[llvm-commits] [llvm] r158808 - in /llvm/trunk/docs: LinkTimeOptimization.html LinkTimeOptimization.rst subsystems.rst

Bill Wendling isanbard at gmail.com
Wed Jun 20 03:08:03 PDT 2012


Author: void
Date: Wed Jun 20 05:08:02 2012
New Revision: 158808

URL: http://llvm.org/viewvc/llvm-project?rev=158808&view=rev
Log:
Sphinxify the LTO document.

Added:
    llvm/trunk/docs/LinkTimeOptimization.rst
Removed:
    llvm/trunk/docs/LinkTimeOptimization.html
Modified:
    llvm/trunk/docs/subsystems.rst

Removed: llvm/trunk/docs/LinkTimeOptimization.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/LinkTimeOptimization.html?rev=158807&view=auto
==============================================================================
--- llvm/trunk/docs/LinkTimeOptimization.html (original)
+++ llvm/trunk/docs/LinkTimeOptimization.html (removed)
@@ -1,401 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
-                      "http://www.w3.org/TR/html4/strict.dtd">
-<html>
-<head>
-  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>LLVM Link Time Optimization: Design and Implementation</title>
-  <link rel="stylesheet" href="_static/llvm.css" type="text/css">
-</head>
-
-<h1>
-  LLVM Link Time Optimization: Design and Implementation
-</h1>
-
-<ul>
-  <li><a href="#desc">Description</a></li>
-  <li><a href="#design">Design Philosophy</a>
-  <ul>
-    <li><a href="#example1">Example of link time optimization</a></li>
-    <li><a href="#alternative_approaches">Alternative Approaches</a></li>
-  </ul></li>
-  <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
-  <ul>
-    <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
-    <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
-    <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
-    <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
-  </ul></li>
-  <li><a href="#lto">libLTO</a>
-  <ul>
-    <li><a href="#lto_module_t">lto_module_t</a></li>
-    <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
-  </ul>
-</ul>
-
-<div class="doc_author">
-<p>Written by Devang Patel and Nick Kledzik</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
-<a name="desc">Description</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-<p>
-LLVM features powerful intermodular optimizations which can be used at link 
-time.  Link Time Optimization (LTO) is another name for intermodular optimization 
-when performed during the link stage. This document describes the interface 
-and design between the LTO optimizer and the linker.</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
-<a name="design">Design Philosophy</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-<p>
-The LLVM Link Time Optimizer provides complete transparency, while doing 
-intermodular optimization, in the compiler tool chain. Its main goal is to let 
-the developer take advantage of intermodular optimizations without making any 
-significant changes to the developer's makefiles or build system. This is 
-achieved through tight integration with the linker. In this model, the linker 
-treates LLVM bitcode files like native object files and allows mixing and 
-matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
-object, to handle LLVM bitcode files. This tight integration between 
-the linker and LLVM optimizer helps to do optimizations that are not possible 
-in other models. The linker input allows the optimizer to avoid relying on 
-conservative escape analysis.
-</p>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="example1">Example of link time optimization</a>
-</h3>
-
-<div>
-  <p>The following example illustrates the advantages of LTO's integrated
-  approach and clean interface. This example requires a system linker which
-  supports LTO through the interface described in this document.  Here,
-  clang transparently invokes system linker. </p>
-  <ul>
-    <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
-    <li> Input source file <tt>main.c</tt> is compiled into native object code.
-  </ul>
-<pre class="doc_code">
---- a.h ---
-extern int foo1(void);
-extern void foo2(void);
-extern void foo4(void);
-
---- a.c ---
-#include "a.h"
-
-static signed int i = 0;
-
-void foo2(void) {
-  i = -1;
-}
-
-static int foo3() {
-  foo4();
-  return 10;
-}
-
-int foo1(void) {
-  int data = 0;
-
-  if (i < 0) 
-    data = foo3();
-
-  data = data + 42;
-  return data;
-}
-
---- main.c ---
-#include <stdio.h>
-#include "a.h"
-
-void foo4(void) {
-  printf("Hi\n");
-}
-
-int main() {
-  return foo1();
-}
-
---- command lines ---
-$ clang -emit-llvm -c a.c -o a.o   # <-- a.o is LLVM bitcode file
-$ clang -c main.c -o main.o        # <-- main.o is native object file
-$ clang a.o main.o -o main         # <-- standard link command without any modifications
-</pre>
-
-<ul>
-  <li>In this example, the linker recognizes that <tt>foo2()</tt> is an
-      externally visible symbol defined in LLVM bitcode file. The linker
-      completes its usual symbol resolution pass and finds that <tt>foo2()</tt>
-      is not used anywhere. This information is used by the LLVM optimizer and
-      it removes <tt>foo2()</tt>.</li>
-  <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition 
-      <tt>i < 0</tt> is always false, which means <tt>foo3()</tt> is never 
-      used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>
-  <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>
-</ul>
-
-<p>This example illustrates the advantage of tight integration with the
-   linker. Here, the optimizer can not remove <tt>foo3()</tt> without the
-   linker's input.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="alternative_approaches">Alternative Approaches</a>
-</h3>
-
-<div>
-  <dl>
-    <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
-    <dd>In this model the link time optimizer is not able to take advantage of 
-    information collected during the linker's normal symbol resolution phase. 
-    In the above example, the optimizer can not remove <tt>foo2()</tt> without 
-    the linker's input because it is externally visible. This in turn prohibits
-    the optimizer from removing <tt>foo3()</tt>.</dd>
-    <dt><b>Use separate tool to collect symbol information from all object
-    files.</b></dt>
-    <dd>In this model, a new, separate, tool or library replicates the linker's
-    capability to collect information for link time optimization. Not only is
-    this code duplication difficult to justify, but it also has several other 
-    disadvantages.  For example, the linking semantics and the features 
-    provided by the linker on various platform are not unique. This means, 
-    this new tool needs to support all such features and platforms in one 
-    super tool or a separate tool per platform is required. This increases 
-    maintenance cost for link time optimizer significantly, which is not 
-    necessary. This approach also requires staying synchronized with linker 
-    developements on various platforms, which is not the main focus of the link 
-    time optimizer. Finally, this approach increases end user's build time due 
-    to the duplication of work done by this separate tool and the linker itself.
-    </dd>
-  </dl>
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
-  <a name="multiphase">Multi-phase communication between libLTO and linker</a>
-</h2>
-
-<div>
-  <p>The linker collects information about symbol defininitions and uses in 
-  various link objects which is more accurate than any information collected 
-  by other tools during typical build cycles.  The linker collects this 
-  information by looking at the definitions and uses of symbols in native .o 
-  files and using symbol visibility information. The linker also uses 
-  user-supplied information, such as a list of exported symbols. LLVM 
-  optimizer collects control flow information, data flow information and knows 
-  much more about program structure from the optimizer's point of view. 
-  Our goal is to take advantage of tight integration between the linker and 
-  the optimizer by sharing this information during various linking phases.
-</p>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
-</h3>
-
-<div>
-  <p>The linker first reads all object files in natural order and collects 
-  symbol information. This includes native object files as well as LLVM bitcode 
-  files.  To minimize the cost to the linker in the case that all .o files
-  are native object files, the linker only calls <tt>lto_module_create()</tt> 
-  when a supplied object file is found to not be a native object file.  If
-  <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 
-  the linker
-  then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
-  <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 
-  referenced.
-  This information is added to the linker's global symbol table.
-</p>
-  <p>The lto* functions are all implemented in a shared object libLTO.  This
-  allows the LLVM LTO code to be updated independently of the linker tool.
-  On platforms that support it, the shared object is lazily loaded. 
-</p>
-</div>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="phase2">Phase 2 : Symbol Resolution</a>
-</h3>
-
-<div>
-  <p>In this stage, the linker resolves symbols using global symbol table. 
-  It may report undefined symbol errors, read archive members, replace 
-  weak symbols, etc.  The linker is able to do this seamlessly even though it 
-  does not know the exact content of input LLVM bitcode files.  If dead code 
-  stripping is enabled then the linker collects the list of live symbols.
-  </p>
-</div>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
-</h3>
-<div>
-  <p>After symbol resolution, the linker tells the LTO shared object which
-  symbols are needed by native object files.  In the example above, the linker 
-  reports that only <tt>foo1()</tt> is used by native object files using 
-  <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
-  the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
-  which returns a native object file creating by merging the LLVM bitcode files 
-  and applying various optimization passes.  
-</p>
-</div>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
-</h3>
-
-<div>
-  <p>In this phase, the linker reads optimized a native object file and 
-  updates the internal global symbol table to reflect any changes. The linker 
-  also collects information about any changes in use of external symbols by 
-  LLVM bitcode files. In the example above, the linker notes that 
-  <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 
-  the linker refreshes the live symbol information appropriately and performs 
-  dead code stripping.</p>
-  <p>After this phase, the linker continues linking as if it never saw LLVM 
-  bitcode files.</p>
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
-<a name="lto">libLTO</a>
-</h2>
-
-<div>
-  <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 
-  is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 
-  interface to use the LLVM interprocedural optimizer without exposing details 
-  of LLVM's internals. The intention is to keep the interface as stable as 
-  possible even when the LLVM optimizer continues to evolve. It should even
-  be possible for a completely different compilation technology to provide
-  a different libLTO that works with their object files and the standard
-  linker tool.</p>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="lto_module_t">lto_module_t</a>
-</h3>
-
-<div>
-
-<p>A non-native object file is handled via an <tt>lto_module_t</tt>.  
-The following functions allow the linker to check if a file (on disk
-or in a memory buffer) is a file which libLTO can process:</p>
-
-<pre class="doc_code">
-lto_module_is_object_file(const char*)
-lto_module_is_object_file_for_target(const char*, const char*)
-lto_module_is_object_file_in_memory(const void*, size_t)
-lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
-</pre>
-
-<p>If the object file can be processed by libLTO, the linker creates a
-<tt>lto_module_t</tt> by using one of</p>
-
-<pre class="doc_code">
-lto_module_create(const char*)
-lto_module_create_from_memory(const void*, size_t)
-</pre>
-
-<p>and when done, the handle is released via</p>
-
-<pre class="doc_code">
-lto_module_dispose(lto_module_t)
-</pre>
-
-<p>The linker can introspect the non-native object file by getting the number of
-symbols and getting the name and attributes of each symbol via:</p>
-
-<pre class="doc_code">
-lto_module_get_num_symbols(lto_module_t)
-lto_module_get_symbol_name(lto_module_t, unsigned int)
-lto_module_get_symbol_attribute(lto_module_t, unsigned int)
-</pre>
-
-<p>The attributes of a symbol include the alignment, visibility, and kind.</p>
-</div>
-
-<!-- ======================================================================= -->
-<h3>
-  <a name="lto_code_gen_t">lto_code_gen_t</a>
-</h3>
-
-<div>
-
-<p>Once the linker has loaded each non-native object files into an
-<tt>lto_module_t</tt>, it can request libLTO to process them all and
-generate a native object file.  This is done in a couple of steps.
-First, a code generator is created with:</p>
-
-<pre class="doc_code">lto_codegen_create()</pre>
-
-<p>Then, each non-native object file is added to the code generator with:</p>
-
-<pre class="doc_code">
-lto_codegen_add_module(lto_code_gen_t, lto_module_t)
-</pre>
-
-<p>The linker then has the option of setting some codegen options.  Whether or
-not to generate DWARF debug info is set with:</p>
-  
-<pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
-
-<p>Which kind of position independence is set with:</p>
-
-<pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
-  
-<p>And each symbol that is referenced by a native object file or otherwise must
-not be optimized away is set with:</p>
-
-<pre class="doc_code">
-lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
-</pre>
-
-<p>After all these settings are done, the linker requests that a native object
-file be created from the modules with the settings using:</p>
-
-<pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
-
-<p>which returns a pointer to a buffer containing the generated native
-object file.  The linker then parses that and links it with the rest 
-of the native object files.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-
-<hr>
-<address>
-  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
-  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
-  <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
-
-  Devang Patel and Nick Kledzik<br>
-  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date$
-</address>
-
-</body>
-</html>
-

Added: llvm/trunk/docs/LinkTimeOptimization.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/LinkTimeOptimization.rst?rev=158808&view=auto
==============================================================================
--- llvm/trunk/docs/LinkTimeOptimization.rst (added)
+++ llvm/trunk/docs/LinkTimeOptimization.rst Wed Jun 20 05:08:02 2012
@@ -0,0 +1,298 @@
+.. _lto:
+
+======================================================
+LLVM Link Time Optimization: Design and Implementation
+======================================================
+
+.. contents::
+   :local:
+
+Description
+===========
+
+LLVM features powerful intermodular optimizations which can be used at link
+time.  Link Time Optimization (LTO) is another name for intermodular
+optimization when performed during the link stage. This document describes the
+interface and design between the LTO optimizer and the linker.
+
+Design Philosophy
+=================
+
+The LLVM Link Time Optimizer provides complete transparency, while doing
+intermodular optimization, in the compiler tool chain. Its main goal is to let
+the developer take advantage of intermodular optimizations without making any
+significant changes to the developer's makefiles or build system. This is
+achieved through tight integration with the linker. In this model, the linker
+treates LLVM bitcode files like native object files and allows mixing and
+matching among them. The linker uses `libLTO`_, a shared object, to handle LLVM
+bitcode files. This tight integration between the linker and LLVM optimizer
+helps to do optimizations that are not possible in other models. The linker
+input allows the optimizer to avoid relying on conservative escape analysis.
+
+Example of link time optimization
+---------------------------------
+
+The following example illustrates the advantages of LTO's integrated approach
+and clean interface. This example requires a system linker which supports LTO
+through the interface described in this document.  Here, clang transparently
+invokes system linker.
+
+* Input source file ``a.c`` is compiled into LLVM bitcode form.
+* Input source file ``main.c`` is compiled into native object code.
+
+.. code-block:: c++
+
+  --- a.h ---
+  extern int foo1(void);
+  extern void foo2(void);
+  extern void foo4(void);
+
+  --- a.c ---
+  #include "a.h"
+
+  static signed int i = 0;
+
+  void foo2(void) {
+    i = -1;
+  }
+
+  static int foo3() {
+    foo4();
+    return 10;
+  }
+
+  int foo1(void) {
+    int data = 0;
+
+    if (i < 0) 
+      data = foo3();
+
+    data = data + 42;
+    return data;
+  }
+
+  --- main.c ---
+  #include <stdio.h>
+  #include "a.h"
+
+  void foo4(void) {
+    printf("Hi\n");
+  }
+
+  int main() {
+    return foo1();
+  }
+
+.. code-block:: bash
+
+  --- command lines ---
+  % clang -emit-llvm -c a.c -o a.o   # <-- a.o is LLVM bitcode file
+  % clang -c main.c -o main.o        # <-- main.o is native object file
+  % clang a.o main.o -o main         # <-- standard link command without modifications
+
+* In this example, the linker recognizes that ``foo2()`` is an externally
+  visible symbol defined in LLVM bitcode file. The linker completes its usual
+  symbol resolution pass and finds that ``foo2()`` is not used
+  anywhere. This information is used by the LLVM optimizer and it
+  removes ``foo2()``.</li>
+
+* As soon as ``foo2()`` is removed, the optimizer recognizes that condition ``i
+  < 0`` is always false, which means ``foo3()`` is never used. Hence, the
+  optimizer also removes ``foo3()``.
+
+* And this in turn, enables linker to remove ``foo4()``.
+
+This example illustrates the advantage of tight integration with the
+linker. Here, the optimizer can not remove ``foo3()`` without the linker's
+input.
+
+Alternative Approaches
+----------------------
+
+**Compiler driver invokes link time optimizer separately.**
+    In this model the link time optimizer is not able to take advantage of
+    information collected during the linker's normal symbol resolution phase.
+    In the above example, the optimizer can not remove ``foo2()`` without the
+    linker's input because it is externally visible. This in turn prohibits the
+    optimizer from removing ``foo3()``.
+
+**Use separate tool to collect symbol information from all object files.**
+    In this model, a new, separate, tool or library replicates the linker's
+    capability to collect information for link time optimization. Not only is
+    this code duplication difficult to justify, but it also has several other
+    disadvantages.  For example, the linking semantics and the features provided
+    by the linker on various platform are not unique. This means, this new tool
+    needs to support all such features and platforms in one super tool or a
+    separate tool per platform is required. This increases maintenance cost for
+    link time optimizer significantly, which is not necessary. This approach
+    also requires staying synchronized with linker developements on various
+    platforms, which is not the main focus of the link time optimizer. Finally,
+    this approach increases end user's build time due to the duplication of work
+    done by this separate tool and the linker itself.
+
+Multi-phase communication between ``libLTO`` and linker
+=======================================================
+
+The linker collects information about symbol defininitions and uses in various
+link objects which is more accurate than any information collected by other
+tools during typical build cycles.  The linker collects this information by
+looking at the definitions and uses of symbols in native .o files and using
+symbol visibility information. The linker also uses user-supplied information,
+such as a list of exported symbols. LLVM optimizer collects control flow
+information, data flow information and knows much more about program structure
+from the optimizer's point of view.  Our goal is to take advantage of tight
+integration between the linker and the optimizer by sharing this information
+during various linking phases.
+
+Phase 1 : Read LLVM Bitcode Files
+---------------------------------
+
+The linker first reads all object files in natural order and collects symbol
+information. This includes native object files as well as LLVM bitcode files.
+To minimize the cost to the linker in the case that all .o files are native
+object files, the linker only calls ``lto_module_create()`` when a supplied
+object file is found to not be a native object file.  If ``lto_module_create()``
+returns that the file is an LLVM bitcode file, the linker then iterates over the
+module using ``lto_module_get_symbol_name()`` and
+``lto_module_get_symbol_attribute()`` to get all symbols defined and referenced.
+This information is added to the linker's global symbol table.
+
+
+The lto* functions are all implemented in a shared object libLTO.  This allows
+the LLVM LTO code to be updated independently of the linker tool.  On platforms
+that support it, the shared object is lazily loaded.
+
+Phase 2 : Symbol Resolution
+---------------------------
+
+In this stage, the linker resolves symbols using global symbol table.  It may
+report undefined symbol errors, read archive members, replace weak symbols, etc.
+The linker is able to do this seamlessly even though it does not know the exact
+content of input LLVM bitcode files.  If dead code stripping is enabled then the
+linker collects the list of live symbols.
+
+Phase 3 : Optimize Bitcode Files
+--------------------------------
+
+After symbol resolution, the linker tells the LTO shared object which symbols
+are needed by native object files.  In the example above, the linker reports
+that only ``foo1()`` is used by native object files using
+``lto_codegen_add_must_preserve_symbol()``.  Next the linker invokes the LLVM
+optimizer and code generators using ``lto_codegen_compile()`` which returns a
+native object file creating by merging the LLVM bitcode files and applying
+various optimization passes.
+
+Phase 4 : Symbol Resolution after optimization
+----------------------------------------------
+
+In this phase, the linker reads optimized a native object file and updates the
+internal global symbol table to reflect any changes. The linker also collects
+information about any changes in use of external symbols by LLVM bitcode
+files. In the example above, the linker notes that ``foo4()`` is not used any
+more. If dead code stripping is enabled then the linker refreshes the live
+symbol information appropriately and performs dead code stripping.
+
+After this phase, the linker continues linking as if it never saw LLVM bitcode
+files.
+
+.. _libLTO:
+
+``libLTO``
+==========
+
+``libLTO`` is a shared object that is part of the LLVM tools, and is intended
+for use by a linker. ``libLTO`` provides an abstract C interface to use the LLVM
+interprocedural optimizer without exposing details of LLVM's internals. The
+intention is to keep the interface as stable as possible even when the LLVM
+optimizer continues to evolve. It should even be possible for a completely
+different compilation technology to provide a different libLTO that works with
+their object files and the standard linker tool.
+
+``lto_module_t``
+----------------
+
+A non-native object file is handled via an ``lto_module_t``.  The following
+functions allow the linker to check if a file (on disk or in a memory buffer) is
+a file which libLTO can process:
+
+.. code-block:: c
+
+  lto_module_is_object_file(const char*)
+  lto_module_is_object_file_for_target(const char*, const char*)
+  lto_module_is_object_file_in_memory(const void*, size_t)
+  lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
+
+If the object file can be processed by ``libLTO``, the linker creates a
+``lto_module_t`` by using one of:
+
+.. code-block:: c
+
+  lto_module_create(const char*)
+  lto_module_create_from_memory(const void*, size_t)
+
+and when done, the handle is released via
+
+.. code-block:: c
+
+  lto_module_dispose(lto_module_t)
+
+
+The linker can introspect the non-native object file by getting the number of
+symbols and getting the name and attributes of each symbol via:
+
+.. code-block:: c
+
+  lto_module_get_num_symbols(lto_module_t)
+  lto_module_get_symbol_name(lto_module_t, unsigned int)
+  lto_module_get_symbol_attribute(lto_module_t, unsigned int)
+
+The attributes of a symbol include the alignment, visibility, and kind.
+
+``lto_code_gen_t``
+------------------
+
+Once the linker has loaded each non-native object files into an
+``lto_module_t``, it can request ``libLTO`` to process them all and generate a
+native object file.  This is done in a couple of steps.  First, a code generator
+is created with:
+
+.. code-block:: c
+
+  lto_codegen_create()
+
+Then, each non-native object file is added to the code generator with:
+
+.. code-block:: c
+
+  lto_codegen_add_module(lto_code_gen_t, lto_module_t)
+
+The linker then has the option of setting some codegen options.  Whether or not
+to generate DWARF debug info is set with:
+  
+.. code-block:: c
+
+  lto_codegen_set_debug_model(lto_code_gen_t)
+
+Which kind of position independence is set with:
+
+.. code-block:: c
+
+  lto_codegen_set_pic_model(lto_code_gen_t)
+  
+And each symbol that is referenced by a native object file or otherwise must not
+be optimized away is set with:
+
+.. code-block:: c
+
+  lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
+
+After all these settings are done, the linker requests that a native object file
+be created from the modules with the settings using:
+
+.. code-block:: c
+
+  lto_codegen_compile(lto_code_gen_t, size*)
+
+which returns a pointer to a buffer containing the generated native object file.
+The linker then parses that and links it with the rest of the native object
+files.

Modified: llvm/trunk/docs/subsystems.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/subsystems.rst?rev=158808&r1=158807&r2=158808&view=diff
==============================================================================
--- llvm/trunk/docs/subsystems.rst (original)
+++ llvm/trunk/docs/subsystems.rst Wed Jun 20 05:08:02 2012
@@ -7,6 +7,7 @@
    :hidden:
 
    AliasAnalysis
+   LinkTimeOptimization
 
 * `Writing an LLVM Pass <WritingAnLLVMPass.html>`_
     
@@ -61,7 +62,7 @@
    This document describes the LLVM System Library (<tt>lib/System</tt>) and
    how to keep LLVM source code portable
     
-* `Link Time Optimization <LinkTimeOptimization.html>`_
+* :ref:`lto`
     
    This document describes the interface between LLVM intermodular optimizer
    and the linker and its design





More information about the llvm-commits mailing list