[llvm-commits] [llvm] r168866 - in /llvm/trunk: include/llvm/InitializePasses.h include/llvm/Transforms/Instrumentation.h lib/Transforms/Instrumentation/CMakeLists.txt lib/Transforms/Instrumentation/Instrumentation.cpp lib/Transforms/Instrumentation/MemorySanitizer.cpp test/Instrumentation/MemorySanitizer/ test/Instrumentation/MemorySanitizer/lit.local.cfg test/Instrumentation/MemorySanitizer/msan_basic.ll

NAKAMURA Takumi geek4civic at gmail.com
Thu Nov 29 04:44:59 PST 2012


Evgeniy, could you apply patches to suppress warnings?

...Takumi

2012/11/29 Evgeniy Stepanov <eugeni.stepanov at gmail.com>:
> Author: eugenis
> Date: Thu Nov 29 03:57:20 2012
> New Revision: 168866
>
> URL: http://llvm.org/viewvc/llvm-project?rev=168866&view=rev
> Log:
> Initial commit of MemorySanitizer.
>
> Compiler pass only.
>
> Added:
>     llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp   (with props)
>     llvm/trunk/test/Instrumentation/MemorySanitizer/
>     llvm/trunk/test/Instrumentation/MemorySanitizer/lit.local.cfg
>     llvm/trunk/test/Instrumentation/MemorySanitizer/msan_basic.ll
> Modified:
>     llvm/trunk/include/llvm/InitializePasses.h
>     llvm/trunk/include/llvm/Transforms/Instrumentation.h
>     llvm/trunk/lib/Transforms/Instrumentation/CMakeLists.txt
>     llvm/trunk/lib/Transforms/Instrumentation/Instrumentation.cpp
>
> Modified: llvm/trunk/include/llvm/InitializePasses.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=168866&r1=168865&r2=168866&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/InitializePasses.h (original)
> +++ llvm/trunk/include/llvm/InitializePasses.h Thu Nov 29 03:57:20 2012
> @@ -111,6 +111,7 @@
>  void initializeGCOVProfilerPass(PassRegistry&);
>  void initializeAddressSanitizerPass(PassRegistry&);
>  void initializeAddressSanitizerModulePass(PassRegistry&);
> +void initializeMemorySanitizerPass(PassRegistry&);
>  void initializeThreadSanitizerPass(PassRegistry&);
>  void initializeEarlyCSEPass(PassRegistry&);
>  void initializeExpandISelPseudosPass(PassRegistry&);
>
> Modified: llvm/trunk/include/llvm/Transforms/Instrumentation.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Instrumentation.h?rev=168866&r1=168865&r2=168866&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/Transforms/Instrumentation.h (original)
> +++ llvm/trunk/include/llvm/Transforms/Instrumentation.h Thu Nov 29 03:57:20 2012
> @@ -36,6 +36,8 @@
>  // Insert AddressSanitizer (address sanity checking) instrumentation
>  FunctionPass *createAddressSanitizerFunctionPass();
>  ModulePass *createAddressSanitizerModulePass();
> +// Insert MemorySanitizer instrumentation (detection of uninitialized reads)
> +FunctionPass *createMemorySanitizerPass();
>  // Insert ThreadSanitizer (race detection) instrumentation
>  FunctionPass *createThreadSanitizerPass();
>
>
> Modified: llvm/trunk/lib/Transforms/Instrumentation/CMakeLists.txt
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/CMakeLists.txt?rev=168866&r1=168865&r2=168866&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Instrumentation/CMakeLists.txt (original)
> +++ llvm/trunk/lib/Transforms/Instrumentation/CMakeLists.txt Thu Nov 29 03:57:20 2012
> @@ -4,6 +4,7 @@
>    BoundsChecking.cpp
>    EdgeProfiling.cpp
>    GCOVProfiling.cpp
> +  MemorySanitizer.cpp
>    Instrumentation.cpp
>    OptimalEdgeProfiling.cpp
>    PathProfiling.cpp
>
> Modified: llvm/trunk/lib/Transforms/Instrumentation/Instrumentation.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/Instrumentation.cpp?rev=168866&r1=168865&r2=168866&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Instrumentation/Instrumentation.cpp (original)
> +++ llvm/trunk/lib/Transforms/Instrumentation/Instrumentation.cpp Thu Nov 29 03:57:20 2012
> @@ -27,6 +27,7 @@
>    initializeGCOVProfilerPass(Registry);
>    initializeOptimalEdgeProfilerPass(Registry);
>    initializePathProfilerPass(Registry);
> +  initializeMemorySanitizerPass(Registry);
>    initializeThreadSanitizerPass(Registry);
>  }
>
>
> Added: llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp?rev=168866&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp (added)
> +++ llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp Thu Nov 29 03:57:20 2012
> @@ -0,0 +1,1419 @@
> +//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +/// \file
> +/// This file is a part of MemorySanitizer, a detector of uninitialized
> +/// reads.
> +///
> +/// Status: early prototype.
> +///
> +/// The algorithm of the tool is similar to Memcheck
> +/// (http://goo.gl/QKbem). We associate a few shadow bits with every
> +/// byte of the application memory, poison the shadow of the malloc-ed
> +/// or alloca-ed memory, load the shadow bits on every memory read,
> +/// propagate the shadow bits through some of the arithmetic
> +/// instruction (including MOV), store the shadow bits on every memory
> +/// write, report a bug on some other instructions (e.g. JMP) if the
> +/// associated shadow is poisoned.
> +///
> +/// But there are differences too. The first and the major one:
> +/// compiler instrumentation instead of binary instrumentation. This
> +/// gives us much better register allocation, possible compiler
> +/// optimizations and a fast start-up. But this brings the major issue
> +/// as well: msan needs to see all program events, including system
> +/// calls and reads/writes in system libraries, so we either need to
> +/// compile *everything* with msan or use a binary translation
> +/// component (e.g. DynamoRIO) to instrument pre-built libraries.
> +/// Another difference from Memcheck is that we use 8 shadow bits per
> +/// byte of application memory and use a direct shadow mapping. This
> +/// greatly simplifies the instrumentation code and avoids races on
> +/// shadow updates (Memcheck is single-threaded so races are not a
> +/// concern there. Memcheck uses 2 shadow bits per byte with a slow
> +/// path storage that uses 8 bits per byte).
> +///
> +/// The default value of shadow is 0, which means "clean" (not poisoned).
> +///
> +/// Every module initializer should call __msan_init to ensure that the
> +/// shadow memory is ready. On error, __msan_warning is called. Since
> +/// parameters and return values may be passed via registers, we have a
> +/// specialized thread-local shadow for return values
> +/// (__msan_retval_tls) and parameters (__msan_param_tls).
> +//===----------------------------------------------------------------------===//
> +
> +#define DEBUG_TYPE "msan"
> +
> +#include "BlackList.h"
> +#include "llvm/DataLayout.h"
> +#include "llvm/Function.h"
> +#include "llvm/InlineAsm.h"
> +#include "llvm/IntrinsicInst.h"
> +#include "llvm/IRBuilder.h"
> +#include "llvm/LLVMContext.h"
> +#include "llvm/MDBuilder.h"
> +#include "llvm/Module.h"
> +#include "llvm/Type.h"
> +#include "llvm/ADT/DepthFirstIterator.h"
> +#include "llvm/ADT/SmallString.h"
> +#include "llvm/ADT/SmallVector.h"
> +#include "llvm/ADT/ValueMap.h"
> +#include "llvm/Transforms/Instrumentation.h"
> +#include "llvm/Transforms/Utils/BasicBlockUtils.h"
> +#include "llvm/Transforms/Utils/ModuleUtils.h"
> +#include "llvm/Support/CommandLine.h"
> +#include "llvm/Support/Compiler.h"
> +#include "llvm/Support/Debug.h"
> +#include "llvm/Support/InstVisitor.h"
> +#include "llvm/Support/raw_ostream.h"
> +#include "llvm/Transforms/Instrumentation.h"
> +#include "llvm/Transforms/Utils/BasicBlockUtils.h"
> +#include "llvm/Transforms/Utils/ModuleUtils.h"
> +
> +using namespace llvm;
> +
> +static const uint64_t kShadowMask32 = 1ULL << 31;
> +static const uint64_t kShadowMask64 = 1ULL << 46;
> +static const uint64_t kOriginOffset32 = 1ULL << 30;
> +static const uint64_t kOriginOffset64 = 1ULL << 45;
> +
> +// This is an important flag that makes the reports much more
> +// informative at the cost of greater slowdown. Not fully implemented
> +// yet.
> +// FIXME: this should be a top-level clang flag, e.g.
> +// -fmemory-sanitizer-full.
> +static cl::opt<bool> ClTrackOrigins("msan-track-origins",
> +       cl::desc("Track origins (allocation sites) of poisoned memory"),
> +       cl::Hidden, cl::init(false));
> +static cl::opt<bool> ClKeepGoing("msan-keep-going",
> +       cl::desc("keep going after reporting a UMR"),
> +       cl::Hidden, cl::init(false));
> +static cl::opt<bool> ClPoisonStack("msan-poison-stack",
> +       cl::desc("poison uninitialized stack variables"),
> +       cl::Hidden, cl::init(true));
> +static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
> +       cl::desc("poison uninitialized stack variables with a call"),
> +       cl::Hidden, cl::init(false));
> +static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
> +       cl::desc("poison uninitialized stack variables with the given patter"),
> +       cl::Hidden, cl::init(0xff));
> +
> +static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
> +       cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
> +       cl::Hidden, cl::init(true));
> +
> +// This flag controls whether we check the shadow of the address
> +// operand of load or store. Such bugs are very rare, since load from
> +// a garbage address typically results in SEGV, but still happen
> +// (e.g. only lower bits of address are garbage, or the access happens
> +// early at program startup where malloc-ed memory is more likely to
> +// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
> +static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
> +       cl::desc("report accesses through a pointer which has poisoned shadow"),
> +       cl::Hidden, cl::init(true));
> +
> +static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
> +       cl::desc("print out instructions with default strict semantics"),
> +       cl::Hidden, cl::init(false));
> +
> +static cl::opt<std::string>  ClBlackListFile("msan-blacklist",
> +       cl::desc("File containing the list of functions where MemorySanitizer "
> +                "should not report bugs"), cl::Hidden);
> +
> +namespace {
> +
> +/// \brief An instrumentation pass implementing detection of uninitialized
> +/// reads.
> +///
> +/// MemorySanitizer: instrument the code in module to find
> +/// uninitialized reads.
> +class MemorySanitizer : public FunctionPass {
> +public:
> +  MemorySanitizer() : FunctionPass(ID), TD(0) { }
> +  const char *getPassName() const { return "MemorySanitizer"; }
> +  bool runOnFunction(Function &F);
> +  bool doInitialization(Module &M);
> +  static char ID;  // Pass identification, replacement for typeid.
> +
> +private:
> +  DataLayout *TD;
> +  LLVMContext *C;
> +  Type *IntptrTy;
> +  Type *OriginTy;
> +  /// \brief Thread-local shadow storage for function parameters.
> +  GlobalVariable *ParamTLS;
> +  /// \brief Thread-local origin storage for function parameters.
> +  GlobalVariable *ParamOriginTLS;
> +  /// \brief Thread-local shadow storage for function return value.
> +  GlobalVariable *RetvalTLS;
> +  /// \brief Thread-local origin storage for function return value.
> +  GlobalVariable *RetvalOriginTLS;
> +  /// \brief Thread-local shadow storage for in-register va_arg function
> +  /// parameters (x86_64-specific).
> +  GlobalVariable *VAArgTLS;
> +  /// \brief Thread-local shadow storage for va_arg overflow area
> +  /// (x86_64-specific).
> +  GlobalVariable *VAArgOverflowSizeTLS;
> +  /// \brief Thread-local space used to pass origin value to the UMR reporting
> +  /// function.
> +  GlobalVariable *OriginTLS;
> +
> +  /// \brief The run-time callback to print a warning.
> +  Value *WarningFn;
> +  /// \brief Run-time helper that copies origin info for a memory range.
> +  Value *MsanCopyOriginFn;
> +  /// \brief Run-time helper that generates a new origin value for a stack
> +  /// allocation.
> +  Value *MsanSetAllocaOriginFn;
> +  /// \brief Run-time helper that poisons stack on function entry.
> +  Value *MsanPoisonStackFn;
> +  /// \brief The actual "memmove" function.
> +  Value *MemmoveFn;
> +
> +  /// \brief Address mask used in application-to-shadow address calculation.
> +  /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
> +  uint64_t ShadowMask;
> +  /// \brief Offset of the origin shadow from the "normal" shadow.
> +  /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
> +  uint64_t OriginOffset;
> +  /// \brief Branch weights for error reporting.
> +  MDNode *ColdCallWeights;
> +  /// \brief The blacklist.
> +  OwningPtr<BlackList> BL;
> +
> +  friend class MemorySanitizerVisitor;
> +  friend class VarArgAMD64Helper;
> +};
> +}  // namespace
> +
> +char MemorySanitizer::ID = 0;
> +INITIALIZE_PASS(MemorySanitizer, "msan",
> +                "MemorySanitizer: detects uninitialized reads.",
> +                false, false)
> +
> +FunctionPass *llvm::createMemorySanitizerPass() {
> +  return new MemorySanitizer();
> +}
> +
> +/// \brief Create a non-const global initialized with the given string.
> +///
> +/// Creates a writable global for Str so that we can pass it to the
> +/// run-time lib. Runtime uses first 4 bytes of the string to store the
> +/// frame ID, so the string needs to be mutable.
> +static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
> +                                                            StringRef Str) {
> +  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
> +  return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
> +                            GlobalValue::PrivateLinkage, StrConst, "");
> +}
> +
> +/// \brief Module-level initialization.
> +///
> +/// Obtains pointers to the required runtime library functions, and
> +/// inserts a call to __msan_init to the module's constructor list.
> +bool MemorySanitizer::doInitialization(Module &M) {
> +  TD = getAnalysisIfAvailable<DataLayout>();
> +  if (!TD)
> +    return false;
> +  BL.reset(new BlackList(ClBlackListFile));
> +  C = &(M.getContext());
> +  unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
> +  switch (PtrSize) {
> +    case 64:
> +      ShadowMask = kShadowMask64;
> +      OriginOffset = kOriginOffset64;
> +      break;
> +    case 32:
> +      ShadowMask = kShadowMask32;
> +      OriginOffset = kOriginOffset32;
> +      break;
> +    default:
> +      report_fatal_error("unsupported pointer size");
> +      break;
> +  }
> +
> +  IRBuilder<> IRB(*C);
> +  IntptrTy = IRB.getIntPtrTy(TD);
> +  OriginTy = IRB.getInt32Ty();
> +
> +  ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
> +
> +  // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
> +  appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
> +                      "__msan_init", IRB.getVoidTy(), NULL)), 0);
> +
> +  new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::LinkOnceODRLinkage,
> +                     IRB.getInt32(ClTrackOrigins), "__msan_track_origins");
> +
> +  // Create the callback.
> +  // FIXME: this function should have "Cold" calling conv,
> +  // which is not yet implemented.
> +  StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
> +                                        : "__msan_warning_noreturn";
> +  WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
> +
> +  MsanCopyOriginFn = M.getOrInsertFunction(
> +    "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
> +    IRB.getInt8PtrTy(), IntptrTy, NULL);
> +  MsanSetAllocaOriginFn = M.getOrInsertFunction(
> +    "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
> +    IRB.getInt8PtrTy(), NULL);
> +  MsanPoisonStackFn = M.getOrInsertFunction(
> +    "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
> +  MemmoveFn = M.getOrInsertFunction(
> +    "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
> +    IntptrTy, NULL);
> +
> +  // Create globals.
> +  RetvalTLS = new GlobalVariable(
> +    M, ArrayType::get(IRB.getInt64Ty(), 8), false,
> +    GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
> +    GlobalVariable::GeneralDynamicTLSModel);
> +  RetvalOriginTLS = new GlobalVariable(
> +    M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
> +    "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
> +
> +  ParamTLS = new GlobalVariable(
> +    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
> +    GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
> +    GlobalVariable::GeneralDynamicTLSModel);
> +  ParamOriginTLS = new GlobalVariable(
> +    M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
> +    0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
> +
> +  VAArgTLS = new GlobalVariable(
> +    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
> +    GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
> +    GlobalVariable::GeneralDynamicTLSModel);
> +  VAArgOverflowSizeTLS = new GlobalVariable(
> +    M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
> +    "__msan_va_arg_overflow_size_tls", 0,
> +    GlobalVariable::GeneralDynamicTLSModel);
> +  OriginTLS = new GlobalVariable(
> +    M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
> +    "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
> +  return true;
> +}
> +
> +namespace {
> +
> +/// \brief A helper class that handles instrumentation of VarArg
> +/// functions on a particular platform.
> +///
> +/// Implementations are expected to insert the instrumentation
> +/// necessary to propagate argument shadow through VarArg function
> +/// calls. Visit* methods are called during an InstVisitor pass over
> +/// the function, and should avoid creating new basic blocks. A new
> +/// instance of this class is created for each instrumented function.
> +struct VarArgHelper {
> +  /// \brief Visit a CallSite.
> +  virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
> +
> +  /// \brief Visit a va_start call.
> +  virtual void visitVAStartInst(VAStartInst &I) = 0;
> +
> +  /// \brief Visit a va_copy call.
> +  virtual void visitVACopyInst(VACopyInst &I) = 0;
> +
> +  /// \brief Finalize function instrumentation.
> +  ///
> +  /// This method is called after visiting all interesting (see above)
> +  /// instructions in a function.
> +  virtual void finalizeInstrumentation() = 0;
> +};
> +
> +struct MemorySanitizerVisitor;
> +
> +VarArgHelper*
> +CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
> +                   MemorySanitizerVisitor &Visitor);
> +
> +/// This class does all the work for a given function. Store and Load
> +/// instructions store and load corresponding shadow and origin
> +/// values. Most instructions propagate shadow from arguments to their
> +/// return values. Certain instructions (most importantly, BranchInst)
> +/// test their argument shadow and print reports (with a runtime call) if it's
> +/// non-zero.
> +struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
> +  Function &F;
> +  MemorySanitizer &MS;
> +  SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
> +  ValueMap<Value*, Value*> ShadowMap, OriginMap;
> +  bool InsertChecks;
> +  OwningPtr<VarArgHelper> VAHelper;
> +
> +  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
> +  // See a comment in visitCallSite for more details.
> +  static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
> +  static const unsigned AMD64FpEndOffset = 176;
> +
> +  struct ShadowOriginAndInsertPoint {
> +    Instruction *Shadow;
> +    Instruction *Origin;
> +    Instruction *OrigIns;
> +    ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
> +      : Shadow(S), Origin(O), OrigIns(I) { }
> +    ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
> +  };
> +  SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
> +
> +  MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
> +    : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
> +    InsertChecks = !MS.BL->isIn(F);
> +    DEBUG(if (!InsertChecks)
> +            dbgs() << "MemorySanitizer is not inserting checks into '"
> +                   << F.getName() << "'\n");
> +  }
> +
> +  void materializeChecks() {
> +    for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
> +      Instruction *Shadow = InstrumentationList[i].Shadow;
> +      Instruction *OrigIns = InstrumentationList[i].OrigIns;
> +      IRBuilder<> IRB(OrigIns);
> +      DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
> +      Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
> +      DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
> +      Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
> +                                    getCleanShadow(ConvertedShadow), "_mscmp");
> +      Instruction *CheckTerm =
> +        SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
> +                                  /* Unreachable */ !ClKeepGoing,
> +                                  MS.ColdCallWeights);
> +
> +      IRB.SetInsertPoint(CheckTerm);
> +      if (ClTrackOrigins) {
> +        Instruction *Origin = InstrumentationList[i].Origin;
> +        IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
> +                        MS.OriginTLS);
> +      }
> +      CallInst *Call = IRB.CreateCall(MS.WarningFn);
> +      Call->setDebugLoc(OrigIns->getDebugLoc());
> +      DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
> +    }
> +    DEBUG(dbgs() << "DONE:\n" << F);
> +  }
> +
> +  /// \brief Add MemorySanitizer instrumentation to a function.
> +  bool runOnFunction() {
> +    if (!MS.TD) return false;
> +    // Iterate all BBs in depth-first order and create shadow instructions
> +    // for all instructions (where applicable).
> +    // For PHI nodes we create dummy shadow PHIs which will be finalized later.
> +    for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
> +         DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
> +      BasicBlock *BB = *DI;
> +      visit(*BB);
> +    }
> +
> +    // Finalize PHI nodes.
> +    for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
> +      PHINode *PN = ShadowPHINodes[i];
> +      PHINode *PNS = cast<PHINode>(getShadow(PN));
> +      PHINode *PNO = ClTrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
> +      size_t NumValues = PN->getNumIncomingValues();
> +      for (size_t v = 0; v < NumValues; v++) {
> +        PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
> +        if (PNO)
> +          PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
> +      }
> +    }
> +
> +    VAHelper->finalizeInstrumentation();
> +
> +    materializeChecks();
> +
> +    return true;
> +  }
> +
> +  /// \brief Compute the shadow type that corresponds to a given Value.
> +  Type *getShadowTy(Value *V) {
> +    return getShadowTy(V->getType());
> +  }
> +
> +  /// \brief Compute the shadow type that corresponds to a given Type.
> +  Type *getShadowTy(Type *OrigTy) {
> +    if (!OrigTy->isSized()) {
> +      return 0;
> +    }
> +    // For integer type, shadow is the same as the original type.
> +    // This may return weird-sized types like i1.
> +    if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
> +      return IT;
> +    if (VectorType *VT = dyn_cast<VectorType>(OrigTy))
> +      return VectorType::getInteger(VT);
> +    if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
> +      SmallVector<Type*, 4> Elements;
> +      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
> +        Elements.push_back(getShadowTy(ST->getElementType(i)));
> +      StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
> +      DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
> +      return Res;
> +    }
> +    uint32_t TypeSize = MS.TD->getTypeStoreSizeInBits(OrigTy);
> +    return IntegerType::get(*MS.C, TypeSize);
> +  }
> +
> +  /// \brief Flatten a vector type.
> +  Type *getShadowTyNoVec(Type *ty) {
> +    if (VectorType *vt = dyn_cast<VectorType>(ty))
> +      return IntegerType::get(*MS.C, vt->getBitWidth());
> +    return ty;
> +  }
> +
> +  /// \brief Convert a shadow value to it's flattened variant.
> +  Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
> +    Type *Ty = V->getType();
> +    Type *NoVecTy = getShadowTyNoVec(Ty);
> +    if (Ty == NoVecTy) return V;
> +    return IRB.CreateBitCast(V, NoVecTy);
> +  }
> +
> +  /// \brief Compute the shadow address that corresponds to a given application
> +  /// address.
> +  ///
> +  /// Shadow = Addr & ~ShadowMask.
> +  Value *getShadowPtr(Value *Addr, Type *ShadowTy,
> +                      IRBuilder<> &IRB) {
> +    Value *ShadowLong =
> +      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
> +                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
> +    return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
> +  }
> +
> +  /// \brief Compute the origin address that corresponds to a given application
> +  /// address.
> +  ///
> +  /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
> +  ///            = Addr & (~ShadowMask & ~3ULL) + OriginOffset
> +  Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
> +    Value *ShadowLong =
> +      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
> +                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask & ~3ULL));
> +    Value *Add =
> +      IRB.CreateAdd(ShadowLong,
> +                    ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
> +    return IRB.CreateIntToPtr(Add, PointerType::get(IRB.getInt32Ty(), 0));
> +  }
> +
> +  /// \brief Compute the shadow address for a given function argument.
> +  ///
> +  /// Shadow = ParamTLS+ArgOffset.
> +  Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
> +                                 int ArgOffset) {
> +    Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
> +    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
> +    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
> +                              "_msarg");
> +  }
> +
> +  /// \brief Compute the origin address for a given function argument.
> +  Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
> +                                 int ArgOffset) {
> +    if (!ClTrackOrigins) return 0;
> +    Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
> +    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
> +    return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
> +                              "_msarg_o");
> +  }
> +
> +  /// \brief Compute the shadow address for a retval.
> +  Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
> +    Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
> +    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
> +                              "_msret");
> +  }
> +
> +  /// \brief Compute the origin address for a retval.
> +  Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
> +    // We keep a single origin for the entire retval. Might be too optimistic.
> +    return MS.RetvalOriginTLS;
> +  }
> +
> +  /// \brief Set SV to be the shadow value for V.
> +  void setShadow(Value *V, Value *SV) {
> +    assert(!ShadowMap.count(V) && "Values may only have one shadow");
> +    ShadowMap[V] = SV;
> +  }
> +
> +  /// \brief Set Origin to be the origin value for V.
> +  void setOrigin(Value *V, Value *Origin) {
> +    if (!ClTrackOrigins) return;
> +    assert(!OriginMap.count(V) && "Values may only have one origin");
> +    DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
> +    OriginMap[V] = Origin;
> +  }
> +
> +  /// \brief Create a clean shadow value for a given value.
> +  ///
> +  /// Clean shadow (all zeroes) means all bits of the value are defined
> +  /// (initialized).
> +  Value *getCleanShadow(Value *V) {
> +    Type *ShadowTy = getShadowTy(V);
> +    if (!ShadowTy)
> +      return 0;
> +    return Constant::getNullValue(ShadowTy);
> +  }
> +
> +  /// \brief Create a dirty shadow of a given shadow type.
> +  Constant *getPoisonedShadow(Type *ShadowTy) {
> +    assert(ShadowTy);
> +    if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
> +      return Constant::getAllOnesValue(ShadowTy);
> +    StructType *ST = cast<StructType>(ShadowTy);
> +    SmallVector<Constant *, 4> Vals;
> +    for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
> +      Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
> +    return ConstantStruct::get(ST, Vals);
> +  }
> +
> +  /// \brief Create a clean (zero) origin.
> +  Value *getCleanOrigin() {
> +    return Constant::getNullValue(MS.OriginTy);
> +  }
> +
> +  /// \brief Get the shadow value for a given Value.
> +  ///
> +  /// This function either returns the value set earlier with setShadow,
> +  /// or extracts if from ParamTLS (for function arguments).
> +  Value *getShadow(Value *V) {
> +    if (Instruction *I = dyn_cast<Instruction>(V)) {
> +      // For instructions the shadow is already stored in the map.
> +      Value *Shadow = ShadowMap[V];
> +      if (!Shadow) {
> +        DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
> +        assert(Shadow && "No shadow for a value");
> +      }
> +      return Shadow;
> +    }
> +    if (UndefValue *U = dyn_cast<UndefValue>(V)) {
> +      Value *AllOnes = getPoisonedShadow(getShadowTy(V));
> +      DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
> +      return AllOnes;
> +    }
> +    if (Argument *A = dyn_cast<Argument>(V)) {
> +      // For arguments we compute the shadow on demand and store it in the map.
> +      Value **ShadowPtr = &ShadowMap[V];
> +      if (*ShadowPtr)
> +        return *ShadowPtr;
> +      Function *F = A->getParent();
> +      IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
> +      unsigned ArgOffset = 0;
> +      for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
> +           AI != AE; ++AI) {
> +        if (!AI->getType()->isSized()) {
> +          DEBUG(dbgs() << "Arg is not sized\n");
> +          continue;
> +        }
> +        unsigned Size = AI->hasByValAttr()
> +          ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
> +          : MS.TD->getTypeAllocSize(AI->getType());
> +        if (A == AI) {
> +          Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
> +          if (AI->hasByValAttr()) {
> +            // ByVal pointer itself has clean shadow. We copy the actual
> +            // argument shadow to the underlying memory.
> +            Value *Cpy = EntryIRB.CreateMemCpy(
> +              getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
> +              Base, Size, AI->getParamAlignment());
> +            DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
> +            *ShadowPtr = getCleanShadow(V);
> +          } else {
> +            *ShadowPtr = EntryIRB.CreateLoad(Base);
> +          }
> +          DEBUG(dbgs() << "  ARG:    "  << *AI << " ==> " <<
> +                **ShadowPtr << "\n");
> +          if (ClTrackOrigins) {
> +            Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
> +            setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
> +          }
> +        }
> +        ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
> +      }
> +      assert(*ShadowPtr && "Could not find shadow for an argument");
> +      return *ShadowPtr;
> +    }
> +    // For everything else the shadow is zero.
> +    return getCleanShadow(V);
> +  }
> +
> +  /// \brief Get the shadow for i-th argument of the instruction I.
> +  Value *getShadow(Instruction *I, int i) {
> +    return getShadow(I->getOperand(i));
> +  }
> +
> +  /// \brief Get the origin for a value.
> +  Value *getOrigin(Value *V) {
> +    if (!ClTrackOrigins) return 0;
> +    if (isa<Instruction>(V) || isa<Argument>(V)) {
> +      Value *Origin = OriginMap[V];
> +      if (!Origin) {
> +        DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
> +        Origin = getCleanOrigin();
> +      }
> +      return Origin;
> +    }
> +    return getCleanOrigin();
> +  }
> +
> +  /// \brief Get the origin for i-th argument of the instruction I.
> +  Value *getOrigin(Instruction *I, int i) {
> +    return getOrigin(I->getOperand(i));
> +  }
> +
> +  /// \brief Remember the place where a shadow check should be inserted.
> +  ///
> +  /// This location will be later instrumented with a check that will print a
> +  /// UMR warning in runtime if the value is not fully defined.
> +  void insertCheck(Value *Val, Instruction *OrigIns) {
> +    assert(Val);
> +    if (!InsertChecks) return;
> +    Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
> +    if (!Shadow) return;
> +    Type *ShadowTy = Shadow->getType();
> +    assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
> +           "Can only insert checks for integer and vector shadow types");
> +    Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
> +    InstrumentationList.push_back(
> +      ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
> +  }
> +
> +  //------------------- Visitors.
> +
> +  /// \brief Instrument LoadInst
> +  ///
> +  /// Loads the corresponding shadow and (optionally) origin.
> +  /// Optionally, checks that the load address is fully defined.
> +  void visitLoadInst(LoadInst &I) {
> +    Type *LoadTy = I.getType();
> +    assert(LoadTy->isSized() && "Load type must have size");
> +    IRBuilder<> IRB(&I);
> +    Type *ShadowTy = getShadowTy(&I);
> +    Value *Addr = I.getPointerOperand();
> +    Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
> +    setShadow(&I, IRB.CreateLoad(ShadowPtr, "_msld"));
> +
> +    if (ClCheckAccessAddress)
> +      insertCheck(I.getPointerOperand(), &I);
> +
> +    if (ClTrackOrigins)
> +      setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
> +  }
> +
> +  /// \brief Instrument StoreInst
> +  ///
> +  /// Stores the corresponding shadow and (optionally) origin.
> +  /// Optionally, checks that the store address is fully defined.
> +  /// Volatile stores check that the value being stored is fully defined.
> +  void visitStoreInst(StoreInst &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *Val = I.getValueOperand();
> +    Value *Addr = I.getPointerOperand();
> +    Value *Shadow = getShadow(Val);
> +    Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
> +
> +    StoreInst *NewSI = IRB.CreateStore(Shadow, ShadowPtr);
> +    DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
> +    // If the store is volatile, add a check.
> +    if (I.isVolatile())
> +      insertCheck(Val, &I);
> +    if (ClCheckAccessAddress)
> +      insertCheck(Addr, &I);
> +
> +    if (ClTrackOrigins)
> +      IRB.CreateStore(getOrigin(Val), getOriginPtr(Addr, IRB));
> +  }
> +
> +  // Casts.
> +  void visitSExtInst(SExtInst &I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitZExtInst(ZExtInst &I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitTruncInst(TruncInst &I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitBitCastInst(BitCastInst &I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitPtrToIntInst(PtrToIntInst &I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
> +             "_msprop_ptrtoint"));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitIntToPtrInst(IntToPtrInst &I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
> +             "_msprop_inttoptr"));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
> +  void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
> +  void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
> +  void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
> +  void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
> +  void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
> +
> +  /// \brief Propagate shadow for bitwise AND.
> +  ///
> +  /// This code is exact, i.e. if, for example, a bit in the left argument
> +  /// is defined and 0, then neither the value not definedness of the
> +  /// corresponding bit in B don't affect the resulting shadow.
> +  void visitAnd(BinaryOperator &I) {
> +    IRBuilder<> IRB(&I);
> +    //  "And" of 0 and a poisoned value results in unpoisoned value.
> +    //  1&1 => 1;     0&1 => 0;     p&1 => p;
> +    //  1&0 => 0;     0&0 => 0;     p&0 => 0;
> +    //  1&p => p;     0&p => 0;     p&p => p;
> +    //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
> +    Value *S1 = getShadow(&I, 0);
> +    Value *S2 = getShadow(&I, 1);
> +    Value *V1 = I.getOperand(0);
> +    Value *V2 = I.getOperand(1);
> +    if (V1->getType() != S1->getType()) {
> +      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
> +      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
> +    }
> +    Value *S1S2 = IRB.CreateAnd(S1, S2);
> +    Value *V1S2 = IRB.CreateAnd(V1, S2);
> +    Value *S1V2 = IRB.CreateAnd(S1, V2);
> +    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
> +    setOriginForNaryOp(I);
> +  }
> +
> +  void visitOr(BinaryOperator &I) {
> +    IRBuilder<> IRB(&I);
> +    //  "Or" of 1 and a poisoned value results in unpoisoned value.
> +    //  1|1 => 1;     0|1 => 1;     p|1 => 1;
> +    //  1|0 => 1;     0|0 => 0;     p|0 => p;
> +    //  1|p => 1;     0|p => p;     p|p => p;
> +    //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
> +    Value *S1 = getShadow(&I, 0);
> +    Value *S2 = getShadow(&I, 1);
> +    Value *V1 = IRB.CreateNot(I.getOperand(0));
> +    Value *V2 = IRB.CreateNot(I.getOperand(1));
> +    if (V1->getType() != S1->getType()) {
> +      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
> +      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
> +    }
> +    Value *S1S2 = IRB.CreateAnd(S1, S2);
> +    Value *V1S2 = IRB.CreateAnd(V1, S2);
> +    Value *S1V2 = IRB.CreateAnd(S1, V2);
> +    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
> +    setOriginForNaryOp(I);
> +  }
> +
> +  /// \brief Propagate origin for an instruction.
> +  ///
> +  /// This is a general case of origin propagation. For an Nary operation,
> +  /// is set to the origin of an argument that is not entirely initialized.
> +  /// It does not matter which one is picked if all arguments are initialized.
> +  void setOriginForNaryOp(Instruction &I) {
> +    if (!ClTrackOrigins) return;
> +    IRBuilder<> IRB(&I);
> +    Value *Origin = getOrigin(&I, 0);
> +    for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op) {
> +      Value *S = convertToShadowTyNoVec(getShadow(&I, Op - 1), IRB);
> +      Origin = IRB.CreateSelect(IRB.CreateICmpNE(S, getCleanShadow(S)),
> +                                Origin, getOrigin(&I, Op));
> +    }
> +    setOrigin(&I, Origin);
> +  }
> +
> +  /// \brief Propagate shadow for a binary operation.
> +  ///
> +  /// Shadow = Shadow0 | Shadow1, all 3 must have the same type.
> +  /// Bitwise OR is selected as an operation that will never lose even a bit of
> +  /// poison.
> +  void handleShadowOrBinary(Instruction &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *Shadow0 = getShadow(&I, 0);
> +    Value *Shadow1 = getShadow(&I, 1);
> +    setShadow(&I, IRB.CreateOr(Shadow0, Shadow1, "_msprop"));
> +    setOriginForNaryOp(I);
> +  }
> +
> +  /// \brief Propagate shadow for arbitrary operation.
> +  ///
> +  /// This is a general case of shadow propagation, used in all cases where we
> +  /// don't know and/or care about what the operation actually does.
> +  /// It converts all input shadow values to a common type (extending or
> +  /// truncating as necessary), and bitwise OR's them.
> +  ///
> +  /// This is much cheaper than inserting checks (i.e. requiring inputs to be
> +  /// fully initialized), and less prone to false positives.
> +  // FIXME: is the casting actually correct?
> +  // FIXME: merge this with handleShadowOrBinary.
> +  void handleShadowOr(Instruction &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *Shadow = getShadow(&I, 0);
> +    for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op)
> +      Shadow = IRB.CreateOr(
> +        Shadow, IRB.CreateIntCast(getShadow(&I, Op), Shadow->getType(), false),
> +        "_msprop");
> +    Shadow = IRB.CreateIntCast(Shadow, getShadowTy(&I), false);
> +    setShadow(&I, Shadow);
> +    setOriginForNaryOp(I);
> +  }
> +
> +  void visitFAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
> +  void visitFSub(BinaryOperator &I) { handleShadowOrBinary(I); }
> +  void visitFMul(BinaryOperator &I) { handleShadowOrBinary(I); }
> +  void visitAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
> +  void visitSub(BinaryOperator &I) { handleShadowOrBinary(I); }
> +  void visitXor(BinaryOperator &I) { handleShadowOrBinary(I); }
> +  void visitMul(BinaryOperator &I) { handleShadowOrBinary(I); }
> +
> +  void handleDiv(Instruction &I) {
> +    IRBuilder<> IRB(&I);
> +    // Strict on the second argument.
> +    insertCheck(I.getOperand(1), &I);
> +    setShadow(&I, getShadow(&I, 0));
> +    setOrigin(&I, getOrigin(&I, 0));
> +  }
> +
> +  void visitUDiv(BinaryOperator &I) { handleDiv(I); }
> +  void visitSDiv(BinaryOperator &I) { handleDiv(I); }
> +  void visitFDiv(BinaryOperator &I) { handleDiv(I); }
> +  void visitURem(BinaryOperator &I) { handleDiv(I); }
> +  void visitSRem(BinaryOperator &I) { handleDiv(I); }
> +  void visitFRem(BinaryOperator &I) { handleDiv(I); }
> +
> +  /// \brief Instrument == and != comparisons.
> +  ///
> +  /// Sometimes the comparison result is known even if some of the bits of the
> +  /// arguments are not.
> +  void handleEqualityComparison(ICmpInst &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *A = I.getOperand(0);
> +    Value *B = I.getOperand(1);
> +    Value *Sa = getShadow(A);
> +    Value *Sb = getShadow(B);
> +    if (A->getType()->isPointerTy())
> +      A = IRB.CreatePointerCast(A, MS.IntptrTy);
> +    if (B->getType()->isPointerTy())
> +      B = IRB.CreatePointerCast(B, MS.IntptrTy);
> +    // A == B  <==>  (C = A^B) == 0
> +    // A != B  <==>  (C = A^B) != 0
> +    // Sc = Sa | Sb
> +    Value *C = IRB.CreateXor(A, B);
> +    Value *Sc = IRB.CreateOr(Sa, Sb);
> +    // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
> +    // Result is defined if one of the following is true
> +    // * there is a defined 1 bit in C
> +    // * C is fully defined
> +    // Si = !(C & ~Sc) && Sc
> +    Value *Zero = Constant::getNullValue(Sc->getType());
> +    Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
> +    Value *Si =
> +      IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
> +                    IRB.CreateICmpEQ(
> +                      IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
> +    Si->setName("_msprop_icmp");
> +    setShadow(&I, Si);
> +    setOriginForNaryOp(I);
> +  }
> +
> +  void visitICmpInst(ICmpInst &I) {
> +    if (ClHandleICmp && I.isEquality())
> +      handleEqualityComparison(I);
> +    else
> +      handleShadowOr(I);
> +  }
> +
> +  void visitFCmpInst(FCmpInst &I) {
> +    handleShadowOr(I);
> +  }
> +
> +  void handleShift(BinaryOperator &I) {
> +    IRBuilder<> IRB(&I);
> +    // If any of the S2 bits are poisoned, the whole thing is poisoned.
> +    // Otherwise perform the same shift on S1.
> +    Value *S1 = getShadow(&I, 0);
> +    Value *S2 = getShadow(&I, 1);
> +    Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
> +                                   S2->getType());
> +    Value *V2 = I.getOperand(1);
> +    Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
> +    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
> +    setOriginForNaryOp(I);
> +  }
> +
> +  void visitShl(BinaryOperator &I) { handleShift(I); }
> +  void visitAShr(BinaryOperator &I) { handleShift(I); }
> +  void visitLShr(BinaryOperator &I) { handleShift(I); }
> +
> +  void visitMemSetInst(MemSetInst &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *Ptr = I.getArgOperand(0);
> +    Value *Val = I.getArgOperand(1);
> +    Value *ShadowPtr = getShadowPtr(Ptr, Val->getType(), IRB);
> +    Value *ShadowVal = getCleanShadow(Val);
> +    Value *Size = I.getArgOperand(2);
> +    unsigned Align = I.getAlignment();
> +    bool isVolatile = I.isVolatile();
> +
> +    IRB.CreateMemSet(ShadowPtr, ShadowVal, Size, Align, isVolatile);
> +  }
> +
> +  void visitMemCpyInst(MemCpyInst &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *Dst = I.getArgOperand(0);
> +    Value *Src = I.getArgOperand(1);
> +    Type *ElementType = dyn_cast<PointerType>(Dst->getType())->getElementType();
> +    Value *ShadowDst = getShadowPtr(Dst, ElementType, IRB);
> +    Value *ShadowSrc = getShadowPtr(Src, ElementType, IRB);
> +    Value *Size = I.getArgOperand(2);
> +    unsigned Align = I.getAlignment();
> +    bool isVolatile = I.isVolatile();
> +
> +    IRB.CreateMemCpy(ShadowDst, ShadowSrc, Size, Align, isVolatile);
> +    if (ClTrackOrigins)
> +      IRB.CreateCall3(MS.MsanCopyOriginFn, Dst, Src, Size);
> +  }
> +
> +  /// \brief Instrument llvm.memmove
> +  ///
> +  /// At this point we don't know if llvm.memmove will be inlined or not.
> +  /// If we don't instrument it and it gets inlined,
> +  /// our interceptor will not kick in and we will lose the memmove.
> +  /// If we instrument the call here, but it does not get inlined,
> +  /// we will memove the shadow twice: which is bad in case
> +  /// of overlapping regions. So, we simply lower the intrinsic to a call.
> +  ///
> +  /// Similar situation exists for memcpy and memset, but for those functions
> +  /// calling instrumentation twice does not lead to incorrect results.
> +  void visitMemMoveInst(MemMoveInst &I) {
> +    IRBuilder<> IRB(&I);
> +    IRB.CreateCall3(
> +      MS.MemmoveFn,
> +      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
> +      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
> +      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
> +    I.eraseFromParent();
> +  }
> +
> +  void visitVAStartInst(VAStartInst &I) {
> +    VAHelper->visitVAStartInst(I);
> +  }
> +
> +  void visitVACopyInst(VACopyInst &I) {
> +    VAHelper->visitVACopyInst(I);
> +  }
> +
> +  void visitCallSite(CallSite CS) {
> +    Instruction &I = *CS.getInstruction();
> +    assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
> +    if (CS.isCall()) {
> +      // Allow only tail calls with the same types, otherwise
> +      // we may have a false positive: shadow for a non-void RetVal
> +      // will get propagated to a void RetVal.
> +      CallInst *Call = cast<CallInst>(&I);
> +      if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
> +        Call->setTailCall(false);
> +      if (isa<IntrinsicInst>(&I)) {
> +        // All intrinsics we care about are handled in corresponding visit*
> +        // methods. Add checks for the arguments, mark retval as clean.
> +        visitInstruction(I);
> +        return;
> +      }
> +    }
> +    IRBuilder<> IRB(&I);
> +    unsigned ArgOffset = 0;
> +    DEBUG(dbgs() << "  CallSite: " << I << "\n");
> +    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
> +         ArgIt != End; ++ArgIt) {
> +      Value *A = *ArgIt;
> +      unsigned i = ArgIt - CS.arg_begin();
> +      if (!A->getType()->isSized()) {
> +        DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
> +        continue;
> +      }
> +      unsigned Size = 0;
> +      Value *Store = 0;
> +      // Compute the Shadow for arg even if it is ByVal, because
> +      // in that case getShadow() will copy the actual arg shadow to
> +      // __msan_param_tls.
> +      Value *ArgShadow = getShadow(A);
> +      Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
> +      DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
> +            " Shadow: " << *ArgShadow << "\n");
> +      if (CS.paramHasAttr(i + 1, Attributes::ByVal)) {
> +        assert(A->getType()->isPointerTy() &&
> +               "ByVal argument is not a pointer!");
> +        Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
> +        unsigned Alignment = CS.getParamAlignment(i + 1);
> +        Store = IRB.CreateMemCpy(ArgShadowBase,
> +                                 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
> +                                 Size, Alignment);
> +      } else {
> +        Size = MS.TD->getTypeAllocSize(A->getType());
> +        Store = IRB.CreateStore(ArgShadow, ArgShadowBase);
> +      }
> +      if (ClTrackOrigins)
> +        IRB.CreateStore(getOrigin(A),
> +                        getOriginPtrForArgument(A, IRB, ArgOffset));
> +      assert(Size != 0 && Store != 0);
> +      DEBUG(dbgs() << "  Param:" << *Store << "\n");
> +      ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
> +    }
> +    DEBUG(dbgs() << "  done with call args\n");
> +
> +    FunctionType *FT =
> +      cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
> +    if (FT->isVarArg()) {
> +      VAHelper->visitCallSite(CS, IRB);
> +    }
> +
> +    // Now, get the shadow for the RetVal.
> +    if (!I.getType()->isSized()) return;
> +    IRBuilder<> IRBBefore(&I);
> +    // Untill we have full dynamic coverage, make sure the retval shadow is 0.
> +    Value *Base = getShadowPtrForRetval(&I, IRBBefore);
> +    IRBBefore.CreateStore(getCleanShadow(&I), Base);
> +    Instruction *NextInsn = 0;
> +    if (CS.isCall()) {
> +      NextInsn = I.getNextNode();
> +    } else {
> +      BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
> +      if (!NormalDest->getSinglePredecessor()) {
> +        // FIXME: this case is tricky, so we are just conservative here.
> +        // Perhaps we need to split the edge between this BB and NormalDest,
> +        // but a naive attempt to use SplitEdge leads to a crash.
> +        setShadow(&I, getCleanShadow(&I));
> +        setOrigin(&I, getCleanOrigin());
> +        return;
> +      }
> +      NextInsn = NormalDest->getFirstInsertionPt();
> +      assert(NextInsn &&
> +             "Could not find insertion point for retval shadow load");
> +    }
> +    IRBuilder<> IRBAfter(NextInsn);
> +    setShadow(&I, IRBAfter.CreateLoad(getShadowPtrForRetval(&I, IRBAfter),
> +                                      "_msret"));
> +    if (ClTrackOrigins)
> +      setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
> +  }
> +
> +  void visitReturnInst(ReturnInst &I) {
> +    IRBuilder<> IRB(&I);
> +    if (Value *RetVal = I.getReturnValue()) {
> +      // Set the shadow for the RetVal.
> +      Value *Shadow = getShadow(RetVal);
> +      Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
> +      DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
> +      IRB.CreateStore(Shadow, ShadowPtr);
> +      if (ClTrackOrigins)
> +        IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
> +    }
> +  }
> +
> +  void visitPHINode(PHINode &I) {
> +    IRBuilder<> IRB(&I);
> +    ShadowPHINodes.push_back(&I);
> +    setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
> +                                "_msphi_s"));
> +    if (ClTrackOrigins)
> +      setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
> +                                  "_msphi_o"));
> +  }
> +
> +  void visitAllocaInst(AllocaInst &I) {
> +    setShadow(&I, getCleanShadow(&I));
> +    if (!ClPoisonStack) return;
> +    IRBuilder<> IRB(I.getNextNode());
> +    uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
> +    if (ClPoisonStackWithCall) {
> +      IRB.CreateCall2(MS.MsanPoisonStackFn,
> +                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
> +                      ConstantInt::get(MS.IntptrTy, Size));
> +    } else {
> +      Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
> +      IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
> +                       Size, I.getAlignment());
> +    }
> +
> +    if (ClTrackOrigins) {
> +      setOrigin(&I, getCleanOrigin());
> +      SmallString<2048> StackDescriptionStorage;
> +      raw_svector_ostream StackDescription(StackDescriptionStorage);
> +      // We create a string with a description of the stack allocation and
> +      // pass it into __msan_set_alloca_origin.
> +      // It will be printed by the run-time if stack-originated UMR is found.
> +      // The first 4 bytes of the string are set to '----' and will be replaced
> +      // by __msan_va_arg_overflow_size_tls at the first call.
> +      StackDescription << "----" << I.getName() << "@" << F.getName();
> +      Value *Descr =
> +          createPrivateNonConstGlobalForString(*F.getParent(),
> +                                               StackDescription.str());
> +      IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
> +                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
> +                      ConstantInt::get(MS.IntptrTy, Size),
> +                      IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
> +    }
> +  }
> +
> +  void visitSelectInst(SelectInst& I) {
> +    IRBuilder<> IRB(&I);
> +    setShadow(&I,  IRB.CreateSelect(I.getCondition(),
> +              getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
> +              "_msprop"));
> +    if (ClTrackOrigins)
> +      setOrigin(&I, IRB.CreateSelect(I.getCondition(),
> +                getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
> +  }
> +
> +  void visitLandingPadInst(LandingPadInst &I) {
> +    // Do nothing.
> +    // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
> +    setShadow(&I, getCleanShadow(&I));
> +    setOrigin(&I, getCleanOrigin());
> +  }
> +
> +  void visitGetElementPtrInst(GetElementPtrInst &I) {
> +    handleShadowOr(I);
> +  }
> +
> +  void visitExtractValueInst(ExtractValueInst &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *Agg = I.getAggregateOperand();
> +    DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
> +    Value *AggShadow = getShadow(Agg);
> +    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
> +    Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
> +    DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
> +    setShadow(&I, ResShadow);
> +    setOrigin(&I, getCleanOrigin());
> +  }
> +
> +  void visitInsertValueInst(InsertValueInst &I) {
> +    IRBuilder<> IRB(&I);
> +    DEBUG(dbgs() << "InsertValue:  " << I << "\n");
> +    Value *AggShadow = getShadow(I.getAggregateOperand());
> +    Value *InsShadow = getShadow(I.getInsertedValueOperand());
> +    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
> +    DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
> +    Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
> +    DEBUG(dbgs() << "   Res:        " << *Res << "\n");
> +    setShadow(&I, Res);
> +    setOrigin(&I, getCleanOrigin());
> +  }
> +
> +  void dumpInst(Instruction &I) {
> +    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
> +      errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
> +    } else {
> +      errs() << "ZZZ " << I.getOpcodeName() << "\n";
> +    }
> +    errs() << "QQQ " << I << "\n";
> +  }
> +
> +  void visitResumeInst(ResumeInst &I) {
> +    DEBUG(dbgs() << "Resume: " << I << "\n");
> +    // Nothing to do here.
> +  }
> +
> +  void visitInstruction(Instruction &I) {
> +    // Everything else: stop propagating and check for poisoned shadow.
> +    if (ClDumpStrictInstructions)
> +      dumpInst(I);
> +    DEBUG(dbgs() << "DEFAULT: " << I << "\n");
> +    for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
> +      insertCheck(I.getOperand(i), &I);
> +    setShadow(&I, getCleanShadow(&I));
> +    setOrigin(&I, getCleanOrigin());
> +  }
> +};
> +
> +/// \brief AMD64-specific implementation of VarArgHelper.
> +struct VarArgAMD64Helper : public VarArgHelper {
> +  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
> +  // See a comment in visitCallSite for more details.
> +  static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
> +  static const unsigned AMD64FpEndOffset = 176;
> +
> +  Function &F;
> +  MemorySanitizer &MS;
> +  MemorySanitizerVisitor &MSV;
> +  Value *VAArgTLSCopy;
> +  Value *VAArgOverflowSize;
> +
> +  SmallVector<CallInst*, 16> VAStartInstrumentationList;
> +
> +  VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
> +                    MemorySanitizerVisitor &MSV)
> +    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
> +
> +  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
> +
> +  ArgKind classifyArgument(Value* arg) {
> +    // A very rough approximation of X86_64 argument classification rules.
> +    Type *T = arg->getType();
> +    if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
> +      return AK_FloatingPoint;
> +    if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
> +      return AK_GeneralPurpose;
> +    if (T->isPointerTy())
> +      return AK_GeneralPurpose;
> +    return AK_Memory;
> +  }
> +
> +  // For VarArg functions, store the argument shadow in an ABI-specific format
> +  // that corresponds to va_list layout.
> +  // We do this because Clang lowers va_arg in the frontend, and this pass
> +  // only sees the low level code that deals with va_list internals.
> +  // A much easier alternative (provided that Clang emits va_arg instructions)
> +  // would have been to associate each live instance of va_list with a copy of
> +  // MSanParamTLS, and extract shadow on va_arg() call in the argument list
> +  // order.
> +  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
> +    unsigned GpOffset = 0;
> +    unsigned FpOffset = AMD64GpEndOffset;
> +    unsigned OverflowOffset = AMD64FpEndOffset;
> +    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
> +         ArgIt != End; ++ArgIt) {
> +      Value *A = *ArgIt;
> +      ArgKind AK = classifyArgument(A);
> +      if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
> +        AK = AK_Memory;
> +      if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
> +        AK = AK_Memory;
> +      Value *Base;
> +      switch (AK) {
> +      case AK_GeneralPurpose:
> +        Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
> +        GpOffset += 8;
> +        break;
> +      case AK_FloatingPoint:
> +        Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
> +        FpOffset += 16;
> +        break;
> +      case AK_Memory:
> +        uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
> +        Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
> +        OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
> +      }
> +      IRB.CreateStore(MSV.getShadow(A), Base);
> +    }
> +    Constant *OverflowSize =
> +      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
> +    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
> +  }
> +
> +  /// \brief Compute the shadow address for a given va_arg.
> +  Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
> +                                   int ArgOffset) {
> +    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
> +    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
> +    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
> +                              "_msarg");
> +  }
> +
> +  void visitVAStartInst(VAStartInst &I) {
> +    IRBuilder<> IRB(&I);
> +    VAStartInstrumentationList.push_back(&I);
> +    Value *VAListTag = I.getArgOperand(0);
> +    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
> +
> +    // Unpoison the whole __va_list_tag.
> +    // FIXME: magic ABI constants.
> +    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
> +                     /* size */24, /* alignment */16, false);
> +  }
> +
> +  void visitVACopyInst(VACopyInst &I) {
> +    IRBuilder<> IRB(&I);
> +    Value *VAListTag = I.getArgOperand(0);
> +    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
> +
> +    // Unpoison the whole __va_list_tag.
> +    // FIXME: magic ABI constants.
> +    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
> +                     /* size */ 24, /* alignment */ 16, false);
> +  }
> +
> +  void finalizeInstrumentation() {
> +    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
> +           "finalizeInstrumentation called twice");
> +    if (!VAStartInstrumentationList.empty()) {
> +      // If there is a va_start in this function, make a backup copy of
> +      // va_arg_tls somewhere in the function entry block.
> +      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
> +      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
> +      Value *CopySize =
> +        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
> +                      VAArgOverflowSize);
> +      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
> +      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
> +    }
> +
> +    // Instrument va_start.
> +    // Copy va_list shadow from the backup copy of the TLS contents.
> +    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
> +      CallInst *OrigInst = VAStartInstrumentationList[i];
> +      IRBuilder<> IRB(OrigInst->getNextNode());
> +      Value *VAListTag = OrigInst->getArgOperand(0);
> +
> +      Value *RegSaveAreaPtrPtr =
> +        IRB.CreateIntToPtr(
> +          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
> +                        ConstantInt::get(MS.IntptrTy, 16)),
> +          Type::getInt64PtrTy(*MS.C));
> +      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
> +      Value *RegSaveAreaShadowPtr =
> +        MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
> +      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
> +                       AMD64FpEndOffset, 16);
> +
> +      Value *OverflowArgAreaPtrPtr =
> +        IRB.CreateIntToPtr(
> +          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
> +                        ConstantInt::get(MS.IntptrTy, 8)),
> +          Type::getInt64PtrTy(*MS.C));
> +      Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
> +      Value *OverflowArgAreaShadowPtr =
> +        MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
> +      Value *SrcPtr =
> +        getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
> +      IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
> +    }
> +  }
> +};
> +
> +VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
> +                                 MemorySanitizerVisitor &Visitor) {
> +  return new VarArgAMD64Helper(Func, Msan, Visitor);
> +}
> +
> +}  // namespace
> +
> +bool MemorySanitizer::runOnFunction(Function &F) {
> +  MemorySanitizerVisitor Visitor(F, *this);
> +
> +  // Clear out readonly/readnone attributes.
> +  AttrBuilder B;
> +  B.addAttribute(Attributes::ReadOnly)
> +    .addAttribute(Attributes::ReadNone);
> +  F.removeAttribute(AttrListPtr::FunctionIndex,
> +                    Attributes::get(F.getContext(), B));
> +
> +  return Visitor.runOnFunction();
> +}
>
> Propchange: llvm/trunk/lib/Transforms/Instrumentation/MemorySanitizer.cpp
> ------------------------------------------------------------------------------
>     svn:eol-style = LF
>
> Added: llvm/trunk/test/Instrumentation/MemorySanitizer/lit.local.cfg
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Instrumentation/MemorySanitizer/lit.local.cfg?rev=168866&view=auto
> ==============================================================================
> --- llvm/trunk/test/Instrumentation/MemorySanitizer/lit.local.cfg (added)
> +++ llvm/trunk/test/Instrumentation/MemorySanitizer/lit.local.cfg Thu Nov 29 03:57:20 2012
> @@ -0,0 +1 @@
> +config.suffixes = ['.ll', '.c', '.cpp']
>
> Added: llvm/trunk/test/Instrumentation/MemorySanitizer/msan_basic.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Instrumentation/MemorySanitizer/msan_basic.ll?rev=168866&view=auto
> ==============================================================================
> --- llvm/trunk/test/Instrumentation/MemorySanitizer/msan_basic.ll (added)
> +++ llvm/trunk/test/Instrumentation/MemorySanitizer/msan_basic.ll Thu Nov 29 03:57:20 2012
> @@ -0,0 +1,235 @@
> +; RUN: opt < %s -msan -S | FileCheck %s
> +target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
> +
> +; Check the presence of __msan_init
> +; CHECK: @llvm.global_ctors {{.*}} @__msan_init
> +
> +; load followed by cmp: check that we load the shadow and call __msan_warning.
> +define void @LoadAndCmp(i32* nocapture %a) nounwind uwtable {
> +entry:
> +  %0 = load i32* %a, align 4
> +  %tobool = icmp eq i32 %0, 0
> +  br i1 %tobool, label %if.end, label %if.then
> +
> +if.then:                                          ; preds = %entry
> +  tail call void (...)* @foo() nounwind
> +  br label %if.end
> +
> +if.end:                                           ; preds = %entry, %if.then
> +  ret void
> +}
> +
> +declare void @foo(...)
> +
> +; CHECK: define void @LoadAndCmp
> +; CHECK: = load
> +; CHECK: = load
> +; CHECK: call void @__msan_warning_noreturn()
> +; CHECK: }
> +
> +; Check that we store the shadow for the retval.
> +define i32 @ReturnInt() nounwind uwtable readnone {
> +entry:
> +  ret i32 123
> +}
> +
> +; CHECK: define i32 @ReturnInt()
> +; CHECK: store i32 0,{{.*}}__msan_retval_tls
> +; CHECK: }
> +
> +; Check that we get the shadow for the retval.
> +define void @CopyRetVal(i32* nocapture %a) nounwind uwtable {
> +entry:
> +  %call = tail call i32 @ReturnInt() nounwind
> +  store i32 %call, i32* %a, align 4
> +  ret void
> +}
> +
> +; CHECK: define void @CopyRetVal
> +; CHECK: load{{.*}}__msan_retval_tls
> +; CHECK: store
> +; CHECK: store
> +; CHECK: }
> +
> +
> +; Check that we generate PHIs for shadow.
> +define void @FuncWithPhi(i32* nocapture %a, i32* %b, i32* nocapture %c) nounwind uwtable {
> +entry:
> +  %tobool = icmp eq i32* %b, null
> +  br i1 %tobool, label %if.else, label %if.then
> +
> +  if.then:                                          ; preds = %entry
> +  %0 = load i32* %b, align 4
> +  br label %if.end
> +
> +  if.else:                                          ; preds = %entry
> +  %1 = load i32* %c, align 4
> +  br label %if.end
> +
> +  if.end:                                           ; preds = %if.else, %if.then
> +  %t.0 = phi i32 [ %0, %if.then ], [ %1, %if.else ]
> +  store i32 %t.0, i32* %a, align 4
> +  ret void
> +}
> +
> +; CHECK: define void @FuncWithPhi
> +; CHECK: = phi
> +; CHECK-NEXT: = phi
> +; CHECK: store
> +; CHECK: store
> +; CHECK: }
> +
> +; Compute shadow for "x << 10"
> +define void @ShlConst(i32* nocapture %x) nounwind uwtable {
> +entry:
> +  %0 = load i32* %x, align 4
> +  %1 = shl i32 %0, 10
> +  store i32 %1, i32* %x, align 4
> +  ret void
> +}
> +
> +; CHECK: define void @ShlConst
> +; CHECK: = load
> +; CHECK: = load
> +; CHECK: shl
> +; CHECK: shl
> +; CHECK: store
> +; CHECK: store
> +; CHECK: }
> +
> +; Compute shadow for "10 << x": it should have 'sext i1'.
> +define void @ShlNonConst(i32* nocapture %x) nounwind uwtable {
> +entry:
> +  %0 = load i32* %x, align 4
> +  %1 = shl i32 10, %0
> +  store i32 %1, i32* %x, align 4
> +  ret void
> +}
> +
> +; CHECK: define void @ShlNonConst
> +; CHECK: = load
> +; CHECK: = load
> +; CHECK: = sext i1
> +; CHECK: store
> +; CHECK: store
> +; CHECK: }
> +
> +; SExt
> +define void @SExt(i32* nocapture %a, i16* nocapture %b) nounwind uwtable {
> +entry:
> +  %0 = load i16* %b, align 2
> +  %1 = sext i16 %0 to i32
> +  store i32 %1, i32* %a, align 4
> +  ret void
> +}
> +
> +; CHECK: define void @SExt
> +; CHECK: = load
> +; CHECK: = load
> +; CHECK: = sext
> +; CHECK: = sext
> +; CHECK: store
> +; CHECK: store
> +; CHECK: }
> +
> +
> +; memset
> +define void @MemSet(i8* nocapture %x) nounwind uwtable {
> +entry:
> +  call void @llvm.memset.p0i8.i64(i8* %x, i8 42, i64 10, i32 1, i1 false)
> +  ret void
> +}
> +
> +declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
> +
> +; CHECK: define void @MemSet
> +; CHECK: call void @llvm.memset.p0i8.i64
> +; CHECK: call void @llvm.memset.p0i8.i64
> +; CHECK: }
> +
> +
> +; memcpy
> +define void @MemCpy(i8* nocapture %x, i8* nocapture %y) nounwind uwtable {
> +entry:
> +  call void @llvm.memcpy.p0i8.p0i8.i64(i8* %x, i8* %y, i64 10, i32 1, i1 false)
> +  ret void
> +}
> +
> +declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i32, i1) nounwind
> +
> +; CHECK: define void @MemCpy
> +; CHECK: call void @llvm.memcpy.p0i8.p0i8.i64
> +; CHECK: call void @llvm.memcpy.p0i8.p0i8.i64
> +; CHECK: }
> +
> +
> +; memmove is lowered to a call
> +define void @MemMove(i8* nocapture %x, i8* nocapture %y) nounwind uwtable {
> +entry:
> +  call void @llvm.memmove.p0i8.p0i8.i64(i8* %x, i8* %y, i64 10, i32 1, i1 false)
> +  ret void
> +}
> +
> +declare void @llvm.memmove.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i32, i1) nounwind
> +
> +; CHECK: define void @MemMove
> +; CHECK: call i8* @memmove
> +; CHECK: }
> +
> +
> +; Check that we propagate shadow for "select"
> +
> +define i32 @Select(i32 %a, i32 %b, i32 %c) nounwind uwtable readnone {
> +entry:
> +  %tobool = icmp ne i32 %c, 0
> +  %cond = select i1 %tobool, i32 %a, i32 %b
> +  ret i32 %cond
> +}
> +
> +; CHECK: define i32 @Select
> +; CHECK: select
> +; CHECK-NEXT: select
> +; CHECK: }
> +
> +
> +define i8* @IntToPtr(i64 %x) nounwind uwtable readnone {
> +entry:
> +  %0 = inttoptr i64 %x to i8*
> +  ret i8* %0
> +}
> +
> +; CHECK: define i8* @IntToPtr
> +; CHECK: load i64*{{.*}}__msan_param_tls
> +; CHECK-NEXT: inttoptr
> +; CHECK-NEXT: store i64{{.*}}__msan_retval_tls
> +; CHECK: }
> +
> +
> +define i8* @IntToPtr_ZExt(i16 %x) nounwind uwtable readnone {
> +entry:
> +  %0 = inttoptr i16 %x to i8*
> +  ret i8* %0
> +}
> +
> +; CHECK: define i8* @IntToPtr_ZExt
> +; CHECK: zext
> +; CHECK-NEXT: inttoptr
> +; CHECK: }
> +
> +
> +; Check that we insert exactly one check on udiv
> +; (2nd arg shadow is checked, 1st arg shadow is propagated)
> +
> +define i32 @Div(i32 %a, i32 %b) nounwind uwtable readnone {
> +entry:
> +  %div = udiv i32 %a, %b
> +  ret i32 %div
> +}
> +
> +; CHECK: define i32 @Div
> +; CHECK: icmp
> +; CHECK: br
> +; CHECK-NOT: icmp
> +; CHECK: udiv
> +; CHECK-NOT: icmp
> +; CHECK: }
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
-------------- next part --------------
From 5b04edd251d134a98ac96c993ef07735e795a36c Mon Sep 17 00:00:00 2001
From: NAKAMURA Takumi <geek4civic at gmail.com>
Date: Thu, 29 Nov 2012 21:37:51 +0900
Subject: [PATCH 1/3] MemorySanitizer.cpp: [-Wdelete-non-virtual-dtor]
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="------------1.7.4.1"

This is a multi-part message in MIME format.
--------------1.7.4.1
Content-Type: text/plain; charset=UTF-8; format=fixed
Content-Transfer-Encoding: 8bit

---
 .../Transforms/Instrumentation/MemorySanitizer.cpp |    2 ++
 1 files changed, 2 insertions(+), 0 deletions(-)


--------------1.7.4.1
Content-Type: text/x-patch; name="0001-MemorySanitizer.cpp-Wdelete-non-virtual-dtor.patch.txt"
Content-Transfer-Encoding: 8bit
Content-Disposition: attachment; filename="0001-MemorySanitizer.cpp-Wdelete-non-virtual-dtor.patch.txt"

diff --git a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index bc9e709..b6cc67a 100644
--- a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -330,6 +330,8 @@ struct VarArgHelper {
   /// This method is called after visiting all interesting (see above)
   /// instructions in a function.
   virtual void finalizeInstrumentation() = 0;
+
+  virtual ~VarArgHelper() {}
 };
 
 struct MemorySanitizerVisitor;

--------------1.7.4.1--


-------------- next part --------------
From d5a65baa43d55cb14f9bb142f94cbd5e1ea76fe1 Mon Sep 17 00:00:00 2001
From: NAKAMURA Takumi <geek4civic at gmail.com>
Date: Thu, 29 Nov 2012 21:39:14 +0900
Subject: [PATCH 2/3] MemorySanitizer.cpp: [-Wmismatched-tags]
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="------------1.7.4.1"

This is a multi-part message in MIME format.
--------------1.7.4.1
Content-Type: text/plain; charset=UTF-8; format=fixed
Content-Transfer-Encoding: 8bit

---
 .../Transforms/Instrumentation/MemorySanitizer.cpp |    8 +++++---
 1 files changed, 5 insertions(+), 3 deletions(-)


--------------1.7.4.1
Content-Type: text/x-patch; name="0002-MemorySanitizer.cpp-Wmismatched-tags.patch.txt"
Content-Transfer-Encoding: 8bit
Content-Disposition: attachment; filename="0002-MemorySanitizer.cpp-Wmismatched-tags.patch.txt"

diff --git a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index b6cc67a..be9b6e4 100644
--- a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -334,7 +334,7 @@ struct VarArgHelper {
   virtual ~VarArgHelper() {}
 };
 
-struct MemorySanitizerVisitor;
+class MemorySanitizerVisitor;
 
 VarArgHelper*
 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
@@ -346,7 +346,8 @@ CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
 /// return values. Certain instructions (most importantly, BranchInst)
 /// test their argument shadow and print reports (with a runtime call) if it's
 /// non-zero.
-struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
+class MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
+public:
   Function &F;
   MemorySanitizer &MS;
   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
@@ -1254,7 +1255,8 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
 };
 
 /// \brief AMD64-specific implementation of VarArgHelper.
-struct VarArgAMD64Helper : public VarArgHelper {
+class VarArgAMD64Helper : public VarArgHelper {
+public:
   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
   // See a comment in visitCallSite for more details.
   static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7

--------------1.7.4.1--


-------------- next part --------------
From 51a5da4c9ac6c84fcc71dc0b2f5ba1d733abe179 Mon Sep 17 00:00:00 2001
From: NAKAMURA Takumi <geek4civic at gmail.com>
Date: Thu, 29 Nov 2012 21:40:14 +0900
Subject: [PATCH 3/3] MemorySanitizer.cpp: [-Wunused-variable]
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="------------1.7.4.1"

This is a multi-part message in MIME format.
--------------1.7.4.1
Content-Type: text/plain; charset=UTF-8; format=fixed
Content-Transfer-Encoding: 8bit

---
 .../Transforms/Instrumentation/MemorySanitizer.cpp |    9 +++++++--
 1 files changed, 7 insertions(+), 2 deletions(-)


--------------1.7.4.1
Content-Type: text/x-patch; name="0003-MemorySanitizer.cpp-Wunused-variable.patch.txt"
Content-Transfer-Encoding: 8bit
Content-Disposition: attachment; filename="0003-MemorySanitizer.cpp-Wunused-variable.patch.txt"

diff --git a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index be9b6e4..2cfafd6 100644
--- a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -595,6 +595,7 @@ public:
       Value *Shadow = ShadowMap[V];
       if (!Shadow) {
         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
+	(void)I;
         assert(Shadow && "No shadow for a value");
       }
       return Shadow;
@@ -602,6 +603,7 @@ public:
     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
       Value *AllOnes = getPoisonedShadow(getShadowTy(V));
       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
+      (void)U;
       return AllOnes;
     }
     if (Argument *A = dyn_cast<Argument>(V)) {
@@ -630,6 +632,7 @@ public:
               getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
               Base, Size, AI->getParamAlignment());
             DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
+	    (void)Cpy;
             *ShadowPtr = getCleanShadow(V);
           } else {
             *ShadowPtr = EntryIRB.CreateLoad(Base);
@@ -683,9 +686,11 @@ public:
     if (!InsertChecks) return;
     Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
     if (!Shadow) return;
+#ifndef NDEBUG
     Type *ShadowTy = Shadow->getType();
     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
            "Can only insert checks for integer and vector shadow types");
+#endif
     Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
     InstrumentationList.push_back(
       ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
@@ -698,8 +703,7 @@ public:
   /// Loads the corresponding shadow and (optionally) origin.
   /// Optionally, checks that the load address is fully defined.
   void visitLoadInst(LoadInst &I) {
-    Type *LoadTy = I.getType();
-    assert(LoadTy->isSized() && "Load type must have size");
+    assert(I.getType()->isSized() && "Load type must have size");
     IRBuilder<> IRB(&I);
     Type *ShadowTy = getShadowTy(&I);
     Value *Addr = I.getPointerOperand();
@@ -727,6 +731,7 @@ public:
 
     StoreInst *NewSI = IRB.CreateStore(Shadow, ShadowPtr);
     DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
+    (void)NewSI;
     // If the store is volatile, add a check.
     if (I.isVolatile())
       insertCheck(Val, &I);

--------------1.7.4.1--




More information about the llvm-commits mailing list