[llvm-commits] [llvm] r144480 - in /llvm/trunk/lib/CodeGen: CMakeLists.txt VirtRegRewriter.cpp VirtRegRewriter.h
Jakob Stoklund Olesen
stoklund at 2pi.dk
Sat Nov 12 16:16:01 PST 2011
Author: stoklund
Date: Sat Nov 12 18:16:01 2011
New Revision: 144480
URL: http://llvm.org/viewvc/llvm-project?rev=144480&view=rev
Log:
Delete VirtRegRewriter.
And there was much rejoicing.
Removed:
llvm/trunk/lib/CodeGen/VirtRegRewriter.cpp
llvm/trunk/lib/CodeGen/VirtRegRewriter.h
Modified:
llvm/trunk/lib/CodeGen/CMakeLists.txt
Modified: llvm/trunk/lib/CodeGen/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CMakeLists.txt?rev=144480&r1=144479&r2=144480&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/CMakeLists.txt (original)
+++ llvm/trunk/lib/CodeGen/CMakeLists.txt Sat Nov 12 18:16:01 2011
@@ -97,7 +97,6 @@
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
- VirtRegRewriter.cpp
)
add_llvm_library_dependencies(LLVMCodeGen
Removed: llvm/trunk/lib/CodeGen/VirtRegRewriter.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/VirtRegRewriter.cpp?rev=144479&view=auto
==============================================================================
--- llvm/trunk/lib/CodeGen/VirtRegRewriter.cpp (original)
+++ llvm/trunk/lib/CodeGen/VirtRegRewriter.cpp (removed)
@@ -1,2633 +0,0 @@
-//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "virtregrewriter"
-#include "VirtRegRewriter.h"
-#include "VirtRegMap.h"
-#include "llvm/Function.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/Statistic.h"
-using namespace llvm;
-
-STATISTIC(NumDSE , "Number of dead stores elided");
-STATISTIC(NumDSS , "Number of dead spill slots removed");
-STATISTIC(NumCommutes, "Number of instructions commuted");
-STATISTIC(NumDRM , "Number of re-materializable defs elided");
-STATISTIC(NumStores , "Number of stores added");
-STATISTIC(NumPSpills , "Number of physical register spills");
-STATISTIC(NumOmitted , "Number of reloads omitted");
-STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
-STATISTIC(NumCopified, "Number of available reloads turned into copies");
-STATISTIC(NumReMats , "Number of re-materialization");
-STATISTIC(NumLoads , "Number of loads added");
-STATISTIC(NumReused , "Number of values reused");
-STATISTIC(NumDCE , "Number of copies elided");
-STATISTIC(NumSUnfold , "Number of stores unfolded");
-STATISTIC(NumModRefUnfold, "Number of modref unfolded");
-
-namespace {
- enum RewriterName { local, trivial };
-}
-
-static cl::opt<RewriterName>
-RewriterOpt("rewriter",
- cl::desc("Rewriter to use (default=local)"),
- cl::Prefix,
- cl::values(clEnumVal(local, "local rewriter"),
- clEnumVal(trivial, "trivial rewriter"),
- clEnumValEnd),
- cl::init(local));
-
-static cl::opt<bool>
-ScheduleSpills("schedule-spills",
- cl::desc("Schedule spill code"),
- cl::init(false));
-
-VirtRegRewriter::~VirtRegRewriter() {}
-
-/// substitutePhysReg - Replace virtual register in MachineOperand with a
-/// physical register. Do the right thing with the sub-register index.
-/// Note that operands may be added, so the MO reference is no longer valid.
-static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
- const TargetRegisterInfo &TRI) {
- if (MO.getSubReg()) {
- MO.substPhysReg(Reg, TRI);
-
- // Any kill flags apply to the full virtual register, so they also apply to
- // the full physical register.
- // We assume that partial defs have already been decorated with a super-reg
- // <imp-def> operand by LiveIntervals.
- MachineInstr &MI = *MO.getParent();
- if (MO.isUse() && !MO.isUndef() &&
- (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
- MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
- } else {
- MO.setReg(Reg);
- }
-}
-
-namespace {
-
-/// This class is intended for use with the new spilling framework only. It
-/// rewrites vreg def/uses to use the assigned preg, but does not insert any
-/// spill code.
-struct TrivialRewriter : public VirtRegRewriter {
-
- bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
- LiveIntervals* LIs) {
- DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
- DEBUG(dbgs() << "********** Function: "
- << MF.getFunction()->getName() << '\n');
- DEBUG(dbgs() << "**** Machine Instrs"
- << "(NOTE! Does not include spills and reloads!) ****\n");
- DEBUG(MF.dump());
-
- MachineRegisterInfo *mri = &MF.getRegInfo();
- const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
-
- bool changed = false;
-
- for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
- liItr != liEnd; ++liItr) {
-
- const LiveInterval *li = liItr->second;
- unsigned reg = li->reg;
-
- if (TargetRegisterInfo::isPhysicalRegister(reg)) {
- if (!li->empty())
- mri->setPhysRegUsed(reg);
- }
- else {
- if (!VRM.hasPhys(reg))
- continue;
- unsigned pReg = VRM.getPhys(reg);
- mri->setPhysRegUsed(pReg);
- // Copy the register use-list before traversing it.
- SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
- for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
- E = mri->reg_end(); I != E; ++I)
- reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
- for (unsigned N=0; N != reglist.size(); ++N)
- substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
- pReg, *tri);
- changed |= !reglist.empty();
- }
- }
-
- DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
- DEBUG(MF.dump());
-
- return changed;
- }
-
-};
-
-}
-
-// ************************************************************************ //
-
-namespace {
-
-/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
-/// from top down, keep track of which spill slots or remat are available in
-/// each register.
-///
-/// Note that not all physregs are created equal here. In particular, some
-/// physregs are reloads that we are allowed to clobber or ignore at any time.
-/// Other physregs are values that the register allocated program is using
-/// that we cannot CHANGE, but we can read if we like. We keep track of this
-/// on a per-stack-slot / remat id basis as the low bit in the value of the
-/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
-/// this bit and addAvailable sets it if.
-class AvailableSpills {
- const TargetRegisterInfo *TRI;
- const TargetInstrInfo *TII;
-
- // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
- // or remat'ed virtual register values that are still available, due to
- // being loaded or stored to, but not invalidated yet.
- std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
-
- // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
- // indicating which stack slot values are currently held by a physreg. This
- // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
- // physreg is modified.
- std::multimap<unsigned, int> PhysRegsAvailable;
-
- void disallowClobberPhysRegOnly(unsigned PhysReg);
-
- void ClobberPhysRegOnly(unsigned PhysReg);
-public:
- AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
- : TRI(tri), TII(tii) {
- }
-
- /// clear - Reset the state.
- void clear() {
- SpillSlotsOrReMatsAvailable.clear();
- PhysRegsAvailable.clear();
- }
-
- const TargetRegisterInfo *getRegInfo() const { return TRI; }
-
- /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
- /// available in a physical register, return that PhysReg, otherwise
- /// return 0.
- unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
- std::map<int, unsigned>::const_iterator I =
- SpillSlotsOrReMatsAvailable.find(Slot);
- if (I != SpillSlotsOrReMatsAvailable.end()) {
- return I->second >> 1; // Remove the CanClobber bit.
- }
- return 0;
- }
-
- /// addAvailable - Mark that the specified stack slot / remat is available
- /// in the specified physreg. If CanClobber is true, the physreg can be
- /// modified at any time without changing the semantics of the program.
- void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
- // If this stack slot is thought to be available in some other physreg,
- // remove its record.
- ModifyStackSlotOrReMat(SlotOrReMat);
-
- PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
- SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
- (unsigned)CanClobber;
-
- if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(dbgs() << "Remembering RM#"
- << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
- DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
- << (CanClobber ? " canclobber" : "") << "\n");
- }
-
- /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
- /// the value of the specified stackslot register if it desires. The
- /// specified stack slot must be available in a physreg for this query to
- /// make sense.
- bool canClobberPhysRegForSS(int SlotOrReMat) const {
- assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
- "Value not available!");
- return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
- }
-
- /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
- /// physical register where values for some stack slot(s) might be
- /// available.
- bool canClobberPhysReg(unsigned PhysReg) const {
- std::multimap<unsigned, int>::const_iterator I =
- PhysRegsAvailable.lower_bound(PhysReg);
- while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
- int SlotOrReMat = I->second;
- I++;
- if (!canClobberPhysRegForSS(SlotOrReMat))
- return false;
- }
- return true;
- }
-
- /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
- /// stackslot register. The register is still available but is no longer
- /// allowed to be modifed.
- void disallowClobberPhysReg(unsigned PhysReg);
-
- /// ClobberPhysReg - This is called when the specified physreg changes
- /// value. We use this to invalidate any info about stuff that lives in
- /// it and any of its aliases.
- void ClobberPhysReg(unsigned PhysReg);
-
- /// ModifyStackSlotOrReMat - This method is called when the value in a stack
- /// slot changes. This removes information about which register the
- /// previous value for this slot lives in (as the previous value is dead
- /// now).
- void ModifyStackSlotOrReMat(int SlotOrReMat);
-
- /// ClobberSharingStackSlots - When a register mapped to a stack slot changes,
- /// other stack slots sharing the same register are no longer valid.
- void ClobberSharingStackSlots(int StackSlot);
-
- /// AddAvailableRegsToLiveIn - Availability information is being kept coming
- /// into the specified MBB. Add available physical registers as potential
- /// live-in's. If they are reused in the MBB, they will be added to the
- /// live-in set to make register scavenger and post-allocation scheduler.
- void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-};
-
-}
-
-// ************************************************************************ //
-
-// Given a location where a reload of a spilled register or a remat of
-// a constant is to be inserted, attempt to find a safe location to
-// insert the load at an earlier point in the basic-block, to hide
-// latency of the load and to avoid address-generation interlock
-// issues.
-static MachineBasicBlock::iterator
-ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
- MachineBasicBlock::iterator const Begin,
- unsigned PhysReg,
- const TargetRegisterInfo *TRI,
- bool DoReMat,
- int SSorRMId,
- const TargetInstrInfo *TII,
- const MachineFunction &MF)
-{
- if (!ScheduleSpills)
- return InsertLoc;
-
- // Spill backscheduling is of primary interest to addresses, so
- // don't do anything if the register isn't in the register class
- // used for pointers.
-
- const TargetLowering *TL = MF.getTarget().getTargetLowering();
-
- if (!TL->isTypeLegal(TL->getPointerTy()))
- // Believe it or not, this is true on 16-bit targets like PIC16.
- return InsertLoc;
-
- const TargetRegisterClass *ptrRegClass =
- TL->getRegClassFor(TL->getPointerTy());
- if (!ptrRegClass->contains(PhysReg))
- return InsertLoc;
-
- // Scan upwards through the preceding instructions. If an instruction doesn't
- // reference the stack slot or the register we're loading, we can
- // backschedule the reload up past it.
- MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
- while (NewInsertLoc != Begin) {
- MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
- for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
- MachineOperand &Op = Prev->getOperand(i);
- if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
- goto stop;
- }
- if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
- Prev->findRegisterDefOperand(PhysReg))
- goto stop;
- for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
- if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
- Prev->findRegisterDefOperand(*Alias))
- goto stop;
- NewInsertLoc = Prev;
- }
-stop:;
-
- // If we made it to the beginning of the block, turn around and move back
- // down just past any existing reloads. They're likely to be reloads/remats
- // for instructions earlier than what our current reload/remat is for, so
- // they should be scheduled earlier.
- if (NewInsertLoc == Begin) {
- int FrameIdx;
- while (InsertLoc != NewInsertLoc &&
- (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
- TII->isTriviallyReMaterializable(NewInsertLoc)))
- ++NewInsertLoc;
- }
-
- return NewInsertLoc;
-}
-
-namespace {
-
-// ReusedOp - For each reused operand, we keep track of a bit of information,
-// in case we need to rollback upon processing a new operand. See comments
-// below.
-struct ReusedOp {
- // The MachineInstr operand that reused an available value.
- unsigned Operand;
-
- // StackSlotOrReMat - The spill slot or remat id of the value being reused.
- unsigned StackSlotOrReMat;
-
- // PhysRegReused - The physical register the value was available in.
- unsigned PhysRegReused;
-
- // AssignedPhysReg - The physreg that was assigned for use by the reload.
- unsigned AssignedPhysReg;
-
- // VirtReg - The virtual register itself.
- unsigned VirtReg;
-
- ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
- unsigned vreg)
- : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
- AssignedPhysReg(apr), VirtReg(vreg) {}
-};
-
-/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
-/// is reused instead of reloaded.
-class ReuseInfo {
- MachineInstr &MI;
- std::vector<ReusedOp> Reuses;
- BitVector PhysRegsClobbered;
-public:
- ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
- PhysRegsClobbered.resize(tri->getNumRegs());
- }
-
- bool hasReuses() const {
- return !Reuses.empty();
- }
-
- /// addReuse - If we choose to reuse a virtual register that is already
- /// available instead of reloading it, remember that we did so.
- void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
- unsigned PhysRegReused, unsigned AssignedPhysReg,
- unsigned VirtReg) {
- // If the reload is to the assigned register anyway, no undo will be
- // required.
- if (PhysRegReused == AssignedPhysReg) return;
-
- // Otherwise, remember this.
- Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
- AssignedPhysReg, VirtReg));
- }
-
- void markClobbered(unsigned PhysReg) {
- PhysRegsClobbered.set(PhysReg);
- }
-
- bool isClobbered(unsigned PhysReg) const {
- return PhysRegsClobbered.test(PhysReg);
- }
-
- /// GetRegForReload - We are about to emit a reload into PhysReg. If there
- /// is some other operand that is using the specified register, either pick
- /// a new register to use, or evict the previous reload and use this reg.
- unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
- MachineFunction &MF, MachineInstr *MI,
- AvailableSpills &Spills,
- std::vector<MachineInstr*> &MaybeDeadStores,
- SmallSet<unsigned, 8> &Rejected,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps,
- VirtRegMap &VRM);
-
- /// GetRegForReload - Helper for the above GetRegForReload(). Add a
- /// 'Rejected' set to remember which registers have been considered and
- /// rejected for the reload. This avoids infinite looping in case like
- /// this:
- /// t1 := op t2, t3
- /// t2 <- assigned r0 for use by the reload but ended up reuse r1
- /// t3 <- assigned r1 for use by the reload but ended up reuse r0
- /// t1 <- desires r1
- /// sees r1 is taken by t2, tries t2's reload register r0
- /// sees r0 is taken by t3, tries t3's reload register r1
- /// sees r1 is taken by t2, tries t2's reload register r0 ...
- unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
- AvailableSpills &Spills,
- std::vector<MachineInstr*> &MaybeDeadStores,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps,
- VirtRegMap &VRM) {
- SmallSet<unsigned, 8> Rejected;
- MachineFunction &MF = *MI->getParent()->getParent();
- const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
- return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
- Rejected, RegKills, KillOps, VRM);
- }
-};
-
-}
-
-// ****************** //
-// Utility Functions //
-// ****************** //
-
-/// findSinglePredSuccessor - Return via reference a vector of machine basic
-/// blocks each of which is a successor of the specified BB and has no other
-/// predecessor.
-static void findSinglePredSuccessor(MachineBasicBlock *MBB,
- SmallVectorImpl<MachineBasicBlock *> &Succs){
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock *SuccMBB = *SI;
- if (SuccMBB->pred_size() == 1)
- Succs.push_back(SuccMBB);
- }
-}
-
-/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
-/// but not re-defined and it's being reused. Remove the kill flag for the
-/// register and unset the kill's marker and last kill operand.
-static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
-
- MachineOperand *KillOp = KillOps[Reg];
- KillOp->setIsKill(false);
- // KillOps[Reg] might be a def of a super-register.
- unsigned KReg = KillOp->getReg();
- if (!RegKills[KReg])
- return;
-
- assert(KillOps[KReg]->getParent() == KillOp->getParent() &&
- "invalid superreg kill flags");
- KillOps[KReg] = NULL;
- RegKills.reset(KReg);
-
- // If it's a def of a super-register. Its other sub-regsters are no
- // longer killed as well.
- for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
- DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n");
-
- assert(KillOps[*SR]->getParent() == KillOp->getParent() &&
- "invalid subreg kill flags");
- KillOps[*SR] = NULL;
- RegKills.reset(*SR);
- }
-}
-
-/// ResurrectKill - Invalidate kill info associated with a previous MI. An
-/// optimization may have decided that it's safe to reuse a previously killed
-/// register. If we fail to erase the invalid kill flags, then the register
-/// scavenger may later clobber the register used by this MI. Note that this
-/// must be done even if this MI is being deleted! Consider:
-///
-/// USE $r1 (vreg1) <kill>
-/// ...
-/// $r1(vreg3) = COPY $r1 (vreg2)
-///
-/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
-/// vreg1's only use is a kill. The rewriter doesn't know it should be live
-/// until it rewrites vreg2. At that points it sees that the copy is dead and
-/// deletes it. However, deleting the copy implicitly forwards liveness of $r1
-/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
-/// vreg1 before deleting the copy.
-static void ResurrectKill(MachineInstr &MI, unsigned Reg,
- const TargetRegisterInfo* TRI, BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
- ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
- return;
- }
- // No previous kill for this reg. Check for subreg kills as well.
- // d4 =
- // store d4, fi#0
- // ...
- // = s8<kill>
- // ...
- // = d4 <avoiding reload>
- for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
- unsigned SReg = *SR;
- if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
- ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
- }
-}
-
-/// InvalidateKills - MI is going to be deleted. If any of its operands are
-/// marked kill, then invalidate the information.
-static void InvalidateKills(MachineInstr &MI,
- const TargetRegisterInfo* TRI,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps,
- SmallVector<unsigned, 2> *KillRegs = NULL) {
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
- continue;
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg))
- continue;
- if (KillRegs)
- KillRegs->push_back(Reg);
- assert(Reg < KillOps.size());
- if (KillOps[Reg] == &MO) {
- // This operand was the kill, now no longer.
- KillOps[Reg] = NULL;
- RegKills.reset(Reg);
- for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
- if (RegKills[*SR]) {
- assert(KillOps[*SR] == &MO && "bad subreg kill flags");
- KillOps[*SR] = NULL;
- RegKills.reset(*SR);
- }
- }
- }
- else {
- // This operand may have reused a previously killed reg. Keep it live in
- // case it continues to be used after erasing this instruction.
- ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
- }
- }
-}
-
-/// InvalidateRegDef - If the def operand of the specified def MI is now dead
-/// (since its spill instruction is removed), mark it isDead. Also checks if
-/// the def MI has other definition operands that are not dead. Returns it by
-/// reference.
-static bool InvalidateRegDef(MachineBasicBlock::iterator I,
- MachineInstr &NewDef, unsigned Reg,
- bool &HasLiveDef,
- const TargetRegisterInfo *TRI) {
- // Due to remat, it's possible this reg isn't being reused. That is,
- // the def of this reg (by prev MI) is now dead.
- MachineInstr *DefMI = I;
- MachineOperand *DefOp = NULL;
- for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = DefMI->getOperand(i);
- if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
- continue;
- if (MO.getReg() == Reg)
- DefOp = &MO;
- else if (!MO.isDead())
- HasLiveDef = true;
- }
- if (!DefOp)
- return false;
-
- bool FoundUse = false, Done = false;
- MachineBasicBlock::iterator E = &NewDef;
- ++I; ++E;
- for (; !Done && I != E; ++I) {
- MachineInstr *NMI = I;
- for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
- MachineOperand &MO = NMI->getOperand(j);
- if (!MO.isReg() || MO.getReg() == 0 ||
- (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
- continue;
- if (MO.isUse())
- FoundUse = true;
- Done = true; // Stop after scanning all the operands of this MI.
- }
- }
- if (!FoundUse) {
- // Def is dead!
- DefOp->setIsDead();
- return true;
- }
- return false;
-}
-
-/// UpdateKills - Track and update kill info. If a MI reads a register that is
-/// marked kill, then it must be due to register reuse. Transfer the kill info
-/// over.
-static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- // These do not affect kill info at all.
- if (MI.isDebugValue())
- return;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || !MO.isUse() || MO.isUndef())
- continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
-
- // This operand may have reused a previously killed reg. Keep it live.
- ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
-
- if (MO.isKill()) {
- RegKills.set(Reg);
- KillOps[Reg] = &MO;
- for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
- RegKills.set(*SR);
- KillOps[*SR] = &MO;
- }
- }
- }
-
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || !MO.getReg() || !MO.isDef())
- continue;
- unsigned Reg = MO.getReg();
- RegKills.reset(Reg);
- KillOps[Reg] = NULL;
- // It also defines (or partially define) aliases.
- for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
- RegKills.reset(*SR);
- KillOps[*SR] = NULL;
- }
- for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
- RegKills.reset(*SR);
- KillOps[*SR] = NULL;
- }
- }
-}
-
-/// ReMaterialize - Re-materialize definition for Reg targeting DestReg.
-///
-static void ReMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MII,
- unsigned DestReg, unsigned Reg,
- const TargetInstrInfo *TII,
- const TargetRegisterInfo *TRI,
- VirtRegMap &VRM) {
- MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
-#ifndef NDEBUG
- const MCInstrDesc &MCID = ReMatDefMI->getDesc();
- assert(MCID.getNumDefs() == 1 &&
- "Don't know how to remat instructions that define > 1 values!");
-#endif
- TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
- MachineInstr *NewMI = prior(MII);
- for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = NewMI->getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0)
- continue;
- unsigned VirtReg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
- continue;
- assert(MO.isUse());
- unsigned Phys = VRM.getPhys(VirtReg);
- assert(Phys && "Virtual register is not assigned a register?");
- substitutePhysReg(MO, Phys, *TRI);
- }
- ++NumReMats;
-}
-
-/// findSuperReg - Find the SubReg's super-register of given register class
-/// where its SubIdx sub-register is SubReg.
-static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
- unsigned SubIdx, const TargetRegisterInfo *TRI) {
- for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
- I != E; ++I) {
- unsigned Reg = *I;
- if (TRI->getSubReg(Reg, SubIdx) == SubReg)
- return Reg;
- }
- return 0;
-}
-
-// ******************************** //
-// Available Spills Implementation //
-// ******************************** //
-
-/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
-/// stackslot register. The register is still available but is no longer
-/// allowed to be modifed.
-void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
- std::multimap<unsigned, int>::iterator I =
- PhysRegsAvailable.lower_bound(PhysReg);
- while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
- int SlotOrReMat = I->second;
- I++;
- assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
- "Bidirectional map mismatch!");
- SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
- DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
- << " copied, it is available for use but can no longer be modified\n");
- }
-}
-
-/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
-/// stackslot register and its aliases. The register and its aliases may
-/// still available but is no longer allowed to be modifed.
-void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
- for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
- disallowClobberPhysRegOnly(*AS);
- disallowClobberPhysRegOnly(PhysReg);
-}
-
-/// ClobberPhysRegOnly - This is called when the specified physreg changes
-/// value. We use this to invalidate any info about stuff we thing lives in it.
-void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
- std::multimap<unsigned, int>::iterator I =
- PhysRegsAvailable.lower_bound(PhysReg);
- while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
- int SlotOrReMat = I->second;
- PhysRegsAvailable.erase(I++);
- assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
- "Bidirectional map mismatch!");
- SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
- DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
- << " clobbered, invalidating ");
- if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
- else
- DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
- }
-}
-
-/// ClobberPhysReg - This is called when the specified physreg changes
-/// value. We use this to invalidate any info about stuff we thing lives in
-/// it and any of its aliases.
-void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
- for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
- ClobberPhysRegOnly(*AS);
- ClobberPhysRegOnly(PhysReg);
-}
-
-/// AddAvailableRegsToLiveIn - Availability information is being kept coming
-/// into the specified MBB. Add available physical registers as potential
-/// live-in's. If they are reused in the MBB, they will be added to the
-/// live-in set to make register scavenger and post-allocation scheduler.
-void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- std::set<unsigned> NotAvailable;
- for (std::multimap<unsigned, int>::iterator
- I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
- I != E; ++I) {
- unsigned Reg = I->first;
- const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
- // FIXME: A temporary workaround. We can't reuse available value if it's
- // not safe to move the def of the virtual register's class. e.g.
- // X86::RFP* register classes. Do not add it as a live-in.
- if (!TII->isSafeToMoveRegClassDefs(RC))
- // This is no longer available.
- NotAvailable.insert(Reg);
- else {
- MBB.addLiveIn(Reg);
- if (RegKills[Reg])
- ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
- }
-
- // Skip over the same register.
- std::multimap<unsigned, int>::iterator NI = llvm::next(I);
- while (NI != E && NI->first == Reg) {
- ++I;
- ++NI;
- }
- }
-
- for (std::set<unsigned>::iterator I = NotAvailable.begin(),
- E = NotAvailable.end(); I != E; ++I) {
- ClobberPhysReg(*I);
- for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
- *SubRegs; ++SubRegs)
- ClobberPhysReg(*SubRegs);
- }
-}
-
-/// ModifyStackSlotOrReMat - This method is called when the value in a stack
-/// slot changes. This removes information about which register the previous
-/// value for this slot lives in (as the previous value is dead now).
-void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
- std::map<int, unsigned>::iterator It =
- SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
- if (It == SpillSlotsOrReMatsAvailable.end()) return;
- unsigned Reg = It->second >> 1;
- SpillSlotsOrReMatsAvailable.erase(It);
-
- // This register may hold the value of multiple stack slots, only remove this
- // stack slot from the set of values the register contains.
- std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
- for (; ; ++I) {
- assert(I != PhysRegsAvailable.end() && I->first == Reg &&
- "Map inverse broken!");
- if (I->second == SlotOrReMat) break;
- }
- PhysRegsAvailable.erase(I);
-}
-
-void AvailableSpills::ClobberSharingStackSlots(int StackSlot) {
- std::map<int, unsigned>::iterator It =
- SpillSlotsOrReMatsAvailable.find(StackSlot);
- if (It == SpillSlotsOrReMatsAvailable.end()) return;
- unsigned Reg = It->second >> 1;
-
- // Erase entries in PhysRegsAvailable for other stack slots.
- std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
- while (I != PhysRegsAvailable.end() && I->first == Reg) {
- std::multimap<unsigned, int>::iterator NextI = llvm::next(I);
- if (I->second != StackSlot) {
- DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in "
- << PrintReg(Reg, TRI) << '\n');
- SpillSlotsOrReMatsAvailable.erase(I->second);
- PhysRegsAvailable.erase(I);
- }
- I = NextI;
- }
-}
-
-// ************************** //
-// Reuse Info Implementation //
-// ************************** //
-
-/// GetRegForReload - We are about to emit a reload into PhysReg. If there
-/// is some other operand that is using the specified register, either pick
-/// a new register to use, or evict the previous reload and use this reg.
-unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
- unsigned PhysReg,
- MachineFunction &MF,
- MachineInstr *MI, AvailableSpills &Spills,
- std::vector<MachineInstr*> &MaybeDeadStores,
- SmallSet<unsigned, 8> &Rejected,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps,
- VirtRegMap &VRM) {
- const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
- const TargetRegisterInfo *TRI = Spills.getRegInfo();
-
- if (Reuses.empty()) return PhysReg; // This is most often empty.
-
- for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
- ReusedOp &Op = Reuses[ro];
- // If we find some other reuse that was supposed to use this register
- // exactly for its reload, we can change this reload to use ITS reload
- // register. That is, unless its reload register has already been
- // considered and subsequently rejected because it has also been reused
- // by another operand.
- if (Op.PhysRegReused == PhysReg &&
- Rejected.count(Op.AssignedPhysReg) == 0 &&
- RC->contains(Op.AssignedPhysReg)) {
- // Yup, use the reload register that we didn't use before.
- unsigned NewReg = Op.AssignedPhysReg;
- Rejected.insert(PhysReg);
- return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
- Rejected, RegKills, KillOps, VRM);
- } else {
- // Otherwise, we might also have a problem if a previously reused
- // value aliases the new register. If so, codegen the previous reload
- // and use this one.
- unsigned PRRU = Op.PhysRegReused;
- if (TRI->regsOverlap(PRRU, PhysReg)) {
- // Okay, we found out that an alias of a reused register
- // was used. This isn't good because it means we have
- // to undo a previous reuse.
- MachineBasicBlock *MBB = MI->getParent();
- const TargetRegisterClass *AliasRC =
- MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
-
- // Copy Op out of the vector and remove it, we're going to insert an
- // explicit load for it.
- ReusedOp NewOp = Op;
- Reuses.erase(Reuses.begin()+ro);
-
- // MI may be using only a sub-register of PhysRegUsed.
- unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
- unsigned SubIdx = 0;
- assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
- "A reuse cannot be a virtual register");
- if (PRRU != RealPhysRegUsed) {
- // What was the sub-register index?
- SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
- assert(SubIdx &&
- "Operand physreg is not a sub-register of PhysRegUsed");
- }
-
- // Ok, we're going to try to reload the assigned physreg into the
- // slot that we were supposed to in the first place. However, that
- // register could hold a reuse. Check to see if it conflicts or
- // would prefer us to use a different register.
- unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
- MF, MI, Spills, MaybeDeadStores,
- Rejected, RegKills, KillOps, VRM);
-
- bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
- int SSorRMId = DoReMat
- ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
-
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
- DoReMat, SSorRMId, TII, MF);
-
- if (DoReMat) {
- ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
- TRI, VRM);
- } else {
- TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
- NewOp.StackSlotOrReMat, AliasRC, TRI);
- MachineInstr *LoadMI = prior(InsertLoc);
- VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
- // Any stores to this stack slot are not dead anymore.
- MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
- ++NumLoads;
- }
- Spills.ClobberPhysReg(NewPhysReg);
- Spills.ClobberPhysReg(NewOp.PhysRegReused);
-
- unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
- MI->getOperand(NewOp.Operand).setReg(RReg);
- MI->getOperand(NewOp.Operand).setSubReg(0);
-
- Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
- UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(dbgs() << '\t' << *prior(InsertLoc));
-
- DEBUG(dbgs() << "Reuse undone!\n");
- --NumReused;
-
- // Finally, PhysReg is now available, go ahead and use it.
- return PhysReg;
- }
- }
- }
- return PhysReg;
-}
-
-// ************************************************************************ //
-
-/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
-/// stack slot mod/ref. It also checks if it's possible to unfold the
-/// instruction by having it define a specified physical register instead.
-static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
- const TargetInstrInfo *TII,
- const TargetRegisterInfo *TRI,
- VirtRegMap &VRM) {
- if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
- return false;
-
- bool Found = false;
- VirtRegMap::MI2VirtMapTy::const_iterator I, End;
- for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
- unsigned VirtReg = I->second.first;
- VirtRegMap::ModRef MR = I->second.second;
- if (MR & VirtRegMap::isModRef)
- if (VRM.getStackSlot(VirtReg) == SS) {
- Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
- break;
- }
- }
- if (!Found)
- return false;
-
- // Does the instruction uses a register that overlaps the scratch register?
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0)
- continue;
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- if (!VRM.hasPhys(Reg))
- continue;
- Reg = VRM.getPhys(Reg);
- }
- if (TRI->regsOverlap(PhysReg, Reg))
- return false;
- }
- return true;
-}
-
-/// FindFreeRegister - Find a free register of a given register class by looking
-/// at (at most) the last two machine instructions.
-static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
- MachineBasicBlock &MBB,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI,
- BitVector &AllocatableRegs) {
- BitVector Defs(TRI->getNumRegs());
- BitVector Uses(TRI->getNumRegs());
- SmallVector<unsigned, 4> LocalUses;
- SmallVector<unsigned, 4> Kills;
-
- // Take a look at 2 instructions at most.
- unsigned Count = 0;
- while (Count < 2) {
- if (MII == MBB.begin())
- break;
- MachineInstr *PrevMI = prior(MII);
- MII = PrevMI;
-
- if (PrevMI->isDebugValue())
- continue; // Skip over dbg_value instructions.
- ++Count;
-
- for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = PrevMI->getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0)
- continue;
- unsigned Reg = MO.getReg();
- if (MO.isDef()) {
- Defs.set(Reg);
- for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
- Defs.set(*AS);
- } else {
- LocalUses.push_back(Reg);
- if (MO.isKill() && AllocatableRegs[Reg])
- Kills.push_back(Reg);
- }
- }
-
- for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
- unsigned Kill = Kills[i];
- if (!Defs[Kill] && !Uses[Kill] &&
- RC->contains(Kill))
- return Kill;
- }
- for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
- unsigned Reg = LocalUses[i];
- Uses.set(Reg);
- for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
- Uses.set(*AS);
- }
- }
-
- return 0;
-}
-
-static
-void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
- const TargetRegisterInfo &TRI) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.getReg() == VirtReg)
- substitutePhysReg(MO, PhysReg, TRI);
- }
-}
-
-namespace {
-
-struct RefSorter {
- bool operator()(const std::pair<MachineInstr*, int> &A,
- const std::pair<MachineInstr*, int> &B) {
- return A.second < B.second;
- }
-};
-
-// ***************************** //
-// Local Spiller Implementation //
-// ***************************** //
-
-class LocalRewriter : public VirtRegRewriter {
- MachineRegisterInfo *MRI;
- const TargetRegisterInfo *TRI;
- const TargetInstrInfo *TII;
- VirtRegMap *VRM;
- LiveIntervals *LIs;
- BitVector AllocatableRegs;
- DenseMap<MachineInstr*, unsigned> DistanceMap;
- DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
-
- MachineBasicBlock *MBB; // Basic block currently being processed.
-
-public:
-
- bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
- LiveIntervals* LIs);
-
-private:
- void EraseInstr(MachineInstr *MI) {
- VRM->RemoveMachineInstrFromMaps(MI);
- LIs->RemoveMachineInstrFromMaps(MI);
- MI->eraseFromParent();
- }
-
- bool OptimizeByUnfold2(unsigned VirtReg, int SS,
- MachineBasicBlock::iterator &MII,
- std::vector<MachineInstr*> &MaybeDeadStores,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-
- bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
- std::vector<MachineInstr*> &MaybeDeadStores,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-
- bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
- unsigned VirtReg, unsigned SrcReg, int SS,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps,
- const TargetRegisterInfo *TRI);
-
- void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
- int Idx, unsigned PhysReg, int StackSlot,
- const TargetRegisterClass *RC,
- bool isAvailable, MachineInstr *&LastStore,
- AvailableSpills &Spills,
- SmallSet<MachineInstr*, 4> &ReMatDefs,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-
- void TransferDeadness(unsigned Reg, BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-
- bool InsertEmergencySpills(MachineInstr *MI);
-
- bool InsertRestores(MachineInstr *MI,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-
- bool InsertSpills(MachineInstr *MI);
-
- void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
- std::vector<MachineInstr*> &MaybeDeadStores,
- BitVector &RegKills,
- ReuseInfo &ReusedOperands,
- std::vector<MachineOperand*> &KillOps);
-
- void RewriteMBB(LiveIntervals *LIs,
- AvailableSpills &Spills, BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps);
-};
-}
-
-bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
- LiveIntervals* lis) {
- MRI = &MF.getRegInfo();
- TRI = MF.getTarget().getRegisterInfo();
- TII = MF.getTarget().getInstrInfo();
- VRM = &vrm;
- LIs = lis;
- AllocatableRegs = TRI->getAllocatableSet(MF);
- DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
- << MF.getFunction()->getName() << "':\n");
- DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
- " reloads!) ****\n");
- DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
-
- // Spills - Keep track of which spilled values are available in physregs
- // so that we can choose to reuse the physregs instead of emitting
- // reloads. This is usually refreshed per basic block.
- AvailableSpills Spills(TRI, TII);
-
- // Keep track of kill information.
- BitVector RegKills(TRI->getNumRegs());
- std::vector<MachineOperand*> KillOps;
- KillOps.resize(TRI->getNumRegs(), NULL);
-
- // SingleEntrySuccs - Successor blocks which have a single predecessor.
- SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
- SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
-
- // Traverse the basic blocks depth first.
- MachineBasicBlock *Entry = MF.begin();
- SmallPtrSet<MachineBasicBlock*,16> Visited;
- for (df_ext_iterator<MachineBasicBlock*,
- SmallPtrSet<MachineBasicBlock*,16> >
- DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
- DFI != E; ++DFI) {
- MBB = *DFI;
- if (!EarlyVisited.count(MBB))
- RewriteMBB(LIs, Spills, RegKills, KillOps);
-
- // If this MBB is the only predecessor of a successor. Keep the
- // availability information and visit it next.
- do {
- // Keep visiting single predecessor successor as long as possible.
- SinglePredSuccs.clear();
- findSinglePredSuccessor(MBB, SinglePredSuccs);
- if (SinglePredSuccs.empty())
- MBB = 0;
- else {
- // FIXME: More than one successors, each of which has MBB has
- // the only predecessor.
- MBB = SinglePredSuccs[0];
- if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
- Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
- RewriteMBB(LIs, Spills, RegKills, KillOps);
- }
- }
- } while (MBB);
-
- // Clear the availability info.
- Spills.clear();
- }
-
- DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
- DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
-
- // Mark unused spill slots.
- MachineFrameInfo *MFI = MF.getFrameInfo();
- int SS = VRM->getLowSpillSlot();
- if (SS != VirtRegMap::NO_STACK_SLOT) {
- for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
- SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
- if (!VRM->isSpillSlotUsed(SS)) {
- MFI->RemoveStackObject(SS);
- for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
- MachineInstr *DVMI = DbgValues[j];
- DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
- EraseInstr(DVMI);
- }
- ++NumDSS;
- }
- DbgValues.clear();
- }
- }
- Slot2DbgValues.clear();
-
- return true;
-}
-
-/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
-/// a scratch register is available.
-/// xorq %r12<kill>, %r13
-/// addq %rax, -184(%rbp)
-/// addq %r13, -184(%rbp)
-/// ==>
-/// xorq %r12<kill>, %r13
-/// movq -184(%rbp), %r12
-/// addq %rax, %r12
-/// addq %r13, %r12
-/// movq %r12, -184(%rbp)
-bool LocalRewriter::
-OptimizeByUnfold2(unsigned VirtReg, int SS,
- MachineBasicBlock::iterator &MII,
- std::vector<MachineInstr*> &MaybeDeadStores,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
-
- MachineBasicBlock::iterator NextMII = llvm::next(MII);
- // Skip over dbg_value instructions.
- while (NextMII != MBB->end() && NextMII->isDebugValue())
- NextMII = llvm::next(NextMII);
- if (NextMII == MBB->end())
- return false;
-
- if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
- return false;
-
- // Now let's see if the last couple of instructions happens to have freed up
- // a register.
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
- if (!PhysReg)
- return false;
-
- MachineFunction &MF = *MBB->getParent();
- TRI = MF.getTarget().getRegisterInfo();
- MachineInstr &MI = *MII;
- if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
- return false;
-
- // If the next instruction also folds the same SS modref and can be unfoled,
- // then it's worthwhile to issue a load from SS into the free register and
- // then unfold these instructions.
- if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
- return false;
-
- // Back-schedule reloads and remats.
- ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
-
- // Load from SS to the spare physical register.
- TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
- // This invalidates Phys.
- Spills.ClobberPhysReg(PhysReg);
- // Remember it's available.
- Spills.addAvailable(SS, PhysReg);
- MaybeDeadStores[SS] = NULL;
-
- // Unfold current MI.
- SmallVector<MachineInstr*, 4> NewMIs;
- if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
- llvm_unreachable("Unable unfold the load / store folding instruction!");
- assert(NewMIs.size() == 1);
- AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
- VRM->transferRestorePts(&MI, NewMIs[0]);
- MII = MBB->insert(MII, NewMIs[0]);
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- ++NumModRefUnfold;
-
- // Unfold next instructions that fold the same SS.
- do {
- MachineInstr &NextMI = *NextMII;
- NextMII = llvm::next(NextMII);
- NewMIs.clear();
- if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
- llvm_unreachable("Unable unfold the load / store folding instruction!");
- assert(NewMIs.size() == 1);
- AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
- VRM->transferRestorePts(&NextMI, NewMIs[0]);
- MBB->insert(NextMII, NewMIs[0]);
- InvalidateKills(NextMI, TRI, RegKills, KillOps);
- EraseInstr(&NextMI);
- ++NumModRefUnfold;
- // Skip over dbg_value instructions.
- while (NextMII != MBB->end() && NextMII->isDebugValue())
- NextMII = llvm::next(NextMII);
- if (NextMII == MBB->end())
- break;
- } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
-
- // Store the value back into SS.
- TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
- MachineInstr *StoreMI = prior(NextMII);
- VRM->addSpillSlotUse(SS, StoreMI);
- VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
-
- return true;
-}
-
-/// OptimizeByUnfold - Turn a store folding instruction into a load folding
-/// instruction. e.g.
-/// xorl %edi, %eax
-/// movl %eax, -32(%ebp)
-/// movl -36(%ebp), %eax
-/// orl %eax, -32(%ebp)
-/// ==>
-/// xorl %edi, %eax
-/// orl -36(%ebp), %eax
-/// mov %eax, -32(%ebp)
-/// This enables unfolding optimization for a subsequent instruction which will
-/// also eliminate the newly introduced store instruction.
-bool LocalRewriter::
-OptimizeByUnfold(MachineBasicBlock::iterator &MII,
- std::vector<MachineInstr*> &MaybeDeadStores,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- MachineFunction &MF = *MBB->getParent();
- MachineInstr &MI = *MII;
- unsigned UnfoldedOpc = 0;
- unsigned UnfoldPR = 0;
- unsigned UnfoldVR = 0;
- int FoldedSS = VirtRegMap::NO_STACK_SLOT;
- VirtRegMap::MI2VirtMapTy::const_iterator I, End;
- for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
- // Only transform a MI that folds a single register.
- if (UnfoldedOpc)
- return false;
- UnfoldVR = I->second.first;
- VirtRegMap::ModRef MR = I->second.second;
- // MI2VirtMap be can updated which invalidate the iterator.
- // Increment the iterator first.
- ++I;
- if (VRM->isAssignedReg(UnfoldVR))
- continue;
- // If this reference is not a use, any previous store is now dead.
- // Otherwise, the store to this stack slot is not dead anymore.
- FoldedSS = VRM->getStackSlot(UnfoldVR);
- MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
- if (DeadStore && (MR & VirtRegMap::isModRef)) {
- unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
- if (!PhysReg || !DeadStore->readsRegister(PhysReg))
- continue;
- UnfoldPR = PhysReg;
- UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
- false, true);
- }
- }
-
- if (!UnfoldedOpc) {
- if (!UnfoldVR)
- return false;
-
- // Look for other unfolding opportunities.
- return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
- RegKills, KillOps);
- }
-
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
- continue;
- unsigned VirtReg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
- continue;
- if (VRM->isAssignedReg(VirtReg)) {
- unsigned PhysReg = VRM->getPhys(VirtReg);
- if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
- return false;
- } else if (VRM->isReMaterialized(VirtReg))
- continue;
- int SS = VRM->getStackSlot(VirtReg);
- unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
- if (PhysReg) {
- if (TRI->regsOverlap(PhysReg, UnfoldPR))
- return false;
- continue;
- }
- if (VRM->hasPhys(VirtReg)) {
- PhysReg = VRM->getPhys(VirtReg);
- if (!TRI->regsOverlap(PhysReg, UnfoldPR))
- continue;
- }
-
- // Ok, we'll need to reload the value into a register which makes
- // it impossible to perform the store unfolding optimization later.
- // Let's see if it is possible to fold the load if the store is
- // unfolded. This allows us to perform the store unfolding
- // optimization.
- SmallVector<MachineInstr*, 4> NewMIs;
- if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
- assert(NewMIs.size() == 1);
- MachineInstr *NewMI = NewMIs.back();
- MBB->insert(MII, NewMI);
- NewMIs.clear();
- int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
- assert(Idx != -1);
- SmallVector<unsigned, 1> Ops;
- Ops.push_back(Idx);
- MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
- NewMI->eraseFromParent();
- if (FoldedMI) {
- VRM->addSpillSlotUse(SS, FoldedMI);
- if (!VRM->hasPhys(UnfoldVR))
- VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
- VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
- MII = FoldedMI;
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- return true;
- }
- }
- }
-
- return false;
-}
-
-/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
-/// where SrcReg is r1 and it is tied to r0. Return true if after
-/// commuting this instruction it will be r0 = op r2, r1.
-static bool CommuteChangesDestination(MachineInstr *DefMI,
- const MCInstrDesc &MCID,
- unsigned SrcReg,
- const TargetInstrInfo *TII,
- unsigned &DstIdx) {
- if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3)
- return false;
- if (!DefMI->getOperand(1).isReg() ||
- DefMI->getOperand(1).getReg() != SrcReg)
- return false;
- unsigned DefIdx;
- if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
- return false;
- unsigned SrcIdx1, SrcIdx2;
- if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
- return false;
- if (SrcIdx1 == 1 && SrcIdx2 == 2) {
- DstIdx = 2;
- return true;
- }
- return false;
-}
-
-/// CommuteToFoldReload -
-/// Look for
-/// r1 = load fi#1
-/// r1 = op r1, r2<kill>
-/// store r1, fi#1
-///
-/// If op is commutable and r2 is killed, then we can xform these to
-/// r2 = op r2, fi#1
-/// store r2, fi#1
-bool LocalRewriter::
-CommuteToFoldReload(MachineBasicBlock::iterator &MII,
- unsigned VirtReg, unsigned SrcReg, int SS,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps,
- const TargetRegisterInfo *TRI) {
- if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
- return false;
-
- MachineInstr &MI = *MII;
- MachineBasicBlock::iterator DefMII = prior(MII);
- MachineInstr *DefMI = DefMII;
- const MCInstrDesc &MCID = DefMI->getDesc();
- unsigned NewDstIdx;
- if (DefMII != MBB->begin() &&
- MCID.isCommutable() &&
- CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) {
- MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
- unsigned NewReg = NewDstMO.getReg();
- if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
- return false;
- MachineInstr *ReloadMI = prior(DefMII);
- int FrameIdx;
- unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
- if (DestReg != SrcReg || FrameIdx != SS)
- return false;
- int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
- if (UseIdx == -1)
- return false;
- unsigned DefIdx;
- if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
- return false;
- assert(DefMI->getOperand(DefIdx).isReg() &&
- DefMI->getOperand(DefIdx).getReg() == SrcReg);
-
- // Now commute def instruction.
- MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
- if (!CommutedMI)
- return false;
- MBB->insert(MII, CommutedMI);
- SmallVector<unsigned, 1> Ops;
- Ops.push_back(NewDstIdx);
- MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
- // Not needed since foldMemoryOperand returns new MI.
- CommutedMI->eraseFromParent();
- if (!FoldedMI)
- return false;
-
- VRM->addSpillSlotUse(SS, FoldedMI);
- VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
- // Insert new def MI and spill MI.
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
- MII = prior(MII);
- MachineInstr *StoreMI = MII;
- VRM->addSpillSlotUse(SS, StoreMI);
- VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
- MII = FoldedMI; // Update MII to backtrack.
-
- // Delete all 3 old instructions.
- InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
- EraseInstr(ReloadMI);
- InvalidateKills(*DefMI, TRI, RegKills, KillOps);
- EraseInstr(DefMI);
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
-
- // If NewReg was previously holding value of some SS, it's now clobbered.
- // This has to be done now because it's a physical register. When this
- // instruction is re-visited, it's ignored.
- Spills.ClobberPhysReg(NewReg);
-
- ++NumCommutes;
- return true;
- }
-
- return false;
-}
-
-/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
-/// the last store to the same slot is now dead. If so, remove the last store.
-void LocalRewriter::
-SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
- int Idx, unsigned PhysReg, int StackSlot,
- const TargetRegisterClass *RC,
- bool isAvailable, MachineInstr *&LastStore,
- AvailableSpills &Spills,
- SmallSet<MachineInstr*, 4> &ReMatDefs,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
-
- MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
- TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
- TRI);
- MachineInstr *StoreMI = prior(oldNextMII);
- VRM->addSpillSlotUse(StackSlot, StoreMI);
- DEBUG(dbgs() << "Store:\t" << *StoreMI);
-
- // If there is a dead store to this stack slot, nuke it now.
- if (LastStore) {
- DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
- ++NumDSE;
- SmallVector<unsigned, 2> KillRegs;
- InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
- MachineBasicBlock::iterator PrevMII = LastStore;
- bool CheckDef = PrevMII != MBB->begin();
- if (CheckDef)
- --PrevMII;
- EraseInstr(LastStore);
- if (CheckDef) {
- // Look at defs of killed registers on the store. Mark the defs
- // as dead since the store has been deleted and they aren't
- // being reused.
- for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
- bool HasOtherDef = false;
- if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
- MachineInstr *DeadDef = PrevMII;
- if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
- // FIXME: This assumes a remat def does not have side effects.
- EraseInstr(DeadDef);
- ++NumDRM;
- }
- }
- }
- }
- }
-
- // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
- // the last of multiple instructions is the actual store.
- LastStore = prior(oldNextMII);
-
- // If the stack slot value was previously available in some other
- // register, change it now. Otherwise, make the register available,
- // in PhysReg.
- Spills.ModifyStackSlotOrReMat(StackSlot);
- Spills.ClobberPhysReg(PhysReg);
- Spills.addAvailable(StackSlot, PhysReg, isAvailable);
- ++NumStores;
-}
-
-/// isSafeToDelete - Return true if this instruction doesn't produce any side
-/// effect and all of its defs are dead.
-static bool isSafeToDelete(MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
- if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() ||
- MCID.isCall() || MCID.isBarrier() || MCID.isReturn() ||
- MI.isLabel() || MI.isDebugValue() ||
- MI.hasUnmodeledSideEffects())
- return false;
-
- // Technically speaking inline asm without side effects and no defs can still
- // be deleted. But there is so much bad inline asm code out there, we should
- // let them be.
- if (MI.isInlineAsm())
- return false;
-
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || !MO.getReg())
- continue;
- if (MO.isDef() && !MO.isDead())
- return false;
- if (MO.isUse() && MO.isKill())
- // FIXME: We can't remove kill markers or else the scavenger will assert.
- // An alternative is to add a ADD pseudo instruction to replace kill
- // markers.
- return false;
- }
- return true;
-}
-
-/// TransferDeadness - A identity copy definition is dead and it's being
-/// removed. Find the last def or use and mark it as dead / kill.
-void LocalRewriter::
-TransferDeadness(unsigned Reg, BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- SmallPtrSet<MachineInstr*, 4> Seens;
- SmallVector<std::pair<MachineInstr*, int>,8> Refs;
- for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
- RE = MRI->reg_end(); RI != RE; ++RI) {
- MachineInstr *UDMI = &*RI;
- if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
- continue;
- DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
- if (DI == DistanceMap.end())
- continue;
- if (Seens.insert(UDMI))
- Refs.push_back(std::make_pair(UDMI, DI->second));
- }
-
- if (Refs.empty())
- return;
- std::sort(Refs.begin(), Refs.end(), RefSorter());
-
- while (!Refs.empty()) {
- MachineInstr *LastUDMI = Refs.back().first;
- Refs.pop_back();
-
- MachineOperand *LastUD = NULL;
- for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = LastUDMI->getOperand(i);
- if (!MO.isReg() || MO.getReg() != Reg)
- continue;
- if (!LastUD || (LastUD->isUse() && MO.isDef()))
- LastUD = &MO;
- if (LastUDMI->isRegTiedToDefOperand(i))
- break;
- }
- if (LastUD->isDef()) {
- // If the instruction has no side effect, delete it and propagate
- // backward further. Otherwise, mark is dead and we are done.
- if (!isSafeToDelete(*LastUDMI)) {
- LastUD->setIsDead();
- break;
- }
- EraseInstr(LastUDMI);
- } else {
- LastUD->setIsKill();
- RegKills.set(Reg);
- KillOps[Reg] = LastUD;
- break;
- }
- }
-}
-
-/// InsertEmergencySpills - Insert emergency spills before MI if requested by
-/// VRM. Return true if spills were inserted.
-bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
- if (!VRM->hasEmergencySpills(MI))
- return false;
- MachineBasicBlock::iterator MII = MI;
- SmallSet<int, 4> UsedSS;
- std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
- for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
- unsigned PhysReg = EmSpills[i];
- const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
- assert(RC && "Unable to determine register class!");
- int SS = VRM->getEmergencySpillSlot(RC);
- if (UsedSS.count(SS))
- llvm_unreachable("Need to spill more than one physical registers!");
- UsedSS.insert(SS);
- TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
- MachineInstr *StoreMI = prior(MII);
- VRM->addSpillSlotUse(SS, StoreMI);
-
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
- TII, *MBB->getParent());
-
- TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
-
- MachineInstr *LoadMI = prior(InsertLoc);
- VRM->addSpillSlotUse(SS, LoadMI);
- ++NumPSpills;
- DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
- }
- return true;
-}
-
-/// InsertRestores - Restore registers before MI is requested by VRM. Return
-/// true is any instructions were inserted.
-bool LocalRewriter::InsertRestores(MachineInstr *MI,
- AvailableSpills &Spills,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- if (!VRM->isRestorePt(MI))
- return false;
- MachineBasicBlock::iterator MII = MI;
- std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
- for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
- unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
- if (!VRM->getPreSplitReg(VirtReg))
- continue; // Split interval spilled again.
- unsigned Phys = VRM->getPhys(VirtReg);
- MRI->setPhysRegUsed(Phys);
-
- // Check if the value being restored if available. If so, it must be
- // from a predecessor BB that fallthrough into this BB. We do not
- // expect:
- // BB1:
- // r1 = load fi#1
- // ...
- // = r1<kill>
- // ... # r1 not clobbered
- // ...
- // = load fi#1
- bool DoReMat = VRM->isReMaterialized(VirtReg);
- int SSorRMId = DoReMat
- ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
- unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
- if (InReg == Phys) {
- // If the value is already available in the expected register, save
- // a reload / remat.
- if (SSorRMId)
- DEBUG(dbgs() << "Reusing RM#"
- << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
- DEBUG(dbgs() << " from physreg "
- << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
- <<" instead of reloading into physreg "
- << TRI->getName(Phys) << '\n');
-
- // Reusing a physreg may resurrect it. But we expect ProcessUses to update
- // the kill flags for the current instruction after processing it.
-
- ++NumOmitted;
- continue;
- } else if (InReg && InReg != Phys) {
- if (SSorRMId)
- DEBUG(dbgs() << "Reusing RM#"
- << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
- DEBUG(dbgs() << " from physreg "
- << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
- <<" by copying it into physreg "
- << TRI->getName(Phys) << '\n');
-
- // If the reloaded / remat value is available in another register,
- // copy it to the desired register.
-
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
- *MBB->getParent());
- MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
- TII->get(TargetOpcode::COPY), Phys)
- .addReg(InReg, RegState::Kill);
-
- // This invalidates Phys.
- Spills.ClobberPhysReg(Phys);
- // Remember it's available.
- Spills.addAvailable(SSorRMId, Phys);
-
- CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
- UpdateKills(*CopyMI, TRI, RegKills, KillOps);
-
- DEBUG(dbgs() << '\t' << *CopyMI);
- ++NumCopified;
- continue;
- }
-
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
- *MBB->getParent());
-
- if (VRM->isReMaterialized(VirtReg)) {
- ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
- } else {
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
- MachineInstr *LoadMI = prior(InsertLoc);
- VRM->addSpillSlotUse(SSorRMId, LoadMI);
- ++NumLoads;
- DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
- }
-
- // This invalidates Phys.
- Spills.ClobberPhysReg(Phys);
- // Remember it's available.
- Spills.addAvailable(SSorRMId, Phys);
-
- UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(dbgs() << '\t' << *prior(MII));
- }
- return true;
-}
-
-/// InsertSpills - Insert spills after MI if requested by VRM. Return
-/// true if spills were inserted.
-bool LocalRewriter::InsertSpills(MachineInstr *MI) {
- if (!VRM->isSpillPt(MI))
- return false;
- MachineBasicBlock::iterator MII = MI;
- std::vector<std::pair<unsigned,bool> > &SpillRegs =
- VRM->getSpillPtSpills(MI);
- for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
- unsigned VirtReg = SpillRegs[i].first;
- bool isKill = SpillRegs[i].second;
- if (!VRM->getPreSplitReg(VirtReg))
- continue; // Split interval spilled again.
- const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
- unsigned Phys = VRM->getPhys(VirtReg);
- int StackSlot = VRM->getStackSlot(VirtReg);
- MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
- TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
- RC, TRI);
- MachineInstr *StoreMI = prior(oldNextMII);
- VRM->addSpillSlotUse(StackSlot, StoreMI);
- DEBUG(dbgs() << "Store:\t" << *StoreMI);
- VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
- }
- return true;
-}
-
-
-/// ProcessUses - Process all of MI's spilled operands and all available
-/// operands.
-void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
- std::vector<MachineInstr*> &MaybeDeadStores,
- BitVector &RegKills,
- ReuseInfo &ReusedOperands,
- std::vector<MachineOperand*> &KillOps) {
- // Clear kill info.
- SmallSet<unsigned, 2> KilledMIRegs;
- SmallVector<unsigned, 4> VirtUseOps;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0)
- continue; // Ignore non-register operands.
-
- unsigned VirtReg = MO.getReg();
-
- if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
- // Ignore physregs for spilling, but remember that it is used by this
- // function.
- MRI->setPhysRegUsed(VirtReg);
- continue;
- }
-
- // We want to process implicit virtual register uses first.
- if (MO.isImplicit())
- // If the virtual register is implicitly defined, emit a implicit_def
- // before so scavenger knows it's "defined".
- // FIXME: This is a horrible hack done the by register allocator to
- // remat a definition with virtual register operand.
- VirtUseOps.insert(VirtUseOps.begin(), i);
- else
- VirtUseOps.push_back(i);
-
- // A partial def causes problems because the same operand both reads and
- // writes the register. This rewriter is designed to rewrite uses and defs
- // separately, so a partial def would already have been rewritten to a
- // physreg by the time we get to processing defs.
- // Add an implicit use operand to model the partial def.
- if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
- MI.findRegisterUseOperandIdx(VirtReg) == -1) {
- VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
- MI.addOperand(MachineOperand::CreateReg(VirtReg,
- false, // isDef
- true)); // isImplicit
- DEBUG(dbgs() << "Partial redef: " << MI);
- }
- }
-
- // Process all of the spilled uses and all non spilled reg references.
- SmallVector<int, 2> PotentialDeadStoreSlots;
- KilledMIRegs.clear();
- for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
- unsigned i = VirtUseOps[j];
- unsigned VirtReg = MI.getOperand(i).getReg();
- assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
- "Not a virtual register?");
-
- unsigned SubIdx = MI.getOperand(i).getSubReg();
- if (VRM->isAssignedReg(VirtReg)) {
- // This virtual register was assigned a physreg!
- unsigned Phys = VRM->getPhys(VirtReg);
- MRI->setPhysRegUsed(Phys);
- if (MI.getOperand(i).isDef())
- ReusedOperands.markClobbered(Phys);
- substitutePhysReg(MI.getOperand(i), Phys, *TRI);
- if (VRM->isImplicitlyDefined(VirtReg))
- // FIXME: Is this needed?
- BuildMI(*MBB, &MI, MI.getDebugLoc(),
- TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
- continue;
- }
-
- // This virtual register is now known to be a spilled value.
- if (!MI.getOperand(i).isUse())
- continue; // Handle defs in the loop below (handle use&def here though)
-
- bool AvoidReload = MI.getOperand(i).isUndef();
- // Check if it is defined by an implicit def. It should not be spilled.
- // Note, this is for correctness reason. e.g.
- // 8 %reg1024<def> = IMPLICIT_DEF
- // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
- // The live range [12, 14) are not part of the r1024 live interval since
- // it's defined by an implicit def. It will not conflicts with live
- // interval of r1025. Now suppose both registers are spilled, you can
- // easily see a situation where both registers are reloaded before
- // the INSERT_SUBREG and both target registers that would overlap.
- bool DoReMat = VRM->isReMaterialized(VirtReg);
- int SSorRMId = DoReMat
- ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
- int ReuseSlot = SSorRMId;
-
- // Check to see if this stack slot is available.
- unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
-
- // If this is a sub-register use, make sure the reuse register is in the
- // right register class. For example, for x86 not all of the 32-bit
- // registers have accessible sub-registers.
- // Similarly so for EXTRACT_SUBREG. Consider this:
- // EDI = op
- // MOV32_mr fi#1, EDI
- // ...
- // = EXTRACT_SUBREG fi#1
- // fi#1 is available in EDI, but it cannot be reused because it's not in
- // the right register file.
- if (PhysReg && !AvoidReload && SubIdx) {
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- if (!RC->contains(PhysReg))
- PhysReg = 0;
- }
-
- if (PhysReg && !AvoidReload) {
- // This spilled operand might be part of a two-address operand. If this
- // is the case, then changing it will necessarily require changing the
- // def part of the instruction as well. However, in some cases, we
- // aren't allowed to modify the reused register. If none of these cases
- // apply, reuse it.
- bool CanReuse = true;
- bool isTied = MI.isRegTiedToDefOperand(i);
- if (isTied) {
- // Okay, we have a two address operand. We can reuse this physreg as
- // long as we are allowed to clobber the value and there isn't an
- // earlier def that has already clobbered the physreg.
- CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
- Spills.canClobberPhysReg(PhysReg);
- }
- // If this is an asm, and a PhysReg alias is used elsewhere as an
- // earlyclobber operand, we can't also use it as an input.
- if (MI.isInlineAsm()) {
- for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
- MachineOperand &MOk = MI.getOperand(k);
- if (MOk.isReg() && MOk.isEarlyClobber() &&
- TRI->regsOverlap(MOk.getReg(), PhysReg)) {
- CanReuse = false;
- DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
- << " for " << PrintReg(VirtReg) << ": " << MOk
- << '\n');
- break;
- }
- }
- }
-
- if (CanReuse) {
- // If this stack slot value is already available, reuse it!
- if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(dbgs() << "Reusing RM#"
- << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
- DEBUG(dbgs() << " from physreg "
- << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg)
- << " instead of reloading into "
- << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n');
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
-
- // Reusing a physreg may resurrect it. But we expect ProcessUses to
- // update the kill flags for the current instr after processing it.
-
- // The only technical detail we have is that we don't know that
- // PhysReg won't be clobbered by a reloaded stack slot that occurs
- // later in the instruction. In particular, consider 'op V1, V2'.
- // If V1 is available in physreg R0, we would choose to reuse it
- // here, instead of reloading it into the register the allocator
- // indicated (say R1). However, V2 might have to be reloaded
- // later, and it might indicate that it needs to live in R0. When
- // this occurs, we need to have information available that
- // indicates it is safe to use R1 for the reload instead of R0.
- //
- // To further complicate matters, we might conflict with an alias,
- // or R0 and R1 might not be compatible with each other. In this
- // case, we actually insert a reload for V1 in R1, ensuring that
- // we can get at R0 or its alias.
- ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
- VRM->getPhys(VirtReg), VirtReg);
- if (isTied)
- // Only mark it clobbered if this is a use&def operand.
- ReusedOperands.markClobbered(PhysReg);
- ++NumReused;
-
- if (MI.getOperand(i).isKill() &&
- ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
-
- // The store of this spilled value is potentially dead, but we
- // won't know for certain until we've confirmed that the re-use
- // above is valid, which means waiting until the other operands
- // are processed. For now we just track the spill slot, we'll
- // remove it after the other operands are processed if valid.
-
- PotentialDeadStoreSlots.push_back(ReuseSlot);
- }
-
- // Mark is isKill if it's there no other uses of the same virtual
- // register and it's not a two-address operand. IsKill will be
- // unset if reg is reused.
- if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
- MI.getOperand(i).setIsKill();
- KilledMIRegs.insert(VirtReg);
- }
- continue;
- } // CanReuse
-
- // Otherwise we have a situation where we have a two-address instruction
- // whose mod/ref operand needs to be reloaded. This reload is already
- // available in some register "PhysReg", but if we used PhysReg as the
- // operand to our 2-addr instruction, the instruction would modify
- // PhysReg. This isn't cool if something later uses PhysReg and expects
- // to get its initial value.
- //
- // To avoid this problem, and to avoid doing a load right after a store,
- // we emit a copy from PhysReg into the designated register for this
- // operand.
- //
- // This case also applies to an earlyclobber'd PhysReg.
- unsigned DesignatedReg = VRM->getPhys(VirtReg);
- assert(DesignatedReg && "Must map virtreg to physreg!");
-
- // Note that, if we reused a register for a previous operand, the
- // register we want to reload into might not actually be
- // available. If this occurs, use the register indicated by the
- // reuser.
- if (ReusedOperands.hasReuses())
- DesignatedReg = ReusedOperands.
- GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
- MaybeDeadStores, RegKills, KillOps, *VRM);
-
- // If the mapped designated register is actually the physreg we have
- // incoming, we don't need to inserted a dead copy.
- if (DesignatedReg == PhysReg) {
- // If this stack slot value is already available, reuse it!
- if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(dbgs() << "Reusing RM#"
- << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
- DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
- << " for " << PrintReg(VirtReg)
- << " instead of reloading into same physreg.\n");
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
- ReusedOperands.markClobbered(RReg);
- ++NumReused;
- continue;
- }
-
- MRI->setPhysRegUsed(DesignatedReg);
- ReusedOperands.markClobbered(DesignatedReg);
-
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
- SSorRMId, TII, *MBB->getParent());
- MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
- TII->get(TargetOpcode::COPY),
- DesignatedReg).addReg(PhysReg);
- CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
- UpdateKills(*CopyMI, TRI, RegKills, KillOps);
-
- // This invalidates DesignatedReg.
- Spills.ClobberPhysReg(DesignatedReg);
-
- Spills.addAvailable(ReuseSlot, DesignatedReg);
- unsigned RReg =
- SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
- DEBUG(dbgs() << '\t' << *prior(InsertLoc));
- ++NumReused;
- continue;
- } // if (PhysReg)
-
- // Otherwise, reload it and remember that we have it.
- PhysReg = VRM->getPhys(VirtReg);
- assert(PhysReg && "Must map virtreg to physreg!");
-
- // Note that, if we reused a register for a previous operand, the
- // register we want to reload into might not actually be
- // available. If this occurs, use the register indicated by the
- // reuser.
- if (ReusedOperands.hasReuses())
- PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
- Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
-
- MRI->setPhysRegUsed(PhysReg);
- ReusedOperands.markClobbered(PhysReg);
- if (AvoidReload)
- ++NumAvoided;
- else {
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
- SSorRMId, TII, *MBB->getParent());
-
- if (DoReMat) {
- ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
- } else {
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
- MachineInstr *LoadMI = prior(InsertLoc);
- VRM->addSpillSlotUse(SSorRMId, LoadMI);
- ++NumLoads;
- DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
- }
- // This invalidates PhysReg.
- Spills.ClobberPhysReg(PhysReg);
-
- // Any stores to this stack slot are not dead anymore.
- if (!DoReMat)
- MaybeDeadStores[SSorRMId] = NULL;
- Spills.addAvailable(SSorRMId, PhysReg);
- // Assumes this is the last use. IsKill will be unset if reg is reused
- // unless it's a two-address operand.
- if (!MI.isRegTiedToDefOperand(i) &&
- KilledMIRegs.count(VirtReg) == 0) {
- MI.getOperand(i).setIsKill();
- KilledMIRegs.insert(VirtReg);
- }
-
- UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(dbgs() << '\t' << *prior(InsertLoc));
- }
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
- }
-
- // Ok - now we can remove stores that have been confirmed dead.
- for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
- // This was the last use and the spilled value is still available
- // for reuse. That means the spill was unnecessary!
- int PDSSlot = PotentialDeadStoreSlots[j];
- MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
- if (DeadStore) {
- DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
- InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
- EraseInstr(DeadStore);
- MaybeDeadStores[PDSSlot] = NULL;
- ++NumDSE;
- }
- }
-}
-
-/// rewriteMBB - Keep track of which spills are available even after the
-/// register allocator is done with them. If possible, avoid reloading vregs.
-void
-LocalRewriter::RewriteMBB(LiveIntervals *LIs,
- AvailableSpills &Spills, BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
-
- DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
- << MBB->getName() << "':\n");
-
- MachineFunction &MF = *MBB->getParent();
-
- // MaybeDeadStores - When we need to write a value back into a stack slot,
- // keep track of the inserted store. If the stack slot value is never read
- // (because the value was used from some available register, for example), and
- // subsequently stored to, the original store is dead. This map keeps track
- // of inserted stores that are not used. If we see a subsequent store to the
- // same stack slot, the original store is deleted.
- std::vector<MachineInstr*> MaybeDeadStores;
- MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
-
- // ReMatDefs - These are rematerializable def MIs which are not deleted.
- SmallSet<MachineInstr*, 4> ReMatDefs;
-
- // Keep track of the registers we have already spilled in case there are
- // multiple defs of the same register in MI.
- SmallSet<unsigned, 8> SpilledMIRegs;
-
- RegKills.reset();
- KillOps.clear();
- KillOps.resize(TRI->getNumRegs(), NULL);
-
- DistanceMap.clear();
- for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
- MII != E; ) {
- MachineBasicBlock::iterator NextMII = llvm::next(MII);
-
- if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
- NextMII = llvm::next(MII);
-
- if (InsertEmergencySpills(MII))
- NextMII = llvm::next(MII);
-
- InsertRestores(MII, Spills, RegKills, KillOps);
-
- if (InsertSpills(MII))
- NextMII = llvm::next(MII);
-
- bool Erased = false;
- bool BackTracked = false;
- MachineInstr &MI = *MII;
-
- // Remember DbgValue's which reference stack slots.
- if (MI.isDebugValue() && MI.getOperand(0).isFI())
- Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
-
- /// ReusedOperands - Keep track of operand reuse in case we need to undo
- /// reuse.
- ReuseInfo ReusedOperands(MI, TRI);
-
- ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
-
- DEBUG(dbgs() << '\t' << MI);
-
-
- // If we have folded references to memory operands, make sure we clear all
- // physical registers that may contain the value of the spilled virtual
- // register
-
- // Copy the folded virts to a small vector, we may change MI2VirtMap.
- SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
- // C++0x FTW!
- for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
- VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
- VRM->getFoldedVirts(&MI);
- FVRange.first != FVRange.second; ++FVRange.first)
- FoldedVirts.push_back(FVRange.first->second);
-
- SmallSet<int, 2> FoldedSS;
- for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
- unsigned VirtReg = FoldedVirts[FVI].first;
- VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
- DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << " MR: " << MR);
-
- int SS = VRM->getStackSlot(VirtReg);
- if (SS == VirtRegMap::NO_STACK_SLOT)
- continue;
- FoldedSS.insert(SS);
- DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
-
- // If this folded instruction is just a use, check to see if it's a
- // straight load from the virt reg slot.
- if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
- int FrameIdx;
- unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
- if (DestReg && FrameIdx == SS) {
- // If this spill slot is available, turn it into a copy (or nothing)
- // instead of leaving it as a load!
- if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
- DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
- if (DestReg != InReg) {
- MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
- MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
- TII->get(TargetOpcode::COPY))
- .addReg(DestReg, RegState::Define, DefMO->getSubReg())
- .addReg(InReg, RegState::Kill);
- // Revisit the copy so we make sure to notice the effects of the
- // operation on the destreg (either needing to RA it if it's
- // virtual or needing to clobber any values if it's physical).
- NextMII = CopyMI;
- NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
- BackTracked = true;
- } else {
- DEBUG(dbgs() << "Removing now-noop copy: " << MI);
- // InvalidateKills resurrects any prior kill of the copy's source
- // allowing the source reg to be reused in place of the copy.
- Spills.disallowClobberPhysReg(InReg);
- }
-
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- Erased = true;
- goto ProcessNextInst;
- }
- } else {
- unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
- SmallVector<MachineInstr*, 4> NewMIs;
- if (PhysReg &&
- TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
- MBB->insert(MII, NewMIs[0]);
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- Erased = true;
- --NextMII; // backtrack to the unfolded instruction.
- BackTracked = true;
- goto ProcessNextInst;
- }
- }
- }
-
- // If this reference is not a use, any previous store is now dead.
- // Otherwise, the store to this stack slot is not dead anymore.
- MachineInstr* DeadStore = MaybeDeadStores[SS];
- if (DeadStore) {
- bool isDead = !(MR & VirtRegMap::isRef);
- MachineInstr *NewStore = NULL;
- if (MR & VirtRegMap::isModRef) {
- unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
- SmallVector<MachineInstr*, 4> NewMIs;
- // We can reuse this physreg as long as we are allowed to clobber
- // the value and there isn't an earlier def that has already clobbered
- // the physreg.
- if (PhysReg &&
- !ReusedOperands.isClobbered(PhysReg) &&
- Spills.canClobberPhysReg(PhysReg) &&
- !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
- MachineOperand *KillOpnd =
- DeadStore->findRegisterUseOperand(PhysReg, true);
- // Note, if the store is storing a sub-register, it's possible the
- // super-register is needed below.
- if (KillOpnd && !KillOpnd->getSubReg() &&
- TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
- MBB->insert(MII, NewMIs[0]);
- NewStore = NewMIs[1];
- MBB->insert(MII, NewStore);
- VRM->addSpillSlotUse(SS, NewStore);
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- Erased = true;
- --NextMII;
- --NextMII; // backtrack to the unfolded instruction.
- BackTracked = true;
- isDead = true;
- ++NumSUnfold;
- }
- }
- }
-
- if (isDead) { // Previous store is dead.
- // If we get here, the store is dead, nuke it now.
- DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
- InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
- EraseInstr(DeadStore);
- if (!NewStore)
- ++NumDSE;
- }
-
- MaybeDeadStores[SS] = NULL;
- if (NewStore) {
- // Treat this store as a spill merged into a copy. That makes the
- // stack slot value available.
- VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
- goto ProcessNextInst;
- }
- }
-
- // If the spill slot value is available, and this is a new definition of
- // the value, the value is not available anymore.
- if (MR & VirtRegMap::isMod) {
- // Notice that the value in this stack slot has been modified.
- Spills.ModifyStackSlotOrReMat(SS);
-
- // If this is *just* a mod of the value, check to see if this is just a
- // store to the spill slot (i.e. the spill got merged into the copy). If
- // so, realize that the vreg is available now, and add the store to the
- // MaybeDeadStore info.
- int StackSlot;
- if (!(MR & VirtRegMap::isRef)) {
- if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
- assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
- "Src hasn't been allocated yet?");
-
- if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
- Spills, RegKills, KillOps, TRI)) {
- NextMII = llvm::next(MII);
- BackTracked = true;
- goto ProcessNextInst;
- }
-
- // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
- // this as a potentially dead store in case there is a subsequent
- // store into the stack slot without a read from it.
- MaybeDeadStores[StackSlot] = &MI;
-
- // If the stack slot value was previously available in some other
- // register, change it now. Otherwise, make the register
- // available in PhysReg.
- Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
- }
- }
- }
- }
-
- // Process all of the spilled defs.
- SpilledMIRegs.clear();
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!(MO.isReg() && MO.getReg() && MO.isDef()))
- continue;
-
- unsigned VirtReg = MO.getReg();
- if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
- // Check to see if this is a noop copy. If so, eliminate the
- // instruction before considering the dest reg to be changed.
- // Also check if it's copying from an "undef", if so, we can't
- // eliminate this or else the undef marker is lost and it will
- // confuses the scavenger. This is extremely rare.
- if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
- MI.getNumOperands() == 2) {
- ++NumDCE;
- DEBUG(dbgs() << "Removing now-noop copy: " << MI);
- SmallVector<unsigned, 2> KillRegs;
- InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
- if (MO.isDead() && !KillRegs.empty()) {
- // Source register or an implicit super/sub-register use is killed.
- assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
- // Last def is now dead.
- TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
- }
- EraseInstr(&MI);
- Erased = true;
- Spills.disallowClobberPhysReg(VirtReg);
- goto ProcessNextInst;
- }
-
- // If it's not a no-op copy, it clobbers the value in the destreg.
- Spills.ClobberPhysReg(VirtReg);
- ReusedOperands.markClobbered(VirtReg);
-
- // Check to see if this instruction is a load from a stack slot into
- // a register. If so, this provides the stack slot value in the reg.
- int FrameIdx;
- if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
- assert(DestReg == VirtReg && "Unknown load situation!");
-
- // If it is a folded reference, then it's not safe to clobber.
- bool Folded = FoldedSS.count(FrameIdx);
- // Otherwise, if it wasn't available, remember that it is now!
- Spills.addAvailable(FrameIdx, DestReg, !Folded);
- goto ProcessNextInst;
- }
-
- continue;
- }
-
- unsigned SubIdx = MO.getSubReg();
- bool DoReMat = VRM->isReMaterialized(VirtReg);
- if (DoReMat)
- ReMatDefs.insert(&MI);
-
- // The only vregs left are stack slot definitions.
- int StackSlot = VRM->getStackSlot(VirtReg);
- const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
-
- // If this def is part of a two-address operand, make sure to execute
- // the store from the correct physical register.
- unsigned PhysReg;
- unsigned TiedOp;
- if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
- PhysReg = MI.getOperand(TiedOp).getReg();
- if (SubIdx) {
- unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
- assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
- "Can't find corresponding super-register!");
- PhysReg = SuperReg;
- }
- } else {
- PhysReg = VRM->getPhys(VirtReg);
- if (ReusedOperands.isClobbered(PhysReg)) {
- // Another def has taken the assigned physreg. It must have been a
- // use&def which got it due to reuse. Undo the reuse!
- PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
- Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
- }
- }
-
- // If StackSlot is available in a register that also holds other stack
- // slots, clobber those stack slots now.
- Spills.ClobberSharingStackSlots(StackSlot);
-
- assert(PhysReg && "VR not assigned a physical register?");
- MRI->setPhysRegUsed(PhysReg);
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- ReusedOperands.markClobbered(RReg);
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
-
- if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
- MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
- SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
- LastStore, Spills, ReMatDefs, RegKills, KillOps);
- NextMII = llvm::next(MII);
-
- // Check to see if this is a noop copy. If so, eliminate the
- // instruction before considering the dest reg to be changed.
- if (MI.isIdentityCopy()) {
- ++NumDCE;
- DEBUG(dbgs() << "Removing now-noop copy: " << MI);
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- Erased = true;
- UpdateKills(*LastStore, TRI, RegKills, KillOps);
- goto ProcessNextInst;
- }
- }
- }
- ProcessNextInst:
- // Delete dead instructions without side effects.
- if (!Erased && !BackTracked && isSafeToDelete(MI)) {
- InvalidateKills(MI, TRI, RegKills, KillOps);
- EraseInstr(&MI);
- Erased = true;
- }
- if (!Erased)
- DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
- if (!Erased && !BackTracked) {
- for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
- UpdateKills(*II, TRI, RegKills, KillOps);
- }
- MII = NextMII;
- }
-
-}
-
-llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
- switch (RewriterOpt) {
- default: llvm_unreachable("Unreachable!");
- case local:
- return new LocalRewriter();
- case trivial:
- return new TrivialRewriter();
- }
-}
Removed: llvm/trunk/lib/CodeGen/VirtRegRewriter.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/VirtRegRewriter.h?rev=144479&view=auto
==============================================================================
--- llvm/trunk/lib/CodeGen/VirtRegRewriter.h (original)
+++ llvm/trunk/lib/CodeGen/VirtRegRewriter.h (removed)
@@ -1,32 +0,0 @@
-//===-- llvm/CodeGen/VirtRegRewriter.h - VirtRegRewriter -*- C++ -*--------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H
-#define LLVM_CODEGEN_VIRTREGREWRITER_H
-
-namespace llvm {
- class LiveIntervals;
- class MachineFunction;
- class VirtRegMap;
-
- /// VirtRegRewriter interface: Implementations of this interface assign
- /// spilled virtual registers to stack slots, rewriting the code.
- struct VirtRegRewriter {
- virtual ~VirtRegRewriter();
- virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
- LiveIntervals* LIs) = 0;
- };
-
- /// createVirtRegRewriter - Create an return a rewriter object, as specified
- /// on the command line.
- VirtRegRewriter* createVirtRegRewriter();
-
-}
-
-#endif
More information about the llvm-commits
mailing list