[llvm-commits] [llvm] r144475 - in /llvm/trunk: include/llvm/CodeGen/LinkAllCodegenComponents.h include/llvm/CodeGen/Passes.h lib/CodeGen/CMakeLists.txt lib/CodeGen/Passes.cpp lib/CodeGen/RegAllocLinearScan.cpp

Jim Grosbach grosbach at apple.com
Tue Nov 15 14:03:22 PST 2011


And there was much rejoicing! It's been a long time coming. Grats on making it happen.

-j

On Nov 12, 2011, at 2:39 PM, Jakob Stoklund Olesen wrote:

> Author: stoklund
> Date: Sat Nov 12 16:39:45 2011
> New Revision: 144475
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=144475&view=rev
> Log:
> Delete the linear scan register allocator.
> 
> RegAllocGreedy has been the default for six months now.
> 
> Deleting RegAllocLinearScan makes it possible to also delete
> VirtRegRewriter and clean up the spiller code.
> 
> Removed:
>    llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp
> Modified:
>    llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h
>    llvm/trunk/include/llvm/CodeGen/Passes.h
>    llvm/trunk/lib/CodeGen/CMakeLists.txt
>    llvm/trunk/lib/CodeGen/Passes.cpp
> 
> Modified: llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h?rev=144475&r1=144474&r2=144475&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h (original)
> +++ llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h Sat Nov 12 16:39:45 2011
> @@ -35,7 +35,6 @@
> 
>       (void) llvm::createFastRegisterAllocator();
>       (void) llvm::createBasicRegisterAllocator();
> -      (void) llvm::createLinearScanRegisterAllocator();
>       (void) llvm::createGreedyRegisterAllocator();
>       (void) llvm::createDefaultPBQPRegisterAllocator();
> 
> 
> Modified: llvm/trunk/include/llvm/CodeGen/Passes.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/Passes.h?rev=144475&r1=144474&r2=144475&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/CodeGen/Passes.h (original)
> +++ llvm/trunk/include/llvm/CodeGen/Passes.h Sat Nov 12 16:39:45 2011
> @@ -118,11 +118,6 @@
>   ///
>   FunctionPass *createGreedyRegisterAllocator();
> 
> -  /// LinearScanRegisterAllocation Pass - This pass implements the linear scan
> -  /// register allocation algorithm, a global register allocator.
> -  ///
> -  FunctionPass *createLinearScanRegisterAllocator();
> -
>   /// PBQPRegisterAllocation Pass - This pass implements the Partitioned Boolean
>   /// Quadratic Prograaming (PBQP) based register allocator.
>   ///
> 
> Modified: llvm/trunk/lib/CodeGen/CMakeLists.txt
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CMakeLists.txt?rev=144475&r1=144474&r2=144475&view=diff
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/CMakeLists.txt (original)
> +++ llvm/trunk/lib/CodeGen/CMakeLists.txt Sat Nov 12 16:39:45 2011
> @@ -70,7 +70,6 @@
>   RegAllocBasic.cpp
>   RegAllocFast.cpp
>   RegAllocGreedy.cpp
> -  RegAllocLinearScan.cpp
>   RegAllocPBQP.cpp
>   RegisterClassInfo.cpp
>   RegisterCoalescer.cpp
> 
> Modified: llvm/trunk/lib/CodeGen/Passes.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/Passes.cpp?rev=144475&r1=144474&r2=144475&view=diff
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/Passes.cpp (original)
> +++ llvm/trunk/lib/CodeGen/Passes.cpp Sat Nov 12 16:39:45 2011
> @@ -55,11 +55,6 @@
>     RegisterRegAlloc::setDefault(RegAlloc);
>   }
> 
> -  // This forces linking of the linear scan register allocator,
> -  // so -regalloc=linearscan still works in clang.
> -  if (Ctor == createLinearScanRegisterAllocator)
> -    return createLinearScanRegisterAllocator();
> -
>   if (Ctor != createDefaultRegisterAllocator)
>     return Ctor();
> 
> 
> Removed: llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp?rev=144474&view=auto
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp (original)
> +++ llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp (removed)
> @@ -1,1543 +0,0 @@
> -//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
> -//
> -//                     The LLVM Compiler Infrastructure
> -//
> -// This file is distributed under the University of Illinois Open Source
> -// License. See LICENSE.TXT for details.
> -//
> -//===----------------------------------------------------------------------===//
> -//
> -// This file implements a linear scan register allocator.
> -//
> -//===----------------------------------------------------------------------===//
> -
> -#define DEBUG_TYPE "regalloc"
> -#include "LiveDebugVariables.h"
> -#include "LiveRangeEdit.h"
> -#include "VirtRegMap.h"
> -#include "VirtRegRewriter.h"
> -#include "RegisterClassInfo.h"
> -#include "Spiller.h"
> -#include "llvm/Analysis/AliasAnalysis.h"
> -#include "llvm/Function.h"
> -#include "llvm/CodeGen/CalcSpillWeights.h"
> -#include "llvm/CodeGen/LiveIntervalAnalysis.h"
> -#include "llvm/CodeGen/MachineFunctionPass.h"
> -#include "llvm/CodeGen/MachineInstr.h"
> -#include "llvm/CodeGen/MachineLoopInfo.h"
> -#include "llvm/CodeGen/MachineRegisterInfo.h"
> -#include "llvm/CodeGen/Passes.h"
> -#include "llvm/CodeGen/RegAllocRegistry.h"
> -#include "llvm/Target/TargetRegisterInfo.h"
> -#include "llvm/Target/TargetMachine.h"
> -#include "llvm/Target/TargetOptions.h"
> -#include "llvm/Target/TargetInstrInfo.h"
> -#include "llvm/ADT/EquivalenceClasses.h"
> -#include "llvm/ADT/SmallSet.h"
> -#include "llvm/ADT/Statistic.h"
> -#include "llvm/ADT/STLExtras.h"
> -#include "llvm/Support/Debug.h"
> -#include "llvm/Support/ErrorHandling.h"
> -#include "llvm/Support/raw_ostream.h"
> -#include <algorithm>
> -#include <queue>
> -#include <memory>
> -#include <cmath>
> -
> -using namespace llvm;
> -
> -STATISTIC(NumIters     , "Number of iterations performed");
> -STATISTIC(NumBacktracks, "Number of times we had to backtrack");
> -STATISTIC(NumCoalesce,   "Number of copies coalesced");
> -STATISTIC(NumDowngrade,  "Number of registers downgraded");
> -
> -static cl::opt<bool>
> -NewHeuristic("new-spilling-heuristic",
> -             cl::desc("Use new spilling heuristic"),
> -             cl::init(false), cl::Hidden);
> -
> -static cl::opt<bool>
> -TrivCoalesceEnds("trivial-coalesce-ends",
> -                  cl::desc("Attempt trivial coalescing of interval ends"),
> -                  cl::init(false), cl::Hidden);
> -
> -static cl::opt<bool>
> -AvoidWAWHazard("avoid-waw-hazard",
> -               cl::desc("Avoid write-write hazards for some register classes"),
> -               cl::init(false), cl::Hidden);
> -
> -static RegisterRegAlloc
> -linearscanRegAlloc("linearscan", "linear scan register allocator",
> -                   createLinearScanRegisterAllocator);
> -
> -namespace {
> -  // When we allocate a register, add it to a fixed-size queue of
> -  // registers to skip in subsequent allocations. This trades a small
> -  // amount of register pressure and increased spills for flexibility in
> -  // the post-pass scheduler.
> -  //
> -  // Note that in a the number of registers used for reloading spills
> -  // will be one greater than the value of this option.
> -  //
> -  // One big limitation of this is that it doesn't differentiate between
> -  // different register classes. So on x86-64, if there is xmm register
> -  // pressure, it can caused fewer GPRs to be held in the queue.
> -  static cl::opt<unsigned>
> -  NumRecentlyUsedRegs("linearscan-skip-count",
> -                      cl::desc("Number of registers for linearscan to remember"
> -                               "to skip."),
> -                      cl::init(0),
> -                      cl::Hidden);
> -
> -  struct RALinScan : public MachineFunctionPass {
> -    static char ID;
> -    RALinScan() : MachineFunctionPass(ID) {
> -      initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
> -      initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
> -      initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
> -      initializeRegisterCoalescerPass(
> -        *PassRegistry::getPassRegistry());
> -      initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
> -      initializeLiveStacksPass(*PassRegistry::getPassRegistry());
> -      initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
> -      initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
> -      initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
> -      initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
> -      
> -      // Initialize the queue to record recently-used registers.
> -      if (NumRecentlyUsedRegs > 0)
> -        RecentRegs.resize(NumRecentlyUsedRegs, 0);
> -      RecentNext = RecentRegs.begin();
> -      avoidWAW_ = 0;
> -    }
> -
> -    typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
> -    typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
> -  private:
> -    /// RelatedRegClasses - This structure is built the first time a function is
> -    /// compiled, and keeps track of which register classes have registers that
> -    /// belong to multiple classes or have aliases that are in other classes.
> -    EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
> -    DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
> -
> -    // NextReloadMap - For each register in the map, it maps to the another
> -    // register which is defined by a reload from the same stack slot and
> -    // both reloads are in the same basic block.
> -    DenseMap<unsigned, unsigned> NextReloadMap;
> -
> -    // DowngradedRegs - A set of registers which are being "downgraded", i.e.
> -    // un-favored for allocation.
> -    SmallSet<unsigned, 8> DowngradedRegs;
> -
> -    // DowngradeMap - A map from virtual registers to physical registers being
> -    // downgraded for the virtual registers.
> -    DenseMap<unsigned, unsigned> DowngradeMap;
> -
> -    MachineFunction* mf_;
> -    MachineRegisterInfo* mri_;
> -    const TargetMachine* tm_;
> -    const TargetRegisterInfo* tri_;
> -    const TargetInstrInfo* tii_;
> -    BitVector allocatableRegs_;
> -    BitVector reservedRegs_;
> -    LiveIntervals* li_;
> -    MachineLoopInfo *loopInfo;
> -    RegisterClassInfo RegClassInfo;
> -
> -    /// handled_ - Intervals are added to the handled_ set in the order of their
> -    /// start value.  This is uses for backtracking.
> -    std::vector<LiveInterval*> handled_;
> -
> -    /// fixed_ - Intervals that correspond to machine registers.
> -    ///
> -    IntervalPtrs fixed_;
> -
> -    /// active_ - Intervals that are currently being processed, and which have a
> -    /// live range active for the current point.
> -    IntervalPtrs active_;
> -
> -    /// inactive_ - Intervals that are currently being processed, but which have
> -    /// a hold at the current point.
> -    IntervalPtrs inactive_;
> -
> -    typedef std::priority_queue<LiveInterval*,
> -                                SmallVector<LiveInterval*, 64>,
> -                                greater_ptr<LiveInterval> > IntervalHeap;
> -    IntervalHeap unhandled_;
> -
> -    /// regUse_ - Tracks register usage.
> -    SmallVector<unsigned, 32> regUse_;
> -    SmallVector<unsigned, 32> regUseBackUp_;
> -
> -    /// vrm_ - Tracks register assignments.
> -    VirtRegMap* vrm_;
> -
> -    std::auto_ptr<VirtRegRewriter> rewriter_;
> -
> -    std::auto_ptr<Spiller> spiller_;
> -
> -    // The queue of recently-used registers.
> -    SmallVector<unsigned, 4> RecentRegs;
> -    SmallVector<unsigned, 4>::iterator RecentNext;
> -
> -    // Last write-after-write register written.
> -    unsigned avoidWAW_;
> -
> -    // Record that we just picked this register.
> -    void recordRecentlyUsed(unsigned reg) {
> -      assert(reg != 0 && "Recently used register is NOREG!");
> -      if (!RecentRegs.empty()) {
> -        *RecentNext++ = reg;
> -        if (RecentNext == RecentRegs.end())
> -          RecentNext = RecentRegs.begin();
> -      }
> -    }
> -
> -  public:
> -    virtual const char* getPassName() const {
> -      return "Linear Scan Register Allocator";
> -    }
> -
> -    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
> -      AU.setPreservesCFG();
> -      AU.addRequired<AliasAnalysis>();
> -      AU.addPreserved<AliasAnalysis>();
> -      AU.addRequired<LiveIntervals>();
> -      AU.addPreserved<SlotIndexes>();
> -      if (StrongPHIElim)
> -        AU.addRequiredID(StrongPHIEliminationID);
> -      // Make sure PassManager knows which analyses to make available
> -      // to coalescing and which analyses coalescing invalidates.
> -      AU.addRequiredTransitiveID(RegisterCoalescerPassID);
> -      AU.addRequired<CalculateSpillWeights>();
> -      AU.addRequiredID(LiveStacksID);
> -      AU.addPreservedID(LiveStacksID);
> -      AU.addRequired<MachineLoopInfo>();
> -      AU.addPreserved<MachineLoopInfo>();
> -      AU.addRequired<VirtRegMap>();
> -      AU.addPreserved<VirtRegMap>();
> -      AU.addRequired<LiveDebugVariables>();
> -      AU.addPreserved<LiveDebugVariables>();
> -      AU.addRequiredID(MachineDominatorsID);
> -      AU.addPreservedID(MachineDominatorsID);
> -      MachineFunctionPass::getAnalysisUsage(AU);
> -    }
> -
> -    /// runOnMachineFunction - register allocate the whole function
> -    bool runOnMachineFunction(MachineFunction&);
> -
> -    // Determine if we skip this register due to its being recently used.
> -    bool isRecentlyUsed(unsigned reg) const {
> -      return reg == avoidWAW_ ||
> -       std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
> -    }
> -
> -  private:
> -    /// linearScan - the linear scan algorithm
> -    void linearScan();
> -
> -    /// initIntervalSets - initialize the interval sets.
> -    ///
> -    void initIntervalSets();
> -
> -    /// processActiveIntervals - expire old intervals and move non-overlapping
> -    /// ones to the inactive list.
> -    void processActiveIntervals(SlotIndex CurPoint);
> -
> -    /// processInactiveIntervals - expire old intervals and move overlapping
> -    /// ones to the active list.
> -    void processInactiveIntervals(SlotIndex CurPoint);
> -
> -    /// hasNextReloadInterval - Return the next liveinterval that's being
> -    /// defined by a reload from the same SS as the specified one.
> -    LiveInterval *hasNextReloadInterval(LiveInterval *cur);
> -
> -    /// DowngradeRegister - Downgrade a register for allocation.
> -    void DowngradeRegister(LiveInterval *li, unsigned Reg);
> -
> -    /// UpgradeRegister - Upgrade a register for allocation.
> -    void UpgradeRegister(unsigned Reg);
> -
> -    /// assignRegOrStackSlotAtInterval - assign a register if one
> -    /// is available, or spill.
> -    void assignRegOrStackSlotAtInterval(LiveInterval* cur);
> -
> -    void updateSpillWeights(std::vector<float> &Weights,
> -                            unsigned reg, float weight,
> -                            const TargetRegisterClass *RC);
> -
> -    /// findIntervalsToSpill - Determine the intervals to spill for the
> -    /// specified interval. It's passed the physical registers whose spill
> -    /// weight is the lowest among all the registers whose live intervals
> -    /// conflict with the interval.
> -    void findIntervalsToSpill(LiveInterval *cur,
> -                            std::vector<std::pair<unsigned,float> > &Candidates,
> -                            unsigned NumCands,
> -                            SmallVector<LiveInterval*, 8> &SpillIntervals);
> -
> -    /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
> -    /// try to allocate the definition to the same register as the source,
> -    /// if the register is not defined during the life time of the interval.
> -    /// This eliminates a copy, and is used to coalesce copies which were not
> -    /// coalesced away before allocation either due to dest and src being in
> -    /// different register classes or because the coalescer was overly
> -    /// conservative.
> -    unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
> -
> -    ///
> -    /// Register usage / availability tracking helpers.
> -    ///
> -
> -    void initRegUses() {
> -      regUse_.resize(tri_->getNumRegs(), 0);
> -      regUseBackUp_.resize(tri_->getNumRegs(), 0);
> -    }
> -
> -    void finalizeRegUses() {
> -#ifndef NDEBUG
> -      // Verify all the registers are "freed".
> -      bool Error = false;
> -      for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
> -        if (regUse_[i] != 0) {
> -          dbgs() << tri_->getName(i) << " is still in use!\n";
> -          Error = true;
> -        }
> -      }
> -      if (Error)
> -        llvm_unreachable(0);
> -#endif
> -      regUse_.clear();
> -      regUseBackUp_.clear();
> -    }
> -
> -    void addRegUse(unsigned physReg) {
> -      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
> -             "should be physical register!");
> -      ++regUse_[physReg];
> -      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
> -        ++regUse_[*as];
> -    }
> -
> -    void delRegUse(unsigned physReg) {
> -      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
> -             "should be physical register!");
> -      assert(regUse_[physReg] != 0);
> -      --regUse_[physReg];
> -      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
> -        assert(regUse_[*as] != 0);
> -        --regUse_[*as];
> -      }
> -    }
> -
> -    bool isRegAvail(unsigned physReg) const {
> -      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
> -             "should be physical register!");
> -      return regUse_[physReg] == 0;
> -    }
> -
> -    void backUpRegUses() {
> -      regUseBackUp_ = regUse_;
> -    }
> -
> -    void restoreRegUses() {
> -      regUse_ = regUseBackUp_;
> -    }
> -
> -    ///
> -    /// Register handling helpers.
> -    ///
> -
> -    /// getFreePhysReg - return a free physical register for this virtual
> -    /// register interval if we have one, otherwise return 0.
> -    unsigned getFreePhysReg(LiveInterval* cur);
> -    unsigned getFreePhysReg(LiveInterval* cur,
> -                            const TargetRegisterClass *RC,
> -                            unsigned MaxInactiveCount,
> -                            SmallVector<unsigned, 256> &inactiveCounts,
> -                            bool SkipDGRegs);
> -
> -    /// getFirstNonReservedPhysReg - return the first non-reserved physical
> -    /// register in the register class.
> -    unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
> -      ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
> -      assert(!O.empty() && "All registers reserved?!");
> -      return O.front();
> -    }
> -
> -    void ComputeRelatedRegClasses();
> -
> -    template <typename ItTy>
> -    void printIntervals(const char* const str, ItTy i, ItTy e) const {
> -      DEBUG({
> -          if (str)
> -            dbgs() << str << " intervals:\n";
> -
> -          for (; i != e; ++i) {
> -            dbgs() << '\t' << *i->first << " -> ";
> -
> -            unsigned reg = i->first->reg;
> -            if (TargetRegisterInfo::isVirtualRegister(reg))
> -              reg = vrm_->getPhys(reg);
> -
> -            dbgs() << tri_->getName(reg) << '\n';
> -          }
> -        });
> -    }
> -  };
> -  char RALinScan::ID = 0;
> -}
> -
> -INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
> -                      "Linear Scan Register Allocator", false, false)
> -INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
> -INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
> -INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
> -INITIALIZE_PASS_DEPENDENCY(LiveStacks)
> -INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
> -INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
> -INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
> -INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
> -INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
> -                    "Linear Scan Register Allocator", false, false)
> -
> -void RALinScan::ComputeRelatedRegClasses() {
> -  // First pass, add all reg classes to the union, and determine at least one
> -  // reg class that each register is in.
> -  bool HasAliases = false;
> -  for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
> -       E = tri_->regclass_end(); RCI != E; ++RCI) {
> -    RelatedRegClasses.insert(*RCI);
> -    for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
> -         I != E; ++I) {
> -      HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
> -
> -      const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
> -      if (PRC) {
> -        // Already processed this register.  Just make sure we know that
> -        // multiple register classes share a register.
> -        RelatedRegClasses.unionSets(PRC, *RCI);
> -      } else {
> -        PRC = *RCI;
> -      }
> -    }
> -  }
> -
> -  // Second pass, now that we know conservatively what register classes each reg
> -  // belongs to, add info about aliases.  We don't need to do this for targets
> -  // without register aliases.
> -  if (HasAliases)
> -    for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
> -         I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
> -         I != E; ++I)
> -      for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
> -        const TargetRegisterClass *AliasClass = 
> -          OneClassForEachPhysReg.lookup(*AS);
> -        if (AliasClass)
> -          RelatedRegClasses.unionSets(I->second, AliasClass);
> -      }
> -}
> -
> -/// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
> -/// allocate the definition the same register as the source register if the
> -/// register is not defined during live time of the interval. If the interval is
> -/// killed by a copy, try to use the destination register. This eliminates a
> -/// copy. This is used to coalesce copies which were not coalesced away before
> -/// allocation either due to dest and src being in different register classes or
> -/// because the coalescer was overly conservative.
> -unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
> -  unsigned Preference = vrm_->getRegAllocPref(cur.reg);
> -  if ((Preference && Preference == Reg) || !cur.containsOneValue())
> -    return Reg;
> -
> -  // We cannot handle complicated live ranges. Simple linear stuff only.
> -  if (cur.ranges.size() != 1)
> -    return Reg;
> -
> -  const LiveRange &range = cur.ranges.front();
> -
> -  VNInfo *vni = range.valno;
> -  if (vni->isUnused() || !vni->def.isValid())
> -    return Reg;
> -
> -  unsigned CandReg;
> -  {
> -    MachineInstr *CopyMI;
> -    if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
> -      // Defined by a copy, try to extend SrcReg forward
> -      CandReg = CopyMI->getOperand(1).getReg();
> -    else if (TrivCoalesceEnds &&
> -            (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
> -             CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
> -      // Only used by a copy, try to extend DstReg backwards
> -      CandReg = CopyMI->getOperand(0).getReg();
> -    else
> -      return Reg;
> -
> -    // If the target of the copy is a sub-register then don't coalesce.
> -    if(CopyMI->getOperand(0).getSubReg())
> -      return Reg;
> -  }
> -
> -  if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
> -    if (!vrm_->isAssignedReg(CandReg))
> -      return Reg;
> -    CandReg = vrm_->getPhys(CandReg);
> -  }
> -  if (Reg == CandReg)
> -    return Reg;
> -
> -  const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
> -  if (!RC->contains(CandReg))
> -    return Reg;
> -
> -  if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
> -    return Reg;
> -
> -  // Try to coalesce.
> -  DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
> -        << '\n');
> -  vrm_->clearVirt(cur.reg);
> -  vrm_->assignVirt2Phys(cur.reg, CandReg);
> -
> -  ++NumCoalesce;
> -  return CandReg;
> -}
> -
> -bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
> -  mf_ = &fn;
> -  mri_ = &fn.getRegInfo();
> -  tm_ = &fn.getTarget();
> -  tri_ = tm_->getRegisterInfo();
> -  tii_ = tm_->getInstrInfo();
> -  allocatableRegs_ = tri_->getAllocatableSet(fn);
> -  reservedRegs_ = tri_->getReservedRegs(fn);
> -  li_ = &getAnalysis<LiveIntervals>();
> -  loopInfo = &getAnalysis<MachineLoopInfo>();
> -  RegClassInfo.runOnMachineFunction(fn);
> -
> -  // We don't run the coalescer here because we have no reason to
> -  // interact with it.  If the coalescer requires interaction, it
> -  // won't do anything.  If it doesn't require interaction, we assume
> -  // it was run as a separate pass.
> -
> -  // If this is the first function compiled, compute the related reg classes.
> -  if (RelatedRegClasses.empty())
> -    ComputeRelatedRegClasses();
> -
> -  // Also resize register usage trackers.
> -  initRegUses();
> -
> -  vrm_ = &getAnalysis<VirtRegMap>();
> -  if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
> -
> -  spiller_.reset(createSpiller(*this, *mf_, *vrm_));
> -
> -  initIntervalSets();
> -
> -  linearScan();
> -
> -  // Rewrite spill code and update the PhysRegsUsed set.
> -  rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
> -
> -  // Write out new DBG_VALUE instructions.
> -  getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
> -
> -  assert(unhandled_.empty() && "Unhandled live intervals remain!");
> -
> -  finalizeRegUses();
> -
> -  fixed_.clear();
> -  active_.clear();
> -  inactive_.clear();
> -  handled_.clear();
> -  NextReloadMap.clear();
> -  DowngradedRegs.clear();
> -  DowngradeMap.clear();
> -  spiller_.reset(0);
> -
> -  return true;
> -}
> -
> -/// initIntervalSets - initialize the interval sets.
> -///
> -void RALinScan::initIntervalSets()
> -{
> -  assert(unhandled_.empty() && fixed_.empty() &&
> -         active_.empty() && inactive_.empty() &&
> -         "interval sets should be empty on initialization");
> -
> -  handled_.reserve(li_->getNumIntervals());
> -
> -  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
> -    if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
> -      if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
> -        mri_->setPhysRegUsed(i->second->reg);
> -        fixed_.push_back(std::make_pair(i->second, i->second->begin()));
> -      }
> -    } else {
> -      if (i->second->empty()) {
> -        assignRegOrStackSlotAtInterval(i->second);
> -      }
> -      else
> -        unhandled_.push(i->second);
> -    }
> -  }
> -}
> -
> -void RALinScan::linearScan() {
> -  // linear scan algorithm
> -  DEBUG({
> -      dbgs() << "********** LINEAR SCAN **********\n"
> -             << "********** Function: "
> -             << mf_->getFunction()->getName() << '\n';
> -      printIntervals("fixed", fixed_.begin(), fixed_.end());
> -    });
> -
> -  while (!unhandled_.empty()) {
> -    // pick the interval with the earliest start point
> -    LiveInterval* cur = unhandled_.top();
> -    unhandled_.pop();
> -    ++NumIters;
> -    DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
> -
> -    assert(!cur->empty() && "Empty interval in unhandled set.");
> -
> -    processActiveIntervals(cur->beginIndex());
> -    processInactiveIntervals(cur->beginIndex());
> -
> -    assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
> -           "Can only allocate virtual registers!");
> -
> -    // Allocating a virtual register. try to find a free
> -    // physical register or spill an interval (possibly this one) in order to
> -    // assign it one.
> -    assignRegOrStackSlotAtInterval(cur);
> -
> -    DEBUG({
> -        printIntervals("active", active_.begin(), active_.end());
> -        printIntervals("inactive", inactive_.begin(), inactive_.end());
> -      });
> -  }
> -
> -  // Expire any remaining active intervals
> -  while (!active_.empty()) {
> -    IntervalPtr &IP = active_.back();
> -    unsigned reg = IP.first->reg;
> -    DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
> -    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
> -           "Can only allocate virtual registers!");
> -    reg = vrm_->getPhys(reg);
> -    delRegUse(reg);
> -    active_.pop_back();
> -  }
> -
> -  // Expire any remaining inactive intervals
> -  DEBUG({
> -      for (IntervalPtrs::reverse_iterator
> -             i = inactive_.rbegin(); i != inactive_.rend(); ++i)
> -        dbgs() << "\tinterval " << *i->first << " expired\n";
> -    });
> -  inactive_.clear();
> -
> -  // Add live-ins to every BB except for entry. Also perform trivial coalescing.
> -  MachineFunction::iterator EntryMBB = mf_->begin();
> -  SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
> -  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
> -    LiveInterval &cur = *i->second;
> -    unsigned Reg = 0;
> -    bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
> -    if (isPhys)
> -      Reg = cur.reg;
> -    else if (vrm_->isAssignedReg(cur.reg))
> -      Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
> -    if (!Reg)
> -      continue;
> -    // Ignore splited live intervals.
> -    if (!isPhys && vrm_->getPreSplitReg(cur.reg))
> -      continue;
> -
> -    for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
> -         I != E; ++I) {
> -      const LiveRange &LR = *I;
> -      if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
> -        for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
> -          if (LiveInMBBs[i] != EntryMBB) {
> -            assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
> -                   "Adding a virtual register to livein set?");
> -            LiveInMBBs[i]->addLiveIn(Reg);
> -          }
> -        LiveInMBBs.clear();
> -      }
> -    }
> -  }
> -
> -  DEBUG(dbgs() << *vrm_);
> -
> -  // Look for physical registers that end up not being allocated even though
> -  // register allocator had to spill other registers in its register class.
> -  if (!vrm_->FindUnusedRegisters(li_))
> -    return;
> -}
> -
> -/// processActiveIntervals - expire old intervals and move non-overlapping ones
> -/// to the inactive list.
> -void RALinScan::processActiveIntervals(SlotIndex CurPoint)
> -{
> -  DEBUG(dbgs() << "\tprocessing active intervals:\n");
> -
> -  for (unsigned i = 0, e = active_.size(); i != e; ++i) {
> -    LiveInterval *Interval = active_[i].first;
> -    LiveInterval::iterator IntervalPos = active_[i].second;
> -    unsigned reg = Interval->reg;
> -
> -    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
> -
> -    if (IntervalPos == Interval->end()) {     // Remove expired intervals.
> -      DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
> -      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
> -             "Can only allocate virtual registers!");
> -      reg = vrm_->getPhys(reg);
> -      delRegUse(reg);
> -
> -      // Pop off the end of the list.
> -      active_[i] = active_.back();
> -      active_.pop_back();
> -      --i; --e;
> -
> -    } else if (IntervalPos->start > CurPoint) {
> -      // Move inactive intervals to inactive list.
> -      DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
> -      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
> -             "Can only allocate virtual registers!");
> -      reg = vrm_->getPhys(reg);
> -      delRegUse(reg);
> -      // add to inactive.
> -      inactive_.push_back(std::make_pair(Interval, IntervalPos));
> -
> -      // Pop off the end of the list.
> -      active_[i] = active_.back();
> -      active_.pop_back();
> -      --i; --e;
> -    } else {
> -      // Otherwise, just update the iterator position.
> -      active_[i].second = IntervalPos;
> -    }
> -  }
> -}
> -
> -/// processInactiveIntervals - expire old intervals and move overlapping
> -/// ones to the active list.
> -void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
> -{
> -  DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
> -
> -  for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
> -    LiveInterval *Interval = inactive_[i].first;
> -    LiveInterval::iterator IntervalPos = inactive_[i].second;
> -    unsigned reg = Interval->reg;
> -
> -    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
> -
> -    if (IntervalPos == Interval->end()) {       // remove expired intervals.
> -      DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
> -
> -      // Pop off the end of the list.
> -      inactive_[i] = inactive_.back();
> -      inactive_.pop_back();
> -      --i; --e;
> -    } else if (IntervalPos->start <= CurPoint) {
> -      // move re-activated intervals in active list
> -      DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
> -      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
> -             "Can only allocate virtual registers!");
> -      reg = vrm_->getPhys(reg);
> -      addRegUse(reg);
> -      // add to active
> -      active_.push_back(std::make_pair(Interval, IntervalPos));
> -
> -      // Pop off the end of the list.
> -      inactive_[i] = inactive_.back();
> -      inactive_.pop_back();
> -      --i; --e;
> -    } else {
> -      // Otherwise, just update the iterator position.
> -      inactive_[i].second = IntervalPos;
> -    }
> -  }
> -}
> -
> -/// updateSpillWeights - updates the spill weights of the specifed physical
> -/// register and its weight.
> -void RALinScan::updateSpillWeights(std::vector<float> &Weights,
> -                                   unsigned reg, float weight,
> -                                   const TargetRegisterClass *RC) {
> -  SmallSet<unsigned, 4> Processed;
> -  SmallSet<unsigned, 4> SuperAdded;
> -  SmallVector<unsigned, 4> Supers;
> -  Weights[reg] += weight;
> -  Processed.insert(reg);
> -  for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
> -    Weights[*as] += weight;
> -    Processed.insert(*as);
> -    if (tri_->isSubRegister(*as, reg) &&
> -        SuperAdded.insert(*as) &&
> -        RC->contains(*as)) {
> -      Supers.push_back(*as);
> -    }
> -  }
> -
> -  // If the alias is a super-register, and the super-register is in the
> -  // register class we are trying to allocate. Then add the weight to all
> -  // sub-registers of the super-register even if they are not aliases.
> -  // e.g. allocating for GR32, bh is not used, updating bl spill weight.
> -  //      bl should get the same spill weight otherwise it will be chosen
> -  //      as a spill candidate since spilling bh doesn't make ebx available.
> -  for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
> -    for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
> -      if (!Processed.count(*sr))
> -        Weights[*sr] += weight;
> -  }
> -}
> -
> -static
> -RALinScan::IntervalPtrs::iterator
> -FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
> -  for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
> -       I != E; ++I)
> -    if (I->first == LI) return I;
> -  return IP.end();
> -}
> -
> -static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
> -                                    SlotIndex Point){
> -  for (unsigned i = 0, e = V.size(); i != e; ++i) {
> -    RALinScan::IntervalPtr &IP = V[i];
> -    LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
> -                                                IP.second, Point);
> -    if (I != IP.first->begin()) --I;
> -    IP.second = I;
> -  }
> -}
> -
> -/// getConflictWeight - Return the number of conflicts between cur
> -/// live interval and defs and uses of Reg weighted by loop depthes.
> -static
> -float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
> -                        MachineRegisterInfo *mri_,
> -                        MachineLoopInfo *loopInfo) {
> -  float Conflicts = 0;
> -  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
> -         E = mri_->reg_end(); I != E; ++I) {
> -    MachineInstr *MI = &*I;
> -    if (cur->liveAt(li_->getInstructionIndex(MI))) {
> -      unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
> -      Conflicts += std::pow(10.0f, (float)loopDepth);
> -    }
> -  }
> -  return Conflicts;
> -}
> -
> -/// findIntervalsToSpill - Determine the intervals to spill for the
> -/// specified interval. It's passed the physical registers whose spill
> -/// weight is the lowest among all the registers whose live intervals
> -/// conflict with the interval.
> -void RALinScan::findIntervalsToSpill(LiveInterval *cur,
> -                            std::vector<std::pair<unsigned,float> > &Candidates,
> -                            unsigned NumCands,
> -                            SmallVector<LiveInterval*, 8> &SpillIntervals) {
> -  // We have figured out the *best* register to spill. But there are other
> -  // registers that are pretty good as well (spill weight within 3%). Spill
> -  // the one that has fewest defs and uses that conflict with cur.
> -  float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
> -  SmallVector<LiveInterval*, 8> SLIs[3];
> -
> -  DEBUG({
> -      dbgs() << "\tConsidering " << NumCands << " candidates: ";
> -      for (unsigned i = 0; i != NumCands; ++i)
> -        dbgs() << tri_->getName(Candidates[i].first) << " ";
> -      dbgs() << "\n";
> -    });
> -
> -  // Calculate the number of conflicts of each candidate.
> -  for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
> -    unsigned Reg = i->first->reg;
> -    unsigned PhysReg = vrm_->getPhys(Reg);
> -    if (!cur->overlapsFrom(*i->first, i->second))
> -      continue;
> -    for (unsigned j = 0; j < NumCands; ++j) {
> -      unsigned Candidate = Candidates[j].first;
> -      if (tri_->regsOverlap(PhysReg, Candidate)) {
> -        if (NumCands > 1)
> -          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
> -        SLIs[j].push_back(i->first);
> -      }
> -    }
> -  }
> -
> -  for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
> -    unsigned Reg = i->first->reg;
> -    unsigned PhysReg = vrm_->getPhys(Reg);
> -    if (!cur->overlapsFrom(*i->first, i->second-1))
> -      continue;
> -    for (unsigned j = 0; j < NumCands; ++j) {
> -      unsigned Candidate = Candidates[j].first;
> -      if (tri_->regsOverlap(PhysReg, Candidate)) {
> -        if (NumCands > 1)
> -          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
> -        SLIs[j].push_back(i->first);
> -      }
> -    }
> -  }
> -
> -  // Which is the best candidate?
> -  unsigned BestCandidate = 0;
> -  float MinConflicts = Conflicts[0];
> -  for (unsigned i = 1; i != NumCands; ++i) {
> -    if (Conflicts[i] < MinConflicts) {
> -      BestCandidate = i;
> -      MinConflicts = Conflicts[i];
> -    }
> -  }
> -
> -  std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
> -            std::back_inserter(SpillIntervals));
> -}
> -
> -namespace {
> -  struct WeightCompare {
> -  private:
> -    const RALinScan &Allocator;
> -
> -  public:
> -    WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
> -
> -    typedef std::pair<unsigned, float> RegWeightPair;
> -    bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
> -      return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
> -    }
> -  };
> -}
> -
> -static bool weightsAreClose(float w1, float w2) {
> -  if (!NewHeuristic)
> -    return false;
> -
> -  float diff = w1 - w2;
> -  if (diff <= 0.02f)  // Within 0.02f
> -    return true;
> -  return (diff / w2) <= 0.05f;  // Within 5%.
> -}
> -
> -LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
> -  DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
> -  if (I == NextReloadMap.end())
> -    return 0;
> -  return &li_->getInterval(I->second);
> -}
> -
> -void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
> -  for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
> -    bool isNew = DowngradedRegs.insert(*AS);
> -    (void)isNew; // Silence compiler warning.
> -    assert(isNew && "Multiple reloads holding the same register?");
> -    DowngradeMap.insert(std::make_pair(li->reg, *AS));
> -  }
> -  ++NumDowngrade;
> -}
> -
> -void RALinScan::UpgradeRegister(unsigned Reg) {
> -  if (Reg) {
> -    DowngradedRegs.erase(Reg);
> -    for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
> -      DowngradedRegs.erase(*AS);
> -  }
> -}
> -
> -namespace {
> -  struct LISorter {
> -    bool operator()(LiveInterval* A, LiveInterval* B) {
> -      return A->beginIndex() < B->beginIndex();
> -    }
> -  };
> -}
> -
> -/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
> -/// spill.
> -void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
> -  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
> -  DEBUG(dbgs() << "\tallocating current interval from "
> -               << RC->getName() << ": ");
> -
> -  // This is an implicitly defined live interval, just assign any register.
> -  if (cur->empty()) {
> -    unsigned physReg = vrm_->getRegAllocPref(cur->reg);
> -    if (!physReg)
> -      physReg = getFirstNonReservedPhysReg(RC);
> -    DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
> -    // Note the register is not really in use.
> -    vrm_->assignVirt2Phys(cur->reg, physReg);
> -    return;
> -  }
> -
> -  backUpRegUses();
> -
> -  std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
> -  SlotIndex StartPosition = cur->beginIndex();
> -  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
> -
> -  // If start of this live interval is defined by a move instruction and its
> -  // source is assigned a physical register that is compatible with the target
> -  // register class, then we should try to assign it the same register.
> -  // This can happen when the move is from a larger register class to a smaller
> -  // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
> -  if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
> -    VNInfo *vni = cur->begin()->valno;
> -    if (!vni->isUnused() && vni->def.isValid()) {
> -      MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
> -      if (CopyMI && CopyMI->isCopy()) {
> -        unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
> -        unsigned SrcReg = CopyMI->getOperand(1).getReg();
> -        unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
> -        unsigned Reg = 0;
> -        if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
> -          Reg = SrcReg;
> -        else if (vrm_->isAssignedReg(SrcReg))
> -          Reg = vrm_->getPhys(SrcReg);
> -        if (Reg) {
> -          if (SrcSubReg)
> -            Reg = tri_->getSubReg(Reg, SrcSubReg);
> -          if (DstSubReg)
> -            Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
> -          if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
> -            mri_->setRegAllocationHint(cur->reg, 0, Reg);
> -        }
> -      }
> -    }
> -  }
> -
> -  // For every interval in inactive we overlap with, mark the
> -  // register as not free and update spill weights.
> -  for (IntervalPtrs::const_iterator i = inactive_.begin(),
> -         e = inactive_.end(); i != e; ++i) {
> -    unsigned Reg = i->first->reg;
> -    assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
> -           "Can only allocate virtual registers!");
> -    const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
> -    // If this is not in a related reg class to the register we're allocating,
> -    // don't check it.
> -    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
> -        cur->overlapsFrom(*i->first, i->second-1)) {
> -      Reg = vrm_->getPhys(Reg);
> -      addRegUse(Reg);
> -      SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
> -    }
> -  }
> -
> -  // Speculatively check to see if we can get a register right now.  If not,
> -  // we know we won't be able to by adding more constraints.  If so, we can
> -  // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
> -  // is very bad (it contains all callee clobbered registers for any functions
> -  // with a call), so we want to avoid doing that if possible.
> -  unsigned physReg = getFreePhysReg(cur);
> -  unsigned BestPhysReg = physReg;
> -  if (physReg) {
> -    // We got a register.  However, if it's in the fixed_ list, we might
> -    // conflict with it.  Check to see if we conflict with it or any of its
> -    // aliases.
> -    SmallSet<unsigned, 8> RegAliases;
> -    for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
> -      RegAliases.insert(*AS);
> -
> -    bool ConflictsWithFixed = false;
> -    for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
> -      IntervalPtr &IP = fixed_[i];
> -      if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
> -        // Okay, this reg is on the fixed list.  Check to see if we actually
> -        // conflict.
> -        LiveInterval *I = IP.first;
> -        if (I->endIndex() > StartPosition) {
> -          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
> -          IP.second = II;
> -          if (II != I->begin() && II->start > StartPosition)
> -            --II;
> -          if (cur->overlapsFrom(*I, II)) {
> -            ConflictsWithFixed = true;
> -            break;
> -          }
> -        }
> -      }
> -    }
> -
> -    // Okay, the register picked by our speculative getFreePhysReg call turned
> -    // out to be in use.  Actually add all of the conflicting fixed registers to
> -    // regUse_ so we can do an accurate query.
> -    if (ConflictsWithFixed) {
> -      // For every interval in fixed we overlap with, mark the register as not
> -      // free and update spill weights.
> -      for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
> -        IntervalPtr &IP = fixed_[i];
> -        LiveInterval *I = IP.first;
> -
> -        const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
> -        if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
> -            I->endIndex() > StartPosition) {
> -          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
> -          IP.second = II;
> -          if (II != I->begin() && II->start > StartPosition)
> -            --II;
> -          if (cur->overlapsFrom(*I, II)) {
> -            unsigned reg = I->reg;
> -            addRegUse(reg);
> -            SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
> -          }
> -        }
> -      }
> -
> -      // Using the newly updated regUse_ object, which includes conflicts in the
> -      // future, see if there are any registers available.
> -      physReg = getFreePhysReg(cur);
> -    }
> -  }
> -
> -  // Restore the physical register tracker, removing information about the
> -  // future.
> -  restoreRegUses();
> -
> -  // If we find a free register, we are done: assign this virtual to
> -  // the free physical register and add this interval to the active
> -  // list.
> -  if (physReg) {
> -    DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
> -    assert(RC->contains(physReg) && "Invalid candidate");
> -    vrm_->assignVirt2Phys(cur->reg, physReg);
> -    addRegUse(physReg);
> -    active_.push_back(std::make_pair(cur, cur->begin()));
> -    handled_.push_back(cur);
> -
> -    // Remember physReg for avoiding a write-after-write hazard in the next
> -    // instruction.
> -    if (AvoidWAWHazard &&
> -        tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
> -      avoidWAW_ = physReg;
> -
> -    // "Upgrade" the physical register since it has been allocated.
> -    UpgradeRegister(physReg);
> -    if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
> -      // "Downgrade" physReg to try to keep physReg from being allocated until
> -      // the next reload from the same SS is allocated.
> -      mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
> -      DowngradeRegister(cur, physReg);
> -    }
> -    return;
> -  }
> -  DEBUG(dbgs() << "no free registers\n");
> -
> -  // Compile the spill weights into an array that is better for scanning.
> -  std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
> -  for (std::vector<std::pair<unsigned, float> >::iterator
> -       I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
> -    updateSpillWeights(SpillWeights, I->first, I->second, RC);
> -
> -  // for each interval in active, update spill weights.
> -  for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
> -       i != e; ++i) {
> -    unsigned reg = i->first->reg;
> -    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
> -           "Can only allocate virtual registers!");
> -    reg = vrm_->getPhys(reg);
> -    updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
> -  }
> -
> -  DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
> -
> -  // Find a register to spill.
> -  float minWeight = HUGE_VALF;
> -  unsigned minReg = 0;
> -
> -  bool Found = false;
> -  std::vector<std::pair<unsigned,float> > RegsWeights;
> -  ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
> -  if (!minReg || SpillWeights[minReg] == HUGE_VALF)
> -    for (unsigned i = 0; i != Order.size(); ++i) {
> -      unsigned reg = Order[i];
> -      float regWeight = SpillWeights[reg];
> -      // Skip recently allocated registers and reserved registers.
> -      if (minWeight > regWeight && !isRecentlyUsed(reg))
> -        Found = true;
> -      RegsWeights.push_back(std::make_pair(reg, regWeight));
> -    }
> -
> -  // If we didn't find a register that is spillable, try aliases?
> -  if (!Found) {
> -    for (unsigned i = 0; i != Order.size(); ++i) {
> -      unsigned reg = Order[i];
> -      // No need to worry about if the alias register size < regsize of RC.
> -      // We are going to spill all registers that alias it anyway.
> -      for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
> -        RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
> -    }
> -  }
> -
> -  // Sort all potential spill candidates by weight.
> -  std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
> -  minReg = RegsWeights[0].first;
> -  minWeight = RegsWeights[0].second;
> -  if (minWeight == HUGE_VALF) {
> -    // All registers must have inf weight. Just grab one!
> -    minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
> -    if (cur->weight == HUGE_VALF ||
> -        li_->getApproximateInstructionCount(*cur) == 0) {
> -      // Spill a physical register around defs and uses.
> -      if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
> -        // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
> -        // in fixed_. Reset them.
> -        for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
> -          IntervalPtr &IP = fixed_[i];
> -          LiveInterval *I = IP.first;
> -          if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
> -            IP.second = I->advanceTo(I->begin(), StartPosition);
> -        }
> -
> -        DowngradedRegs.clear();
> -        assignRegOrStackSlotAtInterval(cur);
> -      } else {
> -        assert(false && "Ran out of registers during register allocation!");
> -        report_fatal_error("Ran out of registers during register allocation!");
> -      }
> -      return;
> -    }
> -  }
> -
> -  // Find up to 3 registers to consider as spill candidates.
> -  unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
> -  while (LastCandidate > 1) {
> -    if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
> -      break;
> -    --LastCandidate;
> -  }
> -
> -  DEBUG({
> -      dbgs() << "\t\tregister(s) with min weight(s): ";
> -
> -      for (unsigned i = 0; i != LastCandidate; ++i)
> -        dbgs() << tri_->getName(RegsWeights[i].first)
> -               << " (" << RegsWeights[i].second << ")\n";
> -    });
> -
> -  // If the current has the minimum weight, we need to spill it and
> -  // add any added intervals back to unhandled, and restart
> -  // linearscan.
> -  if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
> -    DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
> -    SmallVector<LiveInterval*, 8> added;
> -    LiveRangeEdit LRE(*cur, added);
> -    spiller_->spill(LRE);
> -
> -    std::sort(added.begin(), added.end(), LISorter());
> -    if (added.empty())
> -      return;  // Early exit if all spills were folded.
> -
> -    // Merge added with unhandled.  Note that we have already sorted
> -    // intervals returned by addIntervalsForSpills by their starting
> -    // point.
> -    // This also update the NextReloadMap. That is, it adds mapping from a
> -    // register defined by a reload from SS to the next reload from SS in the
> -    // same basic block.
> -    MachineBasicBlock *LastReloadMBB = 0;
> -    LiveInterval *LastReload = 0;
> -    int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
> -    for (unsigned i = 0, e = added.size(); i != e; ++i) {
> -      LiveInterval *ReloadLi = added[i];
> -      if (ReloadLi->weight == HUGE_VALF &&
> -          li_->getApproximateInstructionCount(*ReloadLi) == 0) {
> -        SlotIndex ReloadIdx = ReloadLi->beginIndex();
> -        MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
> -        int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
> -        if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
> -          // Last reload of same SS is in the same MBB. We want to try to
> -          // allocate both reloads the same register and make sure the reg
> -          // isn't clobbered in between if at all possible.
> -          assert(LastReload->beginIndex() < ReloadIdx);
> -          NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
> -        }
> -        LastReloadMBB = ReloadMBB;
> -        LastReload = ReloadLi;
> -        LastReloadSS = ReloadSS;
> -      }
> -      unhandled_.push(ReloadLi);
> -    }
> -    return;
> -  }
> -
> -  ++NumBacktracks;
> -
> -  // Push the current interval back to unhandled since we are going
> -  // to re-run at least this iteration. Since we didn't modify it it
> -  // should go back right in the front of the list
> -  unhandled_.push(cur);
> -
> -  assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
> -         "did not choose a register to spill?");
> -
> -  // We spill all intervals aliasing the register with
> -  // minimum weight, rollback to the interval with the earliest
> -  // start point and let the linear scan algorithm run again
> -  SmallVector<LiveInterval*, 8> spillIs;
> -
> -  // Determine which intervals have to be spilled.
> -  findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
> -
> -  // Set of spilled vregs (used later to rollback properly)
> -  SmallSet<unsigned, 8> spilled;
> -
> -  // The earliest start of a Spilled interval indicates up to where
> -  // in handled we need to roll back
> -  assert(!spillIs.empty() && "No spill intervals?");
> -  SlotIndex earliestStart = spillIs[0]->beginIndex();
> -
> -  // Spill live intervals of virtual regs mapped to the physical register we
> -  // want to clear (and its aliases).  We only spill those that overlap with the
> -  // current interval as the rest do not affect its allocation. we also keep
> -  // track of the earliest start of all spilled live intervals since this will
> -  // mark our rollback point.
> -  SmallVector<LiveInterval*, 8> added;
> -  while (!spillIs.empty()) {
> -    LiveInterval *sli = spillIs.back();
> -    spillIs.pop_back();
> -    DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
> -    if (sli->beginIndex() < earliestStart)
> -      earliestStart = sli->beginIndex();
> -    LiveRangeEdit LRE(*sli, added, 0, &spillIs);
> -    spiller_->spill(LRE);
> -    spilled.insert(sli->reg);
> -  }
> -
> -  // Include any added intervals in earliestStart.
> -  for (unsigned i = 0, e = added.size(); i != e; ++i) {
> -    SlotIndex SI = added[i]->beginIndex();
> -    if (SI < earliestStart)
> -      earliestStart = SI;
> -  }
> -
> -  DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
> -
> -  // Scan handled in reverse order up to the earliest start of a
> -  // spilled live interval and undo each one, restoring the state of
> -  // unhandled.
> -  while (!handled_.empty()) {
> -    LiveInterval* i = handled_.back();
> -    // If this interval starts before t we are done.
> -    if (!i->empty() && i->beginIndex() < earliestStart)
> -      break;
> -    DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
> -    handled_.pop_back();
> -
> -    // When undoing a live interval allocation we must know if it is active or
> -    // inactive to properly update regUse_ and the VirtRegMap.
> -    IntervalPtrs::iterator it;
> -    if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
> -      active_.erase(it);
> -      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
> -      if (!spilled.count(i->reg))
> -        unhandled_.push(i);
> -      delRegUse(vrm_->getPhys(i->reg));
> -      vrm_->clearVirt(i->reg);
> -    } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
> -      inactive_.erase(it);
> -      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
> -      if (!spilled.count(i->reg))
> -        unhandled_.push(i);
> -      vrm_->clearVirt(i->reg);
> -    } else {
> -      assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
> -             "Can only allocate virtual registers!");
> -      vrm_->clearVirt(i->reg);
> -      unhandled_.push(i);
> -    }
> -
> -    DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
> -    if (ii == DowngradeMap.end())
> -      // It interval has a preference, it must be defined by a copy. Clear the
> -      // preference now since the source interval allocation may have been
> -      // undone as well.
> -      mri_->setRegAllocationHint(i->reg, 0, 0);
> -    else {
> -      UpgradeRegister(ii->second);
> -    }
> -  }
> -
> -  // Rewind the iterators in the active, inactive, and fixed lists back to the
> -  // point we reverted to.
> -  RevertVectorIteratorsTo(active_, earliestStart);
> -  RevertVectorIteratorsTo(inactive_, earliestStart);
> -  RevertVectorIteratorsTo(fixed_, earliestStart);
> -
> -  // Scan the rest and undo each interval that expired after t and
> -  // insert it in active (the next iteration of the algorithm will
> -  // put it in inactive if required)
> -  for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
> -    LiveInterval *HI = handled_[i];
> -    if (!HI->expiredAt(earliestStart) &&
> -        HI->expiredAt(cur->beginIndex())) {
> -      DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
> -      active_.push_back(std::make_pair(HI, HI->begin()));
> -      assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
> -      addRegUse(vrm_->getPhys(HI->reg));
> -    }
> -  }
> -
> -  // Merge added with unhandled.
> -  // This also update the NextReloadMap. That is, it adds mapping from a
> -  // register defined by a reload from SS to the next reload from SS in the
> -  // same basic block.
> -  MachineBasicBlock *LastReloadMBB = 0;
> -  LiveInterval *LastReload = 0;
> -  int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
> -  std::sort(added.begin(), added.end(), LISorter());
> -  for (unsigned i = 0, e = added.size(); i != e; ++i) {
> -    LiveInterval *ReloadLi = added[i];
> -    if (ReloadLi->weight == HUGE_VALF &&
> -        li_->getApproximateInstructionCount(*ReloadLi) == 0) {
> -      SlotIndex ReloadIdx = ReloadLi->beginIndex();
> -      MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
> -      int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
> -      if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
> -        // Last reload of same SS is in the same MBB. We want to try to
> -        // allocate both reloads the same register and make sure the reg
> -        // isn't clobbered in between if at all possible.
> -        assert(LastReload->beginIndex() < ReloadIdx);
> -        NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
> -      }
> -      LastReloadMBB = ReloadMBB;
> -      LastReload = ReloadLi;
> -      LastReloadSS = ReloadSS;
> -    }
> -    unhandled_.push(ReloadLi);
> -  }
> -}
> -
> -unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
> -                                   const TargetRegisterClass *RC,
> -                                   unsigned MaxInactiveCount,
> -                                   SmallVector<unsigned, 256> &inactiveCounts,
> -                                   bool SkipDGRegs) {
> -  unsigned FreeReg = 0;
> -  unsigned FreeRegInactiveCount = 0;
> -
> -  std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
> -  // Resolve second part of the hint (if possible) given the current allocation.
> -  unsigned physReg = Hint.second;
> -  if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
> -    physReg = vrm_->getPhys(physReg);
> -
> -  ArrayRef<unsigned> Order;
> -  if (Hint.first)
> -    Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
> -  else
> -    Order = RegClassInfo.getOrder(RC);
> -
> -  assert(!Order.empty() && "No allocatable register in this register class!");
> -
> -  // Scan for the first available register.
> -  for (unsigned i = 0; i != Order.size(); ++i) {
> -    unsigned Reg = Order[i];
> -    // Ignore "downgraded" registers.
> -    if (SkipDGRegs && DowngradedRegs.count(Reg))
> -      continue;
> -    // Skip reserved registers.
> -    if (reservedRegs_.test(Reg))
> -      continue;
> -    // Skip recently allocated registers.
> -    if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
> -      FreeReg = Reg;
> -      if (FreeReg < inactiveCounts.size())
> -        FreeRegInactiveCount = inactiveCounts[FreeReg];
> -      else
> -        FreeRegInactiveCount = 0;
> -      break;
> -    }
> -  }
> -
> -  // If there are no free regs, or if this reg has the max inactive count,
> -  // return this register.
> -  if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
> -    // Remember what register we picked so we can skip it next time.
> -    if (FreeReg != 0) recordRecentlyUsed(FreeReg);
> -    return FreeReg;
> -  }
> -
> -  // Continue scanning the registers, looking for the one with the highest
> -  // inactive count.  Alkis found that this reduced register pressure very
> -  // slightly on X86 (in rev 1.94 of this file), though this should probably be
> -  // reevaluated now.
> -  for (unsigned i = 0; i != Order.size(); ++i) {
> -    unsigned Reg = Order[i];
> -    // Ignore "downgraded" registers.
> -    if (SkipDGRegs && DowngradedRegs.count(Reg))
> -      continue;
> -    // Skip reserved registers.
> -    if (reservedRegs_.test(Reg))
> -      continue;
> -    if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
> -        FreeRegInactiveCount < inactiveCounts[Reg] &&
> -        (!SkipDGRegs || !isRecentlyUsed(Reg))) {
> -      FreeReg = Reg;
> -      FreeRegInactiveCount = inactiveCounts[Reg];
> -      if (FreeRegInactiveCount == MaxInactiveCount)
> -        break;    // We found the one with the max inactive count.
> -    }
> -  }
> -
> -  // Remember what register we picked so we can skip it next time.
> -  recordRecentlyUsed(FreeReg);
> -
> -  return FreeReg;
> -}
> -
> -/// getFreePhysReg - return a free physical register for this virtual register
> -/// interval if we have one, otherwise return 0.
> -unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
> -  SmallVector<unsigned, 256> inactiveCounts;
> -  unsigned MaxInactiveCount = 0;
> -
> -  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
> -  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
> -
> -  for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
> -       i != e; ++i) {
> -    unsigned reg = i->first->reg;
> -    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
> -           "Can only allocate virtual registers!");
> -
> -    // If this is not in a related reg class to the register we're allocating,
> -    // don't check it.
> -    const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
> -    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
> -      reg = vrm_->getPhys(reg);
> -      if (inactiveCounts.size() <= reg)
> -        inactiveCounts.resize(reg+1);
> -      ++inactiveCounts[reg];
> -      MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
> -    }
> -  }
> -
> -  // If copy coalescer has assigned a "preferred" register, check if it's
> -  // available first.
> -  unsigned Preference = vrm_->getRegAllocPref(cur->reg);
> -  if (Preference) {
> -    DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
> -    if (isRegAvail(Preference) &&
> -        RC->contains(Preference))
> -      return Preference;
> -  }
> -
> -  unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
> -                                    true);
> -  if (FreeReg)
> -    return FreeReg;
> -  return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
> -}
> -
> -FunctionPass* llvm::createLinearScanRegisterAllocator() {
> -  return new RALinScan();
> -}
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits




More information about the llvm-commits mailing list