[llvm-commits] [llvm] r105333 - /llvm/trunk/include/llvm/ADT/SmallVector.h

Jim Grosbach grosbach at apple.com
Wed Jun 2 10:45:54 PDT 2010


Author: grosbach
Date: Wed Jun  2 12:45:54 2010
New Revision: 105333

URL: http://llvm.org/viewvc/llvm-project?rev=105333&view=rev
Log:
remove trailing whitespace

Modified:
    llvm/trunk/include/llvm/ADT/SmallVector.h

Modified: llvm/trunk/include/llvm/ADT/SmallVector.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/SmallVector.h?rev=105333&r1=105332&r2=105333&view=diff
==============================================================================
--- llvm/trunk/include/llvm/ADT/SmallVector.h (original)
+++ llvm/trunk/include/llvm/ADT/SmallVector.h Wed Jun  2 12:45:54 2010
@@ -70,35 +70,35 @@
 #endif
   } FirstEl;
   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
-  
+
 protected:
   SmallVectorBase(size_t Size)
     : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
-  
+
   /// isSmall - Return true if this is a smallvector which has not had dynamic
   /// memory allocated for it.
   bool isSmall() const {
     return BeginX == static_cast<const void*>(&FirstEl);
   }
-  
+
   /// size_in_bytes - This returns size()*sizeof(T).
   size_t size_in_bytes() const {
     return size_t((char*)EndX - (char*)BeginX);
   }
-  
+
   /// capacity_in_bytes - This returns capacity()*sizeof(T).
   size_t capacity_in_bytes() const {
     return size_t((char*)CapacityX - (char*)BeginX);
   }
-  
+
   /// grow_pod - This is an implementation of the grow() method which only works
   /// on POD-like datatypes and is out of line to reduce code duplication.
   void grow_pod(size_t MinSizeInBytes, size_t TSize);
-  
+
 public:
   bool empty() const { return BeginX == EndX; }
 };
-  
+
 
 template <typename T>
 class SmallVectorTemplateCommon : public SmallVectorBase {
@@ -106,21 +106,21 @@
   void setEnd(T *P) { this->EndX = P; }
 public:
   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
-  
+
   typedef size_t size_type;
   typedef ptrdiff_t difference_type;
   typedef T value_type;
   typedef T *iterator;
   typedef const T *const_iterator;
-  
+
   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
   typedef std::reverse_iterator<iterator> reverse_iterator;
-  
+
   typedef T &reference;
   typedef const T &const_reference;
   typedef T *pointer;
   typedef const T *const_pointer;
-  
+
   // forward iterator creation methods.
   iterator begin() { return (iterator)this->BeginX; }
   const_iterator begin() const { return (const_iterator)this->BeginX; }
@@ -130,7 +130,7 @@
   iterator capacity_ptr() { return (iterator)this->CapacityX; }
   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
 public:
-  
+
   // reverse iterator creation methods.
   reverse_iterator rbegin()            { return reverse_iterator(end()); }
   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
@@ -139,16 +139,16 @@
 
   size_type size() const { return end()-begin(); }
   size_type max_size() const { return size_type(-1) / sizeof(T); }
-  
+
   /// capacity - Return the total number of elements in the currently allocated
   /// buffer.
   size_t capacity() const { return capacity_ptr() - begin(); }
-  
+
   /// data - Return a pointer to the vector's buffer, even if empty().
   pointer data() { return pointer(begin()); }
   /// data - Return a pointer to the vector's buffer, even if empty().
   const_pointer data() const { return const_pointer(begin()); }
-  
+
   reference operator[](unsigned idx) {
     assert(begin() + idx < end());
     return begin()[idx];
@@ -172,7 +172,7 @@
     return end()[-1];
   }
 };
-  
+
 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
 /// implementations that are designed to work with non-POD-like T's.
 template <typename T, bool isPodLike>
@@ -186,14 +186,14 @@
       E->~T();
     }
   }
-  
+
   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
   /// starting with "Dest", constructing elements into it as needed.
   template<typename It1, typename It2>
   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
     std::uninitialized_copy(I, E, Dest);
   }
-  
+
   /// grow - double the size of the allocated memory, guaranteeing space for at
   /// least one more element or MinSize if specified.
   void grow(size_t MinSize = 0);
@@ -208,33 +208,33 @@
   if (NewCapacity < MinSize)
     NewCapacity = MinSize;
   T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
-  
+
   // Copy the elements over.
   this->uninitialized_copy(this->begin(), this->end(), NewElts);
-  
+
   // Destroy the original elements.
   destroy_range(this->begin(), this->end());
-  
+
   // If this wasn't grown from the inline copy, deallocate the old space.
   if (!this->isSmall())
     operator delete(this->begin());
-  
+
   this->setEnd(NewElts+CurSize);
   this->BeginX = NewElts;
   this->CapacityX = this->begin()+NewCapacity;
 }
-  
-  
+
+
 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
 /// implementations that are designed to work with POD-like T's.
 template <typename T>
 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
 public:
   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
-  
+
   // No need to do a destroy loop for POD's.
   static void destroy_range(T *, T *) {}
-  
+
   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
   /// starting with "Dest", constructing elements into it as needed.
   template<typename It1, typename It2>
@@ -259,8 +259,8 @@
     this->grow_pod(MinSize*sizeof(T), sizeof(T));
   }
 };
-  
-  
+
+
 /// SmallVectorImpl - This class consists of common code factored out of the
 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
 /// template parameter.
@@ -270,22 +270,22 @@
 public:
   typedef typename SuperClass::iterator iterator;
   typedef typename SuperClass::size_type size_type;
-  
+
   // Default ctor - Initialize to empty.
   explicit SmallVectorImpl(unsigned N)
     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
   }
-  
+
   ~SmallVectorImpl() {
     // Destroy the constructed elements in the vector.
     this->destroy_range(this->begin(), this->end());
-    
+
     // If this wasn't grown from the inline copy, deallocate the old space.
     if (!this->isSmall())
       operator delete(this->begin());
   }
-  
-  
+
+
   void clear() {
     this->destroy_range(this->begin(), this->end());
     this->EndX = this->BeginX;
@@ -319,7 +319,7 @@
     if (this->capacity() < N)
       this->grow(N);
   }
-  
+
   void push_back(const T &Elt) {
     if (this->EndX < this->CapacityX) {
     Retry:
@@ -330,21 +330,21 @@
     this->grow();
     goto Retry;
   }
-  
+
   void pop_back() {
     this->setEnd(this->end()-1);
     this->end()->~T();
   }
-  
+
   T pop_back_val() {
     T Result = this->back();
     pop_back();
     return Result;
   }
-  
-  
+
+
   void swap(SmallVectorImpl &RHS);
-  
+
   /// append - Add the specified range to the end of the SmallVector.
   ///
   template<typename in_iter>
@@ -353,26 +353,26 @@
     // Grow allocated space if needed.
     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
       this->grow(this->size()+NumInputs);
-    
+
     // Copy the new elements over.
     // TODO: NEED To compile time dispatch on whether in_iter is a random access
     // iterator to use the fast uninitialized_copy.
     std::uninitialized_copy(in_start, in_end, this->end());
     this->setEnd(this->end() + NumInputs);
   }
-  
+
   /// append - Add the specified range to the end of the SmallVector.
   ///
   void append(size_type NumInputs, const T &Elt) {
     // Grow allocated space if needed.
     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
       this->grow(this->size()+NumInputs);
-    
+
     // Copy the new elements over.
     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
     this->setEnd(this->end() + NumInputs);
   }
-  
+
   void assign(unsigned NumElts, const T &Elt) {
     clear();
     if (this->capacity() < NumElts)
@@ -380,7 +380,7 @@
     this->setEnd(this->begin()+NumElts);
     construct_range(this->begin(), this->end(), Elt);
   }
-  
+
   iterator erase(iterator I) {
     iterator N = I;
     // Shift all elts down one.
@@ -389,7 +389,7 @@
     pop_back();
     return(N);
   }
-  
+
   iterator erase(iterator S, iterator E) {
     iterator N = S;
     // Shift all elts down.
@@ -399,13 +399,13 @@
     this->setEnd(I);
     return(N);
   }
-  
+
   iterator insert(iterator I, const T &Elt) {
     if (I == this->end()) {  // Important special case for empty vector.
       push_back(Elt);
       return this->end()-1;
     }
-    
+
     if (this->EndX < this->CapacityX) {
     Retry:
       new (this->end()) T(this->back());
@@ -420,22 +420,22 @@
     I = this->begin()+EltNo;
     goto Retry;
   }
-  
+
   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
     if (I == this->end()) {  // Important special case for empty vector.
       append(NumToInsert, Elt);
       return this->end()-1;
     }
-    
+
     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
     size_t InsertElt = I - this->begin();
-    
+
     // Ensure there is enough space.
     reserve(static_cast<unsigned>(this->size() + NumToInsert));
-    
+
     // Uninvalidate the iterator.
     I = this->begin()+InsertElt;
-    
+
     // If there are more elements between the insertion point and the end of the
     // range than there are being inserted, we can use a simple approach to
     // insertion.  Since we already reserved space, we know that this won't
@@ -443,48 +443,48 @@
     if (size_t(this->end()-I) >= NumToInsert) {
       T *OldEnd = this->end();
       append(this->end()-NumToInsert, this->end());
-      
+
       // Copy the existing elements that get replaced.
       std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-      
+
       std::fill_n(I, NumToInsert, Elt);
       return I;
     }
-    
+
     // Otherwise, we're inserting more elements than exist already, and we're
     // not inserting at the end.
-    
+
     // Copy over the elements that we're about to overwrite.
     T *OldEnd = this->end();
     this->setEnd(this->end() + NumToInsert);
     size_t NumOverwritten = OldEnd-I;
     this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
-    
+
     // Replace the overwritten part.
     std::fill_n(I, NumOverwritten, Elt);
-    
+
     // Insert the non-overwritten middle part.
     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
     return I;
   }
-  
+
   template<typename ItTy>
   iterator insert(iterator I, ItTy From, ItTy To) {
     if (I == this->end()) {  // Important special case for empty vector.
       append(From, To);
       return this->end()-1;
     }
-    
+
     size_t NumToInsert = std::distance(From, To);
     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
     size_t InsertElt = I - this->begin();
-    
+
     // Ensure there is enough space.
     reserve(static_cast<unsigned>(this->size() + NumToInsert));
-    
+
     // Uninvalidate the iterator.
     I = this->begin()+InsertElt;
-    
+
     // If there are more elements between the insertion point and the end of the
     // range than there are being inserted, we can use a simple approach to
     // insertion.  Since we already reserved space, we know that this won't
@@ -492,37 +492,37 @@
     if (size_t(this->end()-I) >= NumToInsert) {
       T *OldEnd = this->end();
       append(this->end()-NumToInsert, this->end());
-      
+
       // Copy the existing elements that get replaced.
       std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-      
+
       std::copy(From, To, I);
       return I;
     }
-    
+
     // Otherwise, we're inserting more elements than exist already, and we're
     // not inserting at the end.
-    
+
     // Copy over the elements that we're about to overwrite.
     T *OldEnd = this->end();
     this->setEnd(this->end() + NumToInsert);
     size_t NumOverwritten = OldEnd-I;
     this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
-    
+
     // Replace the overwritten part.
     for (; NumOverwritten > 0; --NumOverwritten) {
       *I = *From;
       ++I; ++From;
     }
-    
+
     // Insert the non-overwritten middle part.
     this->uninitialized_copy(From, To, OldEnd);
     return I;
   }
-  
+
   const SmallVectorImpl
   &operator=(const SmallVectorImpl &RHS);
-  
+
   bool operator==(const SmallVectorImpl &RHS) const {
     if (this->size() != RHS.size()) return false;
     return std::equal(this->begin(), this->end(), RHS.begin());
@@ -530,12 +530,12 @@
   bool operator!=(const SmallVectorImpl &RHS) const {
     return !(*this == RHS);
   }
-  
+
   bool operator<(const SmallVectorImpl &RHS) const {
     return std::lexicographical_compare(this->begin(), this->end(),
                                         RHS.begin(), RHS.end());
   }
-  
+
   /// set_size - Set the array size to \arg N, which the current array must have
   /// enough capacity for.
   ///
@@ -549,14 +549,14 @@
     assert(N <= this->capacity());
     this->setEnd(this->begin() + N);
   }
-  
+
 private:
   static void construct_range(T *S, T *E, const T &Elt) {
     for (; S != E; ++S)
       new (S) T(Elt);
   }
 };
-  
+
 
 template <typename T>
 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {





More information about the llvm-commits mailing list