[llvm-commits] [llvm] r116876 - in /llvm/trunk: include/llvm/Analysis/AliasAnalysis.h include/llvm/Analysis/Passes.h lib/Analysis/AliasAnalysis.cpp lib/Analysis/BasicAliasAnalysis.cpp lib/Analysis/NoAliasAnalysis.cpp

Dan Gohman gohman at apple.com
Tue Oct 19 16:09:08 PDT 2010


Author: djg
Date: Tue Oct 19 18:09:08 2010
New Revision: 116876

URL: http://llvm.org/viewvc/llvm-project?rev=116876&view=rev
Log:
Move NoAA out of BasicAliasAnalysis.cpp into its own file, now that
it doesn't have a special relationship with BasicAliasAnalysis
anymore.

Added:
    llvm/trunk/lib/Analysis/NoAliasAnalysis.cpp
      - copied, changed from r116875, llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp
Modified:
    llvm/trunk/include/llvm/Analysis/AliasAnalysis.h
    llvm/trunk/include/llvm/Analysis/Passes.h
    llvm/trunk/lib/Analysis/AliasAnalysis.cpp
    llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp

Modified: llvm/trunk/include/llvm/Analysis/AliasAnalysis.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/AliasAnalysis.h?rev=116876&r1=116875&r2=116876&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Analysis/AliasAnalysis.h (original)
+++ llvm/trunk/include/llvm/Analysis/AliasAnalysis.h Tue Oct 19 18:09:08 2010
@@ -28,7 +28,6 @@
 #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
 
 #include "llvm/Support/CallSite.h"
-#include "llvm/System/IncludeFile.h"
 #include <vector>
 
 namespace llvm {
@@ -422,11 +421,4 @@
 
 } // End llvm namespace
 
-// Because of the way .a files work, we must force the BasicAA implementation to
-// be pulled in if the AliasAnalysis header is included.  Otherwise we run
-// the risk of AliasAnalysis being used, but the default implementation not
-// being linked into the tool that uses it.
-FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
-FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
-
 #endif

Modified: llvm/trunk/include/llvm/Analysis/Passes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/Passes.h?rev=116876&r1=116875&r2=116876&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Analysis/Passes.h (original)
+++ llvm/trunk/include/llvm/Analysis/Passes.h Tue Oct 19 18:09:08 2010
@@ -59,7 +59,7 @@
 
   //===--------------------------------------------------------------------===//
   //
-  // createBasicAliasAnalysisPass - This pass implements the default alias
+  // createBasicAliasAnalysisPass - This pass implements the stateless alias
   // analysis.
   //
   ImmutablePass *createBasicAliasAnalysisPass();

Modified: llvm/trunk/lib/Analysis/AliasAnalysis.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/AliasAnalysis.cpp?rev=116876&r1=116875&r2=116876&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/AliasAnalysis.cpp (original)
+++ llvm/trunk/lib/Analysis/AliasAnalysis.cpp Tue Oct 19 18:09:08 2010
@@ -342,9 +342,3 @@
     return A->hasNoAliasAttr() || A->hasByValAttr();
   return false;
 }
-
-// Because of the way .a files work, we must force the BasicAA implementation to
-// be pulled in if the AliasAnalysis classes are pulled in.  Otherwise we run
-// the risk of AliasAnalysis being used, but the default implementation not
-// being linked into the tool that uses it.
-DEFINING_FILE_FOR(AliasAnalysis)

Modified: llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp?rev=116876&r1=116875&r2=116876&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp (original)
+++ llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp Tue Oct 19 18:09:08 2010
@@ -1,4 +1,4 @@
-//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
+//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -7,9 +7,9 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This file defines the default implementation of the Alias Analysis interface
-// that simply implements a few identities (two different globals cannot alias,
-// etc), but otherwise does no analysis.
+// This file defines the primary stateless implementation of the
+// Alias Analysis interface that implements identities (two different
+// globals cannot alias, etc), but does no stateful analysis.
 //
 //===----------------------------------------------------------------------===//
 
@@ -129,74 +129,6 @@
 }
 
 //===----------------------------------------------------------------------===//
-// NoAA Pass
-//===----------------------------------------------------------------------===//
-
-namespace {
-  /// NoAA - This class implements the -no-aa pass, which always returns "I
-  /// don't know" for alias queries.  NoAA is unlike other alias analysis
-  /// implementations, in that it does not chain to a previous analysis.  As
-  /// such it doesn't follow many of the rules that other alias analyses must.
-  ///
-  struct NoAA : public ImmutablePass, public AliasAnalysis {
-    static char ID; // Class identification, replacement for typeinfo
-    NoAA() : ImmutablePass(ID) {
-      initializeNoAAPass(*PassRegistry::getPassRegistry());
-    }
-    explicit NoAA(char &PID) : ImmutablePass(PID) {}
-
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-    }
-
-    virtual void initializePass() {
-      TD = getAnalysisIfAvailable<TargetData>();
-    }
-
-    virtual AliasResult alias(const Location &LocA, const Location &LocB) {
-      return MayAlias;
-    }
-
-    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
-      return UnknownModRefBehavior;
-    }
-    virtual ModRefBehavior getModRefBehavior(const Function *F) {
-      return UnknownModRefBehavior;
-    }
-
-    virtual bool pointsToConstantMemory(const Location &Loc) { return false; }
-    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
-                                       const Location &Loc) {
-      return ModRef;
-    }
-    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
-                                       ImmutableCallSite CS2) {
-      return ModRef;
-    }
-
-    virtual void deleteValue(Value *V) {}
-    virtual void copyValue(Value *From, Value *To) {}
-    
-    /// getAdjustedAnalysisPointer - This method is used when a pass implements
-    /// an analysis interface through multiple inheritance.  If needed, it
-    /// should override this to adjust the this pointer as needed for the
-    /// specified pass info.
-    virtual void *getAdjustedAnalysisPointer(const void *ID) {
-      if (ID == &AliasAnalysis::ID)
-        return (AliasAnalysis*)this;
-      return this;
-    }
-  };
-}  // End of anonymous namespace
-
-// Register this pass...
-char NoAA::ID = 0;
-INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa",
-                   "No Alias Analysis (always returns 'may' alias)",
-                   true, true, true)
-
-ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
-
-//===----------------------------------------------------------------------===//
 // GetElementPtr Instruction Decomposition and Analysis
 //===----------------------------------------------------------------------===//
 
@@ -487,12 +419,10 @@
 #endif
 
 namespace {
-  /// BasicAliasAnalysis - This is the default alias analysis implementation.
-  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
-  /// derives from the NoAA class.
-  struct BasicAliasAnalysis : public NoAA {
+  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
+  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
     static char ID; // Class identification, replacement for typeinfo
-    BasicAliasAnalysis() : NoAA(ID) {
+    BasicAliasAnalysis() : ImmutablePass(ID) {
       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
     }
 
@@ -580,7 +510,7 @@
 // Register this pass...
 char BasicAliasAnalysis::ID = 0;
 INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
-                   "Basic Alias Analysis (default AA impl)",
+                   "Basic Alias Analysis (stateless AA impl)",
                    false, true, false)
 
 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
@@ -1125,6 +1055,3 @@
   return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
                               Location(V2, V2Size, V2TBAAInfo));
 }
-
-// Make sure that anything that uses AliasAnalysis pulls in this file.
-DEFINING_FILE_FOR(BasicAliasAnalysis)

Copied: llvm/trunk/lib/Analysis/NoAliasAnalysis.cpp (from r116875, llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/NoAliasAnalysis.cpp?p2=llvm/trunk/lib/Analysis/NoAliasAnalysis.cpp&p1=llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp&r1=116875&r2=116876&rev=116876&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/BasicAliasAnalysis.cpp (original)
+++ llvm/trunk/lib/Analysis/NoAliasAnalysis.cpp Tue Oct 19 18:09:08 2010
@@ -1,4 +1,4 @@
-//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
+//===- NoAliasAnalysis.cpp - Minimal Alias Analysis Impl ------------------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -8,130 +8,16 @@
 //===----------------------------------------------------------------------===//
 //
 // This file defines the default implementation of the Alias Analysis interface
-// that simply implements a few identities (two different globals cannot alias,
-// etc), but otherwise does no analysis.
+// that simply returns "I don't know" for all queries.
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/Passes.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalAlias.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Operator.h"
 #include "llvm/Pass.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include <algorithm>
 using namespace llvm;
 
-//===----------------------------------------------------------------------===//
-// Useful predicates
-//===----------------------------------------------------------------------===//
-
-/// isKnownNonNull - Return true if we know that the specified value is never
-/// null.
-static bool isKnownNonNull(const Value *V) {
-  // Alloca never returns null, malloc might.
-  if (isa<AllocaInst>(V)) return true;
-  
-  // A byval argument is never null.
-  if (const Argument *A = dyn_cast<Argument>(V))
-    return A->hasByValAttr();
-
-  // Global values are not null unless extern weak.
-  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
-    return !GV->hasExternalWeakLinkage();
-  return false;
-}
-
-/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
-/// object that never escapes from the function.
-static bool isNonEscapingLocalObject(const Value *V) {
-  // If this is a local allocation, check to see if it escapes.
-  if (isa<AllocaInst>(V) || isNoAliasCall(V))
-    // Set StoreCaptures to True so that we can assume in our callers that the
-    // pointer is not the result of a load instruction. Currently
-    // PointerMayBeCaptured doesn't have any special analysis for the
-    // StoreCaptures=false case; if it did, our callers could be refined to be
-    // more precise.
-    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
-
-  // If this is an argument that corresponds to a byval or noalias argument,
-  // then it has not escaped before entering the function.  Check if it escapes
-  // inside the function.
-  if (const Argument *A = dyn_cast<Argument>(V))
-    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
-      // Don't bother analyzing arguments already known not to escape.
-      if (A->hasNoCaptureAttr())
-        return true;
-      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
-    }
-  return false;
-}
-
-/// isEscapeSource - Return true if the pointer is one which would have
-/// been considered an escape by isNonEscapingLocalObject.
-static bool isEscapeSource(const Value *V) {
-  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
-    return true;
-
-  // The load case works because isNonEscapingLocalObject considers all
-  // stores to be escapes (it passes true for the StoreCaptures argument
-  // to PointerMayBeCaptured).
-  if (isa<LoadInst>(V))
-    return true;
-
-  return false;
-}
-
-/// isObjectSmallerThan - Return true if we can prove that the object specified
-/// by V is smaller than Size.
-static bool isObjectSmallerThan(const Value *V, uint64_t Size,
-                                const TargetData &TD) {
-  const Type *AccessTy;
-  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
-    AccessTy = GV->getType()->getElementType();
-  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
-    if (!AI->isArrayAllocation())
-      AccessTy = AI->getType()->getElementType();
-    else
-      return false;
-  } else if (const CallInst* CI = extractMallocCall(V)) {
-    if (!isArrayMalloc(V, &TD))
-      // The size is the argument to the malloc call.
-      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
-        return (C->getZExtValue() < Size);
-    return false;
-  } else if (const Argument *A = dyn_cast<Argument>(V)) {
-    if (A->hasByValAttr())
-      AccessTy = cast<PointerType>(A->getType())->getElementType();
-    else
-      return false;
-  } else {
-    return false;
-  }
-  
-  if (AccessTy->isSized())
-    return TD.getTypeAllocSize(AccessTy) < Size;
-  return false;
-}
-
-//===----------------------------------------------------------------------===//
-// NoAA Pass
-//===----------------------------------------------------------------------===//
-
 namespace {
   /// NoAA - This class implements the -no-aa pass, which always returns "I
   /// don't know" for alias queries.  NoAA is unlike other alias analysis
@@ -143,12 +29,13 @@
     NoAA() : ImmutablePass(ID) {
       initializeNoAAPass(*PassRegistry::getPassRegistry());
     }
-    explicit NoAA(char &PID) : ImmutablePass(PID) {}
 
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     }
 
     virtual void initializePass() {
+      // Note: NoAA does not call InitializeAliasAnalysis because it's
+      // special and does not support chaining.
       TD = getAnalysisIfAvailable<TargetData>();
     }
 
@@ -195,936 +82,3 @@
                    true, true, true)
 
 ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
-
-//===----------------------------------------------------------------------===//
-// GetElementPtr Instruction Decomposition and Analysis
-//===----------------------------------------------------------------------===//
-
-namespace {
-  enum ExtensionKind {
-    EK_NotExtended,
-    EK_SignExt,
-    EK_ZeroExt
-  };
-  
-  struct VariableGEPIndex {
-    const Value *V;
-    ExtensionKind Extension;
-    int64_t Scale;
-  };
-}
-
-
-/// GetLinearExpression - Analyze the specified value as a linear expression:
-/// "A*V + B", where A and B are constant integers.  Return the scale and offset
-/// values as APInts and return V as a Value*, and return whether we looked
-/// through any sign or zero extends.  The incoming Value is known to have
-/// IntegerType and it may already be sign or zero extended.
-///
-/// Note that this looks through extends, so the high bits may not be
-/// represented in the result.
-static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
-                                  ExtensionKind &Extension,
-                                  const TargetData &TD, unsigned Depth) {
-  assert(V->getType()->isIntegerTy() && "Not an integer value");
-
-  // Limit our recursion depth.
-  if (Depth == 6) {
-    Scale = 1;
-    Offset = 0;
-    return V;
-  }
-  
-  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
-    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
-      switch (BOp->getOpcode()) {
-      default: break;
-      case Instruction::Or:
-        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
-        // analyze it.
-        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
-          break;
-        // FALL THROUGH.
-      case Instruction::Add:
-        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                TD, Depth+1);
-        Offset += RHSC->getValue();
-        return V;
-      case Instruction::Mul:
-        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                TD, Depth+1);
-        Offset *= RHSC->getValue();
-        Scale *= RHSC->getValue();
-        return V;
-      case Instruction::Shl:
-        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                TD, Depth+1);
-        Offset <<= RHSC->getValue().getLimitedValue();
-        Scale <<= RHSC->getValue().getLimitedValue();
-        return V;
-      }
-    }
-  }
-  
-  // Since GEP indices are sign extended anyway, we don't care about the high
-  // bits of a sign or zero extended value - just scales and offsets.  The
-  // extensions have to be consistent though.
-  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
-      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
-    Value *CastOp = cast<CastInst>(V)->getOperand(0);
-    unsigned OldWidth = Scale.getBitWidth();
-    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
-    Scale.trunc(SmallWidth);
-    Offset.trunc(SmallWidth);
-    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
-
-    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
-                                        TD, Depth+1);
-    Scale.zext(OldWidth);
-    Offset.zext(OldWidth);
-    
-    return Result;
-  }
-  
-  Scale = 1;
-  Offset = 0;
-  return V;
-}
-
-/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
-/// into a base pointer with a constant offset and a number of scaled symbolic
-/// offsets.
-///
-/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
-/// the VarIndices vector) are Value*'s that are known to be scaled by the
-/// specified amount, but which may have other unrepresented high bits. As such,
-/// the gep cannot necessarily be reconstructed from its decomposed form.
-///
-/// When TargetData is around, this function is capable of analyzing everything
-/// that Value::getUnderlyingObject() can look through.  When not, it just looks
-/// through pointer casts.
-///
-static const Value *
-DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
-                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
-                       const TargetData *TD) {
-  // Limit recursion depth to limit compile time in crazy cases.
-  unsigned MaxLookup = 6;
-  
-  BaseOffs = 0;
-  do {
-    // See if this is a bitcast or GEP.
-    const Operator *Op = dyn_cast<Operator>(V);
-    if (Op == 0) {
-      // The only non-operator case we can handle are GlobalAliases.
-      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
-        if (!GA->mayBeOverridden()) {
-          V = GA->getAliasee();
-          continue;
-        }
-      }
-      return V;
-    }
-    
-    if (Op->getOpcode() == Instruction::BitCast) {
-      V = Op->getOperand(0);
-      continue;
-    }
-    
-    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
-    if (GEPOp == 0)
-      return V;
-    
-    // Don't attempt to analyze GEPs over unsized objects.
-    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
-        ->getElementType()->isSized())
-      return V;
-    
-    // If we are lacking TargetData information, we can't compute the offets of
-    // elements computed by GEPs.  However, we can handle bitcast equivalent
-    // GEPs.
-    if (TD == 0) {
-      if (!GEPOp->hasAllZeroIndices())
-        return V;
-      V = GEPOp->getOperand(0);
-      continue;
-    }
-    
-    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
-    gep_type_iterator GTI = gep_type_begin(GEPOp);
-    for (User::const_op_iterator I = GEPOp->op_begin()+1,
-         E = GEPOp->op_end(); I != E; ++I) {
-      Value *Index = *I;
-      // Compute the (potentially symbolic) offset in bytes for this index.
-      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
-        // For a struct, add the member offset.
-        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
-        if (FieldNo == 0) continue;
-        
-        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
-        continue;
-      }
-      
-      // For an array/pointer, add the element offset, explicitly scaled.
-      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
-        if (CIdx->isZero()) continue;
-        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
-        continue;
-      }
-      
-      uint64_t Scale = TD->getTypeAllocSize(*GTI);
-      ExtensionKind Extension = EK_NotExtended;
-      
-      // If the integer type is smaller than the pointer size, it is implicitly
-      // sign extended to pointer size.
-      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
-      if (TD->getPointerSizeInBits() > Width)
-        Extension = EK_SignExt;
-      
-      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
-      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
-      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
-                                  *TD, 0);
-      
-      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
-      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
-      BaseOffs += IndexOffset.getSExtValue()*Scale;
-      Scale *= IndexScale.getSExtValue();
-      
-      
-      // If we already had an occurrance of this index variable, merge this
-      // scale into it.  For example, we want to handle:
-      //   A[x][x] -> x*16 + x*4 -> x*20
-      // This also ensures that 'x' only appears in the index list once.
-      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
-        if (VarIndices[i].V == Index &&
-            VarIndices[i].Extension == Extension) {
-          Scale += VarIndices[i].Scale;
-          VarIndices.erase(VarIndices.begin()+i);
-          break;
-        }
-      }
-      
-      // Make sure that we have a scale that makes sense for this target's
-      // pointer size.
-      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
-        Scale <<= ShiftBits;
-        Scale = (int64_t)Scale >> ShiftBits;
-      }
-      
-      if (Scale) {
-        VariableGEPIndex Entry = {Index, Extension, Scale};
-        VarIndices.push_back(Entry);
-      }
-    }
-    
-    // Analyze the base pointer next.
-    V = GEPOp->getOperand(0);
-  } while (--MaxLookup);
-  
-  // If the chain of expressions is too deep, just return early.
-  return V;
-}
-
-/// GetIndexDifference - Dest and Src are the variable indices from two
-/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
-/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
-/// difference between the two pointers. 
-static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
-                               const SmallVectorImpl<VariableGEPIndex> &Src) {
-  if (Src.empty()) return;
-
-  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
-    const Value *V = Src[i].V;
-    ExtensionKind Extension = Src[i].Extension;
-    int64_t Scale = Src[i].Scale;
-    
-    // Find V in Dest.  This is N^2, but pointer indices almost never have more
-    // than a few variable indexes.
-    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
-      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
-      
-      // If we found it, subtract off Scale V's from the entry in Dest.  If it
-      // goes to zero, remove the entry.
-      if (Dest[j].Scale != Scale)
-        Dest[j].Scale -= Scale;
-      else
-        Dest.erase(Dest.begin()+j);
-      Scale = 0;
-      break;
-    }
-    
-    // If we didn't consume this entry, add it to the end of the Dest list.
-    if (Scale) {
-      VariableGEPIndex Entry = { V, Extension, -Scale };
-      Dest.push_back(Entry);
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-// BasicAliasAnalysis Pass
-//===----------------------------------------------------------------------===//
-
-#ifndef NDEBUG
-static const Function *getParent(const Value *V) {
-  if (const Instruction *inst = dyn_cast<Instruction>(V))
-    return inst->getParent()->getParent();
-
-  if (const Argument *arg = dyn_cast<Argument>(V))
-    return arg->getParent();
-
-  return NULL;
-}
-
-static bool notDifferentParent(const Value *O1, const Value *O2) {
-
-  const Function *F1 = getParent(O1);
-  const Function *F2 = getParent(O2);
-
-  return !F1 || !F2 || F1 == F2;
-}
-#endif
-
-namespace {
-  /// BasicAliasAnalysis - This is the default alias analysis implementation.
-  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
-  /// derives from the NoAA class.
-  struct BasicAliasAnalysis : public NoAA {
-    static char ID; // Class identification, replacement for typeinfo
-    BasicAliasAnalysis() : NoAA(ID) {
-      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
-    }
-
-    virtual void initializePass() {
-      InitializeAliasAnalysis(this);
-    }
-
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addRequired<AliasAnalysis>();
-    }
-
-    virtual AliasResult alias(const Location &LocA,
-                              const Location &LocB) {
-      assert(Visited.empty() && "Visited must be cleared after use!");
-      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
-             "BasicAliasAnalysis doesn't support interprocedural queries.");
-      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
-                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
-      Visited.clear();
-      return Alias;
-    }
-
-    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
-                                       const Location &Loc);
-
-    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
-                                       ImmutableCallSite CS2) {
-      // The AliasAnalysis base class has some smarts, lets use them.
-      return AliasAnalysis::getModRefInfo(CS1, CS2);
-    }
-
-    /// pointsToConstantMemory - Chase pointers until we find a (constant
-    /// global) or not.
-    virtual bool pointsToConstantMemory(const Location &Loc);
-
-    /// getModRefBehavior - Return the behavior when calling the given
-    /// call site.
-    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
-
-    /// getModRefBehavior - Return the behavior when calling the given function.
-    /// For use when the call site is not known.
-    virtual ModRefBehavior getModRefBehavior(const Function *F);
-
-    /// getAdjustedAnalysisPointer - This method is used when a pass implements
-    /// an analysis interface through multiple inheritance.  If needed, it
-    /// should override this to adjust the this pointer as needed for the
-    /// specified pass info.
-    virtual void *getAdjustedAnalysisPointer(const void *ID) {
-      if (ID == &AliasAnalysis::ID)
-        return (AliasAnalysis*)this;
-      return this;
-    }
-    
-  private:
-    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
-    SmallPtrSet<const Value*, 16> Visited;
-
-    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
-    // instruction against another.
-    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
-                         const Value *V2, uint64_t V2Size,
-                         const MDNode *V2TBAAInfo,
-                         const Value *UnderlyingV1, const Value *UnderlyingV2);
-
-    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
-    // instruction against another.
-    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
-                         const MDNode *PNTBAAInfo,
-                         const Value *V2, uint64_t V2Size,
-                         const MDNode *V2TBAAInfo);
-
-    /// aliasSelect - Disambiguate a Select instruction against another value.
-    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
-                            const MDNode *SITBAAInfo,
-                            const Value *V2, uint64_t V2Size,
-                            const MDNode *V2TBAAInfo);
-
-    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
-                           const MDNode *V1TBAATag,
-                           const Value *V2, uint64_t V2Size,
-                           const MDNode *V2TBAATag);
-  };
-}  // End of anonymous namespace
-
-// Register this pass...
-char BasicAliasAnalysis::ID = 0;
-INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
-                   "Basic Alias Analysis (default AA impl)",
-                   false, true, false)
-
-ImmutablePass *llvm::createBasicAliasAnalysisPass() {
-  return new BasicAliasAnalysis();
-}
-
-
-/// pointsToConstantMemory - Chase pointers until we find a (constant
-/// global) or not.
-bool BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc) {
-  if (const GlobalVariable *GV = 
-        dyn_cast<GlobalVariable>(Loc.Ptr->getUnderlyingObject()))
-    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
-    // global to be marked constant in some modules and non-constant in others.
-    // GV may even be a declaration, not a definition.
-    return GV->isConstant();
-
-  return AliasAnalysis::pointsToConstantMemory(Loc);
-}
-
-/// getModRefBehavior - Return the behavior when calling the given call site.
-AliasAnalysis::ModRefBehavior
-BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
-  if (CS.doesNotAccessMemory())
-    // Can't do better than this.
-    return DoesNotAccessMemory;
-
-  ModRefBehavior Min = UnknownModRefBehavior;
-
-  // If the callsite knows it only reads memory, don't return worse
-  // than that.
-  if (CS.onlyReadsMemory())
-    Min = OnlyReadsMemory;
-
-  // The AliasAnalysis base class has some smarts, lets use them.
-  return std::min(AliasAnalysis::getModRefBehavior(CS), Min);
-}
-
-/// getModRefBehavior - Return the behavior when calling the given function.
-/// For use when the call site is not known.
-AliasAnalysis::ModRefBehavior
-BasicAliasAnalysis::getModRefBehavior(const Function *F) {
-  if (F->doesNotAccessMemory())
-    // Can't do better than this.
-    return DoesNotAccessMemory;
-  if (F->onlyReadsMemory())
-    return OnlyReadsMemory;
-  if (unsigned id = F->getIntrinsicID())
-    return getIntrinsicModRefBehavior(id);
-
-  return AliasAnalysis::getModRefBehavior(F);
-}
-
-/// getModRefInfo - Check to see if the specified callsite can clobber the
-/// specified memory object.  Since we only look at local properties of this
-/// function, we really can't say much about this query.  We do, however, use
-/// simple "address taken" analysis on local objects.
-AliasAnalysis::ModRefResult
-BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
-                                  const Location &Loc) {
-  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
-         "AliasAnalysis query involving multiple functions!");
-
-  const Value *Object = Loc.Ptr->getUnderlyingObject();
-  
-  // If this is a tail call and Loc.Ptr points to a stack location, we know that
-  // the tail call cannot access or modify the local stack.
-  // We cannot exclude byval arguments here; these belong to the caller of
-  // the current function not to the current function, and a tail callee
-  // may reference them.
-  if (isa<AllocaInst>(Object))
-    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
-      if (CI->isTailCall())
-        return NoModRef;
-  
-  // If the pointer is to a locally allocated object that does not escape,
-  // then the call can not mod/ref the pointer unless the call takes the pointer
-  // as an argument, and itself doesn't capture it.
-  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
-      isNonEscapingLocalObject(Object)) {
-    bool PassedAsArg = false;
-    unsigned ArgNo = 0;
-    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
-         CI != CE; ++CI, ++ArgNo) {
-      // Only look at the no-capture pointer arguments.
-      if (!(*CI)->getType()->isPointerTy() ||
-          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
-        continue;
-      
-      // If this is a no-capture pointer argument, see if we can tell that it
-      // is impossible to alias the pointer we're checking.  If not, we have to
-      // assume that the call could touch the pointer, even though it doesn't
-      // escape.
-      if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
-        PassedAsArg = true;
-        break;
-      }
-    }
-    
-    if (!PassedAsArg)
-      return NoModRef;
-  }
-
-  // Finally, handle specific knowledge of intrinsics.
-  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
-  if (II != 0)
-    switch (II->getIntrinsicID()) {
-    default: break;
-    case Intrinsic::memcpy:
-    case Intrinsic::memmove: {
-      uint64_t Len = UnknownSize;
-      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
-        Len = LenCI->getZExtValue();
-      Value *Dest = II->getArgOperand(0);
-      Value *Src = II->getArgOperand(1);
-      if (isNoAlias(Location(Dest, Len), Loc)) {
-        if (isNoAlias(Location(Src, Len), Loc))
-          return NoModRef;
-        return Ref;
-      }
-      break;
-    }
-    case Intrinsic::memset:
-      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
-      // will handle it for the variable length case.
-      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
-        uint64_t Len = LenCI->getZExtValue();
-        Value *Dest = II->getArgOperand(0);
-        if (isNoAlias(Location(Dest, Len), Loc))
-          return NoModRef;
-      }
-      break;
-    case Intrinsic::atomic_cmp_swap:
-    case Intrinsic::atomic_swap:
-    case Intrinsic::atomic_load_add:
-    case Intrinsic::atomic_load_sub:
-    case Intrinsic::atomic_load_and:
-    case Intrinsic::atomic_load_nand:
-    case Intrinsic::atomic_load_or:
-    case Intrinsic::atomic_load_xor:
-    case Intrinsic::atomic_load_max:
-    case Intrinsic::atomic_load_min:
-    case Intrinsic::atomic_load_umax:
-    case Intrinsic::atomic_load_umin:
-      if (TD) {
-        Value *Op1 = II->getArgOperand(0);
-        uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
-        MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
-        if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
-          return NoModRef;
-      }
-      break;
-    case Intrinsic::lifetime_start:
-    case Intrinsic::lifetime_end:
-    case Intrinsic::invariant_start: {
-      uint64_t PtrSize =
-        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
-      if (isNoAlias(Location(II->getArgOperand(1),
-                             PtrSize,
-                             II->getMetadata(LLVMContext::MD_tbaa)),
-                    Loc))
-        return NoModRef;
-      break;
-    }
-    case Intrinsic::invariant_end: {
-      uint64_t PtrSize =
-        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
-      if (isNoAlias(Location(II->getArgOperand(2),
-                             PtrSize,
-                             II->getMetadata(LLVMContext::MD_tbaa)),
-                    Loc))
-        return NoModRef;
-      break;
-    }
-    }
-
-  // The AliasAnalysis base class has some smarts, lets use them.
-  return AliasAnalysis::getModRefInfo(CS, Loc);
-}
-
-/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
-/// against another pointer.  We know that V1 is a GEP, but we don't know
-/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
-/// UnderlyingV2 is the same for V2.
-///
-AliasAnalysis::AliasResult
-BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
-                             const Value *V2, uint64_t V2Size,
-                             const MDNode *V2TBAAInfo,
-                             const Value *UnderlyingV1,
-                             const Value *UnderlyingV2) {
-  // If this GEP has been visited before, we're on a use-def cycle.
-  // Such cycles are only valid when PHI nodes are involved or in unreachable
-  // code. The visitPHI function catches cycles containing PHIs, but there
-  // could still be a cycle without PHIs in unreachable code.
-  if (!Visited.insert(GEP1))
-    return MayAlias;
-
-  int64_t GEP1BaseOffset;
-  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
-
-  // If we have two gep instructions with must-alias'ing base pointers, figure
-  // out if the indexes to the GEP tell us anything about the derived pointer.
-  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
-    // Do the base pointers alias?
-    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
-                                       UnderlyingV2, UnknownSize, 0);
-    
-    // If we get a No or May, then return it immediately, no amount of analysis
-    // will improve this situation.
-    if (BaseAlias != MustAlias) return BaseAlias;
-    
-    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
-    // exactly, see if the computed offset from the common pointer tells us
-    // about the relation of the resulting pointer.
-    const Value *GEP1BasePtr =
-      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
-    
-    int64_t GEP2BaseOffset;
-    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
-    const Value *GEP2BasePtr =
-      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
-    
-    // If DecomposeGEPExpression isn't able to look all the way through the
-    // addressing operation, we must not have TD and this is too complex for us
-    // to handle without it.
-    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
-      assert(TD == 0 &&
-             "DecomposeGEPExpression and getUnderlyingObject disagree!");
-      return MayAlias;
-    }
-    
-    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
-    // symbolic difference.
-    GEP1BaseOffset -= GEP2BaseOffset;
-    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
-    
-  } else {
-    // Check to see if these two pointers are related by the getelementptr
-    // instruction.  If one pointer is a GEP with a non-zero index of the other
-    // pointer, we know they cannot alias.
-
-    // If both accesses are unknown size, we can't do anything useful here.
-    if (V1Size == UnknownSize && V2Size == UnknownSize)
-      return MayAlias;
-
-    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
-                               V2, V2Size, V2TBAAInfo);
-    if (R != MustAlias)
-      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
-      // If V2 is known not to alias GEP base pointer, then the two values
-      // cannot alias per GEP semantics: "A pointer value formed from a
-      // getelementptr instruction is associated with the addresses associated
-      // with the first operand of the getelementptr".
-      return R;
-
-    const Value *GEP1BasePtr =
-      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
-    
-    // If DecomposeGEPExpression isn't able to look all the way through the
-    // addressing operation, we must not have TD and this is too complex for us
-    // to handle without it.
-    if (GEP1BasePtr != UnderlyingV1) {
-      assert(TD == 0 &&
-             "DecomposeGEPExpression and getUnderlyingObject disagree!");
-      return MayAlias;
-    }
-  }
-  
-  // In the two GEP Case, if there is no difference in the offsets of the
-  // computed pointers, the resultant pointers are a must alias.  This
-  // hapens when we have two lexically identical GEP's (for example).
-  //
-  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
-  // must aliases the GEP, the end result is a must alias also.
-  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
-    return MustAlias;
-
-  // If we have a known constant offset, see if this offset is larger than the
-  // access size being queried.  If so, and if no variable indices can remove
-  // pieces of this constant, then we know we have a no-alias.  For example,
-  //   &A[100] != &A.
-  
-  // In order to handle cases like &A[100][i] where i is an out of range
-  // subscript, we have to ignore all constant offset pieces that are a multiple
-  // of a scaled index.  Do this by removing constant offsets that are a
-  // multiple of any of our variable indices.  This allows us to transform
-  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
-  // provides an offset of 4 bytes (assuming a <= 4 byte access).
-  for (unsigned i = 0, e = GEP1VariableIndices.size();
-       i != e && GEP1BaseOffset;++i)
-    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
-      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
-  
-  // If our known offset is bigger than the access size, we know we don't have
-  // an alias.
-  if (GEP1BaseOffset) {
-    if (GEP1BaseOffset >= 0 ?
-        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
-        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
-         GEP1BaseOffset != INT64_MIN))
-      return NoAlias;
-  }
-  
-  return MayAlias;
-}
-
-/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
-/// instruction against another.
-AliasAnalysis::AliasResult
-BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
-                                const MDNode *SITBAAInfo,
-                                const Value *V2, uint64_t V2Size,
-                                const MDNode *V2TBAAInfo) {
-  // If this select has been visited before, we're on a use-def cycle.
-  // Such cycles are only valid when PHI nodes are involved or in unreachable
-  // code. The visitPHI function catches cycles containing PHIs, but there
-  // could still be a cycle without PHIs in unreachable code.
-  if (!Visited.insert(SI))
-    return MayAlias;
-
-  // If the values are Selects with the same condition, we can do a more precise
-  // check: just check for aliases between the values on corresponding arms.
-  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
-    if (SI->getCondition() == SI2->getCondition()) {
-      AliasResult Alias =
-        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
-                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
-      if (Alias == MayAlias)
-        return MayAlias;
-      AliasResult ThisAlias =
-        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
-                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
-      if (ThisAlias != Alias)
-        return MayAlias;
-      return Alias;
-    }
-
-  // If both arms of the Select node NoAlias or MustAlias V2, then returns
-  // NoAlias / MustAlias. Otherwise, returns MayAlias.
-  AliasResult Alias =
-    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
-  if (Alias == MayAlias)
-    return MayAlias;
-
-  // If V2 is visited, the recursive case will have been caught in the
-  // above aliasCheck call, so these subsequent calls to aliasCheck
-  // don't need to assume that V2 is being visited recursively.
-  Visited.erase(V2);
-
-  AliasResult ThisAlias =
-    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
-  if (ThisAlias != Alias)
-    return MayAlias;
-  return Alias;
-}
-
-// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
-// against another.
-AliasAnalysis::AliasResult
-BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
-                             const MDNode *PNTBAAInfo,
-                             const Value *V2, uint64_t V2Size,
-                             const MDNode *V2TBAAInfo) {
-  // The PHI node has already been visited, avoid recursion any further.
-  if (!Visited.insert(PN))
-    return MayAlias;
-
-  // If the values are PHIs in the same block, we can do a more precise
-  // as well as efficient check: just check for aliases between the values
-  // on corresponding edges.
-  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
-    if (PN2->getParent() == PN->getParent()) {
-      AliasResult Alias =
-        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
-                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
-                   V2Size, V2TBAAInfo);
-      if (Alias == MayAlias)
-        return MayAlias;
-      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
-        AliasResult ThisAlias =
-          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
-                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
-                     V2Size, V2TBAAInfo);
-        if (ThisAlias != Alias)
-          return MayAlias;
-      }
-      return Alias;
-    }
-
-  SmallPtrSet<Value*, 4> UniqueSrc;
-  SmallVector<Value*, 4> V1Srcs;
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-    Value *PV1 = PN->getIncomingValue(i);
-    if (isa<PHINode>(PV1))
-      // If any of the source itself is a PHI, return MayAlias conservatively
-      // to avoid compile time explosion. The worst possible case is if both
-      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
-      // and 'n' are the number of PHI sources.
-      return MayAlias;
-    if (UniqueSrc.insert(PV1))
-      V1Srcs.push_back(PV1);
-  }
-
-  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
-                                 V1Srcs[0], PNSize, PNTBAAInfo);
-  // Early exit if the check of the first PHI source against V2 is MayAlias.
-  // Other results are not possible.
-  if (Alias == MayAlias)
-    return MayAlias;
-
-  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
-  // NoAlias / MustAlias. Otherwise, returns MayAlias.
-  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
-    Value *V = V1Srcs[i];
-
-    // If V2 is visited, the recursive case will have been caught in the
-    // above aliasCheck call, so these subsequent calls to aliasCheck
-    // don't need to assume that V2 is being visited recursively.
-    Visited.erase(V2);
-
-    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
-                                       V, PNSize, PNTBAAInfo);
-    if (ThisAlias != Alias || ThisAlias == MayAlias)
-      return MayAlias;
-  }
-
-  return Alias;
-}
-
-// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
-// such as array references.
-//
-AliasAnalysis::AliasResult
-BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
-                               const MDNode *V1TBAAInfo,
-                               const Value *V2, uint64_t V2Size,
-                               const MDNode *V2TBAAInfo) {
-  // If either of the memory references is empty, it doesn't matter what the
-  // pointer values are.
-  if (V1Size == 0 || V2Size == 0)
-    return NoAlias;
-
-  // Strip off any casts if they exist.
-  V1 = V1->stripPointerCasts();
-  V2 = V2->stripPointerCasts();
-
-  // Are we checking for alias of the same value?
-  if (V1 == V2) return MustAlias;
-
-  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
-    return NoAlias;  // Scalars cannot alias each other
-
-  // Figure out what objects these things are pointing to if we can.
-  const Value *O1 = V1->getUnderlyingObject();
-  const Value *O2 = V2->getUnderlyingObject();
-
-  // Null values in the default address space don't point to any object, so they
-  // don't alias any other pointer.
-  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
-    if (CPN->getType()->getAddressSpace() == 0)
-      return NoAlias;
-  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
-    if (CPN->getType()->getAddressSpace() == 0)
-      return NoAlias;
-
-  if (O1 != O2) {
-    // If V1/V2 point to two different objects we know that we have no alias.
-    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
-      return NoAlias;
-
-    // Constant pointers can't alias with non-const isIdentifiedObject objects.
-    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
-        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
-      return NoAlias;
-
-    // Arguments can't alias with local allocations or noalias calls
-    // in the same function.
-    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
-         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
-      return NoAlias;
-
-    // Most objects can't alias null.
-    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
-        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
-      return NoAlias;
-  
-    // If one pointer is the result of a call/invoke or load and the other is a
-    // non-escaping local object within the same function, then we know the
-    // object couldn't escape to a point where the call could return it.
-    //
-    // Note that if the pointers are in different functions, there are a
-    // variety of complications. A call with a nocapture argument may still
-    // temporary store the nocapture argument's value in a temporary memory
-    // location if that memory location doesn't escape. Or it may pass a
-    // nocapture value to other functions as long as they don't capture it.
-    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
-      return NoAlias;
-    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
-      return NoAlias;
-  }
-
-  // If the size of one access is larger than the entire object on the other
-  // side, then we know such behavior is undefined and can assume no alias.
-  if (TD)
-    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
-        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
-      return NoAlias;
-  
-  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
-  // GEP can't simplify, we don't even look at the PHI cases.
-  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
-    std::swap(V1, V2);
-    std::swap(V1Size, V2Size);
-    std::swap(O1, O2);
-  }
-  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
-    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
-    if (Result != MayAlias) return Result;
-  }
-
-  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
-    std::swap(V1, V2);
-    std::swap(V1Size, V2Size);
-  }
-  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
-    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
-                                  V2, V2Size, V2TBAAInfo);
-    if (Result != MayAlias) return Result;
-  }
-
-  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
-    std::swap(V1, V2);
-    std::swap(V1Size, V2Size);
-  }
-  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
-    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
-                                     V2, V2Size, V2TBAAInfo);
-    if (Result != MayAlias) return Result;
-  }
-
-  return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
-                              Location(V2, V2Size, V2TBAAInfo));
-}
-
-// Make sure that anything that uses AliasAnalysis pulls in this file.
-DEFINING_FILE_FOR(BasicAliasAnalysis)





More information about the llvm-commits mailing list