[llvm-commits] [llvm] r143028 - in /llvm/trunk: lib/Analysis/ValueTracking.cpp test/Transforms/InstSimplify/compare.ll
Bob Wilson
bob.wilson at apple.com
Thu Oct 27 08:46:47 PDT 2011
A bisection blamed this change for a regression in 483.xalancbmk: http://llvm.org/perf/db_default/simple/nts/347/
I'm going to revert this for now.
On Oct 26, 2011, at 8:31 AM, Duncan Sands wrote:
> Author: baldrick
> Date: Wed Oct 26 10:31:51 2011
> New Revision: 143028
>
> URL: http://llvm.org/viewvc/llvm-project?rev=143028&view=rev
> Log:
> My super-optimizer noticed that we weren't folding this expression to
> true: (x *nsw x) sgt 0, where x = (y | 1). This occurs in 464.h264ref.
>
> Modified:
> llvm/trunk/lib/Analysis/ValueTracking.cpp
> llvm/trunk/test/Transforms/InstSimplify/compare.ll
>
> Modified: llvm/trunk/lib/Analysis/ValueTracking.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ValueTracking.cpp?rev=143028&r1=143027&r2=143028&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Analysis/ValueTracking.cpp (original)
> +++ llvm/trunk/lib/Analysis/ValueTracking.cpp Wed Oct 26 10:31:51 2011
> @@ -201,9 +201,36 @@
> ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
> ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
> Depth+1);
> - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
> - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
> -
> + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
> + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
> +
> + bool isKnownNegative = false;
> + bool isKnownNonNegative = false;
> + // If the multiplication is known not to overflow, compute the sign bit.
> + if (Mask.isNegative() && cast<BinaryOperator>(I)->hasNoSignedWrap()) {
> + Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0);
> + if (Op1 == Op2) {
> + // The product of a number with itself is non-negative.
> + isKnownNonNegative = true;
> + } else {
> + bool isKnownNonNegative1 = KnownZero.isNegative();
> + bool isKnownNonNegative2 = KnownZero2.isNegative();
> + bool isKnownNegative1 = KnownOne.isNegative();
> + bool isKnownNegative2 = KnownOne2.isNegative();
> + // The product of two numbers with the same sign is non-negative.
> + isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) ||
> + (isKnownNonNegative1 && isKnownNonNegative2);
> + // The product of a negative number and a non-negative number is either
> + // negative or zero.
> + isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 &&
> + isKnownNonZero(Op2, TD, Depth)) ||
> + (isKnownNegative2 && isKnownNonNegative1 &&
> + isKnownNonZero(Op1, TD, Depth));
> + assert(!(isKnownNegative && isKnownNonNegative) &&
> + "Sign bit both zero and one?");
> + }
> + }
> +
> // If low bits are zero in either operand, output low known-0 bits.
> // Also compute a conserative estimate for high known-0 bits.
> // More trickiness is possible, but this is sufficient for the
> @@ -220,6 +247,12 @@
> KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
> APInt::getHighBitsSet(BitWidth, LeadZ);
> KnownZero &= Mask;
> +
> + if (isKnownNonNegative)
> + KnownZero.setBit(BitWidth - 1);
> + else if (isKnownNegative)
> + KnownOne.setBit(BitWidth - 1);
> +
> return;
> }
> case Instruction::UDiv: {
> @@ -767,7 +800,7 @@
> }
>
> // The remaining tests are all recursive, so bail out if we hit the limit.
> - if (Depth++ == MaxDepth)
> + if (Depth++ >= MaxDepth)
> return false;
>
> unsigned BitWidth = getBitWidth(V->getType(), TD);
> @@ -851,6 +884,15 @@
> if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
> return true;
> }
> + // X * Y.
> + else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
> + BinaryOperator *BO = cast<BinaryOperator>(V);
> + // If X and Y are non-zero then so is X * Y as long as the multiplication
> + // does not overflow.
> + if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
> + isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
> + return true;
> + }
> // (C ? X : Y) != 0 if X != 0 and Y != 0.
> else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
> if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
>
> Modified: llvm/trunk/test/Transforms/InstSimplify/compare.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/InstSimplify/compare.ll?rev=143028&r1=143027&r2=143028&view=diff
> ==============================================================================
> --- llvm/trunk/test/Transforms/InstSimplify/compare.ll (original)
> +++ llvm/trunk/test/Transforms/InstSimplify/compare.ll Wed Oct 26 10:31:51 2011
> @@ -323,3 +323,34 @@
> ret i1 %B
> ; CHECK: ret i1 false
> }
> +
> +define i1 @mul1(i32 %X) {
> +; CHECK: @mul1
> +; Square of a non-zero number is non-zero if there is no overflow.
> + %Y = or i32 %X, 1
> + %M = mul nuw i32 %Y, %Y
> + %C = icmp eq i32 %M, 0
> + ret i1 %C
> +; CHECK: ret i1 false
> +}
> +
> +define i1 @mul2(i32 %X) {
> +; CHECK: @mul2
> +; Square of a non-zero number is positive if there is no signed overflow.
> + %Y = or i32 %X, 1
> + %M = mul nsw i32 %Y, %Y
> + %C = icmp sgt i32 %M, 0
> + ret i1 %C
> +; CHECK: ret i1 true
> +}
> +
> +define i1 @mul3(i32 %X, i32 %Y) {
> +; CHECK: @mul3
> +; Product of non-negative numbers is non-negative if there is no signed overflow.
> + %XX = mul nsw i32 %X, %X
> + %YY = mul nsw i32 %Y, %Y
> + %M = mul nsw i32 %XX, %YY
> + %C = icmp sge i32 %M, 0
> + ret i1 %C
> +; CHECK: ret i1 true
> +}
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
More information about the llvm-commits
mailing list