[llvm-commits] [llvm] r120945 - /llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp

Frits van Bommel fvbommel at gmail.com
Sun Dec 5 11:02:47 PST 2010


Author: fvbommel
Date: Sun Dec  5 13:02:47 2010
New Revision: 120945

URL: http://llvm.org/viewvc/llvm-project?rev=120945&view=rev
Log:
Remove trailing whitespace.

Modified:
    llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp

Modified: llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?rev=120945&r1=120944&r2=120945&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp Sun Dec  5 13:02:47 2010
@@ -40,7 +40,7 @@
 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 
 static cl::opt<unsigned>
-Threshold("jump-threading-threshold", 
+Threshold("jump-threading-threshold",
           cl::desc("Max block size to duplicate for jump threading"),
           cl::init(6), cl::Hidden);
 
@@ -70,16 +70,16 @@
     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
 #endif
     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
-    
+
     // RAII helper for updating the recursion stack.
     struct RecursionSetRemover {
       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
       std::pair<Value*, BasicBlock*> ThePair;
-      
+
       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
                           std::pair<Value*, BasicBlock*> P)
         : TheSet(S), ThePair(P) { }
-      
+
       ~RecursionSetRemover() {
         TheSet.erase(ThePair);
       }
@@ -91,33 +91,33 @@
     }
 
     bool runOnFunction(Function &F);
-    
+
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
       AU.addRequired<LazyValueInfo>();
       AU.addPreserved<LazyValueInfo>();
     }
-    
+
     void FindLoopHeaders(Function &F);
     bool ProcessBlock(BasicBlock *BB);
     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
                     BasicBlock *SuccBB);
     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
-    
+
     typedef SmallVectorImpl<std::pair<ConstantInt*,
                                       BasicBlock*> > PredValueInfo;
-    
+
     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
                                          PredValueInfo &Result);
     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
-    
-    
+
+
     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 
     bool ProcessBranchOnPHI(PHINode *PN);
     bool ProcessBranchOnXOR(BinaryOperator *BO);
-    
+
     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
   };
 }
@@ -138,20 +138,20 @@
   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
   TD = getAnalysisIfAvailable<TargetData>();
   LVI = &getAnalysis<LazyValueInfo>();
-  
+
   FindLoopHeaders(F);
-  
+
   bool Changed, EverChanged = false;
   do {
     Changed = false;
     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
       BasicBlock *BB = I;
-      // Thread all of the branches we can over this block. 
+      // Thread all of the branches we can over this block.
       while (ProcessBlock(BB))
         Changed = true;
-      
+
       ++I;
-      
+
       // If the block is trivially dead, zap it.  This eliminates the successor
       // edges which simplifies the CFG.
       if (pred_begin(BB) == pred_end(BB) &&
@@ -166,7 +166,7 @@
         // Can't thread an unconditional jump, but if the block is "almost
         // empty", we can replace uses of it with uses of the successor and make
         // this dead.
-        if (BI->isUnconditional() && 
+        if (BI->isUnconditional() &&
             BB != &BB->getParent()->getEntryBlock()) {
           BasicBlock::iterator BBI = BB->getFirstNonPHI();
           // Ignore dbg intrinsics.
@@ -179,7 +179,7 @@
             // reinsert afterward if needed.
             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
             BasicBlock *Succ = BI->getSuccessor(0);
-            
+
             // FIXME: It is always conservatively correct to drop the info
             // for a block even if it doesn't get erased.  This isn't totally
             // awesome, but it allows us to use AssertingVH to prevent nasty
@@ -191,7 +191,7 @@
               // successor is now the header of the loop.
               BB = Succ;
             }
-            
+
             if (ErasedFromLoopHeaders)
               LoopHeaders.insert(BB);
           }
@@ -200,7 +200,7 @@
     }
     EverChanged |= Changed;
   } while (Changed);
-  
+
   LoopHeaders.clear();
   return EverChanged;
 }
@@ -210,25 +210,25 @@
 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
   /// Ignore PHI nodes, these will be flattened when duplication happens.
   BasicBlock::const_iterator I = BB->getFirstNonPHI();
-  
+
   // FIXME: THREADING will delete values that are just used to compute the
   // branch, so they shouldn't count against the duplication cost.
-  
-  
+
+
   // Sum up the cost of each instruction until we get to the terminator.  Don't
   // include the terminator because the copy won't include it.
   unsigned Size = 0;
   for (; !isa<TerminatorInst>(I); ++I) {
     // Debugger intrinsics don't incur code size.
     if (isa<DbgInfoIntrinsic>(I)) continue;
-    
+
     // If this is a pointer->pointer bitcast, it is free.
     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
       continue;
-    
+
     // All other instructions count for at least one unit.
     ++Size;
-    
+
     // Calls are more expensive.  If they are non-intrinsic calls, we model them
     // as having cost of 4.  If they are a non-vector intrinsic, we model them
     // as having cost of 2 total, and if they are a vector intrinsic, we model
@@ -240,12 +240,12 @@
         Size += 1;
     }
   }
-  
+
   // Threading through a switch statement is particularly profitable.  If this
   // block ends in a switch, decrease its cost to make it more likely to happen.
   if (isa<SwitchInst>(I))
     Size = Size > 6 ? Size-6 : 0;
-  
+
   return Size;
 }
 
@@ -267,7 +267,7 @@
 void JumpThreading::FindLoopHeaders(Function &F) {
   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
   FindFunctionBackedges(F, Edges);
-  
+
   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
 }
@@ -298,26 +298,26 @@
   // and terminate the search if we loop back to them
   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
     return false;
-  
+
   // An RAII help to remove this pair from the recursion set once the recursion
   // stack pops back out again.
   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
-  
+
   // If V is a constantint, then it is known in all predecessors.
   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
     ConstantInt *CI = dyn_cast<ConstantInt>(V);
-    
+
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
       Result.push_back(std::make_pair(CI, *PI));
-    
+
     return true;
   }
-  
+
   // If V is a non-instruction value, or an instruction in a different block,
   // then it can't be derived from a PHI.
   Instruction *I = dyn_cast<Instruction>(V);
   if (I == 0 || I->getParent() != BB) {
-    
+
     // Okay, if this is a live-in value, see if it has a known value at the end
     // of any of our predecessors.
     //
@@ -330,7 +330,7 @@
     // able to handle value inequalities better, for example if the compare is
     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
     // Perhaps getConstantOnEdge should be smart enough to do this?
-    
+
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
       BasicBlock *P = *PI;
       // If the value is known by LazyValueInfo to be a constant in a
@@ -339,13 +339,13 @@
       if (PredCst == 0 ||
           (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
         continue;
-        
+
       Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
     }
-      
+
     return !Result.empty();
   }
-  
+
   /// If I is a PHI node, then we know the incoming values for any constants.
   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
@@ -361,32 +361,32 @@
         PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
       }
     }
-    
+
     return !Result.empty();
   }
-  
+
   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
 
   // Handle some boolean conditions.
-  if (I->getType()->getPrimitiveSizeInBits() == 1) { 
+  if (I->getType()->getPrimitiveSizeInBits() == 1) {
     // X | true -> true
     // X & false -> false
     if (I->getOpcode() == Instruction::Or ||
         I->getOpcode() == Instruction::And) {
       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
-      
+
       if (LHSVals.empty() && RHSVals.empty())
         return false;
-      
+
       ConstantInt *InterestingVal;
       if (I->getOpcode() == Instruction::Or)
         InterestingVal = ConstantInt::getTrue(I->getContext());
       else
         InterestingVal = ConstantInt::getFalse(I->getContext());
-      
+
       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
-      
+
       // Scan for the sentinel.  If we find an undef, force it to the
       // interesting value: x|undef -> true and x&undef -> false.
       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
@@ -404,10 +404,10 @@
             Result.back().first = InterestingVal;
           }
         }
-      
+
       return !Result.empty();
     }
-    
+
     // Handle the NOT form of XOR.
     if (I->getOpcode() == Instruction::Xor &&
         isa<ConstantInt>(I->getOperand(1)) &&
@@ -421,29 +421,29 @@
         if (Result[i].first)
           Result[i].first =
             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
-      
+
       return true;
     }
-  
+
   // Try to simplify some other binary operator values.
   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
       SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
-    
+
       // Try to use constant folding to simplify the binary operator.
       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
         Constant *V = LHSVals[i].first;
         if (V == 0) V = UndefValue::get(BO->getType());
         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
-        
+
         PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
       }
     }
-      
+
     return !Result.empty();
   }
-  
+
   // Handle compare with phi operand, where the PHI is defined in this block.
   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
@@ -454,28 +454,28 @@
         BasicBlock *PredBB = PN->getIncomingBlock(i);
         Value *LHS = PN->getIncomingValue(i);
         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
-        
+
         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
         if (Res == 0) {
           if (!isa<Constant>(RHS))
             continue;
-          
-          LazyValueInfo::Tristate 
+
+          LazyValueInfo::Tristate
             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
                                            cast<Constant>(RHS), PredBB, BB);
           if (ResT == LazyValueInfo::Unknown)
             continue;
           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
         }
-        
+
         if (Constant *ConstRes = dyn_cast<Constant>(Res))
           PushConstantIntOrUndef(Result, ConstRes, PredBB);
       }
-      
+
       return !Result.empty();
     }
-    
-    
+
+
     // If comparing a live-in value against a constant, see if we know the
     // live-in value on any predecessors.
     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
@@ -499,13 +499,13 @@
 
         return !Result.empty();
       }
-      
+
       // Try to find a constant value for the LHS of a comparison,
       // and evaluate it statically if we can.
       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
         SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
-        
+
         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
           Constant *V = LHSVals[i].first;
           if (V == 0) V = UndefValue::get(CmpConst->getType());
@@ -513,12 +513,12 @@
                                                       V, CmpConst);
           PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
         }
-        
+
         return !Result.empty();
       }
     }
   }
-  
+
   // If all else fails, see if LVI can figure out a constant value for us.
   Constant *CI = LVI->getConstant(V, BB);
   ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
@@ -526,7 +526,7 @@
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
       Result.push_back(std::make_pair(CInt, *PI));
   }
-    
+
   return !Result.empty();
 }
 
@@ -550,7 +550,7 @@
     if (NumPreds < MinNumPreds)
       MinSucc = i;
   }
-  
+
   return MinSucc;
 }
 
@@ -562,7 +562,7 @@
   if (pred_begin(BB) == pred_end(BB) &&
       BB != &BB->getParent()->getEntryBlock())
     return false;
-  
+
   // If this block has a single predecessor, and if that pred has a single
   // successor, merge the blocks.  This encourages recursive jump threading
   // because now the condition in this block can be threaded through
@@ -573,13 +573,13 @@
       // If SinglePred was a loop header, BB becomes one.
       if (LoopHeaders.erase(SinglePred))
         LoopHeaders.insert(BB);
-      
+
       // Remember if SinglePred was the entry block of the function.  If so, we
       // will need to move BB back to the entry position.
       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
       LVI->eraseBlock(SinglePred);
       MergeBasicBlockIntoOnlyPred(BB);
-      
+
       if (isEntry && BB != &BB->getParent()->getEntryBlock())
         BB->moveBefore(&BB->getParent()->getEntryBlock());
       return true;
@@ -597,7 +597,7 @@
     Condition = SI->getCondition();
   else
     return false; // Must be an invoke.
-  
+
   // If the terminator of this block is branching on a constant, simplify the
   // terminator to an unconditional branch.  This can occur due to threading in
   // other blocks.
@@ -608,26 +608,26 @@
     ConstantFoldTerminator(BB);
     return true;
   }
-  
+
   // If the terminator is branching on an undef, we can pick any of the
   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
   if (isa<UndefValue>(Condition)) {
     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
-    
+
     // Fold the branch/switch.
     TerminatorInst *BBTerm = BB->getTerminator();
     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
       if (i == BestSucc) continue;
       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
     }
-    
+
     DEBUG(dbgs() << "  In block '" << BB->getName()
           << "' folding undef terminator: " << *BBTerm << '\n');
     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
     BBTerm->eraseFromParent();
     return true;
   }
-  
+
   Instruction *CondInst = dyn_cast<Instruction>(Condition);
 
   // All the rest of our checks depend on the condition being an instruction.
@@ -636,9 +636,9 @@
     if (ProcessThreadableEdges(Condition, BB))
       return true;
     return false;
-  }  
-    
-  
+  }
+
+
   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
     // For a comparison where the LHS is outside this block, it's possible
     // that we've branched on it before.  Used LVI to see if we can simplify
@@ -653,7 +653,7 @@
       // on that edge.  If they're all true or all false, we can simplify the
       // branch.
       // FIXME: We could handle mixed true/false by duplicating code.
-      LazyValueInfo::Tristate Baseline =      
+      LazyValueInfo::Tristate Baseline =
         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
                                 CondConst, *PI, BB);
       if (Baseline != LazyValueInfo::Unknown) {
@@ -664,7 +664,7 @@
                                     CondCmp->getOperand(0), CondConst, *PI, BB);
           if (Ret != Baseline) break;
         }
-        
+
         // If we terminated early, then one of the values didn't match.
         if (PI == PE) {
           unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
@@ -687,37 +687,37 @@
   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
     if (isa<Constant>(CondCmp->getOperand(1)))
       SimplifyValue = CondCmp->getOperand(0);
-  
+
   // TODO: There are other places where load PRE would be profitable, such as
   // more complex comparisons.
   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
     if (SimplifyPartiallyRedundantLoad(LI))
       return true;
-  
-  
+
+
   // Handle a variety of cases where we are branching on something derived from
   // a PHI node in the current block.  If we can prove that any predecessors
   // compute a predictable value based on a PHI node, thread those predecessors.
   //
   if (ProcessThreadableEdges(CondInst, BB))
     return true;
-  
+
   // If this is an otherwise-unfoldable branch on a phi node in the current
   // block, see if we can simplify.
   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
       return ProcessBranchOnPHI(PN);
-  
-  
+
+
   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
   if (CondInst->getOpcode() == Instruction::Xor &&
       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
-  
-  
+
+
   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
   // "(X == 4)", thread through this block.
-  
+
   return false;
 }
 
@@ -734,7 +734,7 @@
 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
                                                  BasicBlock *BB) {
   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
-  
+
   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
   // fold the branch to an unconditional one, which allows other recursive
   // simplifications.
@@ -750,7 +750,7 @@
     ConstantFoldTerminator(PredBB);
     return true;
   }
-   
+
   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
 
   // If the dest block has one predecessor, just fix the branch condition to a
@@ -769,14 +769,14 @@
     ConstantFoldTerminator(BB);
     return true;
   }
- 
-  
+
+
   // Next, figure out which successor we are threading to.
   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
-  
+
   SmallVector<BasicBlock*, 2> Preds;
   Preds.push_back(PredBB);
-  
+
   // Ok, try to thread it!
   return ThreadEdge(BB, Preds, SuccBB);
 }
@@ -796,20 +796,20 @@
   // Can't thread edge to self.
   if (PredBB == DestBB)
     return false;
-  
+
   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
 
   // There are a variety of optimizations that we can potentially do on these
   // blocks: we order them from most to least preferable.
-  
+
   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
   // directly to their destination.  This does not introduce *any* code size
   // growth.  Skip debug info first.
   BasicBlock::iterator BBI = DestBB->begin();
   while (isa<DbgInfoIntrinsic>(BBI))
     BBI++;
-  
+
   // FIXME: Thread if it just contains a PHI.
   if (isa<SwitchInst>(BBI)) {
     bool MadeChange = false;
@@ -817,19 +817,19 @@
     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
       ConstantInt *DestVal = DestSI->getCaseValue(i);
       BasicBlock *DestSucc = DestSI->getSuccessor(i);
-      
+
       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
       // PredSI has an explicit case for it.  If so, forward.  If it is covered
       // by the default case, we can't update PredSI.
       unsigned PredCase = PredSI->findCaseValue(DestVal);
       if (PredCase == 0) continue;
-      
+
       // If PredSI doesn't go to DestBB on this value, then it won't reach the
       // case on this condition.
       if (PredSI->getSuccessor(PredCase) != DestBB &&
           DestSI->getSuccessor(i) != DestBB)
         continue;
-      
+
       // Do not forward this if it already goes to this destination, this would
       // be an infinite loop.
       if (PredSI->getSuccessor(PredCase) == DestSucc)
@@ -850,11 +850,11 @@
       PredSI->setSuccessor(PredCase, DestSucc);
       MadeChange = true;
     }
-    
+
     if (MadeChange)
       return true;
   }
-  
+
   return false;
 }
 
@@ -866,13 +866,13 @@
 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   // Don't hack volatile loads.
   if (LI->isVolatile()) return false;
-  
+
   // If the load is defined in a block with exactly one predecessor, it can't be
   // partially redundant.
   BasicBlock *LoadBB = LI->getParent();
   if (LoadBB->getSinglePredecessor())
     return false;
-  
+
   Value *LoadedPtr = LI->getOperand(0);
 
   // If the loaded operand is defined in the LoadBB, it can't be available.
@@ -880,17 +880,17 @@
   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
     if (PtrOp->getParent() == LoadBB)
       return false;
-  
+
   // Scan a few instructions up from the load, to see if it is obviously live at
   // the entry to its block.
   BasicBlock::iterator BBIt = LI;
 
-  if (Value *AvailableVal = 
+  if (Value *AvailableVal =
         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
     // If the value if the load is locally available within the block, just use
     // it.  This frequently occurs for reg2mem'd allocas.
     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
-    
+
     // If the returned value is the load itself, replace with an undef. This can
     // only happen in dead loops.
     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
@@ -904,13 +904,13 @@
   // might clobber its value.
   if (BBIt != LoadBB->begin())
     return false;
-  
-  
+
+
   SmallPtrSet<BasicBlock*, 8> PredsScanned;
   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
   AvailablePredsTy AvailablePreds;
   BasicBlock *OneUnavailablePred = 0;
-  
+
   // If we got here, the loaded value is transparent through to the start of the
   // block.  Check to see if it is available in any of the predecessor blocks.
   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
@@ -928,23 +928,23 @@
       OneUnavailablePred = PredBB;
       continue;
     }
-    
+
     // If so, this load is partially redundant.  Remember this info so that we
     // can create a PHI node.
     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
   }
-  
+
   // If the loaded value isn't available in any predecessor, it isn't partially
   // redundant.
   if (AvailablePreds.empty()) return false;
-  
+
   // Okay, the loaded value is available in at least one (and maybe all!)
   // predecessors.  If the value is unavailable in more than one unique
   // predecessor, we want to insert a merge block for those common predecessors.
   // This ensures that we only have to insert one reload, thus not increasing
   // code size.
   BasicBlock *UnavailablePred = 0;
-  
+
   // If there is exactly one predecessor where the value is unavailable, the
   // already computed 'OneUnavailablePred' block is it.  If it ends in an
   // unconditional branch, we know that it isn't a critical edge.
@@ -967,17 +967,17 @@
       // If the predecessor is an indirect goto, we can't split the edge.
       if (isa<IndirectBrInst>(P->getTerminator()))
         return false;
-      
+
       if (!AvailablePredSet.count(P))
         PredsToSplit.push_back(P);
     }
-    
+
     // Split them out to their own block.
     UnavailablePred =
       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
                              "thread-pre-split", this);
   }
-  
+
   // If the value isn't available in all predecessors, then there will be
   // exactly one where it isn't available.  Insert a load on that edge and add
   // it to the AvailablePreds list.
@@ -989,35 +989,35 @@
                                  UnavailablePred->getTerminator());
     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
   }
-  
+
   // Now we know that each predecessor of this block has a value in
   // AvailablePreds, sort them for efficient access as we're walking the preds.
   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
-  
+
   // Create a PHI node at the start of the block for the PRE'd load value.
   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
   PN->takeName(LI);
-  
+
   // Insert new entries into the PHI for each predecessor.  A single block may
   // have multiple entries here.
   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
        ++PI) {
     BasicBlock *P = *PI;
-    AvailablePredsTy::iterator I = 
+    AvailablePredsTy::iterator I =
       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
                        std::make_pair(P, (Value*)0));
-    
+
     assert(I != AvailablePreds.end() && I->first == P &&
            "Didn't find entry for predecessor!");
-    
+
     PN->addIncoming(I->second, I->first);
   }
-  
+
   //cerr << "PRE: " << *LI << *PN << "\n";
-  
+
   LI->replaceAllUsesWith(PN);
   LI->eraseFromParent();
-  
+
   return true;
 }
 
@@ -1029,7 +1029,7 @@
                     const SmallVectorImpl<std::pair<BasicBlock*,
                                   BasicBlock*> > &PredToDestList) {
   assert(!PredToDestList.empty());
-  
+
   // Determine popularity.  If there are multiple possible destinations, we
   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
   // blocks with known and real destinations to threading undef.  We'll handle
@@ -1038,13 +1038,13 @@
   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
     if (PredToDestList[i].second)
       DestPopularity[PredToDestList[i].second]++;
-  
+
   // Find the most popular dest.
   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
   BasicBlock *MostPopularDest = DPI->first;
   unsigned Popularity = DPI->second;
   SmallVector<BasicBlock*, 4> SamePopularity;
-  
+
   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
     // If the popularity of this entry isn't higher than the popularity we've
     // seen so far, ignore it.
@@ -1058,9 +1058,9 @@
       SamePopularity.clear();
       MostPopularDest = DPI->first;
       Popularity = DPI->second;
-    }      
+    }
   }
-  
+
   // Okay, now we know the most popular destination.  If there is more than
   // destination, we need to determine one.  This is arbitrary, but we need
   // to make a deterministic decision.  Pick the first one that appears in the
@@ -1070,16 +1070,16 @@
     TerminatorInst *TI = BB->getTerminator();
     for (unsigned i = 0; ; ++i) {
       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
-      
+
       if (std::find(SamePopularity.begin(), SamePopularity.end(),
                     TI->getSuccessor(i)) == SamePopularity.end())
         continue;
-      
+
       MostPopularDest = TI->getSuccessor(i);
       break;
     }
   }
-  
+
   // Okay, we have finally picked the most popular destination.
   return MostPopularDest;
 }
@@ -1089,11 +1089,11 @@
   // thread the edge.
   if (LoopHeaders.count(BB))
     return false;
-  
+
   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
     return false;
-  
+
   assert(!PredValues.empty() &&
          "ComputeValueKnownInPredecessors returned true with no values");
 
@@ -1107,29 +1107,29 @@
           dbgs() << " for pred '" << PredValues[i].second->getName()
           << "'.\n";
         });
-  
+
   // Decide what we want to thread through.  Convert our list of known values to
   // a list of known destinations for each pred.  This also discards duplicate
   // predecessors and keeps track of the undefined inputs (which are represented
   // as a null dest in the PredToDestList).
   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
-  
+
   BasicBlock *OnlyDest = 0;
   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
-  
+
   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
     BasicBlock *Pred = PredValues[i].second;
     if (!SeenPreds.insert(Pred))
       continue;  // Duplicate predecessor entry.
-    
+
     // If the predecessor ends with an indirect goto, we can't change its
     // destination.
     if (isa<IndirectBrInst>(Pred->getTerminator()))
       continue;
-    
+
     ConstantInt *Val = PredValues[i].first;
-    
+
     BasicBlock *DestBB;
     if (Val == 0)      // Undef.
       DestBB = 0;
@@ -1145,30 +1145,30 @@
       OnlyDest = DestBB;
     else if (OnlyDest != DestBB)
       OnlyDest = MultipleDestSentinel;
-    
+
     PredToDestList.push_back(std::make_pair(Pred, DestBB));
   }
-  
+
   // If all edges were unthreadable, we fail.
   if (PredToDestList.empty())
     return false;
-  
+
   // Determine which is the most common successor.  If we have many inputs and
   // this block is a switch, we want to start by threading the batch that goes
   // to the most popular destination first.  If we only know about one
   // threadable destination (the common case) we can avoid this.
   BasicBlock *MostPopularDest = OnlyDest;
-  
+
   if (MostPopularDest == MultipleDestSentinel)
     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
-  
+
   // Now that we know what the most popular destination is, factor all
   // predecessors that will jump to it into a single predecessor.
   SmallVector<BasicBlock*, 16> PredsToFactor;
   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
     if (PredToDestList[i].second == MostPopularDest) {
       BasicBlock *Pred = PredToDestList[i].first;
-      
+
       // This predecessor may be a switch or something else that has multiple
       // edges to the block.  Factor each of these edges by listing them
       // according to # occurrences in PredsToFactor.
@@ -1183,7 +1183,7 @@
   if (MostPopularDest == 0)
     MostPopularDest = BB->getTerminator()->
                             getSuccessor(GetBestDestForJumpOnUndef(BB));
-        
+
   // Ok, try to thread it!
   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
 }
@@ -1191,15 +1191,15 @@
 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
 /// a PHI node in the current block.  See if there are any simplifications we
 /// can do based on inputs to the phi node.
-/// 
+///
 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
   BasicBlock *BB = PN->getParent();
-  
+
   // TODO: We could make use of this to do it once for blocks with common PHI
   // values.
   SmallVector<BasicBlock*, 1> PredBBs;
   PredBBs.resize(1);
-  
+
   // If any of the predecessor blocks end in an unconditional branch, we can
   // *duplicate* the conditional branch into that block in order to further
   // encourage jump threading and to eliminate cases where we have branch on a
@@ -1221,21 +1221,21 @@
 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
 /// a xor instruction in the current block.  See if there are any
 /// simplifications we can do based on inputs to the xor.
-/// 
+///
 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   BasicBlock *BB = BO->getParent();
-  
+
   // If either the LHS or RHS of the xor is a constant, don't do this
   // optimization.
   if (isa<ConstantInt>(BO->getOperand(0)) ||
       isa<ConstantInt>(BO->getOperand(1)))
     return false;
-  
+
   // If the first instruction in BB isn't a phi, we won't be able to infer
   // anything special about any particular predecessor.
   if (!isa<PHINode>(BB->front()))
     return false;
-  
+
   // If we have a xor as the branch input to this block, and we know that the
   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
   // the condition into the predecessor and fix that value to true, saving some
@@ -1262,7 +1262,7 @@
       return false;
     isLHS = false;
   }
-  
+
   assert(!XorOpValues.empty() &&
          "ComputeValueKnownInPredecessors returned true with no values");
 
@@ -1276,14 +1276,14 @@
     else
       ++NumTrue;
   }
-  
+
   // Determine which value to split on, true, false, or undef if neither.
   ConstantInt *SplitVal = 0;
   if (NumTrue > NumFalse)
     SplitVal = ConstantInt::getTrue(BB->getContext());
   else if (NumTrue != 0 || NumFalse != 0)
     SplitVal = ConstantInt::getFalse(BB->getContext());
-  
+
   // Collect all of the blocks that this can be folded into so that we can
   // factor this once and clone it once.
   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
@@ -1292,7 +1292,7 @@
 
     BlocksToFoldInto.push_back(XorOpValues[i].second);
   }
-  
+
   // If we inferred a value for all of the predecessors, then duplication won't
   // help us.  However, we can just replace the LHS or RHS with the constant.
   if (BlocksToFoldInto.size() ==
@@ -1309,10 +1309,10 @@
       // If all preds provide 1, set the computed value to 1.
       BO->setOperand(!isLHS, SplitVal);
     }
-    
+
     return true;
   }
-  
+
   // Try to duplicate BB into PredBB.
   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
 }
@@ -1330,14 +1330,14 @@
     // Ok, we have a PHI node.  Figure out what the incoming value was for the
     // DestBlock.
     Value *IV = PN->getIncomingValueForBlock(OldPred);
-    
+
     // Remap the value if necessary.
     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
       if (I != ValueMap.end())
         IV = I->second;
     }
-    
+
     PN->addIncoming(IV, NewPred);
   }
 }
@@ -1345,8 +1345,8 @@
 /// ThreadEdge - We have decided that it is safe and profitable to factor the
 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
 /// across BB.  Transform the IR to reflect this change.
-bool JumpThreading::ThreadEdge(BasicBlock *BB, 
-                               const SmallVectorImpl<BasicBlock*> &PredBBs, 
+bool JumpThreading::ThreadEdge(BasicBlock *BB,
+                               const SmallVectorImpl<BasicBlock*> &PredBBs,
                                BasicBlock *SuccBB) {
   // If threading to the same block as we come from, we would infinite loop.
   if (SuccBB == BB) {
@@ -1354,7 +1354,7 @@
           << "' - would thread to self!\n");
     return false;
   }
-  
+
   // If threading this would thread across a loop header, don't thread the edge.
   // See the comments above FindLoopHeaders for justifications and caveats.
   if (LoopHeaders.count(BB)) {
@@ -1370,7 +1370,7 @@
           << "' - Cost is too high: " << JumpThreadCost << "\n");
     return false;
   }
-  
+
   // And finally, do it!  Start by factoring the predecessors is needed.
   BasicBlock *PredBB;
   if (PredBBs.size() == 1)
@@ -1381,29 +1381,29 @@
     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
                                     ".thr_comm", this);
   }
-  
+
   // And finally, do it!
   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
         << SuccBB->getName() << "' with cost: " << JumpThreadCost
         << ", across block:\n    "
         << *BB << "\n");
-  
+
   LVI->threadEdge(PredBB, BB, SuccBB);
-  
+
   // We are going to have to map operands from the original BB block to the new
   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
   // account for entry from PredBB.
   DenseMap<Instruction*, Value*> ValueMapping;
-  
-  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 
-                                         BB->getName()+".thread", 
+
+  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
+                                         BB->getName()+".thread",
                                          BB->getParent(), BB);
   NewBB->moveAfter(PredBB);
-  
+
   BasicBlock::iterator BI = BB->begin();
   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
-  
+
   // Clone the non-phi instructions of BB into NewBB, keeping track of the
   // mapping and using it to remap operands in the cloned instructions.
   for (; !isa<TerminatorInst>(BI); ++BI) {
@@ -1411,7 +1411,7 @@
     New->setName(BI->getName());
     NewBB->getInstList().push_back(New);
     ValueMapping[BI] = New;
-   
+
     // Remap operands to patch up intra-block references.
     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
@@ -1420,15 +1420,15 @@
           New->setOperand(i, I->second);
       }
   }
-  
+
   // We didn't copy the terminator from BB over to NewBB, because there is now
   // an unconditional jump to SuccBB.  Insert the unconditional jump.
   BranchInst::Create(SuccBB, NewBB);
-  
+
   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   // PHI nodes for NewBB now.
   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
-  
+
   // If there were values defined in BB that are used outside the block, then we
   // now have to update all uses of the value to use either the original value,
   // the cloned value, or some PHI derived value.  This can require arbitrary
@@ -1446,14 +1446,14 @@
           continue;
       } else if (User->getParent() == BB)
         continue;
-      
+
       UsesToRename.push_back(&UI.getUse());
     }
-    
+
     // If there are no uses outside the block, we're done with this instruction.
     if (UsesToRename.empty())
       continue;
-    
+
     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
 
     // We found a use of I outside of BB.  Rename all uses of I that are outside
@@ -1462,13 +1462,13 @@
     SSAUpdate.Initialize(I->getType(), I->getName());
     SSAUpdate.AddAvailableValue(BB, I);
     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
-    
+
     while (!UsesToRename.empty())
       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
     DEBUG(dbgs() << "\n");
   }
-  
-  
+
+
   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
   // us to simplify any PHI nodes in BB.
@@ -1478,12 +1478,12 @@
       BB->removePredecessor(PredBB, true);
       PredTerm->setSuccessor(i, NewBB);
     }
-  
+
   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   // over the new instructions and zap any that are constants or dead.  This
   // frequently happens because of phi translation.
   SimplifyInstructionsInBlock(NewBB, TD);
-  
+
   // Threaded an edge!
   ++NumThreads;
   return true;
@@ -1507,14 +1507,14 @@
           << "' - it might create an irreducible loop!\n");
     return false;
   }
-  
+
   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
   if (DuplicationCost > Threshold) {
     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
           << "' - Cost is too high: " << DuplicationCost << "\n");
     return false;
   }
-  
+
   // And finally, do it!  Start by factoring the predecessors is needed.
   BasicBlock *PredBB;
   if (PredBBs.size() == 1)
@@ -1525,35 +1525,35 @@
     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
                                     ".thr_comm", this);
   }
-  
+
   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
   // of PredBB.
   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
         << DuplicationCost << " block is:" << *BB << "\n");
-  
+
   // Unless PredBB ends with an unconditional branch, split the edge so that we
   // can just clone the bits from BB into the end of the new PredBB.
   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
-  
+
   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
     PredBB = SplitEdge(PredBB, BB, this);
     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   }
-  
+
   // We are going to have to map operands from the original BB block into the
   // PredBB block.  Evaluate PHI nodes in BB.
   DenseMap<Instruction*, Value*> ValueMapping;
-  
+
   BasicBlock::iterator BI = BB->begin();
   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
-  
+
   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   // mapping and using it to remap operands in the cloned instructions.
   for (; BI != BB->end(); ++BI) {
     Instruction *New = BI->clone();
-    
+
     // Remap operands to patch up intra-block references.
     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
@@ -1575,7 +1575,7 @@
       ValueMapping[BI] = New;
     }
   }
-  
+
   // Check to see if the targets of the branch had PHI nodes. If so, we need to
   // add entries to the PHI nodes for branch from PredBB now.
   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
@@ -1583,7 +1583,7 @@
                                   ValueMapping);
   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
                                   ValueMapping);
-  
+
   // If there were values defined in BB that are used outside the block, then we
   // now have to update all uses of the value to use either the original value,
   // the cloned value, or some PHI derived value.  This can require arbitrary
@@ -1601,35 +1601,35 @@
           continue;
       } else if (User->getParent() == BB)
         continue;
-      
+
       UsesToRename.push_back(&UI.getUse());
     }
-    
+
     // If there are no uses outside the block, we're done with this instruction.
     if (UsesToRename.empty())
       continue;
-    
+
     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
-    
+
     // We found a use of I outside of BB.  Rename all uses of I that are outside
     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
     // with the two values we know.
     SSAUpdate.Initialize(I->getType(), I->getName());
     SSAUpdate.AddAvailableValue(BB, I);
     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
-    
+
     while (!UsesToRename.empty())
       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
     DEBUG(dbgs() << "\n");
   }
-  
+
   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
   // that we nuked.
   BB->removePredecessor(PredBB, true);
-  
+
   // Remove the unconditional branch at the end of the PredBB block.
   OldPredBranch->eraseFromParent();
-  
+
   ++NumDupes;
   return true;
 }





More information about the llvm-commits mailing list