[llvm-commits] [llvm] r163194 - /llvm/trunk/lib/CodeGen/AsmPrinter/DwarfException.h

Logan Chien tzuhsiang.chien at gmail.com
Tue Sep 4 23:28:26 PDT 2012


Author: logan
Date: Wed Sep  5 01:28:26 2012
New Revision: 163194

URL: http://llvm.org/viewvc/llvm-project?rev=163194&view=rev
Log:
Reorder the comments of EmitExceptionTable.

Modified:
    llvm/trunk/lib/CodeGen/AsmPrinter/DwarfException.h

Modified: llvm/trunk/lib/CodeGen/AsmPrinter/DwarfException.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/AsmPrinter/DwarfException.h?rev=163194&r1=163193&r2=163194&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/AsmPrinter/DwarfException.h (original)
+++ llvm/trunk/lib/CodeGen/AsmPrinter/DwarfException.h Wed Sep  5 01:28:26 2012
@@ -43,26 +43,6 @@
   /// MMI - Collected machine module information.
   MachineModuleInfo *MMI;
 
-  /// EmitExceptionTable - Emit landing pads and actions.
-  ///
-  /// The general organization of the table is complex, but the basic concepts
-  /// are easy.  First there is a header which describes the location and
-  /// organization of the three components that follow.
-  ///  1. The landing pad site information describes the range of code covered
-  ///     by the try.  In our case it's an accumulation of the ranges covered
-  ///     by the invokes in the try.  There is also a reference to the landing
-  ///     pad that handles the exception once processed.  Finally an index into
-  ///     the actions table.
-  ///  2. The action table, in our case, is composed of pairs of type ids
-  ///     and next action offset.  Starting with the action index from the
-  ///     landing pad site, each type Id is checked for a match to the current
-  ///     exception.  If it matches then the exception and type id are passed
-  ///     on to the landing pad.  Otherwise the next action is looked up.  This
-  ///     chain is terminated with a next action of zero.  If no type id is
-  ///     found the frame is unwound and handling continues.
-  ///  3. Type id table contains references to all the C++ typeinfo for all
-  ///     catches in the function.  This tables is reversed indexed base 1.
-
   /// SharedTypeIds - How many leading type ids two landing pads have in common.
   static unsigned SharedTypeIds(const LandingPadInfo *L,
                                 const LandingPadInfo *R);
@@ -119,6 +99,26 @@
                             const RangeMapType &PadMap,
                             const SmallVectorImpl<const LandingPadInfo *> &LPs,
                             const SmallVectorImpl<unsigned> &FirstActions);
+
+  /// EmitExceptionTable - Emit landing pads and actions.
+  ///
+  /// The general organization of the table is complex, but the basic concepts
+  /// are easy.  First there is a header which describes the location and
+  /// organization of the three components that follow.
+  ///  1. The landing pad site information describes the range of code covered
+  ///     by the try.  In our case it's an accumulation of the ranges covered
+  ///     by the invokes in the try.  There is also a reference to the landing
+  ///     pad that handles the exception once processed.  Finally an index into
+  ///     the actions table.
+  ///  2. The action table, in our case, is composed of pairs of type ids
+  ///     and next action offset.  Starting with the action index from the
+  ///     landing pad site, each type Id is checked for a match to the current
+  ///     exception.  If it matches then the exception and type id are passed
+  ///     on to the landing pad.  Otherwise the next action is looked up.  This
+  ///     chain is terminated with a next action of zero.  If no type id is
+  ///     found the frame is unwound and handling continues.
+  ///  3. Type id table contains references to all the C++ typeinfo for all
+  ///     catches in the function.  This tables is reversed indexed base 1.
   void EmitExceptionTable();
 
 public:





More information about the llvm-commits mailing list