
-
-  | [< >] ->
-      raise (Stream.Error "expected function name in prototype")
-
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
-  | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
-      Ast.Function (p, e)
-
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
-  | [< e=parse_expr >] ->
-      (* Make an anonymous proto. *)
-      Ast.Function (Ast.Prototype ("", [||]), e)
-
-(*  external ::= 'extern' prototype *)
-let parse_extern = parser
-  | [< 'Token.Extern; e=parse_prototype >] -> e
-</pre>
-</dd>
-
-<dt>codegen.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Code Generation
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-
-exception Error of string
-
-let context = global_context ()
-let the_module = create_module context "my cool jit"
-let builder = builder context
-let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
-let double_type = double_type context
-
-let rec codegen_expr = function
-  | Ast.Number n -> const_float double_type n
-  | Ast.Variable name ->
-      (try Hashtbl.find named_values name with
-        | Not_found -> raise (Error "unknown variable name"))
-  | Ast.Binary (op, lhs, rhs) ->
-      let lhs_val = codegen_expr lhs in
-      let rhs_val = codegen_expr rhs in
-      begin
-        match op with
-        | '+' -> build_add lhs_val rhs_val "addtmp" builder
-        | '-' -> build_sub lhs_val rhs_val "subtmp" builder
-        | '*' -> build_mul lhs_val rhs_val "multmp" builder
-        | '<' ->
-            (* Convert bool 0/1 to double 0.0 or 1.0 *)
-            let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
-            build_uitofp i double_type "booltmp" builder
-        | _ -> raise (Error "invalid binary operator")
-      end
-  | Ast.Call (callee, args) ->
-      (* Look up the name in the module table. *)
-      let callee =
-        match lookup_function callee the_module with
-        | Some callee -> callee
-        | None -> raise (Error "unknown function referenced")
-      in
-      let params = params callee in
-
-      (* If argument mismatch error. *)
-      if Array.length params == Array.length args then () else
-        raise (Error "incorrect # arguments passed");
-      let args = Array.map codegen_expr args in
-      build_call callee args "calltmp" builder
-
-let codegen_proto = function
-  | Ast.Prototype (name, args) ->
-      (* Make the function type: double(double,double) etc. *)
-      let doubles = Array.make (Array.length args) double_type in
-      let ft = function_type double_type doubles in
-      let f =
-        match lookup_function name the_module with
-        | None -> declare_function name ft the_module
-
-        (* If 'f' conflicted, there was already something named 'name'. If it
-         * has a body, don't allow redefinition or reextern. *)
-        | Some f ->
-            (* If 'f' already has a body, reject this. *)
-            if block_begin f <> At_end f then
-              raise (Error "redefinition of function");
-
-            (* If 'f' took a different number of arguments, reject. *)
-            if element_type (type_of f) <> ft then
-              raise (Error "redefinition of function with different # args");
-            f
-      in
-
-      (* Set names for all arguments. *)
-      Array.iteri (fun i a ->
-        let n = args.(i) in
-        set_value_name n a;
-        Hashtbl.add named_values n a;
-      ) (params f);
-      f
-
-let codegen_func the_fpm = function
-  | Ast.Function (proto, body) ->
-      Hashtbl.clear named_values;
-      let the_function = codegen_proto proto in
-
-      (* Create a new basic block to start insertion into. *)
-      let bb = append_block context "entry" the_function in
-      position_at_end bb builder;
-
-      try
-        let ret_val = codegen_expr body in
-
-        (* Finish off the function. *)
-        let _ = build_ret ret_val builder in
-
-        (* Validate the generated code, checking for consistency. *)
-        Llvm_analysis.assert_valid_function the_function;
-
-        (* Optimize the function. *)
-        let _ = PassManager.run_function the_function the_fpm in
-
-        the_function
-      with e ->
-        delete_function the_function;
-        raise e
-</pre>
-</dd>
-
-<dt>toplevel.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Top-Level parsing and JIT Driver
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-open Llvm_executionengine
-
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop the_fpm the_execution_engine stream =
-  match Stream.peek stream with
-  | None -> ()
-
-  (* ignore top-level semicolons. *)
-  | Some (Token.Kwd ';') ->
-      Stream.junk stream;
-      main_loop the_fpm the_execution_engine stream
-
-  | Some token ->
-      begin
-        try match token with
-        | Token.Def ->
-            let e = Parser.parse_definition stream in
-            print_endline "parsed a function definition.";
-            dump_value (Codegen.codegen_func the_fpm e);
-        | Token.Extern ->
-            let e = Parser.parse_extern stream in
-            print_endline "parsed an extern.";
-            dump_value (Codegen.codegen_proto e);
-        | _ ->
-            (* Evaluate a top-level expression into an anonymous function. *)
-            let e = Parser.parse_toplevel stream in
-            print_endline "parsed a top-level expr";
-            let the_function = Codegen.codegen_func the_fpm e in
-            dump_value the_function;
-
-            (* JIT the function, returning a function pointer. *)
-            let result = ExecutionEngine.run_function the_function [||]
-              the_execution_engine in
-
-            print_string "Evaluated to ";
-            print_float (GenericValue.as_float Codegen.double_type result);
-            print_newline ();
-        with Stream.Error s | Codegen.Error s ->
-          (* Skip token for error recovery. *)
-          Stream.junk stream;
-          print_endline s;
-      end;
-      print_string "ready> "; flush stdout;
-      main_loop the_fpm the_execution_engine stream
-</pre>
-</dd>
-
-<dt>toy.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Main driver code.
- *===----------------------------------------------------------------------===*)
-
-open Llvm
-open Llvm_executionengine
-open Llvm_target
-open Llvm_scalar_opts
-
-let main () =
-  ignore (initialize_native_target ());
-
-  (* Install standard binary operators.
-   * 1 is the lowest precedence. *)
-  Hashtbl.add Parser.binop_precedence '<' 10;
-  Hashtbl.add Parser.binop_precedence '+' 20;
-  Hashtbl.add Parser.binop_precedence '-' 20;
-  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
-
-  (* Prime the first token. *)
-  print_string "ready> "; flush stdout;
-  let stream = Lexer.lex (Stream.of_channel stdin) in
-
-  (* Create the JIT. *)
-  let the_execution_engine = ExecutionEngine.create Codegen.the_module in
-  let the_fpm = PassManager.create_function Codegen.the_module in
-
-  (* Set up the optimizer pipeline.  Start with registering info about how the
-   * target lays out data structures. *)
-  DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
-
-  (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
-  add_instruction_combination the_fpm;
-
-  (* reassociate expressions. *)
-  add_reassociation the_fpm;
-
-  (* Eliminate Common SubExpressions. *)
-  add_gvn the_fpm;
-
-  (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
-  add_cfg_simplification the_fpm;
-
-  ignore (PassManager.initialize the_fpm);
-
-  (* Run the main "interpreter loop" now. *)
-  Toplevel.main_loop the_fpm the_execution_engine stream;
-
-  (* Print out all the generated code. *)
-  dump_module Codegen.the_module
-;;
-
-main ()
-</pre>
-</dd>
-
-<dt>bindings.c</dt>
-<dd class="doc_code">
-<pre>
-#include <stdio.h>
-
-/* putchard - putchar that takes a double and returns 0. */
-extern double putchard(double X) {
-  putchar((char)X);
-  return 0;
-}
-</pre>
-</dd>
-</dl>
-
-<a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
-  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
-  <a href="mailto:idadesub at users.sourceforge.net">Erick Tryzelaar</a><br>
-  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-</body>
-</html>

Added: llvm/trunk/docs/tutorial/OCamlLangImpl4.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/OCamlLangImpl4.rst?rev=169343&view=auto
==============================================================================
--- llvm/trunk/docs/tutorial/OCamlLangImpl4.rst (added)
+++ llvm/trunk/docs/tutorial/OCamlLangImpl4.rst Tue Dec  4 18:26:32 2012
@@ -0,0 +1,918 @@
+==============================================
+Kaleidoscope: Adding JIT and Optimizer Support
+==============================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre at nondot.org>`_ and `Erick
+Tryzelaar <mailto:idadesub at users.sourceforge.net>`_
+
+Chapter 4 Introduction
+======================
+
+Welcome to Chapter 4 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation
+of a simple language and added support for generating LLVM IR. This
+chapter describes two new techniques: adding optimizer support to your
+language, and adding JIT compiler support. These additions will
+demonstrate how to get nice, efficient code for the Kaleidoscope
+language.
+
+Trivial Constant Folding
+========================
+
+**Note:** the default ``IRBuilder`` now always includes the constant
+folding optimisations below.
+
+Our demonstration for Chapter 3 is elegant and easy to extend.
+Unfortunately, it does not produce wonderful code. For example, when
+compiling simple code, we don't get obvious optimizations:
+
+::
+
+    ready> def test(x) 1+2+x;
+    Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 1.000000e+00, 2.000000e+00
+            %addtmp1 = fadd double %addtmp, %x
+            ret double %addtmp1
+    }
+
+This code is a very, very literal transcription of the AST built by
+parsing the input. As such, this transcription lacks optimizations like
+constant folding (we'd like to get "``add x, 3.0``" in the example
+above) as well as other more important optimizations. Constant folding,
+in particular, is a very common and very important optimization: so much
+so that many language implementors implement constant folding support in
+their AST representation.
+
+With LLVM, you don't need this support in the AST. Since all calls to
+build LLVM IR go through the LLVM builder, it would be nice if the
+builder itself checked to see if there was a constant folding
+opportunity when you call it. If so, it could just do the constant fold
+and return the constant instead of creating an instruction. This is
+exactly what the ``LLVMFoldingBuilder`` class does.
+
+All we did was switch from ``LLVMBuilder`` to ``LLVMFoldingBuilder``.
+Though we change no other code, we now have all of our instructions
+implicitly constant folded without us having to do anything about it.
+For example, the input above now compiles to:
+
+::
+
+    ready> def test(x) 1+2+x;
+    Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 3.000000e+00, %x
+            ret double %addtmp
+    }
+
+Well, that was easy :). In practice, we recommend always using
+``LLVMFoldingBuilder`` when generating code like this. It has no
+"syntactic overhead" for its use (you don't have to uglify your compiler
+with constant checks everywhere) and it can dramatically reduce the
+amount of LLVM IR that is generated in some cases (particular for
+languages with a macro preprocessor or that use a lot of constants).
+
+On the other hand, the ``LLVMFoldingBuilder`` is limited by the fact
+that it does all of its analysis inline with the code as it is built. If
+you take a slightly more complex example:
+
+::
+
+    ready> def test(x) (1+2+x)*(x+(1+2));
+    ready> Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 3.000000e+00, %x
+            %addtmp1 = fadd double %x, 3.000000e+00
+            %multmp = fmul double %addtmp, %addtmp1
+            ret double %multmp
+    }
+
+In this case, the LHS and RHS of the multiplication are the same value.
+We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``"
+instead of computing "``x*3``" twice.
+
+Unfortunately, no amount of local analysis will be able to detect and
+correct this. This requires two transformations: reassociation of
+expressions (to make the add's lexically identical) and Common
+Subexpression Elimination (CSE) to delete the redundant add instruction.
+Fortunately, LLVM provides a broad range of optimizations that you can
+use, in the form of "passes".
+
+LLVM Optimization Passes
+========================
+
+LLVM provides many optimization passes, which do many different sorts of
+things and have different tradeoffs. Unlike other systems, LLVM doesn't
+hold to the mistaken notion that one set of optimizations is right for
+all languages and for all situations. LLVM allows a compiler implementor
+to make complete decisions about what optimizations to use, in which
+order, and in what situation.
+
+As a concrete example, LLVM supports both "whole module" passes, which
+look across as large of body of code as they can (often a whole file,
+but if run at link time, this can be a substantial portion of the whole
+program). It also supports and includes "per-function" passes which just
+operate on a single function at a time, without looking at other
+functions. For more information on passes and how they are run, see the
+`How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the
+`List of LLVM Passes <../Passes.html>`_.
+
+For Kaleidoscope, we are currently generating functions on the fly, one
+at a time, as the user types them in. We aren't shooting for the
+ultimate optimization experience in this setting, but we also want to
+catch the easy and quick stuff where possible. As such, we will choose
+to run a few per-function optimizations as the user types the function
+in. If we wanted to make a "static Kaleidoscope compiler", we would use
+exactly the code we have now, except that we would defer running the
+optimizer until the entire file has been parsed.
+
+In order to get per-function optimizations going, we need to set up a
+`Llvm.PassManager <../WritingAnLLVMPass.html#passmanager>`_ to hold and
+organize the LLVM optimizations that we want to run. Once we have that,
+we can add a set of optimizations to run. The code looks like this:
+
+.. code-block:: ocaml
+
+      (* Create the JIT. *)
+      let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+      let the_fpm = PassManager.create_function Codegen.the_module in
+
+      (* Set up the optimizer pipeline.  Start with registering info about how the
+       * target lays out data structures. *)
+      DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+      (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+      add_instruction_combining the_fpm;
+
+      (* reassociate expressions. *)
+      add_reassociation the_fpm;
+
+      (* Eliminate Common SubExpressions. *)
+      add_gvn the_fpm;
+
+      (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+      add_cfg_simplification the_fpm;
+
+      ignore (PassManager.initialize the_fpm);
+
+      (* Run the main "interpreter loop" now. *)
+      Toplevel.main_loop the_fpm the_execution_engine stream;
+
+The meat of the matter here, is the definition of "``the_fpm``". It
+requires a pointer to the ``the_module`` to construct itself. Once it is
+set up, we use a series of "add" calls to add a bunch of LLVM passes.
+The first pass is basically boilerplate, it adds a pass so that later
+optimizations know how the data structures in the program are laid out.
+The "``the_execution_engine``" variable is related to the JIT, which we
+will get to in the next section.
+
+In this case, we choose to add 4 optimization passes. The passes we
+chose here are a pretty standard set of "cleanup" optimizations that are
+useful for a wide variety of code. I won't delve into what they do but,
+believe me, they are a good starting place :).
+
+Once the ``Llvm.PassManager.`` is set up, we need to make use of it. We
+do this by running it after our newly created function is constructed
+(in ``Codegen.codegen_func``), but before it is returned to the client:
+
+.. code-block:: ocaml
+
+    let codegen_func the_fpm = function
+          ...
+          try
+            let ret_val = codegen_expr body in
+
+            (* Finish off the function. *)
+            let _ = build_ret ret_val builder in
+
+            (* Validate the generated code, checking for consistency. *)
+            Llvm_analysis.assert_valid_function the_function;
+
+            (* Optimize the function. *)
+            let _ = PassManager.run_function the_function the_fpm in
+
+            the_function
+
+As you can see, this is pretty straightforward. The ``the_fpm``
+optimizes and updates the LLVM Function\* in place, improving
+(hopefully) its body. With this in place, we can try our test above
+again:
+
+::
+
+    ready> def test(x) (1+2+x)*(x+(1+2));
+    ready> Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double %x, 3.000000e+00
+            %multmp = fmul double %addtmp, %addtmp
+            ret double %multmp
+    }
+
+As expected, we now get our nicely optimized code, saving a floating
+point add instruction from every execution of this function.
+
+LLVM provides a wide variety of optimizations that can be used in
+certain circumstances. Some `documentation about the various
+passes <../Passes.html>`_ is available, but it isn't very complete.
+Another good source of ideas can come from looking at the passes that
+``Clang`` runs to get started. The "``opt``" tool allows you to
+experiment with passes from the command line, so you can see if they do
+anything.
+
+Now that we have reasonable code coming out of our front-end, lets talk
+about executing it!
+
+Adding a JIT Compiler
+=====================
+
+Code that is available in LLVM IR can have a wide variety of tools
+applied to it. For example, you can run optimizations on it (as we did
+above), you can dump it out in textual or binary forms, you can compile
+the code to an assembly file (.s) for some target, or you can JIT
+compile it. The nice thing about the LLVM IR representation is that it
+is the "common currency" between many different parts of the compiler.
+
+In this section, we'll add JIT compiler support to our interpreter. The
+basic idea that we want for Kaleidoscope is to have the user enter
+function bodies as they do now, but immediately evaluate the top-level
+expressions they type in. For example, if they type in "1 + 2;", we
+should evaluate and print out 3. If they define a function, they should
+be able to call it from the command line.
+
+In order to do this, we first declare and initialize the JIT. This is
+done by adding a global variable and a call in ``main``:
+
+.. code-block:: ocaml
+
+    ...
+    let main () =
+      ...
+      (* Create the JIT. *)
+      let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+      ...
+
+This creates an abstract "Execution Engine" which can be either a JIT
+compiler or the LLVM interpreter. LLVM will automatically pick a JIT
+compiler for you if one is available for your platform, otherwise it
+will fall back to the interpreter.
+
+Once the ``Llvm_executionengine.ExecutionEngine.t`` is created, the JIT
+is ready to be used. There are a variety of APIs that are useful, but
+the simplest one is the
+"``Llvm_executionengine.ExecutionEngine.run_function``" function. This
+method JIT compiles the specified LLVM Function and returns a function
+pointer to the generated machine code. In our case, this means that we
+can change the code that parses a top-level expression to look like
+this:
+
+.. code-block:: ocaml
+
+                (* Evaluate a top-level expression into an anonymous function. *)
+                let e = Parser.parse_toplevel stream in
+                print_endline "parsed a top-level expr";
+                let the_function = Codegen.codegen_func the_fpm e in
+                dump_value the_function;
+
+                (* JIT the function, returning a function pointer. *)
+                let result = ExecutionEngine.run_function the_function [||]
+                  the_execution_engine in
+
+                print_string "Evaluated to ";
+                print_float (GenericValue.as_float Codegen.double_type result);
+                print_newline ();
+
+Recall that we compile top-level expressions into a self-contained LLVM
+function that takes no arguments and returns the computed double.
+Because the LLVM JIT compiler matches the native platform ABI, this
+means that you can just cast the result pointer to a function pointer of
+that type and call it directly. This means, there is no difference
+between JIT compiled code and native machine code that is statically
+linked into your application.
+
+With just these two changes, lets see how Kaleidoscope works now!
+
+::
+
+    ready> 4+5;
+    define double @""() {
+    entry:
+            ret double 9.000000e+00
+    }
+
+    Evaluated to 9.000000
+
+Well this looks like it is basically working. The dump of the function
+shows the "no argument function that always returns double" that we
+synthesize for each top level expression that is typed in. This
+demonstrates very basic functionality, but can we do more?
+
+::
+
+    ready> def testfunc(x y) x + y*2;
+    Read function definition:
+    define double @testfunc(double %x, double %y) {
+    entry:
+            %multmp = fmul double %y, 2.000000e+00
+            %addtmp = fadd double %multmp, %x
+            ret double %addtmp
+    }
+
+    ready> testfunc(4, 10);
+    define double @""() {
+    entry:
+            %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
+            ret double %calltmp
+    }
+
+    Evaluated to 24.000000
+
+This illustrates that we can now call user code, but there is something
+a bit subtle going on here. Note that we only invoke the JIT on the
+anonymous functions that *call testfunc*, but we never invoked it on
+*testfunc* itself. What actually happened here is that the JIT scanned
+for all non-JIT'd functions transitively called from the anonymous
+function and compiled all of them before returning from
+``run_function``.
+
+The JIT provides a number of other more advanced interfaces for things
+like freeing allocated machine code, rejit'ing functions to update them,
+etc. However, even with this simple code, we get some surprisingly
+powerful capabilities - check this out (I removed the dump of the
+anonymous functions, you should get the idea by now :) :
+
+::
+
+    ready> extern sin(x);
+    Read extern:
+    declare double @sin(double)
+
+    ready> extern cos(x);
+    Read extern:
+    declare double @cos(double)
+
+    ready> sin(1.0);
+    Evaluated to 0.841471
+
+    ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
+    Read function definition:
+    define double @foo(double %x) {
+    entry:
+            %calltmp = call double @sin(double %x)
+            %multmp = fmul double %calltmp, %calltmp
+            %calltmp2 = call double @cos(double %x)
+            %multmp4 = fmul double %calltmp2, %calltmp2
+            %addtmp = fadd double %multmp, %multmp4
+            ret double %addtmp
+    }
+
+    ready> foo(4.0);
+    Evaluated to 1.000000
+
+Whoa, how does the JIT know about sin and cos? The answer is
+surprisingly simple: in this example, the JIT started execution of a
+function and got to a function call. It realized that the function was
+not yet JIT compiled and invoked the standard set of routines to resolve
+the function. In this case, there is no body defined for the function,
+so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope
+process itself. Since "``sin``" is defined within the JIT's address
+space, it simply patches up calls in the module to call the libm version
+of ``sin`` directly.
+
+The LLVM JIT provides a number of interfaces (look in the
+``llvm_executionengine.mli`` file) for controlling how unknown functions
+get resolved. It allows you to establish explicit mappings between IR
+objects and addresses (useful for LLVM global variables that you want to
+map to static tables, for example), allows you to dynamically decide on
+the fly based on the function name, and even allows you to have the JIT
+compile functions lazily the first time they're called.
+
+One interesting application of this is that we can now extend the
+language by writing arbitrary C code to implement operations. For
+example, if we add:
+
+.. code-block:: c++
+
+    /* putchard - putchar that takes a double and returns 0. */
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+Now we can produce simple output to the console by using things like:
+"``extern putchard(x); putchard(120);``", which prints a lowercase 'x'
+on the console (120 is the ASCII code for 'x'). Similar code could be
+used to implement file I/O, console input, and many other capabilities
+in Kaleidoscope.
+
+This completes the JIT and optimizer chapter of the Kaleidoscope
+tutorial. At this point, we can compile a non-Turing-complete
+programming language, optimize and JIT compile it in a user-driven way.
+Next up we'll look into `extending the language with control flow
+constructs <OCamlLangImpl5.html>`_, tackling some interesting LLVM IR
+issues along the way.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM JIT and optimizer. To build this example, use:
+
+.. code-block:: bash
+
+    # Compile
+    ocamlbuild toy.byte
+    # Run
+    ./toy.byte
+
+Here is the code:
+
+\_tags:
+    ::
+
+        <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
+        <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
+        <*.{byte,native}>: use_llvm_executionengine, use_llvm_target
+        <*.{byte,native}>: use_llvm_scalar_opts, use_bindings
+
+myocamlbuild.ml:
+    .. code-block:: ocaml
+
+        open Ocamlbuild_plugin;;
+
+        ocaml_lib ~extern:true "llvm";;
+        ocaml_lib ~extern:true "llvm_analysis";;
+        ocaml_lib ~extern:true "llvm_executionengine";;
+        ocaml_lib ~extern:true "llvm_target";;
+        ocaml_lib ~extern:true "llvm_scalar_opts";;
+
+        flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
+        dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
+
+token.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer Tokens
+         *===----------------------------------------------------------------------===*)
+
+        (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+         * these others for known things. *)
+        type token =
+          (* commands *)
+          | Def | Extern
+
+          (* primary *)
+          | Ident of string | Number of float
+
+          (* unknown *)
+          | Kwd of char
+
+lexer.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer
+         *===----------------------------------------------------------------------===*)
+
+        let rec lex = parser
+          (* Skip any whitespace. *)
+          | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+          (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+
+          (* number: [0-9.]+ *)
+          | [< ' ('0' .. '9' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+
+          (* Comment until end of line. *)
+          | [< ' ('#'); stream >] ->
+              lex_comment stream
+
+          (* Otherwise, just return the character as its ascii value. *)
+          | [< 'c; stream >] ->
+              [< 'Token.Kwd c; lex stream >]
+
+          (* end of stream. *)
+          | [< >] -> [< >]
+
+        and lex_number buffer = parser
+          | [< ' ('0' .. '9' | '.' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+          | [< stream=lex >] ->
+              [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+        and lex_ident buffer = parser
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+          | [< stream=lex >] ->
+              match Buffer.contents buffer with
+              | "def" -> [< 'Token.Def; stream >]
+              | "extern" -> [< 'Token.Extern; stream >]
+              | id -> [< 'Token.Ident id; stream >]
+
+        and lex_comment = parser
+          | [< ' ('\n'); stream=lex >] -> stream
+          | [< 'c; e=lex_comment >] -> e
+          | [< >] -> [< >]
+
+ast.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Abstract Syntax Tree (aka Parse Tree)
+         *===----------------------------------------------------------------------===*)
+
+        (* expr - Base type for all expression nodes. *)
+        type expr =
+          (* variant for numeric literals like "1.0". *)
+          | Number of float
+
+          (* variant for referencing a variable, like "a". *)
+          | Variable of string
+
+          (* variant for a binary operator. *)
+          | Binary of char * expr * expr
+
+          (* variant for function calls. *)
+          | Call of string * expr array
+
+        (* proto - This type represents the "prototype" for a function, which captures
+         * its name, and its argument names (thus implicitly the number of arguments the
+         * function takes). *)
+        type proto = Prototype of string * string array
+
+        (* func - This type represents a function definition itself. *)
+        type func = Function of proto * expr
+
+parser.ml:
+    .. code-block:: ocaml
+
+        (*===---------------------------------------------------------------------===
+         * Parser
+         *===---------------------------------------------------------------------===*)
+
+        (* binop_precedence - This holds the precedence for each binary operator that is
+         * defined *)
+        let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+        (* precedence - Get the precedence of the pending binary operator token. *)
+        let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+        (* primary
+         *   ::= identifier
+         *   ::= numberexpr
+         *   ::= parenexpr *)
+        let rec parse_primary = parser
+          (* numberexpr ::= number *)
+          | [< 'Token.Number n >] -> Ast.Number n
+
+          (* parenexpr ::= '(' expression ')' *)
+          | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+          (* identifierexpr
+           *   ::= identifier
+           *   ::= identifier '(' argumentexpr ')' *)
+          | [< 'Token.Ident id; stream >] ->
+              let rec parse_args accumulator = parser
+                | [< e=parse_expr; stream >] ->
+                    begin parser
+                      | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                      | [< >] -> e :: accumulator
+                    end stream
+                | [< >] -> accumulator
+              in
+              let rec parse_ident id = parser
+                (* Call. *)
+                | [< 'Token.Kwd '(';
+                     args=parse_args [];
+                     'Token.Kwd ')' ?? "expected ')'">] ->
+                    Ast.Call (id, Array.of_list (List.rev args))
+
+                (* Simple variable ref. *)
+                | [< >] -> Ast.Variable id
+              in
+              parse_ident id stream
+
+          | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+        (* binoprhs
+         *   ::= ('+' primary)* *)
+        and parse_bin_rhs expr_prec lhs stream =
+          match Stream.peek stream with
+          (* If this is a binop, find its precedence. *)
+          | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+              let token_prec = precedence c in
+
+              (* If this is a binop that binds at least as tightly as the current binop,
+               * consume it, otherwise we are done. *)
+              if token_prec < expr_prec then lhs else begin
+                (* Eat the binop. *)
+                Stream.junk stream;
+
+                (* Parse the primary expression after the binary operator. *)
+                let rhs = parse_primary stream in
+
+                (* Okay, we know this is a binop. *)
+                let rhs =
+                  match Stream.peek stream with
+                  | Some (Token.Kwd c2) ->
+                      (* If BinOp binds less tightly with rhs than the operator after
+                       * rhs, let the pending operator take rhs as its lhs. *)
+                      let next_prec = precedence c2 in
+                      if token_prec < next_prec
+                      then parse_bin_rhs (token_prec + 1) rhs stream
+                      else rhs
+                  | _ -> rhs
+                in
+
+                (* Merge lhs/rhs. *)
+                let lhs = Ast.Binary (c, lhs, rhs) in
+                parse_bin_rhs expr_prec lhs stream
+              end
+          | _ -> lhs
+
+        (* expression
+         *   ::= primary binoprhs *)
+        and parse_expr = parser
+          | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+        (* prototype
+         *   ::= id '(' id* ')' *)
+        let parse_prototype =
+          let rec parse_args accumulator = parser
+            | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+            | [< >] -> accumulator
+          in
+
+          parser
+          | [< 'Token.Ident id;
+               'Token.Kwd '(' ?? "expected '(' in prototype";
+               args=parse_args [];
+               'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+              (* success. *)
+              Ast.Prototype (id, Array.of_list (List.rev args))
+
+          | [< >] ->
+              raise (Stream.Error "expected function name in prototype")
+
+        (* definition ::= 'def' prototype expression *)
+        let parse_definition = parser
+          | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+              Ast.Function (p, e)
+
+        (* toplevelexpr ::= expression *)
+        let parse_toplevel = parser
+          | [< e=parse_expr >] ->
+              (* Make an anonymous proto. *)
+              Ast.Function (Ast.Prototype ("", [||]), e)
+
+        (*  external ::= 'extern' prototype *)
+        let parse_extern = parser
+          | [< 'Token.Extern; e=parse_prototype >] -> e
+
+codegen.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Code Generation
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+
+        exception Error of string
+
+        let context = global_context ()
+        let the_module = create_module context "my cool jit"
+        let builder = builder context
+        let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+        let double_type = double_type context
+
+        let rec codegen_expr = function
+          | Ast.Number n -> const_float double_type n
+          | Ast.Variable name ->
+              (try Hashtbl.find named_values name with
+                | Not_found -> raise (Error "unknown variable name"))
+          | Ast.Binary (op, lhs, rhs) ->
+              let lhs_val = codegen_expr lhs in
+              let rhs_val = codegen_expr rhs in
+              begin
+                match op with
+                | '+' -> build_add lhs_val rhs_val "addtmp" builder
+                | '-' -> build_sub lhs_val rhs_val "subtmp" builder
+                | '*' -> build_mul lhs_val rhs_val "multmp" builder
+                | '<' ->
+                    (* Convert bool 0/1 to double 0.0 or 1.0 *)
+                    let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+                    build_uitofp i double_type "booltmp" builder
+                | _ -> raise (Error "invalid binary operator")
+              end
+          | Ast.Call (callee, args) ->
+              (* Look up the name in the module table. *)
+              let callee =
+                match lookup_function callee the_module with
+                | Some callee -> callee
+                | None -> raise (Error "unknown function referenced")
+              in
+              let params = params callee in
+
+              (* If argument mismatch error. *)
+              if Array.length params == Array.length args then () else
+                raise (Error "incorrect # arguments passed");
+              let args = Array.map codegen_expr args in
+              build_call callee args "calltmp" builder
+
+        let codegen_proto = function
+          | Ast.Prototype (name, args) ->
+              (* Make the function type: double(double,double) etc. *)
+              let doubles = Array.make (Array.length args) double_type in
+              let ft = function_type double_type doubles in
+              let f =
+                match lookup_function name the_module with
+                | None -> declare_function name ft the_module
+
+                (* If 'f' conflicted, there was already something named 'name'. If it
+                 * has a body, don't allow redefinition or reextern. *)
+                | Some f ->
+                    (* If 'f' already has a body, reject this. *)
+                    if block_begin f <> At_end f then
+                      raise (Error "redefinition of function");
+
+                    (* If 'f' took a different number of arguments, reject. *)
+                    if element_type (type_of f) <> ft then
+                      raise (Error "redefinition of function with different # args");
+                    f
+              in
+
+              (* Set names for all arguments. *)
+              Array.iteri (fun i a ->
+                let n = args.(i) in
+                set_value_name n a;
+                Hashtbl.add named_values n a;
+              ) (params f);
+              f
+
+        let codegen_func the_fpm = function
+          | Ast.Function (proto, body) ->
+              Hashtbl.clear named_values;
+              let the_function = codegen_proto proto in
+
+              (* Create a new basic block to start insertion into. *)
+              let bb = append_block context "entry" the_function in
+              position_at_end bb builder;
+
+              try
+                let ret_val = codegen_expr body in
+
+                (* Finish off the function. *)
+                let _ = build_ret ret_val builder in
+
+                (* Validate the generated code, checking for consistency. *)
+                Llvm_analysis.assert_valid_function the_function;
+
+                (* Optimize the function. *)
+                let _ = PassManager.run_function the_function the_fpm in
+
+                the_function
+              with e ->
+                delete_function the_function;
+                raise e
+
+toplevel.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Top-Level parsing and JIT Driver
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+        open Llvm_executionengine
+
+        (* top ::= definition | external | expression | ';' *)
+        let rec main_loop the_fpm the_execution_engine stream =
+          match Stream.peek stream with
+          | None -> ()
+
+          (* ignore top-level semicolons. *)
+          | Some (Token.Kwd ';') ->
+              Stream.junk stream;
+              main_loop the_fpm the_execution_engine stream
+
+          | Some token ->
+              begin
+                try match token with
+                | Token.Def ->
+                    let e = Parser.parse_definition stream in
+                    print_endline "parsed a function definition.";
+                    dump_value (Codegen.codegen_func the_fpm e);
+                | Token.Extern ->
+                    let e = Parser.parse_extern stream in
+                    print_endline "parsed an extern.";
+                    dump_value (Codegen.codegen_proto e);
+                | _ ->
+                    (* Evaluate a top-level expression into an anonymous function. *)
+                    let e = Parser.parse_toplevel stream in
+                    print_endline "parsed a top-level expr";
+                    let the_function = Codegen.codegen_func the_fpm e in
+                    dump_value the_function;
+
+                    (* JIT the function, returning a function pointer. *)
+                    let result = ExecutionEngine.run_function the_function [||]
+                      the_execution_engine in
+
+                    print_string "Evaluated to ";
+                    print_float (GenericValue.as_float Codegen.double_type result);
+                    print_newline ();
+                with Stream.Error s | Codegen.Error s ->
+                  (* Skip token for error recovery. *)
+                  Stream.junk stream;
+                  print_endline s;
+              end;
+              print_string "ready> "; flush stdout;
+              main_loop the_fpm the_execution_engine stream
+
+toy.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Main driver code.
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+        open Llvm_executionengine
+        open Llvm_target
+        open Llvm_scalar_opts
+
+        let main () =
+          ignore (initialize_native_target ());
+
+          (* Install standard binary operators.
+           * 1 is the lowest precedence. *)
+          Hashtbl.add Parser.binop_precedence '<' 10;
+          Hashtbl.add Parser.binop_precedence '+' 20;
+          Hashtbl.add Parser.binop_precedence '-' 20;
+          Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+
+          (* Prime the first token. *)
+          print_string "ready> "; flush stdout;
+          let stream = Lexer.lex (Stream.of_channel stdin) in
+
+          (* Create the JIT. *)
+          let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+          let the_fpm = PassManager.create_function Codegen.the_module in
+
+          (* Set up the optimizer pipeline.  Start with registering info about how the
+           * target lays out data structures. *)
+          DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+          (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+          add_instruction_combination the_fpm;
+
+          (* reassociate expressions. *)
+          add_reassociation the_fpm;
+
+          (* Eliminate Common SubExpressions. *)
+          add_gvn the_fpm;
+
+          (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+          add_cfg_simplification the_fpm;
+
+          ignore (PassManager.initialize the_fpm);
+
+          (* Run the main "interpreter loop" now. *)
+          Toplevel.main_loop the_fpm the_execution_engine stream;
+
+          (* Print out all the generated code. *)
+          dump_module Codegen.the_module
+        ;;
+
+        main ()
+
+bindings.c
+    .. code-block:: c
+
+        #include <stdio.h>
+
+        /* putchard - putchar that takes a double and returns 0. */
+        extern double putchard(double X) {
+          putchar((char)X);
+          return 0;
+        }
+
+`Next: Extending the language: control flow <OCamlLangImpl5.html>`_
+





More information about the llvm-commits mailing list