[llvm-commits] [llvm] r119773 - in /llvm/trunk: include/llvm/ADT/IntervalMap.h lib/Support/CMakeLists.txt lib/Support/IntervalMap.cpp unittests/ADT/IntervalMapTest.cpp unittests/CMakeLists.txt

Jakob Stoklund Olesen stoklund at 2pi.dk
Thu Nov 18 17:21:03 PST 2010


Author: stoklund
Date: Thu Nov 18 19:21:03 2010
New Revision: 119773

URL: http://llvm.org/viewvc/llvm-project?rev=119773&view=rev
Log:
Revert "Add ADT/IntervalMap.", GCC doesn't like it.

This reverts r119772.

Removed:
    llvm/trunk/include/llvm/ADT/IntervalMap.h
    llvm/trunk/lib/Support/IntervalMap.cpp
    llvm/trunk/unittests/ADT/IntervalMapTest.cpp
Modified:
    llvm/trunk/lib/Support/CMakeLists.txt
    llvm/trunk/unittests/CMakeLists.txt

Removed: llvm/trunk/include/llvm/ADT/IntervalMap.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/IntervalMap.h?rev=119772&view=auto
==============================================================================
--- llvm/trunk/include/llvm/ADT/IntervalMap.h (original)
+++ llvm/trunk/include/llvm/ADT/IntervalMap.h (removed)
@@ -1,1695 +0,0 @@
-//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a coalescing interval map for small objects.
-//
-// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
-// same value are represented in a compressed form.
-//
-// Iterators provide ordered access to the compressed intervals rather than the
-// individual keys, and insert and erase operations use key intervals as well.
-//
-// Like SmallVector, IntervalMap will store the first N intervals in the map
-// object itself without any allocations. When space is exhausted it switches to
-// a B+-tree representation with very small overhead for small key and value
-// objects.
-//
-// A Traits class specifies how keys are compared. It also allows IntervalMap to
-// work with both closed and half-open intervals.
-//
-// Keys and values are not stored next to each other in a std::pair, so we don't
-// provide such a value_type. Dereferencing iterators only returns the mapped
-// value. The interval bounds are accessible through the start() and stop()
-// iterator methods.
-//
-// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
-// is the optimal size. For large objects use std::map instead.
-//
-//===----------------------------------------------------------------------===//
-//
-// Synopsis:
-//
-// template <typename KeyT, typename ValT, unsigned N, typename Traits>
-// class IntervalMap {
-// public:
-//   typedef KeyT key_type;
-//   typedef ValT mapped_type;
-//   typedef RecyclingAllocator<...> Allocator;
-//   class iterator;
-//   class const_iterator;
-//
-//   explicit IntervalMap(Allocator&);
-//   ~IntervalMap():
-//
-//   bool empty() const;
-//   KeyT start() const;
-//   KeyT stop() const;
-//   ValT lookup(KeyT x, Value NotFound = Value()) const;
-//
-//   const_iterator begin() const;
-//   const_iterator end() const;
-//   iterator begin();
-//   iterator end();
-//   const_iterator find(KeyT x) const;
-//   iterator find(KeyT x);
-//
-//   void insert(KeyT a, KeyT b, ValT y);
-//   void clear();
-// };
-//
-// template <typename KeyT, typename ValT, unsigned N, typename Traits>
-// class IntervalMap::const_iterator :
-//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
-// public:
-//   bool operator==(const const_iterator &) const;
-//   bool operator!=(const const_iterator &) const;
-//   bool valid() const;
-//
-//   const KeyT &start() const;
-//   const KeyT &stop() const;
-//   const ValT &value() const;
-//   const ValT &operator*() const;
-//   const ValT *operator->() const;
-//
-//   const_iterator &operator++();
-//   const_iterator &operator++(int);
-//   const_iterator &operator--();
-//   const_iterator &operator--(int);
-//   void goToBegin();
-//   void goToEnd();
-//   void find(KeyT x);
-//   void advanceTo(KeyT x);
-// };
-//
-// template <typename KeyT, typename ValT, unsigned N, typename Traits>
-// class IntervalMap::iterator : public const_iterator {
-// public:
-//   void insert(KeyT a, KeyT b, Value y);
-//   void erase();
-// };
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ADT_INTERVALMAP_H
-#define LLVM_ADT_INTERVALMAP_H
-
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/PointerIntPair.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/RecyclingAllocator.h"
-#include <limits>
-#include <iterator>
-
-// FIXME: Remove debugging code
-#ifndef NDEBUG
-#include "llvm/Support/raw_ostream.h"
-#endif
-
-namespace llvm {
-
-
-//===----------------------------------------------------------------------===//
-//---                              Key traits                              ---//
-//===----------------------------------------------------------------------===//
-//
-// The IntervalMap works with closed or half-open intervals.
-// Adjacent intervals that map to the same value are coalesced.
-//
-// The IntervalMapInfo traits class is used to determine if a key is contained
-// in an interval, and if two intervals are adjacent so they can be coalesced.
-// The provided implementation works for closed integer intervals, other keys
-// probably need a specialized version.
-//
-// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
-//
-// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
-// allowed. This is so that stopLess(a, b) can be used to determine if two
-// intervals overlap.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename T>
-struct IntervalMapInfo {
-
-  /// startLess - Return true if x is not in [a;b].
-  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
-  static inline bool startLess(const T &x, const T &a) {
-    return x < a;
-  }
-
-  /// stopLess - Return true if x is not in [a;b].
-  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
-  static inline bool stopLess(const T &b, const T &x) {
-    return b < x;
-  }
-
-  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
-  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
-  static inline bool adjacent(const T &a, const T &b) {
-    return a+1 == b;
-  }
-
-};
-
-/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
-/// It should be considered private to the implementation.
-namespace IntervalMapImpl {
-
-// Forward declarations.
-template <typename, typename, unsigned, typename> class Leaf;
-template <typename, typename, unsigned, typename> class Branch;
-
-typedef std::pair<unsigned,unsigned> IdxPair;
-
-
-//===----------------------------------------------------------------------===//
-//---                            Node Storage                              ---//
-//===----------------------------------------------------------------------===//
-//
-// Both leaf and branch nodes store vectors of (key,value) pairs.
-// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (KeyT, NodeRef).
-//
-// Keys and values are stored in separate arrays to avoid padding caused by
-// different object alignments. This also helps improve locality of reference
-// when searching the keys.
-//
-// The nodes don't know how many elements they contain - that information is
-// stored elsewhere. Omitting the size field prevents padding and allows a node
-// to fill the allocated cache lines completely.
-//
-// These are typical key and value sizes, the node branching factor (N), and
-// wasted space when nodes are sized to fit in three cache lines (192 bytes):
-//
-//   KT  VT   N Waste  Used by
-//    4   4  24   0    Branch<4> (32-bit pointers)
-//    4   8  16   0    Branch<4>
-//    8   4  16   0    Leaf<4,4>
-//    8   8  12   0    Leaf<4,8>, Branch<8>
-//   16   4   9  12    Leaf<8,4>
-//   16   8   8   0    Leaf<8,8>
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KT, typename VT, unsigned N>
-class NodeBase {
-public:
-  enum { Capacity = N };
-
-  KT key[N];
-  VT val[N];
-
-  /// copy - Copy elements from another node.
-  /// @param other Node elements are copied from.
-  /// @param i     Beginning of the source range in other.
-  /// @param j     Beginning of the destination range in this.
-  /// @param count Number of elements to copy.
-  template <unsigned M>
-  void copy(const NodeBase<KT, VT, M> &Other, unsigned i,
-            unsigned j, unsigned Count) {
-    assert(i + Count <= M && "Invalid source range");
-    assert(j + Count <= N && "Invalid dest range");
-    std::copy(Other.key + i, Other.key + i + Count, key + j);
-    std::copy(Other.val + i, Other.val + i + Count, val + j);
-  }
-
-  /// lmove - Move elements to the left.
-  /// @param i     Beginning of the source range.
-  /// @param j     Beginning of the destination range.
-  /// @param count Number of elements to copy.
-  void lmove(unsigned i, unsigned j, unsigned Count) {
-    assert(j <= i && "Use rmove shift elements right");
-    copy(*this, i, j, Count);
-  }
-
-  /// rmove - Move elements to the right.
-  /// @param i     Beginning of the source range.
-  /// @param j     Beginning of the destination range.
-  /// @param count Number of elements to copy.
-  void rmove(unsigned i, unsigned j, unsigned Count) {
-    assert(i <= j && "Use lmove shift elements left");
-    assert(j + Count <= N && "Invalid range");
-    std::copy_backward(key + i, key + i + Count, key + j + Count);
-    std::copy_backward(val + i, val + i + Count, val + j + Count);
-  }
-
-  /// erase - Erase elements [i;j).
-  /// @param i    Beginning of the range to erase.
-  /// @param j    End of the range. (Exclusive).
-  /// @param size Number of elements in node.
-  void erase(unsigned i, unsigned j, unsigned Size) {
-    lmove(j, i, Size - j);
-  }
-
-  /// shift - Shift elements [i;size) 1 position to the right.
-  /// @param i    Beginning of the range to move.
-  /// @param size Number of elements in node.
-  void shift(unsigned i, unsigned Size) {
-    rmove(i, i + 1, Size - i);
-  }
-
-  /// xferLeft - Transfer elements to a left sibling node.
-  /// @param size  Number of elements in this.
-  /// @param sib   Left sibling node.
-  /// @param ssize Number of elements in sib.
-  /// @param count Number of elements to transfer.
-  void xferLeft(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
-    Sib.copy(*this, 0, SSize, Count);
-    erase(0, Count, Size);
-  }
-
-  /// xferRight - Transfer elements to a right sibling node.
-  /// @param size  Number of elements in this.
-  /// @param sib   Right sibling node.
-  /// @param ssize Number of elements in sib.
-  /// @param count Number of elements to transfer.
-  void xferRight(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
-    Sib.rmove(0, Count, SSize);
-    Sib.copy(*this, Size-Count, 0, Count);
-  }
-
-  /// adjLeftSib - Adjust the number if elements in this node by moving
-  /// elements to or from a left sibling node.
-  /// @param size  Number of elements in this.
-  /// @param sib   Right sibling node.
-  /// @param ssize Number of elements in sib.
-  /// @param add   The number of elements to add to this node, possibly < 0.
-  /// @return      Number of elements added to this node, possibly negative.
-  int adjLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
-    if (Add > 0) {
-      // We want to grow, copy from sib.
-      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
-      Sib.xferRight(SSize, *this, Size, Count);
-      return Count;
-    } else {
-      // We want to shrink, copy to sib.
-      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
-      xferLeft(Size, Sib, SSize, Count);
-      return -Count;
-    }
-  }
-};
-
-
-//===----------------------------------------------------------------------===//
-//---                             NodeSizer                                ---//
-//===----------------------------------------------------------------------===//
-//
-// Compute node sizes from key and value types.
-//
-// The branching factors are chosen to make nodes fit in three cache lines.
-// This may not be possible if keys or values are very large. Such large objects
-// are handled correctly, but a std::map would probably give better performance.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT>
-struct NodeSizer {
-  enum {
-    // Cache line size. Most architectures have 32 or 64 byte cache lines.
-    // We use 64 bytes here because it provides good branching factors.
-    Log2CacheLine = 6,
-    CacheLineBytes = 1 << Log2CacheLine,
-
-    // Compute the leaf node branching factor that makes a node fit in three
-    // cache lines. The branching factor must be at least 3, or some B+-tree
-    // balancing algorithms won't work.
-    // LeafSize can't be larger than CacheLineBytes. This is required by the
-    // PointerIntPair used by NodeRef.
-    DesiredNodeBytes = 3 * CacheLineBytes,
-    DesiredLeafSize = DesiredNodeBytes / (2*sizeof(KeyT)+sizeof(ValT)),
-    LeafSize = DesiredLeafSize > 3 ? DesiredLeafSize : 3,
-
-    // Now that we have the leaf branching factor, compute the actual allocation
-    // unit size by rounding up to a whole number of cache lines.
-    LeafBytes = sizeof(NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>),
-    AllocBytes = (LeafBytes + CacheLineBytes-1) & ~(CacheLineBytes-1),
-
-    // Determine the branching factor for branch nodes, constrained to
-    // CacheLineBytes to please NodeRef.
-    DesiredBranchSize = AllocBytes / (sizeof(KeyT) + sizeof(void*)),
-    BranchSize = DesiredBranchSize < CacheLineBytes ?
-                 DesiredBranchSize : CacheLineBytes
-  };
-
-  /// Allocator - The recycling allocator used for both branch and leaf nodes.
-  /// This typedef is very likely to be identical for all IntervalMaps with
-  /// reasonably sized entries, so the same allocator can be shared among
-  /// different kinds of maps.
-  typedef RecyclingAllocator<BumpPtrAllocator, char,
-                             AllocBytes, CacheLineBytes> Allocator;
-
-};
-
-
-//===----------------------------------------------------------------------===//
-//---                              NodeRef                                 ---//
-//===----------------------------------------------------------------------===//
-//
-// B+-tree nodes can be leaves or branches, so we need a polymorphic node
-// pointer that can point to both kinds.
-//
-// All nodes are cache line aligned and the low 6 bits of a node pointer are
-// always 0. These bits are used to store the number of elements in the
-// referenced node. Besides saving space, placing node sizes in the parents
-// allow tree balancing algorithms to run without faulting cache lines for nodes
-// that may not need to be modified.
-//
-// A NodeRef doesn't know whether it references a leaf node or a branch node.
-// It is the responsibility of the caller to use the correct types.
-//
-// Nodes are never supposed to be empty, and it is invalid to store a node size
-// of 0 in a NodeRef. The valid range of sizes is 1-64.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, typename Traits>
-class NodeRef {
-
-public:
-  typedef NodeSizer<KeyT, ValT> NodeSizer;
-  typedef Leaf<KeyT, ValT, NodeSizer::LeafSize, Traits> Leaf;
-  typedef Branch<KeyT, ValT, NodeSizer::BranchSize, Traits> Branch;
-
-private:
-  struct CacheAlignedPointerTraits {
-    static inline void *getAsVoidPointer(void *P) { return P; }
-    static inline void *getFromVoidPointer(void *P) { return P; }
-    enum { NumLowBitsAvailable = NodeSizer::Log2CacheLine };
-  };
-
-  PointerIntPair<void*, NodeSizer::Log2CacheLine, unsigned,
-                 CacheAlignedPointerTraits> pip;
-
-public:
-  /// NodeRef - Create a null ref.
-  NodeRef() {}
-
-  /// operator bool - Detect a null ref.
-  operator bool() const { return pip.getOpaqueValue(); }
-
-  /// NodeRef - Create a reference to the leaf node p with n elements.
-  NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {}
-
-  /// NodeRef - Create a reference to the branch node p with n elements.
-  NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {}
-
-  /// size - Return the number of elements in the referenced node.
-  unsigned size() const { return pip.getInt() + 1; }
-
-  /// setSize - Update the node size.
-  void setSize(unsigned n) { pip.setInt(n - 1); }
-
-  /// leaf - Return the referenced leaf node.
-  /// Note there are no dynamic type checks.
-  Leaf &leaf() const {
-    return *reinterpret_cast<Leaf*>(pip.getPointer());
-  }
-
-  /// branch - Return the referenced branch node.
-  /// Note there are no dynamic type checks.
-  Branch &branch() const {
-    return *reinterpret_cast<Branch*>(pip.getPointer());
-  }
-
-  bool operator==(const NodeRef &RHS) const {
-    if (pip == RHS.pip)
-      return true;
-    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
-    return false;
-  }
-
-  bool operator!=(const NodeRef &RHS) const {
-    return !operator==(RHS);
-  }
-};
-
-//===----------------------------------------------------------------------===//
-//---                            Leaf nodes                                ---//
-//===----------------------------------------------------------------------===//
-//
-// Leaf nodes store up to N disjoint intervals with corresponding values.
-//
-// The intervals are kept sorted and fully coalesced so there are no adjacent
-// intervals mapping to the same value.
-//
-// These constraints are always satisfied:
-//
-// - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals.
-//
-// - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted.
-//
-// - val[i] != val[i + 1] ||
-//     !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class Leaf : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
-public:
-  const KeyT &start(unsigned i) const { return this->key[i].first; }
-  const KeyT &stop(unsigned i) const { return this->key[i].second; }
-  const ValT &value(unsigned i) const { return this->val[i]; }
-
-  KeyT &start(unsigned i) { return this->key[i].first; }
-  KeyT &stop(unsigned i) { return this->key[i].second; }
-  ValT &value(unsigned i) { return this->val[i]; }
-
-  /// findFrom - Find the first interval after i that may contain x.
-  /// @param i    Starting index for the search.
-  /// @param size Number of elements in node.
-  /// @param x    Key to search for.
-  /// @return     First index with !stopLess(key[i].stop, x), or size.
-  ///             This is the first interval that can possibly contain x.
-  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
-    assert(i <= Size && Size <= N && "Bad indices");
-    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
-           "Index is past the needed point");
-    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
-    return i;
-  }
-
-  /// safeFind - Find an interval that is known to exist. This is the same as
-  /// findFrom except is it assumed that x is at least within range of the last
-  /// interval.
-  /// @param i Starting index for the search.
-  /// @param x Key to search for.
-  /// @return  First index with !stopLess(key[i].stop, x), never size.
-  ///          This is the first interval that can possibly contain x.
-  unsigned safeFind(unsigned i, KeyT x) const {
-    assert(i < N && "Bad index");
-    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
-           "Index is past the needed point");
-    while (Traits::stopLess(stop(i), x)) ++i;
-    assert(i < N && "Unsafe intervals");
-    return i;
-  }
-
-  /// safeLookup - Lookup mapped value for a safe key.
-  /// It is assumed that x is within range of the last entry.
-  /// @param x        Key to search for.
-  /// @param NotFound Value to return if x is not in any interval.
-  /// @return         The mapped value at x or NotFound.
-  ValT safeLookup(KeyT x, ValT NotFound) const {
-    unsigned i = safeFind(0, x);
-    return Traits::startLess(x, start(i)) ? NotFound : value(i);
-  }
-
-  IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
-  unsigned extendStop(unsigned i, unsigned Size, KeyT b);
-
-#ifndef NDEBUG
-  void dump(unsigned Size) {
-    errs() << "  N" << this << " [shape=record label=\"{ " << Size << '/' << N;
-    for (unsigned i = 0; i != Size; ++i)
-      errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
-    errs() << "}\"];\n";
-  }
-#endif
-
-};
-
-/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
-/// possible. This may cause the node to grow by 1, or it may cause the node
-/// to shrink because of coalescing.
-/// @param i    Starting index = insertFrom(0, size, a)
-/// @param size Number of elements in node.
-/// @param a    Interval start.
-/// @param b    Interval stop.
-/// @param y    Value be mapped.
-/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-IdxPair Leaf<KeyT, ValT, N, Traits>::
-insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
-  assert(i <= Size && Size <= N && "Invalid index");
-  assert(!Traits::stopLess(b, a) && "Invalid interval");
-
-  // Verify the findFrom invariant.
-  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
-  assert((i == Size || !Traits::stopLess(stop(i), a)));
-
-  // Coalesce with previous interval.
-  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
-    return IdxPair(i - 1, extendStop(i - 1, Size, b));
-
-  // Detect overflow.
-  if (i == N)
-    return IdxPair(i, N + 1);
-
-  // Add new interval at end.
-  if (i == Size) {
-    start(i) = a;
-    stop(i) = b;
-    value(i) = y;
-    return IdxPair(i, Size + 1);
-  }
-
-  // Overlapping intervals?
-  if (!Traits::stopLess(b, start(i))) {
-    assert(value(i) == y && "Inconsistent values in overlapping intervals");
-    if (Traits::startLess(a, start(i)))
-      start(i) = a;
-    return IdxPair(i, extendStop(i, Size, b));
-  }
-
-  // Try to coalesce with following interval.
-  if (value(i) == y && Traits::adjacent(b, start(i))) {
-    start(i) = a;
-    return IdxPair(i, Size);
-  }
-
-  // We must insert before i. Detect overflow.
-  if (Size == N)
-    return IdxPair(i, N + 1);
-
-  // Insert before i.
-  this->shift(i, Size);
-  start(i) = a;
-  stop(i) = b;
-  value(i) = y;
-  return IdxPair(i, Size + 1);
-}
-
-/// extendStop - Extend stop(i) to b, coalescing with following intervals.
-/// @param i    Interval to extend.
-/// @param size Number of elements in node.
-/// @param b    New interval end point.
-/// @return     New node size after coalescing.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-unsigned Leaf<KeyT, ValT, N, Traits>::
-extendStop(unsigned i, unsigned Size, KeyT b) {
-  assert(i < Size && Size <= N && "Bad indices");
-
-  // Are we even extending the interval?
-  if (Traits::startLess(b, stop(i)))
-    return Size;
-
-  // Find the first interval that may be preserved.
-  unsigned j = findFrom(i + 1, Size, b);
-  if (j < Size) {
-    // Would key[i] overlap key[j] after the extension?
-    if (Traits::stopLess(b, start(j))) {
-      // Not overlapping. Perhaps adjacent and coalescable?
-      if (value(i) == value(j) && Traits::adjacent(b, start(j)))
-        b = stop(j++);
-    } else {
-      // Overlap. Include key[j] in the new interval.
-      assert(value(i) == value(j) && "Overlapping values");
-      b = stop(j++);
-    }
-  }
-  stop(i) =  b;
-
-  // Entries [i+1;j) were coalesced.
-  if (i + 1 < j && j < Size)
-    this->erase(i + 1, j, Size);
-  return Size - (j - (i + 1));
-}
-
-
-//===----------------------------------------------------------------------===//
-//---                             Branch nodes                             ---//
-//===----------------------------------------------------------------------===//
-//
-// A branch node stores references to 1--N subtrees all of the same height.
-//
-// The key array in a branch node holds the rightmost stop key of each subtree.
-// It is redundant to store the last stop key since it can be found in the
-// parent node, but doing so makes tree balancing a lot simpler.
-//
-// It is unusual for a branch node to only have one subtree, but it can happen
-// in the root node if it is smaller than the normal nodes.
-//
-// When all of the leaf nodes from all the subtrees are concatenated, they must
-// satisfy the same constraints as a single leaf node. They must be sorted,
-// sane, and fully coalesced.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class Branch : public NodeBase<KeyT, NodeRef<KeyT, ValT, Traits>, N> {
-  typedef  NodeRef<KeyT, ValT, Traits> NodeRef;
-public:
-  const KeyT &stop(unsigned i) const { return this->key[i]; }
-  const NodeRef &subtree(unsigned i) const { return this->val[i]; }
-
-  KeyT &stop(unsigned i) { return this->key[i]; }
-  NodeRef &subtree(unsigned i) { return this->val[i]; }
-
-
-  /// findFrom - Find the first subtree after i that may contain x.
-  /// @param i    Starting index for the search.
-  /// @param size Number of elements in node.
-  /// @param x    Key to search for.
-  /// @return     First index with !stopLess(key[i], x), or size.
-  ///             This is the first subtree that can possibly contain x.
-  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
-    assert(i <= Size && Size <= N && "Bad indices");
-    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
-           "Index to findFrom is past the needed point");
-    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
-    return i;
-  }
-
-  /// safeFind - Find a subtree that is known to exist. This is the same as
-  /// findFrom except is it assumed that x is in range.
-  /// @param i Starting index for the search.
-  /// @param x Key to search for.
-  /// @return  First index with !stopLess(key[i], x), never size.
-  ///          This is the first subtree that can possibly contain x.
-  unsigned safeFind(unsigned i, KeyT x) const {
-    assert(i < N && "Bad index");
-    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
-           "Index is past the needed point");
-    while (Traits::stopLess(stop(i), x)) ++i;
-    assert(i < N && "Unsafe intervals");
-    return i;
-  }
-
-  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
-  /// @param x Key to search for.
-  /// @return  Subtree containing x
-  NodeRef safeLookup(KeyT x) const {
-    return subtree(safeFind(0, x));
-  }
-
-  /// insert - Insert a new (subtree, stop) pair.
-  /// @param i    Insert position, following entries will be shifted.
-  /// @param size Number of elements in node.
-  /// @param node Subtree to insert.
-  /// @param stp  Last key in subtree.
-  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
-    assert(Size < N && "branch node overflow");
-    assert(i <= Size && "Bad insert position");
-    this->shift(i, Size);
-    subtree(i) = Node;
-    stop(i) = Stop;
-  }
-
-#ifndef NDEBUG
-  void dump(unsigned Size) {
-    errs() << "  N" << this << " [shape=record label=\"" << Size << '/' << N;
-    for (unsigned i = 0; i != Size; ++i)
-      errs() << " | <s" << i << "> " << stop(i);
-    errs() << "\"];\n";
-    for (unsigned i = 0; i != Size; ++i)
-      errs() << "  N" << this << ":s" << i << " -> N"
-             << &subtree(i).branch() << ";\n";
-  }
-#endif
-
-};
-
-} // namespace IntervalMapImpl
-
-
-//===----------------------------------------------------------------------===//
-//---                          IntervalMap                                ----//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT,
-          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
-          typename Traits = IntervalMapInfo<KeyT> >
-class IntervalMap {
-  typedef IntervalMapImpl::NodeRef<KeyT, ValT, Traits> NodeRef;
-  typedef typename NodeRef::NodeSizer NodeSizer;
-  typedef typename NodeRef::Leaf Leaf;
-  typedef typename NodeRef::Branch Branch;
-  typedef IntervalMapImpl::Leaf<KeyT, ValT, N, Traits> RootLeaf;
-  typedef IntervalMapImpl::IdxPair IdxPair;
-
-  // The RootLeaf capacity is given as a template parameter. We must compute the
-  // corresponding RootBranch capacity.
-  enum {
-    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
-      (sizeof(KeyT) + sizeof(NodeRef)),
-    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
-  };
-
-  typedef IntervalMapImpl::Branch<KeyT, ValT, RootBranchCap, Traits> RootBranch;
-
-  // When branched, we store a global start key as well as the branch node.
-  struct RootBranchData {
-    KeyT start;
-    RootBranch node;
-  };
-
-  enum {
-    RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
-                   sizeof(RootBranchData) : sizeof(RootLeaf)
-  };
-
-public:
-  typedef typename NodeSizer::Allocator Allocator;
-
-private:
-  // The root data is either a RootLeaf or a RootBranchData instance.
-  // We can't put them in a union since C++03 doesn't allow non-trivial
-  // constructors in unions.
-  // Instead, we use a char array with pointer alignment. The alignment is
-  // ensured by the allocator member in the class, but still verified in the
-  // constructor. We don't support keys or values that are more aligned than a
-  // pointer.
-  char data[RootDataSize];
-
-  // Tree height.
-  // 0: Leaves in root.
-  // 1: Root points to leaf.
-  // 2: root->branch->leaf ...
-  unsigned height;
-
-  // Number of entries in the root node.
-  unsigned rootSize;
-
-  // Allocator used for creating external nodes.
-  Allocator &allocator;
-
-  const RootLeaf &rootLeaf() const {
-    assert(!branched() && "Cannot acces leaf data in branched root");
-    return *reinterpret_cast<const RootLeaf*>(data);
-  }
-  RootLeaf &rootLeaf() {
-    assert(!branched() && "Cannot acces leaf data in branched root");
-    return *reinterpret_cast<RootLeaf*>(data);
-  }
-  const RootBranchData &rootBranchData() const {
-    assert(branched() && "Cannot access branch data in non-branched root");
-    return *reinterpret_cast<const RootBranchData*>(data);
-  }
-  RootBranchData &rootBranchData() {
-    assert(branched() && "Cannot access branch data in non-branched root");
-    return *reinterpret_cast<RootBranchData*>(data);
-  }
-  const RootBranch &rootBranch() const { return rootBranchData().node; }
-  RootBranch &rootBranch()             { return rootBranchData().node; }
-  KeyT rootBranchStart() const { return rootBranchData().start; }
-  KeyT &rootBranchStart()      { return rootBranchData().start; }
-
-  Leaf *allocLeaf()  {
-    return new(allocator.template Allocate<Leaf>()) Leaf();
-  }
-  void freeLeaf(Leaf *P) {
-    P->~Leaf();
-    allocator.Deallocate(P);
-  }
-
-  Branch *allocBranch() {
-    return new(allocator.template Allocate<Branch>()) Branch();
-  }
-  void freeBranch(Branch *P) {
-    P->~Branch();
-    allocator.Deallocate(P);
-  }
-
-
-  IdxPair branchRoot(unsigned Position);
-  IdxPair splitRoot(unsigned Position);
-
-  void switchRootToBranch() {
-    rootLeaf().~RootLeaf();
-    height = 1;
-    new (&rootBranchData()) RootBranchData();
-  }
-
-  void switchRootToLeaf() {
-    rootBranchData().~RootBranchData();
-    height = 0;
-    new(&rootLeaf()) RootLeaf();
-  }
-
-  bool branched() const { return height > 0; }
-
-  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
-
-  void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level));
-
-public:
-  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
-    assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
-           "Insufficient alignment");
-    new(&rootLeaf()) RootLeaf();
-  }
-
-  /// empty -  Return true when no intervals are mapped.
-  bool empty() const {
-    return rootSize == 0;
-  }
-
-  /// start - Return the smallest mapped key in a non-empty map.
-  KeyT start() const {
-    assert(!empty() && "Empty IntervalMap has no start");
-    return !branched() ? rootLeaf().start(0) : rootBranchStart();
-  }
-
-  /// stop - Return the largest mapped key in a non-empty map.
-  KeyT stop() const {
-    assert(!empty() && "Empty IntervalMap has no stop");
-    return !branched() ? rootLeaf().stop(rootSize - 1) :
-                         rootBranch().stop(rootSize - 1);
-  }
-
-  /// lookup - Return the mapped value at x or NotFound.
-  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
-    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
-      return NotFound;
-    return branched() ? treeSafeLookup(x, NotFound) :
-                        rootLeaf().safeLookup(x, NotFound);
-  }
-
-  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
-  /// It is assumed that no key in the interval is mapped to another value, but
-  /// overlapping intervals already mapped to y will be coalesced.
-  void insert(KeyT a, KeyT b, ValT y) {
-    find(a).insert(a, b, y);
-  }
-
-  class const_iterator;
-  class iterator;
-  friend class const_iterator;
-  friend class iterator;
-
-  const_iterator begin() const {
-    iterator I(*this);
-    I.goToBegin();
-    return I;
-  }
-
-  iterator begin() {
-    iterator I(*this);
-    I.goToBegin();
-    return I;
-  }
-
-  const_iterator end() const {
-    iterator I(*this);
-    I.goToEnd();
-    return I;
-  }
-
-  iterator end() {
-    iterator I(*this);
-    I.goToEnd();
-    return I;
-  }
-
-  /// find - Return an iterator pointing to the first interval ending at or
-  /// after x, or end().
-  const_iterator find(KeyT x) const {
-    iterator I(*this);
-    I.find(x);
-    return I;
-  }
-
-  iterator find(KeyT x) {
-    iterator I(*this);
-    I.find(x);
-    return I;
-  }
-
-#ifndef NDEBUG
-  void dump();
-  void dumpNode(NodeRef Node, unsigned Height);
-#endif
-};
-
-/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
-/// branched root.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-ValT IntervalMap<KeyT, ValT, N, Traits>::
-treeSafeLookup(KeyT x, ValT NotFound) const {
-  assert(branched() && "treeLookup assumes a branched root");
-
-  NodeRef NR = rootBranch().safeLookup(x);
-  for (unsigned h = height-1; h; --h)
-    NR = NR.branch().safeLookup(x);
-  return NR.leaf().safeLookup(x, NotFound);
-}
-
-
-// branchRoot - Switch from a leaf root to a branched root.
-// Return the new (root offset, node offset) corresponding to Position.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
-branchRoot(unsigned Position) {
-  // How many external leaf nodes to hold RootLeaf+1?
-  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
-
-  // Compute element distribution among new nodes.
-  unsigned size[Nodes];
-  IdxPair NewOffset(0, Position);
-
-  // Is is very common for the root node to be smaller than external nodes.
-  if (Nodes == 1)
-    size[0] = rootSize;
-  else
-    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
-                           Position, true);
-
-  // Allocate new nodes.
-  unsigned pos = 0;
-  NodeRef node[Nodes];
-  for (unsigned n = 0; n != Nodes; ++n) {
-    node[n] = NodeRef(allocLeaf(), size[n]);
-    node[n].leaf().copy(rootLeaf(), pos, 0, size[n]);
-    pos += size[n];
-  }
-
-  // Destroy the old leaf node, construct branch node instead.
-  switchRootToBranch();
-  for (unsigned n = 0; n != Nodes; ++n) {
-    rootBranch().stop(n) = node[n].leaf().stop(size[n]-1);
-    rootBranch().subtree(n) = node[n];
-  }
-  rootBranchStart() = node[0].leaf().start(0);
-  rootSize = Nodes;
-  return NewOffset;
-}
-
-// splitRoot - Split the current BranchRoot into multiple Branch nodes.
-// Return the new (root offset, node offset) corresponding to Position.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
-splitRoot(unsigned Position) {
-  // How many external leaf nodes to hold RootBranch+1?
-  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
-
-  // Compute element distribution among new nodes.
-  unsigned Size[Nodes];
-  IdxPair NewOffset(0, Position);
-
-  // Is is very common for the root node to be smaller than external nodes.
-  if (Nodes == 1)
-    Size[0] = rootSize;
-  else
-    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
-                           Position, true);
-
-  // Allocate new nodes.
-  unsigned Pos = 0;
-  NodeRef Node[Nodes];
-  for (unsigned n = 0; n != Nodes; ++n) {
-    Node[n] = NodeRef(allocBranch(), Size[n]);
-    Node[n].branch().copy(rootBranch(), Pos, 0, Size[n]);
-    Pos += Size[n];
-  }
-
-  for (unsigned n = 0; n != Nodes; ++n) {
-    rootBranch().stop(n) = Node[n].branch().stop(Size[n]-1);
-    rootBranch().subtree(n) = Node[n];
-  }
-  rootSize = Nodes;
-  return NewOffset;
-}
-
-/// visitNodes - Visit each external node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
-  if (!branched())
-    return;
-  SmallVector<NodeRef, 4> Refs, NextRefs;
-
-  // Collect level 0 nodes from the root.
-  for (unsigned i = 0; i != rootSize; ++i)
-    Refs.push_back(rootBranch().subtree(i));
-
-  // Visit all branch nodes.
-  for (unsigned h = height - 1; h; --h) {
-    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
-      Branch &B = Refs[i].branch();
-      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
-        NextRefs.push_back(B.subtree(j));
-      (this->*f)(Refs[i], h);
-    }
-    Refs.clear();
-    Refs.swap(NextRefs);
-  }
-
-  // Visit all leaf nodes.
-  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
-    (this->*f)(Refs[i], 0);
-}
-
-#ifndef NDEBUG
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-dumpNode(NodeRef Node, unsigned Height) {
-  if (Height)
-    Node.branch().dump(Node.size());
-  else
-    Node.leaf().dump(Node.size());
-}
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-dump() {
-  errs() << "digraph {\n";
-  if (branched())
-    rootBranch().dump(rootSize);
-  else
-    rootLeaf().dump(rootSize);
-  visitNodes(&IntervalMap::dumpNode);
-  errs() << "}\n";
-}
-#endif
-
-//===----------------------------------------------------------------------===//
-//---                             const_iterator                          ----//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
-  public std::iterator<std::bidirectional_iterator_tag, ValT> {
-protected:
-  friend class IntervalMap;
-  typedef std::pair<NodeRef, unsigned> PathEntry;
-  typedef SmallVector<PathEntry, 4> Path;
-
-  // The map referred to.
-  IntervalMap *map;
-
-  // The offset into map's root node.
-  unsigned rootOffset;
-
-  // We store a full path from the root to the current position.
-  //
-  // When rootOffset == map->rootSize, we are at end() and path() is empty.
-  // Otherwise, when branched these conditions hold:
-  //
-  // 1. path.front().first == rootBranch().subtree(rootOffset)
-  // 2. path[i].first == path[i-1].first.branch().subtree(path[i-1].second)
-  // 3. path.size() == map->height.
-  //
-  // Thus, path.back() always refers to the current leaf node unless the root is
-  // unbranched.
-  //
-  // The path may be partially filled, but never between iterator calls.
-  Path path;
-
-  explicit const_iterator(IntervalMap &map)
-    : map(&map), rootOffset(map.rootSize) {}
-
-  bool branched() const {
-    assert(map && "Invalid iterator");
-    return map->branched();
-  }
-
-  NodeRef   pathNode(unsigned h)   const { return path[h].first; }
-  NodeRef  &pathNode(unsigned h)         { return path[h].first; }
-  unsigned  pathOffset(unsigned h) const { return path[h].second; }
-  unsigned &pathOffset(unsigned h)       { return path[h].second; }
-
-  Leaf &treeLeaf() const {
-    assert(branched() && path.size() == map->height);
-    return path.back().first.leaf();
-  }
-  unsigned treeLeafSize() const {
-    assert(branched() && path.size() == map->height);
-    return path.back().first.size();
-  }
-  unsigned &treeLeafOffset() {
-    assert(branched() && path.size() == map->height);
-    return path.back().second;
-  }
-  unsigned treeLeafOffset() const {
-    assert(branched() && path.size() == map->height);
-    return path.back().second;
-  }
-
-  // Get the next node ptr for an incomplete path.
-  NodeRef pathNextDown() {
-    assert(path.size() < map->height && "Path is already complete");
-
-    if (path.empty())
-      return map->rootBranch().subtree(rootOffset);
-    else
-      return path.back().first.branch().subtree(path.back().second);
-  }
-
-  void pathFillLeft();
-  void pathFillFind(KeyT x);
-  void pathFillRight();
-
-  NodeRef leftSibling(unsigned level) const;
-  NodeRef rightSibling(unsigned level) const;
-
-  void treeIncrement();
-  void treeDecrement();
-  void treeFind(KeyT x);
-
-public:
-  /// valid - Return true if the current position is valid, false for end().
-  bool valid() const {
-    assert(map && "Invalid iterator");
-    return rootOffset < map->rootSize;
-  }
-
-  /// start - Return the beginning of the current interval.
-  const KeyT &start() const {
-    assert(valid() && "Cannot access invalid iterator");
-    return branched() ? treeLeaf().start(treeLeafOffset()) :
-                        map->rootLeaf().start(rootOffset);
-  }
-
-  /// stop - Return the end of the current interval.
-  const KeyT &stop() const {
-    assert(valid() && "Cannot access invalid iterator");
-    return branched() ? treeLeaf().stop(treeLeafOffset()) :
-                        map->rootLeaf().stop(rootOffset);
-  }
-
-  /// value - Return the mapped value at the current interval.
-  const ValT &value() const {
-    assert(valid() && "Cannot access invalid iterator");
-    return branched() ? treeLeaf().value(treeLeafOffset()) :
-                        map->rootLeaf().value(rootOffset);
-  }
-
-  const ValT &operator*() const {
-    return value();
-  }
-
-  bool operator==(const const_iterator &RHS) const {
-    assert(map == RHS.map && "Cannot compare iterators from different maps");
-    return rootOffset == RHS.rootOffset &&
-             (!valid() || !branched() || path.back() == RHS.path.back());
-  }
-
-  bool operator!=(const const_iterator &RHS) const {
-    return !operator==(RHS);
-  }
-
-  /// goToBegin - Move to the first interval in map.
-  void goToBegin() {
-    rootOffset = 0;
-    path.clear();
-    if (branched())
-      pathFillLeft();
-  }
-
-  /// goToEnd - Move beyond the last interval in map.
-  void goToEnd() {
-    rootOffset = map->rootSize;
-    path.clear();
-  }
-
-  /// preincrement - move to the next interval.
-  const_iterator &operator++() {
-    assert(valid() && "Cannot increment end()");
-    if (!branched())
-      ++rootOffset;
-    else if (treeLeafOffset() != treeLeafSize() - 1)
-      ++treeLeafOffset();
-    else
-      treeIncrement();
-    return *this;
-  }
-
-  /// postincrement - Dont do that!
-  const_iterator operator++(int) {
-    const_iterator tmp = *this;
-    operator++();
-    return tmp;
-  }
-
-  /// predecrement - move to the previous interval.
-  const_iterator &operator--() {
-    if (!branched()) {
-      assert(rootOffset && "Cannot decrement begin()");
-      --rootOffset;
-    } else if (treeLeafOffset())
-      --treeLeafOffset();
-    else
-      treeDecrement();
-    return *this;
-  }
-
-  /// postdecrement - Dont do that!
-  const_iterator operator--(int) {
-    const_iterator tmp = *this;
-    operator--();
-    return tmp;
-  }
-
-  /// find - Move to the first interval with stop >= x, or end().
-  /// This is a full search from the root, the current position is ignored.
-  void find(KeyT x) {
-    if (branched())
-      treeFind(x);
-    else
-      rootOffset = map->rootLeaf().findFrom(0, map->rootSize, x);
-  }
-
-  /// advanceTo - Move to the first interval with stop >= x, or end().
-  /// The search is started from the current position, and no earlier positions
-  /// can be found. This is much faster than find() for small moves.
-  void advanceTo(KeyT x) {
-    if (branched())
-      treeAdvanceTo(x);
-    else
-      rootOffset = map->rootLeaf().findFrom(rootOffset, map->rootSize, x);
-  }
-
-};
-
-// pathFillLeft - Complete path by following left-most branches.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::pathFillLeft() {
-  NodeRef NR = pathNextDown();
-  for (unsigned i = map->height - path.size() - 1; i; --i) {
-    path.push_back(PathEntry(NR, 0));
-    NR = NR.branch().subtree(0);
-  }
-  path.push_back(PathEntry(NR, 0));
-}
-
-// pathFillFind - Complete path by searching for x.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::pathFillFind(KeyT x) {
-  NodeRef NR = pathNextDown();
-  for (unsigned i = map->height - path.size() - 1; i; --i) {
-    unsigned p = NR.branch().safeFind(0, x);
-    path.push_back(PathEntry(NR, p));
-    NR = NR.branch().subtree(p);
-  }
-  path.push_back(PathEntry(NR, NR.leaf().safeFind(0, x)));
-}
-
-// pathFillRight - Complete path by adding rightmost entries.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::pathFillRight() {
-  NodeRef NR = pathNextDown();
-  for (unsigned i = map->height - path.size() - 1; i; --i) {
-    unsigned p = NR.size() - 1;
-    path.push_back(PathEntry(NR, p));
-    NR = NR.branch().subtree(p);
-  }
-  path.push_back(PathEntry(NR, NR.size() - 1));
-}
-
-/// leftSibling - find the left sibling node to path[level].
-/// @param level 0 is just below the root, map->height - 1 for the leaves.
-/// @return The left sibling NodeRef, or NULL.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
-IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::leftSibling(unsigned level) const {
-  assert(branched() && "Not at a branched node");
-  assert(level <= path.size() && "Bad level");
-
-  // Go up the tree until we can go left.
-  unsigned h = level;
-  while (h && pathOffset(h - 1) == 0)
-    --h;
-
-  // We are at the first leaf node, no left sibling.
-  if (!h && rootOffset == 0)
-    return NodeRef();
-
-  // NR is the subtree containing our left sibling.
-  NodeRef NR = h ?
-    pathNode(h - 1).branch().subtree(pathOffset(h - 1) - 1) :
-    map->rootBranch().subtree(rootOffset - 1);
-
-  // Keep right all the way down.
-  for (; h != level; ++h)
-    NR = NR.branch().subtree(NR.size() - 1);
-  return NR;
-}
-
-/// rightSibling - find the right sibling node to path[level].
-/// @param level 0 is just below the root, map->height - 1 for the leaves.
-/// @return The right sibling NodeRef, or NULL.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
-IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::rightSibling(unsigned level) const {
-  assert(branched() && "Not at a branched node");
-  assert(level <= this->path.size() && "Bad level");
-
-  // Go up the tree until we can go right.
-  unsigned h = level;
-  while (h && pathOffset(h - 1) == pathNode(h - 1).size() - 1)
-    --h;
-
-  // We are at the last leaf node, no right sibling.
-  if (!h && rootOffset == map->rootSize - 1)
-    return NodeRef();
-
-  // NR is the subtree containing our right sibling.
-  NodeRef NR = h ?
-    pathNode(h - 1).branch().subtree(pathOffset(h - 1) + 1) :
-    map->rootBranch().subtree(rootOffset + 1);
-
-  // Keep left all the way down.
-  for (; h != level; ++h)
-    NR = NR.branch().subtree(0);
-  return NR;
-}
-
-// treeIncrement - Move to the beginning of the next leaf node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::treeIncrement() {
-  assert(branched() && "treeIncrement is not for small maps");
-  assert(path.size() == map->height && "inconsistent iterator");
-  do path.pop_back();
-  while (!path.empty() && path.back().second == path.back().first.size() - 1);
-  if (path.empty()) {
-    ++rootOffset;
-    if (!valid())
-      return;
-  } else
-    ++path.back().second;
-  pathFillLeft();
-}
-
-// treeDecrement - Move to the end of the previous leaf node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::treeDecrement() {
-  assert(branched() && "treeDecrement is not for small maps");
-  if (valid()) {
-    assert(path.size() == map->height && "inconsistent iterator");
-    do path.pop_back();
-    while (!path.empty() && path.back().second == 0);
-  }
-  if (path.empty()) {
-    assert(rootOffset && "cannot treeDecrement() on begin()");
-    --rootOffset;
-  } else
-    --path.back().second;
-  pathFillRight();
-}
-
-// treeFind - Find in a branched tree.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::treeFind(KeyT x) {
-  path.clear();
-  rootOffset = map->rootBranch().findFrom(0, map->rootSize, x);
-  if (valid())
-    pathFillFind(x);
-}
-
-
-//===----------------------------------------------------------------------===//
-//---                                iterator                             ----//
-//===----------------------------------------------------------------------===//
-
-namespace IntervalMapImpl {
-
-  /// distribute - Compute a new distribution of node elements after an overflow
-  /// or underflow. Reserve space for a new element at Position, and compute the
-  /// node that will hold Position after redistributing node elements.
-  ///
-  /// It is required that
-  ///
-  ///   Elements == sum(CurSize), and
-  ///   Elements + Grow <= Nodes * Capacity.
-  ///
-  /// NewSize[] will be filled in such that:
-  ///
-  ///   sum(NewSize) == Elements, and
-  ///   NewSize[i] <= Capacity.
-  ///
-  /// The returned index is the node where Position will go, so:
-  ///
-  ///   sum(NewSize[0..idx-1]) <= Position
-  ///   sum(NewSize[0..idx])   >= Position
-  ///
-  /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
-  /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
-  /// before the one holding the Position'th element where there is room for an
-  /// insertion.
-  ///
-  /// @param Nodes    The number of nodes.
-  /// @param Elements Total elements in all nodes.
-  /// @param Capacity The capacity of each node.
-  /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
-  /// @param NewSize  Array[Nodes] to receive the new node sizes.
-  /// @param Position Insert position.
-  /// @param Grow     Reserve space for a new element at Position.
-  /// @return         (node, offset) for Position.
-  IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
-                     const unsigned *CurSize, unsigned NewSize[],
-                     unsigned Position, bool Grow);
-
-}
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
-  friend class IntervalMap;
-  typedef IntervalMapImpl::IdxPair IdxPair;
-
-  explicit iterator(IntervalMap &map) : const_iterator(map) {}
-
-  void setNodeSize(unsigned Level, unsigned Size);
-  void setNodeStop(unsigned Level, KeyT Stop);
-  void insertNode(unsigned Level, NodeRef Node, KeyT Stop);
-  void overflowLeaf();
-  void treeInsert(KeyT a, KeyT b, ValT y);
-
-public:
-  /// insert - Insert mapping [a;b] -> y before the current position.
-  void insert(KeyT a, KeyT b, ValT y);
-
-};
-
-/// setNodeSize - Set the size of the node at path[level], updating both path
-/// and the real tree.
-/// @param level 0 is just below the root, map->height - 1 for the leaves.
-/// @param size  New node size.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::setNodeSize(unsigned Level, unsigned Size) {
-  this->pathNode(Level).setSize(Size);
-  if (Level)
-    this->pathNode(Level-1).branch()
-      .subtree(this->pathOffset(Level-1)).setSize(Size);
-  else
-    this->map->rootBranch().subtree(this->rootOffset).setSize(Size);
-}
-
-/// setNodeStop - Update the stop key of the current node at level and above.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::setNodeStop(unsigned Level, KeyT Stop) {
-  while (Level--) {
-    this->pathNode(Level).branch().stop(this->pathOffset(Level)) = Stop;
-    if (this->pathOffset(Level) != this->pathNode(Level).size() - 1)
-      return;
-  }
-  this->map->rootBranch().stop(this->rootOffset) = Stop;
-}
-
-/// insertNode - insert a node before the current path at level.
-/// Leave the current path pointing at the new node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) {
-  if (!Level) {
-    // Insert into the root branch node.
-    IntervalMap &IM = *this->map;
-    if (IM.rootSize < RootBranch::Capacity) {
-      IM.rootBranch().insert(this->rootOffset, IM.rootSize, Node, Stop);
-      ++IM.rootSize;
-      return;
-    }
-
-    // We need to split the root while keeping our position.
-    IdxPair Offset = IM.splitRoot(this->rootOffset);
-    this->rootOffset = Offset.first;
-    this->path.insert(this->path.begin(),std::make_pair(
-      this->map->rootBranch().subtree(Offset.first), Offset.second));
-    Level = 1;
-  }
-
-  // When inserting before end(), make sure we have a valid path.
-  if (!this->valid()) {
-    this->treeDecrement();
-    ++this->pathOffset(Level-1);
-  }
-
-  // Insert into the branch node at level-1.
-  NodeRef NR = this->pathNode(Level-1);
-  unsigned Offset = this->pathOffset(Level-1);
-  assert(NR.size() < Branch::Capacity && "Branch overflow");
-  NR.branch().insert(Offset, NR.size(), Node, Stop);
-  setNodeSize(Level - 1, NR.size() + 1);
-}
-
-// insert
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::insert(KeyT a, KeyT b, ValT y) {
-  if (this->branched())
-    return treeInsert(a, b, y);
-  IdxPair IP = this->map->rootLeaf().insertFrom(this->rootOffset,
-                                                this->map->rootSize,
-                                                a, b, y);
-  if (IP.second <= RootLeaf::Capacity) {
-    this->rootOffset = IP.first;
-    this->map->rootSize = IP.second;
-    return;
-  }
-  IdxPair Offset = this->map->branchRoot(this->rootOffset);
-  this->rootOffset = Offset.first;
-  this->path.push_back(std::make_pair(
-    this->map->rootBranch().subtree(Offset.first), Offset.second));
-  treeInsert(a, b, y);
-}
-
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::treeInsert(KeyT a, KeyT b, ValT y) {
-  if (!this->valid()) {
-    // end() has an empty path. Go back to the last leaf node and use an
-    // invalid offset instead.
-    this->treeDecrement();
-    ++this->treeLeafOffset();
-  }
-  IdxPair IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
-                                           this->treeLeafSize(), a, b, y);
-  this->treeLeafOffset() = IP.first;
-  if (IP.second <= Leaf::Capacity) {
-    setNodeSize(this->map->height - 1, IP.second);
-    if (IP.first == IP.second - 1)
-      setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
-    return;
-  }
-  // Leaf node has no space.
-  overflowLeaf();
-  IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
-                                   this->treeLeafSize(), a, b, y);
-  this->treeLeafOffset() = IP.first;
-  setNodeSize(this->map->height-1, IP.second);
-  if (IP.first == IP.second - 1)
-    setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
-
-  // FIXME: Handle cross-node coalescing.
-}
-
-// overflowLeaf - Distribute entries of the current leaf node evenly among
-// its siblings and ensure that the current node is not full.
-// This may require allocating a new node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::overflowLeaf() {
-  unsigned CurSize[4];
-  Leaf *Node[4];
-  unsigned Nodes = 0;
-  unsigned Elements = 0;
-  unsigned Offset = this->treeLeafOffset();
-
-  // Do we have a left sibling?
-  NodeRef LeftSib = this->leftSibling(this->map->height-1);
-  if (LeftSib) {
-    Offset += Elements = CurSize[Nodes] = LeftSib.size();
-    Node[Nodes++] = &LeftSib.leaf();
-  }
-
-  // Current leaf node.
-  Elements += CurSize[Nodes] = this->treeLeafSize();
-  Node[Nodes++] = &this->treeLeaf();
-
-  // Do we have a right sibling?
-  NodeRef RightSib = this->rightSibling(this->map->height-1);
-  if (RightSib) {
-    Offset += Elements = CurSize[Nodes] = RightSib.size();
-    Node[Nodes++] = &RightSib.leaf();
-  }
-
-  // Do we need to allocate a new node?
-  unsigned NewNode = 0;
-  if (Elements + 1 > Nodes * Leaf::Capacity) {
-    // Insert NewNode at the penultimate position, or after a single node.
-    NewNode = Nodes == 1 ? 1 : Nodes - 1;
-    CurSize[Nodes] = CurSize[NewNode];
-    Node[Nodes] = Node[NewNode];
-    CurSize[NewNode] = 0;
-    Node[NewNode] = this->map->allocLeaf();
-    ++Nodes;
-  }
-
-  // Compute the new element distribution.
-  unsigned NewSize[4];
-  IdxPair NewOffset =
-    IntervalMapImpl::distribute(Nodes, Elements, Leaf::Capacity,
-                                CurSize, NewSize, Offset, true);
-
-  // Move current location to the leftmost node.
-  if (LeftSib)
-    this->treeDecrement();
-
-  // Move elements right.
-  for (int n = Nodes - 1; n; --n) {
-    if (CurSize[n] == NewSize[n])
-      continue;
-    for (int m = n - 1; m != -1; --m) {
-      int d = Node[n]->adjLeftSib(CurSize[n], *Node[m], CurSize[m],
-                                        NewSize[n] - CurSize[n]);
-      CurSize[m] -= d;
-      CurSize[n] += d;
-      // Keep going if the current node was exhausted.
-      if (CurSize[n] >= NewSize[n])
-          break;
-    }
-  }
-
-  // Move elements left.
-  for (unsigned n = 0; n != Nodes - 1; ++n) {
-    if (CurSize[n] == NewSize[n])
-      continue;
-    for (unsigned m = n + 1; m != Nodes; ++m) {
-      int d = Node[m]->adjLeftSib(CurSize[m], *Node[n], CurSize[n],
-                                        CurSize[n] -  NewSize[n]);
-      CurSize[m] += d;
-      CurSize[n] -= d;
-      // Keep going if the current node was exhausted.
-      if (CurSize[n] >= NewSize[n])
-          break;
-    }
-  }
-
-#ifndef NDEBUG
-  for (unsigned n = 0; n != Nodes; n++)
-    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
-#endif
-
-  // Elements have been rearranged, now update node sizes and stops.
-  unsigned Pos = 0;
-  for (;;) {
-    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
-    if (NewNode && Pos == NewNode)
-      insertNode(this->map->height - 1, NodeRef(Node[Pos], NewSize[Pos]), Stop);
-    else {
-      setNodeSize(this->map->height - 1, NewSize[Pos]);
-      setNodeStop(this->map->height - 1, Stop);
-    }
-    if (Pos + 1 == Nodes)
-      break;
-    this->treeIncrement();
-    ++Pos;
-  }
-
-  // Where was I? Find NewOffset.
-  while(Pos != NewOffset.first) {
-    this->treeDecrement();
-    --Pos;
-  }
-  this->treeLeafOffset() = NewOffset.second;
-}
-
-} // namespace llvm
-
-#endif

Modified: llvm/trunk/lib/Support/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Support/CMakeLists.txt?rev=119773&r1=119772&r2=119773&view=diff
==============================================================================
--- llvm/trunk/lib/Support/CMakeLists.txt (original)
+++ llvm/trunk/lib/Support/CMakeLists.txt Thu Nov 18 19:21:03 2010
@@ -19,7 +19,6 @@
   FoldingSet.cpp
   FormattedStream.cpp
   GraphWriter.cpp
-  IntervalMap.cpp
   IsInf.cpp
   IsNAN.cpp
   ManagedStatic.cpp

Removed: llvm/trunk/lib/Support/IntervalMap.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Support/IntervalMap.cpp?rev=119772&view=auto
==============================================================================
--- llvm/trunk/lib/Support/IntervalMap.cpp (original)
+++ llvm/trunk/lib/Support/IntervalMap.cpp (removed)
@@ -1,60 +0,0 @@
-//===- lib/Support/IntervalMap.cpp - A sorted interval map ----------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the few non-templated functions in IntervalMap.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/IntervalMap.h"
-
-namespace llvm {
-namespace IntervalMapImpl {
-
-IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
-                   const unsigned *CurSize, unsigned NewSize[],
-                   unsigned Position, bool Grow) {
-  assert(Elements + Grow <= Nodes * Capacity && "Not enough room for elements");
-  assert(Position <= Elements && "Invalid position");
-  if (!Nodes)
-    return IdxPair();
-
-  // Trivial algorithm: left-leaning even distribution.
-  const unsigned PerNode = (Elements + Grow) / Nodes;
-  const unsigned Extra = (Elements + Grow) % Nodes;
-  IdxPair PosPair = IdxPair(Nodes, 0);
-  unsigned Sum = 0;
-  for (unsigned n = 0; n != Nodes; ++n) {
-    Sum += NewSize[n] = PerNode + (n < Extra);
-    if (PosPair.first == Nodes && Sum > Position)
-      PosPair = IdxPair(n, Position - (Sum - NewSize[n]));
-  }
-  assert(Sum == Elements + Grow && "Bad distribution sum");
-
-  // Subtract the Grow element that was added.
-  if (Grow) {
-    assert(PosPair.first < Nodes && "Bad algebra");
-    assert(NewSize[PosPair.first] && "Too few elements to need Grow");
-    --NewSize[PosPair.first];
-  }
-
-#ifndef NDEBUG
-  Sum = 0;
-  for (unsigned n = 0; n != Nodes; ++n) {
-    assert(NewSize[n] <= Capacity && "Overallocated node");
-    Sum += NewSize[n];
-  }
-  assert(Sum == Elements && "Bad distribution sum");
-#endif
-
-  return PosPair;
-}
-
-} // namespace IntervalMapImpl
-} // namespace llvm 
-

Removed: llvm/trunk/unittests/ADT/IntervalMapTest.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/ADT/IntervalMapTest.cpp?rev=119772&view=auto
==============================================================================
--- llvm/trunk/unittests/ADT/IntervalMapTest.cpp (original)
+++ llvm/trunk/unittests/ADT/IntervalMapTest.cpp (removed)
@@ -1,357 +0,0 @@
-//===---- ADT/IntervalMapTest.cpp - IntervalMap unit tests ------*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/IntervalMap.h"
-#include "gtest/gtest.h"
-
-using namespace llvm;
-
-namespace {
-
-typedef IntervalMap<unsigned, unsigned> UUMap;
-
-// Empty map tests
-TEST(IntervalMapTest, EmptyMap) {
-  UUMap::Allocator allocator;
-  UUMap map(allocator);
-  EXPECT_TRUE(map.empty());
-
-  // Lookup on empty map.
-  EXPECT_EQ(0u, map.lookup(0));
-  EXPECT_EQ(7u, map.lookup(0, 7));
-  EXPECT_EQ(0u, map.lookup(~0u-1));
-  EXPECT_EQ(7u, map.lookup(~0u-1, 7));
-
-  // Iterators.
-  EXPECT_TRUE(map.begin() == map.begin());
-  EXPECT_TRUE(map.begin() == map.end());
-  EXPECT_TRUE(map.end() == map.end());
-  EXPECT_FALSE(map.begin() != map.begin());
-  EXPECT_FALSE(map.begin() != map.end());
-  EXPECT_FALSE(map.end() != map.end());
-  EXPECT_FALSE(map.begin().valid());
-  EXPECT_FALSE(map.end().valid());
-  UUMap::iterator I = map.begin();
-  EXPECT_FALSE(I.valid());
-  EXPECT_TRUE(I == map.end());
-}
-
-// Single entry map tests
-TEST(IntervalMapTest, SingleEntryMap) {
-  UUMap::Allocator allocator;
-  UUMap map(allocator);
-  map.insert(100, 150, 1);
-  EXPECT_FALSE(map.empty());
-
-  // Lookup around interval.
-  EXPECT_EQ(0u, map.lookup(0));
-  EXPECT_EQ(0u, map.lookup(99));
-  EXPECT_EQ(1u, map.lookup(100));
-  EXPECT_EQ(1u, map.lookup(101));
-  EXPECT_EQ(1u, map.lookup(125));
-  EXPECT_EQ(1u, map.lookup(149));
-  EXPECT_EQ(1u, map.lookup(150));
-  EXPECT_EQ(0u, map.lookup(151));
-  EXPECT_EQ(0u, map.lookup(200));
-  EXPECT_EQ(0u, map.lookup(~0u-1));
-
-  // Iterators.
-  EXPECT_TRUE(map.begin() == map.begin());
-  EXPECT_FALSE(map.begin() == map.end());
-  EXPECT_TRUE(map.end() == map.end());
-  EXPECT_TRUE(map.begin().valid());
-  EXPECT_FALSE(map.end().valid());
-
-  // Iter deref.
-  UUMap::iterator I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(150u, I.stop());
-  EXPECT_EQ(1u, I.value());
-
-  // Preincrement.
-  ++I;
-  EXPECT_FALSE(I.valid());
-  EXPECT_FALSE(I == map.begin());
-  EXPECT_TRUE(I == map.end());
-
-  // PreDecrement.
-  --I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(150u, I.stop());
-  EXPECT_EQ(1u, I.value());
-  EXPECT_TRUE(I == map.begin());
-  EXPECT_FALSE(I == map.end());
-}
-
-// Flat coalescing tests.
-TEST(IntervalMapTest, RootCoalescing) {
-  UUMap::Allocator allocator;
-  UUMap map(allocator);
-  map.insert(100, 150, 1);
-
-  // Coalesce from the left.
-  map.insert(90, 99, 1);
-  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(90u, map.start());
-  EXPECT_EQ(150u, map.stop());
-
-  // Overlap left.
-  map.insert(80, 100, 1);
-  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(80u, map.start());
-  EXPECT_EQ(150u, map.stop());
-
-  // Inside.
-  map.insert(100, 130, 1);
-  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(80u, map.start());
-  EXPECT_EQ(150u, map.stop());
-
-  // Overlap both.
-  map.insert(70, 160, 1);
-  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(70u, map.start());
-  EXPECT_EQ(160u, map.stop());
-
-  // Overlap right.
-  map.insert(80, 170, 1);
-  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(70u, map.start());
-  EXPECT_EQ(170u, map.stop());
-
-  // Coalesce from the right.
-  map.insert(170, 200, 1);
-  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(70u, map.start());
-  EXPECT_EQ(200u, map.stop());
-
-  // Non-coalesce from the left.
-  map.insert(60, 69, 2);
-  EXPECT_EQ(2, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(60u, map.start());
-  EXPECT_EQ(200u, map.stop());
-  EXPECT_EQ(2u, map.lookup(69));
-  EXPECT_EQ(1u, map.lookup(70));
-
-  UUMap::iterator I = map.begin();
-  EXPECT_EQ(60u, I.start());
-  EXPECT_EQ(69u, I.stop());
-  EXPECT_EQ(2u, I.value());
-  ++I;
-  EXPECT_EQ(70u, I.start());
-  EXPECT_EQ(200u, I.stop());
-  EXPECT_EQ(1u, I.value());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Non-coalesce from the right.
-  map.insert(201, 210, 2);
-  EXPECT_EQ(3, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(60u, map.start());
-  EXPECT_EQ(210u, map.stop());
-  EXPECT_EQ(2u, map.lookup(201));
-  EXPECT_EQ(1u, map.lookup(200));
-}
-
-// Flat multi-coalescing tests.
-TEST(IntervalMapTest, RootMultiCoalescing) {
-  UUMap::Allocator allocator;
-  UUMap map(allocator);
-  map.insert(140, 150, 1);
-  map.insert(160, 170, 1);
-  map.insert(100, 110, 1);
-  map.insert(120, 130, 1);
-  EXPECT_EQ(4, std::distance(map.begin(), map.end()));
-  EXPECT_EQ(100u, map.start());
-  EXPECT_EQ(170u, map.stop());
-
-  // Verify inserts.
-  UUMap::iterator I = map.begin();
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(110u, I.stop());
-  ++I;
-  EXPECT_EQ(120u, I.start());
-  EXPECT_EQ(130u, I.stop());
-  ++I;
-  EXPECT_EQ(140u, I.start());
-  EXPECT_EQ(150u, I.stop());
-  ++I;
-  EXPECT_EQ(160u, I.start());
-  EXPECT_EQ(170u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-
-  // Coalesce left with followers.
-  // [100;110] [120;130] [140;150] [160;170]
-  map.insert(111, 115, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(115u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(120u, I.start());
-  EXPECT_EQ(130u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(140u, I.start());
-  EXPECT_EQ(150u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(160u, I.start());
-  EXPECT_EQ(170u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Coalesce right with followers.
-  // [100;115] [120;130] [140;150] [160;170]
-  map.insert(135, 139, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(115u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(120u, I.start());
-  EXPECT_EQ(130u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(135u, I.start());
-  EXPECT_EQ(150u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(160u, I.start());
-  EXPECT_EQ(170u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Coalesce left and right with followers.
-  // [100;115] [120;130] [135;150] [160;170]
-  map.insert(131, 134, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(115u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(120u, I.start());
-  EXPECT_EQ(150u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(160u, I.start());
-  EXPECT_EQ(170u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Coalesce multiple with overlap right.
-  // [100;115] [120;150] [160;170]
-  map.insert(116, 165, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(170u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Coalesce multiple with overlap left
-  // [100;170]
-  map.insert(180, 190, 1);
-  map.insert(200, 210, 1);
-  map.insert(220, 230, 1);
-  // [100;170] [180;190] [200;210] [220;230]
-  map.insert(160, 199, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(100u, I.start());
-  EXPECT_EQ(210u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(220u, I.start());
-  EXPECT_EQ(230u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Overwrite 2 from gap to gap.
-  // [100;210] [220;230]
-  map.insert(50, 250, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(50u, I.start());
-  EXPECT_EQ(250u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-
-  // Coalesce at end of full root.
-  // [50;250]
-  map.insert(260, 270, 1);
-  map.insert(280, 290, 1);
-  map.insert(300, 310, 1);
-  // [50;250] [260;270] [280;290] [300;310]
-  map.insert(311, 320, 1);
-  I = map.begin();
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(50u, I.start());
-  EXPECT_EQ(250u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(260u, I.start());
-  EXPECT_EQ(270u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(280u, I.start());
-  EXPECT_EQ(290u, I.stop());
-  ++I;
-  ASSERT_TRUE(I.valid());
-  EXPECT_EQ(300u, I.start());
-  EXPECT_EQ(320u, I.stop());
-  ++I;
-  EXPECT_FALSE(I.valid());
-}
-
-// Branched, non-coalescing tests.
-TEST(IntervalMapTest, Branched) {
-  UUMap::Allocator allocator;
-  UUMap map(allocator);
-
-  // Insert enough intervals to force a branched tree.
-  // This creates 9 leaf nodes with 11 elements each, tree height = 1.
-  for (unsigned i = 1; i < 100; ++i)
-    map.insert(10*i, 10*i+5, i);
-
-  // Tree limits.
-  EXPECT_FALSE(map.empty());
-  EXPECT_EQ(10u, map.start());
-  EXPECT_EQ(995u, map.stop());
-
-  // Tree lookup.
-  for (unsigned i = 1; i < 100; ++i) {
-    EXPECT_EQ(0u, map.lookup(10*i-1));
-    EXPECT_EQ(i, map.lookup(10*i));
-    EXPECT_EQ(i, map.lookup(10*i+5));
-    EXPECT_EQ(0u, map.lookup(10*i+6));
-  }
-
-  // Forward iteration.
-  UUMap::iterator I = map.begin();
-  for (unsigned i = 1; i < 100; ++i) {
-    ASSERT_TRUE(I.valid());
-    EXPECT_EQ(10*i, I.start());
-    EXPECT_EQ(10*i+5, I.stop());
-    EXPECT_EQ(i, *I);
-    ++I;
-  }
-  EXPECT_FALSE(I.valid());
-  EXPECT_TRUE(I == map.end());
-
-}
-
-} // namespace

Modified: llvm/trunk/unittests/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/CMakeLists.txt?rev=119773&r1=119772&r2=119773&view=diff
==============================================================================
--- llvm/trunk/unittests/CMakeLists.txt (original)
+++ llvm/trunk/unittests/CMakeLists.txt Thu Nov 18 19:21:03 2010
@@ -45,7 +45,6 @@
   ADT/DenseSetTest.cpp
   ADT/ilistTest.cpp
   ADT/ImmutableSetTest.cpp
-  ADT/IntervalMapTest.cpp
   ADT/SmallBitVectorTest.cpp
   ADT/SmallStringTest.cpp
   ADT/SmallVectorTest.cpp





More information about the llvm-commits mailing list