[llvm-commits] [llvm] r101427 - /llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp

Chris Lattner sabre at nondot.org
Thu Apr 15 17:24:57 PDT 2010


Author: lattner
Date: Thu Apr 15 19:24:57 2010
New Revision: 101427

URL: http://llvm.org/viewvc/llvm-project?rev=101427&view=rev
Log:
pull all the ConvertToScalarInfo code together into one
place.

Modified:
    llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp

Modified: llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp?rev=101427&r1=101426&r2=101427&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp Thu Apr 15 19:24:57 2010
@@ -49,8 +49,6 @@
 STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
 
 namespace {
-  struct ConvertToScalarInfo;
-  
   struct SROA : public FunctionPass {
     static char ID; // Pass identification, replacement for typeid
     explicit SROA(signed T = -1) : FunctionPass(&ID) {
@@ -145,75 +143,13 @@
 }
 
 
-bool SROA::runOnFunction(Function &F) {
-  TD = getAnalysisIfAvailable<TargetData>();
-
-  bool Changed = performPromotion(F);
-
-  // FIXME: ScalarRepl currently depends on TargetData more than it
-  // theoretically needs to. It should be refactored in order to support
-  // target-independent IR. Until this is done, just skip the actual
-  // scalar-replacement portion of this pass.
-  if (!TD) return Changed;
-
-  while (1) {
-    bool LocalChange = performScalarRepl(F);
-    if (!LocalChange) break;   // No need to repromote if no scalarrepl
-    Changed = true;
-    LocalChange = performPromotion(F);
-    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
-  }
-
-  return Changed;
-}
-
-
-bool SROA::performPromotion(Function &F) {
-  std::vector<AllocaInst*> Allocas;
-  DominatorTree         &DT = getAnalysis<DominatorTree>();
-  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
-
-  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
-
-  bool Changed = false;
-
-  while (1) {
-    Allocas.clear();
-
-    // Find allocas that are safe to promote, by looking at all instructions in
-    // the entry node
-    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
-      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
-        if (isAllocaPromotable(AI))
-          Allocas.push_back(AI);
-
-    if (Allocas.empty()) break;
-
-    PromoteMemToReg(Allocas, DT, DF);
-    NumPromoted += Allocas.size();
-    Changed = true;
-  }
-
-  return Changed;
-}
-
-/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
-/// SROA.  It must be a struct or array type with a small number of elements.
-static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
-  const Type *T = AI->getAllocatedType();
-  // Do not promote any struct into more than 32 separate vars.
-  if (const StructType *ST = dyn_cast<StructType>(T))
-    return ST->getNumElements() <= 32;
-  // Arrays are much less likely to be safe for SROA; only consider
-  // them if they are very small.
-  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
-    return AT->getNumElements() <= 8;
-  return false;
-}
+//===----------------------------------------------------------------------===//
+// Convert To Scalar Optimization.
+//===----------------------------------------------------------------------===//
 
 namespace {
 /// ConvertToScalarInfo - This struct is used by CanConvertToScalar
-struct ConvertToScalarInfo {
+class ConvertToScalarInfo {
   /// AllocaSize - The size of the alloca being considered.
   unsigned AllocaSize;
   const TargetData &TD;
@@ -222,6 +158,7 @@
   const Type *VectorTy;
   bool HadAVector;
 
+public:
   explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
     : AllocaSize(Size), TD(td) {
     IsNotTrivial = false;
@@ -229,10 +166,6 @@
     HadAVector = false;
   }
   
-  bool shouldConvertToVector() const {
-    return VectorTy && VectorTy->isVectorTy() && HadAVector;
-  }
-  
   AllocaInst *TryConvert(AllocaInst *AI) {
     // If we can't convert this scalar, or if mem2reg can trivially do it, bail
     // out.
@@ -247,7 +180,7 @@
     // we just get a lot of insert/extracts.  If at least one vector is
     // involved, then we probably really do have a union of vector/array.
     const Type *NewTy;
-    if (shouldConvertToVector()) {
+    if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
       DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
                    << *VectorTy << '\n');
       NewTy = VectorTy;  // Use the vector type.
@@ -261,6 +194,7 @@
     return NewAI;
   }
   
+private:
   bool CanConvertToScalar(Value *V, uint64_t Offset);
   void MergeInType(const Type *In, uint64_t Offset);
   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
@@ -272,1438 +206,1510 @@
 };
 } // end anonymous namespace.
 
+/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
+/// the offset specified by Offset (which is specified in bytes).
+///
+/// There are two cases we handle here:
+///   1) A union of vector types of the same size and potentially its elements.
+///      Here we turn element accesses into insert/extract element operations.
+///      This promotes a <4 x float> with a store of float to the third element
+///      into a <4 x float> that uses insert element.
+///   2) A fully general blob of memory, which we turn into some (potentially
+///      large) integer type with extract and insert operations where the loads
+///      and stores would mutate the memory.
+void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
+  // Remember if we saw a vector type.
+  HadAVector |= In->isVectorTy();
+  
+  if (VectorTy && VectorTy->isVoidTy())
+    return;
+  
+  // If this could be contributing to a vector, analyze it.
 
+  // If the In type is a vector that is the same size as the alloca, see if it
+  // matches the existing VecTy.
+  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
+    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
+      // If we're storing/loading a vector of the right size, allow it as a
+      // vector.  If this the first vector we see, remember the type so that
+      // we know the element size.
+      if (VectorTy == 0)
+        VectorTy = VInTy;
+      return;
+    }
+  } else if (In->isFloatTy() || In->isDoubleTy() ||
+             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
+              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
+    // If we're accessing something that could be an element of a vector, see
+    // if the implied vector agrees with what we already have and if Offset is
+    // compatible with it.
+    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
+    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
+        (VectorTy == 0 || 
+         cast<VectorType>(VectorTy)->getElementType()
+               ->getPrimitiveSizeInBits()/8 == EltSize)) {
+      if (VectorTy == 0)
+        VectorTy = VectorType::get(In, AllocaSize/EltSize);
+      return;
+    }
+  }
+  
+  // Otherwise, we have a case that we can't handle with an optimized vector
+  // form.  We can still turn this into a large integer.
+  VectorTy = Type::getVoidTy(In->getContext());
+}
 
-// performScalarRepl - This algorithm is a simple worklist driven algorithm,
-// which runs on all of the malloc/alloca instructions in the function, removing
-// them if they are only used by getelementptr instructions.
-//
-bool SROA::performScalarRepl(Function &F) {
-  std::vector<AllocaInst*> WorkList;
-
-  // Scan the entry basic block, adding allocas to the worklist.
-  BasicBlock &BB = F.getEntryBlock();
-  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
-    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
-      WorkList.push_back(A);
-
-  // Process the worklist
-  bool Changed = false;
-  while (!WorkList.empty()) {
-    AllocaInst *AI = WorkList.back();
-    WorkList.pop_back();
+/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
+/// its accesses to a single vector type, return true and set VecTy to
+/// the new type.  If we could convert the alloca into a single promotable
+/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
+/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
+/// is the current offset from the base of the alloca being analyzed.
+///
+/// If we see at least one access to the value that is as a vector type, set the
+/// SawVec flag.
+bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
+    Instruction *User = cast<Instruction>(*UI);
     
-    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
-    // with unused elements.
-    if (AI->use_empty()) {
-      AI->eraseFromParent();
-      Changed = true;
+    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+      // Don't break volatile loads.
+      if (LI->isVolatile())
+        return false;
+      MergeInType(LI->getType(), Offset);
       continue;
     }
-
-    // If this alloca is impossible for us to promote, reject it early.
-    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
-      continue;
     
-    // Check to see if this allocation is only modified by a memcpy/memmove from
-    // a constant global.  If this is the case, we can change all users to use
-    // the constant global instead.  This is commonly produced by the CFE by
-    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
-    // is only subsequently read.
-    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
-      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
-      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
-      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
-      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
-      TheCopy->eraseFromParent();  // Don't mutate the global.
-      AI->eraseFromParent();
-      ++NumGlobals;
-      Changed = true;
+    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+      // Storing the pointer, not into the value?
+      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
+      MergeInType(SI->getOperand(0)->getType(), Offset);
       continue;
     }
     
-    // Check to see if we can perform the core SROA transformation.  We cannot
-    // transform the allocation instruction if it is an array allocation
-    // (allocations OF arrays are ok though), and an allocation of a scalar
-    // value cannot be decomposed at all.
-    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
-
-    // Do not promote [0 x %struct].
-    if (AllocaSize == 0) continue;
-    
-    // Do not promote any struct whose size is too big.
-    if (AllocaSize > SRThreshold) continue;
-    
-    // If the alloca looks like a good candidate for scalar replacement, and if
-    // all its users can be transformed, then split up the aggregate into its
-    // separate elements.
-    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
-      DoScalarReplacement(AI, WorkList);
-      Changed = true;
+    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
+      if (!CanConvertToScalar(BCI, Offset))
+        return false;
+      IsNotTrivial = true;
       continue;
     }
 
-    // If we can turn this aggregate value (potentially with casts) into a
-    // simple scalar value that can be mem2reg'd into a register value.
-    // IsNotTrivial tracks whether this is something that mem2reg could have
-    // promoted itself.  If so, we don't want to transform it needlessly.  Note
-    // that we can't just check based on the type: the alloca may be of an i32
-    // but that has pointer arithmetic to set byte 3 of it or something.
-    if (AllocaInst *NewAI =
-          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
-      NewAI->takeName(AI);
-      AI->eraseFromParent();
-      ++NumConverted;
-      Changed = true;
+    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
+      // If this is a GEP with a variable indices, we can't handle it.
+      if (!GEP->hasAllConstantIndices())
+        return false;
+      
+      // Compute the offset that this GEP adds to the pointer.
+      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
+      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
+                                               &Indices[0], Indices.size());
+      // See if all uses can be converted.
+      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
+        return false;
+      IsNotTrivial = true;
       continue;
-    }      
-    
-    // Otherwise, couldn't process this alloca.
-  }
+    }
 
-  return Changed;
-}
+    // If this is a constant sized memset of a constant value (e.g. 0) we can
+    // handle it.
+    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
+      // Store of constant value and constant size.
+      if (isa<ConstantInt>(MSI->getValue()) &&
+          isa<ConstantInt>(MSI->getLength())) {
+        IsNotTrivial = true;
+        continue;
+      }
+    }
 
-/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
-/// predicate, do SROA now.
-void SROA::DoScalarReplacement(AllocaInst *AI, 
-                               std::vector<AllocaInst*> &WorkList) {
-  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
-  SmallVector<AllocaInst*, 32> ElementAllocas;
-  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
-    ElementAllocas.reserve(ST->getNumContainedTypes());
-    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
-      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
-                                      AI->getAlignment(),
-                                      AI->getName() + "." + Twine(i), AI);
-      ElementAllocas.push_back(NA);
-      WorkList.push_back(NA);  // Add to worklist for recursive processing
-    }
-  } else {
-    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
-    ElementAllocas.reserve(AT->getNumElements());
-    const Type *ElTy = AT->getElementType();
-    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
-      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
-                                      AI->getName() + "." + Twine(i), AI);
-      ElementAllocas.push_back(NA);
-      WorkList.push_back(NA);  // Add to worklist for recursive processing
+    // If this is a memcpy or memmove into or out of the whole allocation, we
+    // can handle it like a load or store of the scalar type.
+    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
+      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
+        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
+          IsNotTrivial = true;
+          continue;
+        }
     }
+    
+    // Otherwise, we cannot handle this!
+    return false;
   }
-
-  // Now that we have created the new alloca instructions, rewrite all the
-  // uses of the old alloca.
-  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
-
-  // Now erase any instructions that were made dead while rewriting the alloca.
-  DeleteDeadInstructions();
-  AI->eraseFromParent();
-
-  NumReplaced++;
+  
+  return true;
 }
 
-/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
-/// recursively including all their operands that become trivially dead.
-void SROA::DeleteDeadInstructions() {
-  while (!DeadInsts.empty()) {
-    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
+/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
+/// directly.  This happens when we are converting an "integer union" to a
+/// single integer scalar, or when we are converting a "vector union" to a
+/// vector with insert/extractelement instructions.
+///
+/// Offset is an offset from the original alloca, in bits that need to be
+/// shifted to the right.  By the end of this, there should be no uses of Ptr.
+void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
+                                              uint64_t Offset) {
+  while (!Ptr->use_empty()) {
+    Instruction *User = cast<Instruction>(Ptr->use_back());
 
-    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
-      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
-        // Zero out the operand and see if it becomes trivially dead.
-        // (But, don't add allocas to the dead instruction list -- they are
-        // already on the worklist and will be deleted separately.)
-        *OI = 0;
-        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
-          DeadInsts.push_back(U);
-      }
+    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
+      ConvertUsesToScalar(CI, NewAI, Offset);
+      CI->eraseFromParent();
+      continue;
+    }
 
-    I->eraseFromParent();
-  }
-}
+    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
+      // Compute the offset that this GEP adds to the pointer.
+      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
+      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
+                                               &Indices[0], Indices.size());
+      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
+      GEP->eraseFromParent();
+      continue;
+    }
     
-/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
-/// performing scalar replacement of alloca AI.  The results are flagged in
-/// the Info parameter.  Offset indicates the position within AI that is
-/// referenced by this instruction.
-void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
-                               AllocaInfo &Info) {
-  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
+    IRBuilder<> Builder(User->getParent(), User);
+    
+    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+      // The load is a bit extract from NewAI shifted right by Offset bits.
+      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
+      Value *NewLoadVal
+        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
+      LI->replaceAllUsesWith(NewLoadVal);
+      LI->eraseFromParent();
+      continue;
+    }
+    
+    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+      assert(SI->getOperand(0) != Ptr && "Consistency error!");
+      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
+      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
+                                             Builder);
+      Builder.CreateStore(New, NewAI);
+      SI->eraseFromParent();
+      
+      // If the load we just inserted is now dead, then the inserted store
+      // overwrote the entire thing.
+      if (Old->use_empty())
+        Old->eraseFromParent();
+      continue;
+    }
+    
+    // If this is a constant sized memset of a constant value (e.g. 0) we can
+    // transform it into a store of the expanded constant value.
+    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
+      assert(MSI->getRawDest() == Ptr && "Consistency error!");
+      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
+      if (NumBytes != 0) {
+        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
+        
+        // Compute the value replicated the right number of times.
+        APInt APVal(NumBytes*8, Val);
 
-    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
-      isSafeForScalarRepl(BC, AI, Offset, Info);
-    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
-      uint64_t GEPOffset = Offset;
-      isSafeGEP(GEPI, AI, GEPOffset, Info);
-      if (!Info.isUnsafe)
-        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
-    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
-      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
-      if (Length)
-        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
-                        UI.getOperandNo() == 0, Info);
-      else
-        MarkUnsafe(Info);
-    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      if (!LI->isVolatile()) {
-        const Type *LIType = LI->getType();
-        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
-                        LIType, false, Info);
-      } else
-        MarkUnsafe(Info);
-    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
-      // Store is ok if storing INTO the pointer, not storing the pointer
-      if (!SI->isVolatile() && SI->getOperand(0) != I) {
-        const Type *SIType = SI->getOperand(0)->getType();
-        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
-                        SIType, true, Info);
-      } else
-        MarkUnsafe(Info);
-    } else {
-      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
-      MarkUnsafe(Info);
+        // Splat the value if non-zero.
+        if (Val)
+          for (unsigned i = 1; i != NumBytes; ++i)
+            APVal |= APVal << 8;
+        
+        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
+        Value *New = ConvertScalar_InsertValue(
+                                    ConstantInt::get(User->getContext(), APVal),
+                                               Old, Offset, Builder);
+        Builder.CreateStore(New, NewAI);
+        
+        // If the load we just inserted is now dead, then the memset overwrote
+        // the entire thing.
+        if (Old->use_empty())
+          Old->eraseFromParent();        
+      }
+      MSI->eraseFromParent();
+      continue;
     }
-    if (Info.isUnsafe) return;
-  }
-}
 
-/// isSafeGEP - Check if a GEP instruction can be handled for scalar
-/// replacement.  It is safe when all the indices are constant, in-bounds
-/// references, and when the resulting offset corresponds to an element within
-/// the alloca type.  The results are flagged in the Info parameter.  Upon
-/// return, Offset is adjusted as specified by the GEP indices.
-void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
-                     uint64_t &Offset, AllocaInfo &Info) {
-  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
-  if (GEPIt == E)
-    return;
+    // If this is a memcpy or memmove into or out of the whole allocation, we
+    // can handle it like a load or store of the scalar type.
+    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
+      assert(Offset == 0 && "must be store to start of alloca");
+      
+      // If the source and destination are both to the same alloca, then this is
+      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
+      // as appropriate.
+      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
+      
+      if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
+        // Dest must be OrigAI, change this to be a load from the original
+        // pointer (bitcasted), then a store to our new alloca.
+        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
+        Value *SrcPtr = MTI->getSource();
+        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
+        
+        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
+        SrcVal->setAlignment(MTI->getAlignment());
+        Builder.CreateStore(SrcVal, NewAI);
+      } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
+        // Src must be OrigAI, change this to be a load from NewAI then a store
+        // through the original dest pointer (bitcasted).
+        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
+        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
 
-  // Walk through the GEP type indices, checking the types that this indexes
-  // into.
-  for (; GEPIt != E; ++GEPIt) {
-    // Ignore struct elements, no extra checking needed for these.
-    if ((*GEPIt)->isStructTy())
-      continue;
+        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
+        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
+        NewStore->setAlignment(MTI->getAlignment());
+      } else {
+        // Noop transfer. Src == Dst
+      }
 
-    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
-    if (!IdxVal)
-      return MarkUnsafe(Info);
+      MTI->eraseFromParent();
+      continue;
+    }
+    
+    llvm_unreachable("Unsupported operation!");
   }
-
-  // Compute the offset due to this GEP and check if the alloca has a
-  // component element at that offset.
-  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
-  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
-                                 &Indices[0], Indices.size());
-  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
-    MarkUnsafe(Info);
 }
 
-/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
-/// alloca or has an offset and size that corresponds to a component element
-/// within it.  The offset checked here may have been formed from a GEP with a
-/// pointer bitcasted to a different type.
-void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
-                           const Type *MemOpType, bool isStore,
-                           AllocaInfo &Info) {
-  // Check if this is a load/store of the entire alloca.
-  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
-    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
-    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
-    // (which are essentially the same as the MemIntrinsics, especially with
-    // regard to copying padding between elements), or references using the
-    // aggregate type of the alloca.
-    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
-      if (!UsesAggregateType) {
-        if (isStore)
-          Info.isMemCpyDst = true;
-        else
-          Info.isMemCpySrc = true;
-      }
-      return;
+/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
+/// or vector value FromVal, extracting the bits from the offset specified by
+/// Offset.  This returns the value, which is of type ToType.
+///
+/// This happens when we are converting an "integer union" to a single
+/// integer scalar, or when we are converting a "vector union" to a vector with
+/// insert/extractelement instructions.
+///
+/// Offset is an offset from the original alloca, in bits that need to be
+/// shifted to the right.
+Value *ConvertToScalarInfo::
+ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
+                           uint64_t Offset, IRBuilder<> &Builder) {
+  // If the load is of the whole new alloca, no conversion is needed.
+  if (FromVal->getType() == ToType && Offset == 0)
+    return FromVal;
+
+  // If the result alloca is a vector type, this is either an element
+  // access or a bitcast to another vector type of the same size.
+  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
+    if (ToType->isVectorTy())
+      return Builder.CreateBitCast(FromVal, ToType, "tmp");
+
+    // Otherwise it must be an element access.
+    unsigned Elt = 0;
+    if (Offset) {
+      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+      Elt = Offset/EltSize;
+      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
     }
+    // Return the element extracted out of it.
+    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
+                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
+    if (V->getType() != ToType)
+      V = Builder.CreateBitCast(V, ToType, "tmp");
+    return V;
+  }
+  
+  // If ToType is a first class aggregate, extract out each of the pieces and
+  // use insertvalue's to form the FCA.
+  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
+    const StructLayout &Layout = *TD.getStructLayout(ST);
+    Value *Res = UndefValue::get(ST);
+    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
+      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
+                                        Offset+Layout.getElementOffsetInBits(i),
+                                              Builder);
+      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
+    }
+    return Res;
+  }
+  
+  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
+    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+    Value *Res = UndefValue::get(AT);
+    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
+                                              Offset+i*EltSize, Builder);
+      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
+    }
+    return Res;
   }
-  // Check if the offset/size correspond to a component within the alloca type.
-  const Type *T = AI->getAllocatedType();
-  if (TypeHasComponent(T, Offset, MemSize))
-    return;
 
-  return MarkUnsafe(Info);
-}
+  // Otherwise, this must be a union that was converted to an integer value.
+  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
 
-/// TypeHasComponent - Return true if T has a component type with the
-/// specified offset and size.  If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
-  const Type *EltTy;
-  uint64_t EltSize;
-  if (const StructType *ST = dyn_cast<StructType>(T)) {
-    const StructLayout *Layout = TD->getStructLayout(ST);
-    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
-    EltTy = ST->getContainedType(EltIdx);
-    EltSize = TD->getTypeAllocSize(EltTy);
-    Offset -= Layout->getElementOffset(EltIdx);
-  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
-    EltTy = AT->getElementType();
-    EltSize = TD->getTypeAllocSize(EltTy);
-    if (Offset >= AT->getNumElements() * EltSize)
-      return false;
-    Offset %= EltSize;
+  // If this is a big-endian system and the load is narrower than the
+  // full alloca type, we need to do a shift to get the right bits.
+  int ShAmt = 0;
+  if (TD.isBigEndian()) {
+    // On big-endian machines, the lowest bit is stored at the bit offset
+    // from the pointer given by getTypeStoreSizeInBits.  This matters for
+    // integers with a bitwidth that is not a multiple of 8.
+    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
+            TD.getTypeStoreSizeInBits(ToType) - Offset;
   } else {
-    return false;
+    ShAmt = Offset;
   }
-  if (Offset == 0 && (Size == 0 || EltSize == Size))
-    return true;
-  // Check if the component spans multiple elements.
-  if (Offset + Size > EltSize)
-    return false;
-  return TypeHasComponent(EltTy, Offset, Size);
-}
 
-/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
-/// the instruction I, which references it, to use the separate elements.
-/// Offset indicates the position within AI that is referenced by this
-/// instruction.
-void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
-                                SmallVector<AllocaInst*, 32> &NewElts) {
-  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
+  // Note: we support negative bitwidths (with shl) which are not defined.
+  // We do this to support (f.e.) loads off the end of a structure where
+  // only some bits are used.
+  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
+    FromVal = Builder.CreateLShr(FromVal,
+                                 ConstantInt::get(FromVal->getType(),
+                                                           ShAmt), "tmp");
+  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
+    FromVal = Builder.CreateShl(FromVal, 
+                                ConstantInt::get(FromVal->getType(),
+                                                          -ShAmt), "tmp");
 
-    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
-      RewriteBitCast(BC, AI, Offset, NewElts);
-    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
-      RewriteGEP(GEPI, AI, Offset, NewElts);
-    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
-      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
-      uint64_t MemSize = Length->getZExtValue();
-      if (Offset == 0 &&
-          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
-        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
-      // Otherwise the intrinsic can only touch a single element and the
-      // address operand will be updated, so nothing else needs to be done.
-    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      const Type *LIType = LI->getType();
-      if (LIType == AI->getAllocatedType()) {
-        // Replace:
-        //   %res = load { i32, i32 }* %alloc
-        // with:
-        //   %load.0 = load i32* %alloc.0
-        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
-        //   %load.1 = load i32* %alloc.1
-        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
-        // (Also works for arrays instead of structs)
-        Value *Insert = UndefValue::get(LIType);
-        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-          Value *Load = new LoadInst(NewElts[i], "load", LI);
-          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
-        }
-        LI->replaceAllUsesWith(Insert);
-        DeadInsts.push_back(LI);
-      } else if (LIType->isIntegerTy() &&
-                 TD->getTypeAllocSize(LIType) ==
-                 TD->getTypeAllocSize(AI->getAllocatedType())) {
-        // If this is a load of the entire alloca to an integer, rewrite it.
-        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
-      }
-    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
-      Value *Val = SI->getOperand(0);
-      const Type *SIType = Val->getType();
-      if (SIType == AI->getAllocatedType()) {
-        // Replace:
-        //   store { i32, i32 } %val, { i32, i32 }* %alloc
-        // with:
-        //   %val.0 = extractvalue { i32, i32 } %val, 0
-        //   store i32 %val.0, i32* %alloc.0
-        //   %val.1 = extractvalue { i32, i32 } %val, 1
-        //   store i32 %val.1, i32* %alloc.1
-        // (Also works for arrays instead of structs)
-        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
-          new StoreInst(Extract, NewElts[i], SI);
-        }
-        DeadInsts.push_back(SI);
-      } else if (SIType->isIntegerTy() &&
-                 TD->getTypeAllocSize(SIType) ==
-                 TD->getTypeAllocSize(AI->getAllocatedType())) {
-        // If this is a store of the entire alloca from an integer, rewrite it.
-        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
-      }
-    }
+  // Finally, unconditionally truncate the integer to the right width.
+  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
+  if (LIBitWidth < NTy->getBitWidth())
+    FromVal =
+      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), 
+                                                    LIBitWidth), "tmp");
+  else if (LIBitWidth > NTy->getBitWidth())
+    FromVal =
+       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), 
+                                                    LIBitWidth), "tmp");
+
+  // If the result is an integer, this is a trunc or bitcast.
+  if (ToType->isIntegerTy()) {
+    // Should be done.
+  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
+    // Just do a bitcast, we know the sizes match up.
+    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
+  } else {
+    // Otherwise must be a pointer.
+    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
   }
+  assert(FromVal->getType() == ToType && "Didn't convert right?");
+  return FromVal;
 }
 
-/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
-/// and recursively continue updating all of its uses.
-void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
-                          SmallVector<AllocaInst*, 32> &NewElts) {
-  RewriteForScalarRepl(BC, AI, Offset, NewElts);
-  if (BC->getOperand(0) != AI)
-    return;
+/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
+/// or vector value "Old" at the offset specified by Offset.
+///
+/// This happens when we are converting an "integer union" to a
+/// single integer scalar, or when we are converting a "vector union" to a
+/// vector with insert/extractelement instructions.
+///
+/// Offset is an offset from the original alloca, in bits that need to be
+/// shifted to the right.
+Value *ConvertToScalarInfo::
+ConvertScalar_InsertValue(Value *SV, Value *Old,
+                          uint64_t Offset, IRBuilder<> &Builder) {
+  // Convert the stored type to the actual type, shift it left to insert
+  // then 'or' into place.
+  const Type *AllocaType = Old->getType();
+  LLVMContext &Context = Old->getContext();
 
-  // The bitcast references the original alloca.  Replace its uses with
-  // references to the first new element alloca.
-  Instruction *Val = NewElts[0];
-  if (Val->getType() != BC->getDestTy()) {
-    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
-    Val->takeName(BC);
-  }
-  BC->replaceAllUsesWith(Val);
-  DeadInsts.push_back(BC);
-}
+  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
+    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
+    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
+    
+    // Changing the whole vector with memset or with an access of a different
+    // vector type?
+    if (ValSize == VecSize)
+      return Builder.CreateBitCast(SV, AllocaType, "tmp");
 
-/// FindElementAndOffset - Return the index of the element containing Offset
-/// within the specified type, which must be either a struct or an array.
-/// Sets T to the type of the element and Offset to the offset within that
-/// element.  IdxTy is set to the type of the index result to be used in a
-/// GEP instruction.
-uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
-                                    const Type *&IdxTy) {
-  uint64_t Idx = 0;
-  if (const StructType *ST = dyn_cast<StructType>(T)) {
-    const StructLayout *Layout = TD->getStructLayout(ST);
-    Idx = Layout->getElementContainingOffset(Offset);
-    T = ST->getContainedType(Idx);
-    Offset -= Layout->getElementOffset(Idx);
-    IdxTy = Type::getInt32Ty(T->getContext());
-    return Idx;
+    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+
+    // Must be an element insertion.
+    unsigned Elt = Offset/EltSize;
+    
+    if (SV->getType() != VTy->getElementType())
+      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
+    
+    SV = Builder.CreateInsertElement(Old, SV, 
+                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
+                                     "tmp");
+    return SV;
   }
-  const ArrayType *AT = cast<ArrayType>(T);
-  T = AT->getElementType();
-  uint64_t EltSize = TD->getTypeAllocSize(T);
-  Idx = Offset / EltSize;
-  Offset -= Idx * EltSize;
-  IdxTy = Type::getInt64Ty(T->getContext());
-  return Idx;
+  
+  // If SV is a first-class aggregate value, insert each value recursively.
+  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
+    const StructLayout &Layout = *TD.getStructLayout(ST);
+    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
+      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
+      Old = ConvertScalar_InsertValue(Elt, Old, 
+                                      Offset+Layout.getElementOffsetInBits(i),
+                                      Builder);
+    }
+    return Old;
+  }
+  
+  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
+    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
+      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
+    }
+    return Old;
+  }
+
+  // If SV is a float, convert it to the appropriate integer type.
+  // If it is a pointer, do the same.
+  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
+  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
+  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
+  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
+  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
+    SV = Builder.CreateBitCast(SV,
+                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
+  else if (SV->getType()->isPointerTy())
+    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
+
+  // Zero extend or truncate the value if needed.
+  if (SV->getType() != AllocaType) {
+    if (SV->getType()->getPrimitiveSizeInBits() <
+             AllocaType->getPrimitiveSizeInBits())
+      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
+    else {
+      // Truncation may be needed if storing more than the alloca can hold
+      // (undefined behavior).
+      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
+      SrcWidth = DestWidth;
+      SrcStoreWidth = DestStoreWidth;
+    }
+  }
+
+  // If this is a big-endian system and the store is narrower than the
+  // full alloca type, we need to do a shift to get the right bits.
+  int ShAmt = 0;
+  if (TD.isBigEndian()) {
+    // On big-endian machines, the lowest bit is stored at the bit offset
+    // from the pointer given by getTypeStoreSizeInBits.  This matters for
+    // integers with a bitwidth that is not a multiple of 8.
+    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
+  } else {
+    ShAmt = Offset;
+  }
+
+  // Note: we support negative bitwidths (with shr) which are not defined.
+  // We do this to support (f.e.) stores off the end of a structure where
+  // only some bits in the structure are set.
+  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
+  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
+    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
+                           ShAmt), "tmp");
+    Mask <<= ShAmt;
+  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
+    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
+                            -ShAmt), "tmp");
+    Mask = Mask.lshr(-ShAmt);
+  }
+
+  // Mask out the bits we are about to insert from the old value, and or
+  // in the new bits.
+  if (SrcWidth != DestWidth) {
+    assert(DestWidth > SrcWidth);
+    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
+    SV = Builder.CreateOr(Old, SV, "ins");
+  }
+  return SV;
 }
 
-/// RewriteGEP - Check if this GEP instruction moves the pointer across
-/// elements of the alloca that are being split apart, and if so, rewrite
-/// the GEP to be relative to the new element.
-void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
-                      SmallVector<AllocaInst*, 32> &NewElts) {
-  uint64_t OldOffset = Offset;
-  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
-  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
-                                 &Indices[0], Indices.size());
 
-  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
+//===----------------------------------------------------------------------===//
+// SRoA Driver
+//===----------------------------------------------------------------------===//
 
-  const Type *T = AI->getAllocatedType();
-  const Type *IdxTy;
-  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
-  if (GEPI->getOperand(0) == AI)
-    OldIdx = ~0ULL; // Force the GEP to be rewritten.
 
-  T = AI->getAllocatedType();
-  uint64_t EltOffset = Offset;
-  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+bool SROA::runOnFunction(Function &F) {
+  TD = getAnalysisIfAvailable<TargetData>();
 
-  // If this GEP does not move the pointer across elements of the alloca
-  // being split, then it does not needs to be rewritten.
-  if (Idx == OldIdx)
-    return;
+  bool Changed = performPromotion(F);
 
-  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
-  SmallVector<Value*, 8> NewArgs;
-  NewArgs.push_back(Constant::getNullValue(i32Ty));
-  while (EltOffset != 0) {
-    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
-    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
-  }
-  Instruction *Val = NewElts[Idx];
-  if (NewArgs.size() > 1) {
-    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
-                                            NewArgs.end(), "", GEPI);
-    Val->takeName(GEPI);
+  // FIXME: ScalarRepl currently depends on TargetData more than it
+  // theoretically needs to. It should be refactored in order to support
+  // target-independent IR. Until this is done, just skip the actual
+  // scalar-replacement portion of this pass.
+  if (!TD) return Changed;
+
+  while (1) {
+    bool LocalChange = performScalarRepl(F);
+    if (!LocalChange) break;   // No need to repromote if no scalarrepl
+    Changed = true;
+    LocalChange = performPromotion(F);
+    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
   }
-  if (Val->getType() != GEPI->getType())
-    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
-  GEPI->replaceAllUsesWith(Val);
-  DeadInsts.push_back(GEPI);
+
+  return Changed;
 }
 
-/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
-/// Rewrite it to copy or set the elements of the scalarized memory.
-void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
-                                        AllocaInst *AI,
-                                        SmallVector<AllocaInst*, 32> &NewElts) {
-  // If this is a memcpy/memmove, construct the other pointer as the
-  // appropriate type.  The "Other" pointer is the pointer that goes to memory
-  // that doesn't have anything to do with the alloca that we are promoting. For
-  // memset, this Value* stays null.
-  Value *OtherPtr = 0;
-  LLVMContext &Context = MI->getContext();
-  unsigned MemAlignment = MI->getAlignment();
-  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
-    if (Inst == MTI->getRawDest())
-      OtherPtr = MTI->getRawSource();
-    else {
-      assert(Inst == MTI->getRawSource());
-      OtherPtr = MTI->getRawDest();
-    }
-  }
 
-  // If there is an other pointer, we want to convert it to the same pointer
-  // type as AI has, so we can GEP through it safely.
-  if (OtherPtr) {
+bool SROA::performPromotion(Function &F) {
+  std::vector<AllocaInst*> Allocas;
+  DominatorTree         &DT = getAnalysis<DominatorTree>();
+  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 
-    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
-    // optimization, but it's also required to detect the corner case where
-    // both pointer operands are referencing the same memory, and where
-    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
-    // function is only called for mem intrinsics that access the whole
-    // aggregate, so non-zero GEPs are not an issue here.)
-    while (1) {
-      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
-        OtherPtr = BC->getOperand(0);
-        continue;
-      }
-      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
-        // All zero GEPs are effectively bitcasts.
-        if (GEP->hasAllZeroIndices()) {
-          OtherPtr = GEP->getOperand(0);
-          continue;
-        }
-      }
-      break;
-    }
-    // Copying the alloca to itself is a no-op: just delete it.
-    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
-      // This code will run twice for a no-op memcpy -- once for each operand.
-      // Put only one reference to MI on the DeadInsts list.
-      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
-             E = DeadInsts.end(); I != E; ++I)
-        if (*I == MI) return;
-      DeadInsts.push_back(MI);
-      return;
-    }
-    
-    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
-      if (BCE->getOpcode() == Instruction::BitCast)
-        OtherPtr = BCE->getOperand(0);
-    
-    // If the pointer is not the right type, insert a bitcast to the right
-    // type.
-    if (OtherPtr->getType() != AI->getType())
-      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
-                                 MI);
-  }
-  
-  // Process each element of the aggregate.
-  Value *TheFn = MI->getCalledValue();
-  const Type *BytePtrTy = MI->getRawDest()->getType();
-  bool SROADest = MI->getRawDest() == Inst;
-  
-  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
+  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 
-  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-    // If this is a memcpy/memmove, emit a GEP of the other element address.
-    Value *OtherElt = 0;
-    unsigned OtherEltAlign = MemAlignment;
-    
-    if (OtherPtr) {
-      Value *Idx[2] = { Zero,
-                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
-      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
-                                              OtherPtr->getName()+"."+Twine(i),
-                                                   MI);
-      uint64_t EltOffset;
-      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
-      if (const StructType *ST =
-            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
-        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
-      } else {
-        const Type *EltTy =
-          cast<SequentialType>(OtherPtr->getType())->getElementType();
-        EltOffset = TD->getTypeAllocSize(EltTy)*i;
-      }
-      
-      // The alignment of the other pointer is the guaranteed alignment of the
-      // element, which is affected by both the known alignment of the whole
-      // mem intrinsic and the alignment of the element.  If the alignment of
-      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
-      // known alignment is just 4 bytes.
-      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
+  bool Changed = false;
+
+  while (1) {
+    Allocas.clear();
+
+    // Find allocas that are safe to promote, by looking at all instructions in
+    // the entry node
+    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
+      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
+        if (isAllocaPromotable(AI))
+          Allocas.push_back(AI);
+
+    if (Allocas.empty()) break;
+
+    PromoteMemToReg(Allocas, DT, DF);
+    NumPromoted += Allocas.size();
+    Changed = true;
+  }
+
+  return Changed;
+}
+
+
+/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
+/// SROA.  It must be a struct or array type with a small number of elements.
+static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
+  const Type *T = AI->getAllocatedType();
+  // Do not promote any struct into more than 32 separate vars.
+  if (const StructType *ST = dyn_cast<StructType>(T))
+    return ST->getNumElements() <= 32;
+  // Arrays are much less likely to be safe for SROA; only consider
+  // them if they are very small.
+  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+    return AT->getNumElements() <= 8;
+  return false;
+}
+
+
+// performScalarRepl - This algorithm is a simple worklist driven algorithm,
+// which runs on all of the malloc/alloca instructions in the function, removing
+// them if they are only used by getelementptr instructions.
+//
+bool SROA::performScalarRepl(Function &F) {
+  std::vector<AllocaInst*> WorkList;
+
+  // Scan the entry basic block, adding allocas to the worklist.
+  BasicBlock &BB = F.getEntryBlock();
+  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
+    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
+      WorkList.push_back(A);
+
+  // Process the worklist
+  bool Changed = false;
+  while (!WorkList.empty()) {
+    AllocaInst *AI = WorkList.back();
+    WorkList.pop_back();
+    
+    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
+    // with unused elements.
+    if (AI->use_empty()) {
+      AI->eraseFromParent();
+      Changed = true;
+      continue;
     }
+
+    // If this alloca is impossible for us to promote, reject it early.
+    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
+      continue;
     
-    Value *EltPtr = NewElts[i];
-    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
+    // Check to see if this allocation is only modified by a memcpy/memmove from
+    // a constant global.  If this is the case, we can change all users to use
+    // the constant global instead.  This is commonly produced by the CFE by
+    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
+    // is only subsequently read.
+    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
+      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
+      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
+      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
+      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
+      TheCopy->eraseFromParent();  // Don't mutate the global.
+      AI->eraseFromParent();
+      ++NumGlobals;
+      Changed = true;
+      continue;
+    }
     
-    // If we got down to a scalar, insert a load or store as appropriate.
-    if (EltTy->isSingleValueType()) {
-      if (isa<MemTransferInst>(MI)) {
-        if (SROADest) {
-          // From Other to Alloca.
-          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
-          new StoreInst(Elt, EltPtr, MI);
-        } else {
-          // From Alloca to Other.
-          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
-          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
-        }
-        continue;
-      }
-      assert(isa<MemSetInst>(MI));
-      
-      // If the stored element is zero (common case), just store a null
-      // constant.
-      Constant *StoreVal;
-      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(1))) {
-        if (CI->isZero()) {
-          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
-        } else {
-          // If EltTy is a vector type, get the element type.
-          const Type *ValTy = EltTy->getScalarType();
+    // Check to see if we can perform the core SROA transformation.  We cannot
+    // transform the allocation instruction if it is an array allocation
+    // (allocations OF arrays are ok though), and an allocation of a scalar
+    // value cannot be decomposed at all.
+    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
 
-          // Construct an integer with the right value.
-          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
-          APInt OneVal(EltSize, CI->getZExtValue());
-          APInt TotalVal(OneVal);
-          // Set each byte.
-          for (unsigned i = 0; 8*i < EltSize; ++i) {
-            TotalVal = TotalVal.shl(8);
-            TotalVal |= OneVal;
-          }
-          
-          // Convert the integer value to the appropriate type.
-          StoreVal = ConstantInt::get(Context, TotalVal);
-          if (ValTy->isPointerTy())
-            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
-          else if (ValTy->isFloatingPointTy())
-            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
-          assert(StoreVal->getType() == ValTy && "Type mismatch!");
-          
-          // If the requested value was a vector constant, create it.
-          if (EltTy != ValTy) {
-            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
-            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
-            StoreVal = ConstantVector::get(&Elts[0], NumElts);
-          }
-        }
-        new StoreInst(StoreVal, EltPtr, MI);
-        continue;
-      }
-      // Otherwise, if we're storing a byte variable, use a memset call for
-      // this element.
-    }
+    // Do not promote [0 x %struct].
+    if (AllocaSize == 0) continue;
     
-    // Cast the element pointer to BytePtrTy.
-    if (EltPtr->getType() != BytePtrTy)
-      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
+    // Do not promote any struct whose size is too big.
+    if (AllocaSize > SRThreshold) continue;
     
-    // Cast the other pointer (if we have one) to BytePtrTy. 
-    if (OtherElt && OtherElt->getType() != BytePtrTy) {
-      // Preserve address space of OtherElt
-      const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
-      const PointerType* PTy = cast<PointerType>(BytePtrTy);
-      if (OtherPTy->getElementType() != PTy->getElementType()) {
-        Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
-                                             OtherPTy->getAddressSpace());
-        OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
-                                   OtherElt->getNameStr(), MI);
-      }
+    // If the alloca looks like a good candidate for scalar replacement, and if
+    // all its users can be transformed, then split up the aggregate into its
+    // separate elements.
+    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
+      DoScalarReplacement(AI, WorkList);
+      Changed = true;
+      continue;
     }
+
+    // If we can turn this aggregate value (potentially with casts) into a
+    // simple scalar value that can be mem2reg'd into a register value.
+    // IsNotTrivial tracks whether this is something that mem2reg could have
+    // promoted itself.  If so, we don't want to transform it needlessly.  Note
+    // that we can't just check based on the type: the alloca may be of an i32
+    // but that has pointer arithmetic to set byte 3 of it or something.
+    if (AllocaInst *NewAI =
+          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
+      NewAI->takeName(AI);
+      AI->eraseFromParent();
+      ++NumConverted;
+      Changed = true;
+      continue;
+    }      
     
-    unsigned EltSize = TD->getTypeAllocSize(EltTy);
-    
-    // Finally, insert the meminst for this element.
-    if (isa<MemTransferInst>(MI)) {
-      Value *Ops[] = {
-        SROADest ? EltPtr : OtherElt,  // Dest ptr
-        SROADest ? OtherElt : EltPtr,  // Src ptr
-        ConstantInt::get(MI->getOperand(2)->getType(), EltSize), // Size
-        // Align
-        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
-        MI->getVolatileCst()
-      };
-      // In case we fold the address space overloaded memcpy of A to B
-      // with memcpy of B to C, change the function to be a memcpy of A to C.
-      const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
-                            Ops[2]->getType() };
-      Module *M = MI->getParent()->getParent()->getParent();
-      TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
-      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
-    } else {
-      assert(isa<MemSetInst>(MI));
-      Value *Ops[] = {
-        EltPtr, MI->getOperand(1),  // Dest, Value,
-        ConstantInt::get(MI->getOperand(2)->getType(), EltSize), // Size
-        Zero,  // Align
-        ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
-      };
-      const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
-      Module *M = MI->getParent()->getParent()->getParent();
-      TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
-      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
-    }
+    // Otherwise, couldn't process this alloca.
   }
-  DeadInsts.push_back(MI);
+
+  return Changed;
 }
 
-/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
-/// overwrites the entire allocation.  Extract out the pieces of the stored
-/// integer and store them individually.
-void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
-                                         SmallVector<AllocaInst*, 32> &NewElts){
-  // Extract each element out of the integer according to its structure offset
-  // and store the element value to the individual alloca.
-  Value *SrcVal = SI->getOperand(0);
-  const Type *AllocaEltTy = AI->getAllocatedType();
-  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
-  
-  // Handle tail padding by extending the operand
-  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
-    SrcVal = new ZExtInst(SrcVal,
-                          IntegerType::get(SI->getContext(), AllocaSizeBits), 
-                          "", SI);
+/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
+/// predicate, do SROA now.
+void SROA::DoScalarReplacement(AllocaInst *AI, 
+                               std::vector<AllocaInst*> &WorkList) {
+  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
+  SmallVector<AllocaInst*, 32> ElementAllocas;
+  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
+    ElementAllocas.reserve(ST->getNumContainedTypes());
+    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
+      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
+                                      AI->getAlignment(),
+                                      AI->getName() + "." + Twine(i), AI);
+      ElementAllocas.push_back(NA);
+      WorkList.push_back(NA);  // Add to worklist for recursive processing
+    }
+  } else {
+    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
+    ElementAllocas.reserve(AT->getNumElements());
+    const Type *ElTy = AT->getElementType();
+    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
+                                      AI->getName() + "." + Twine(i), AI);
+      ElementAllocas.push_back(NA);
+      WorkList.push_back(NA);  // Add to worklist for recursive processing
+    }
+  }
 
-  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
-               << '\n');
+  // Now that we have created the new alloca instructions, rewrite all the
+  // uses of the old alloca.
+  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
 
-  // There are two forms here: AI could be an array or struct.  Both cases
-  // have different ways to compute the element offset.
-  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
-    const StructLayout *Layout = TD->getStructLayout(EltSTy);
-    
-    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-      // Get the number of bits to shift SrcVal to get the value.
-      const Type *FieldTy = EltSTy->getElementType(i);
-      uint64_t Shift = Layout->getElementOffsetInBits(i);
-      
-      if (TD->isBigEndian())
-        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
-      
-      Value *EltVal = SrcVal;
-      if (Shift) {
-        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
-        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
-                                            "sroa.store.elt", SI);
-      }
-      
-      // Truncate down to an integer of the right size.
-      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
-      
-      // Ignore zero sized fields like {}, they obviously contain no data.
-      if (FieldSizeBits == 0) continue;
-      
-      if (FieldSizeBits != AllocaSizeBits)
-        EltVal = new TruncInst(EltVal,
-                             IntegerType::get(SI->getContext(), FieldSizeBits),
-                              "", SI);
-      Value *DestField = NewElts[i];
-      if (EltVal->getType() == FieldTy) {
-        // Storing to an integer field of this size, just do it.
-      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
-        // Bitcast to the right element type (for fp/vector values).
-        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
-      } else {
-        // Otherwise, bitcast the dest pointer (for aggregates).
-        DestField = new BitCastInst(DestField,
-                              PointerType::getUnqual(EltVal->getType()),
-                                    "", SI);
+  // Now erase any instructions that were made dead while rewriting the alloca.
+  DeleteDeadInstructions();
+  AI->eraseFromParent();
+
+  NumReplaced++;
+}
+
+/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
+/// recursively including all their operands that become trivially dead.
+void SROA::DeleteDeadInstructions() {
+  while (!DeadInsts.empty()) {
+    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
+
+    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+        // Zero out the operand and see if it becomes trivially dead.
+        // (But, don't add allocas to the dead instruction list -- they are
+        // already on the worklist and will be deleted separately.)
+        *OI = 0;
+        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
+          DeadInsts.push_back(U);
       }
-      new StoreInst(EltVal, DestField, SI);
-    }
-    
-  } else {
-    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
-    const Type *ArrayEltTy = ATy->getElementType();
-    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
-    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
 
-    uint64_t Shift;
-    
-    if (TD->isBigEndian())
-      Shift = AllocaSizeBits-ElementOffset;
-    else 
-      Shift = 0;
+    I->eraseFromParent();
+  }
+}
     
-    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-      // Ignore zero sized fields like {}, they obviously contain no data.
-      if (ElementSizeBits == 0) continue;
-      
-      Value *EltVal = SrcVal;
-      if (Shift) {
-        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
-        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
-                                            "sroa.store.elt", SI);
-      }
-      
-      // Truncate down to an integer of the right size.
-      if (ElementSizeBits != AllocaSizeBits)
-        EltVal = new TruncInst(EltVal, 
-                               IntegerType::get(SI->getContext(), 
-                                                ElementSizeBits),"",SI);
-      Value *DestField = NewElts[i];
-      if (EltVal->getType() == ArrayEltTy) {
-        // Storing to an integer field of this size, just do it.
-      } else if (ArrayEltTy->isFloatingPointTy() ||
-                 ArrayEltTy->isVectorTy()) {
-        // Bitcast to the right element type (for fp/vector values).
-        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
-      } else {
-        // Otherwise, bitcast the dest pointer (for aggregates).
-        DestField = new BitCastInst(DestField,
-                              PointerType::getUnqual(EltVal->getType()),
-                                    "", SI);
-      }
-      new StoreInst(EltVal, DestField, SI);
-      
-      if (TD->isBigEndian())
-        Shift -= ElementOffset;
-      else 
-        Shift += ElementOffset;
+/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
+/// performing scalar replacement of alloca AI.  The results are flagged in
+/// the Info parameter.  Offset indicates the position within AI that is
+/// referenced by this instruction.
+void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
+                               AllocaInfo &Info) {
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
+    Instruction *User = cast<Instruction>(*UI);
+
+    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
+      isSafeForScalarRepl(BC, AI, Offset, Info);
+    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
+      uint64_t GEPOffset = Offset;
+      isSafeGEP(GEPI, AI, GEPOffset, Info);
+      if (!Info.isUnsafe)
+        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
+    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+      if (Length)
+        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
+                        UI.getOperandNo() == 0, Info);
+      else
+        MarkUnsafe(Info);
+    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+      if (!LI->isVolatile()) {
+        const Type *LIType = LI->getType();
+        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
+                        LIType, false, Info);
+      } else
+        MarkUnsafe(Info);
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+      // Store is ok if storing INTO the pointer, not storing the pointer
+      if (!SI->isVolatile() && SI->getOperand(0) != I) {
+        const Type *SIType = SI->getOperand(0)->getType();
+        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
+                        SIType, true, Info);
+      } else
+        MarkUnsafe(Info);
+    } else {
+      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
+      MarkUnsafe(Info);
     }
+    if (Info.isUnsafe) return;
   }
-  
-  DeadInsts.push_back(SI);
 }
 
-/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
-/// an integer.  Load the individual pieces to form the aggregate value.
-void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
-                                        SmallVector<AllocaInst*, 32> &NewElts) {
-  // Extract each element out of the NewElts according to its structure offset
-  // and form the result value.
-  const Type *AllocaEltTy = AI->getAllocatedType();
-  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
-  
-  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
-               << '\n');
-  
-  // There are two forms here: AI could be an array or struct.  Both cases
-  // have different ways to compute the element offset.
-  const StructLayout *Layout = 0;
-  uint64_t ArrayEltBitOffset = 0;
-  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
-    Layout = TD->getStructLayout(EltSTy);
-  } else {
-    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
-    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
-  }    
-  
-  Value *ResultVal = 
-    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
-  
-  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-    // Load the value from the alloca.  If the NewElt is an aggregate, cast
-    // the pointer to an integer of the same size before doing the load.
-    Value *SrcField = NewElts[i];
-    const Type *FieldTy =
-      cast<PointerType>(SrcField->getType())->getElementType();
-    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
-    
-    // Ignore zero sized fields like {}, they obviously contain no data.
-    if (FieldSizeBits == 0) continue;
-    
-    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), 
-                                                     FieldSizeBits);
-    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
-        !FieldTy->isVectorTy())
-      SrcField = new BitCastInst(SrcField,
-                                 PointerType::getUnqual(FieldIntTy),
-                                 "", LI);
-    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
-
-    // If SrcField is a fp or vector of the right size but that isn't an
-    // integer type, bitcast to an integer so we can shift it.
-    if (SrcField->getType() != FieldIntTy)
-      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
+/// isSafeGEP - Check if a GEP instruction can be handled for scalar
+/// replacement.  It is safe when all the indices are constant, in-bounds
+/// references, and when the resulting offset corresponds to an element within
+/// the alloca type.  The results are flagged in the Info parameter.  Upon
+/// return, Offset is adjusted as specified by the GEP indices.
+void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
+                     uint64_t &Offset, AllocaInfo &Info) {
+  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
+  if (GEPIt == E)
+    return;
 
-    // Zero extend the field to be the same size as the final alloca so that
-    // we can shift and insert it.
-    if (SrcField->getType() != ResultVal->getType())
-      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
-    
-    // Determine the number of bits to shift SrcField.
-    uint64_t Shift;
-    if (Layout) // Struct case.
-      Shift = Layout->getElementOffsetInBits(i);
-    else  // Array case.
-      Shift = i*ArrayEltBitOffset;
-    
-    if (TD->isBigEndian())
-      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
-    
-    if (Shift) {
-      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
-      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
-    }
+  // Walk through the GEP type indices, checking the types that this indexes
+  // into.
+  for (; GEPIt != E; ++GEPIt) {
+    // Ignore struct elements, no extra checking needed for these.
+    if ((*GEPIt)->isStructTy())
+      continue;
 
-    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
+    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
+    if (!IdxVal)
+      return MarkUnsafe(Info);
   }
 
-  // Handle tail padding by truncating the result
-  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
-    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
+  // Compute the offset due to this GEP and check if the alloca has a
+  // component element at that offset.
+  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
+  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
+                                 &Indices[0], Indices.size());
+  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
+    MarkUnsafe(Info);
+}
 
-  LI->replaceAllUsesWith(ResultVal);
-  DeadInsts.push_back(LI);
+/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
+/// alloca or has an offset and size that corresponds to a component element
+/// within it.  The offset checked here may have been formed from a GEP with a
+/// pointer bitcasted to a different type.
+void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
+                           const Type *MemOpType, bool isStore,
+                           AllocaInfo &Info) {
+  // Check if this is a load/store of the entire alloca.
+  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
+    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
+    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
+    // (which are essentially the same as the MemIntrinsics, especially with
+    // regard to copying padding between elements), or references using the
+    // aggregate type of the alloca.
+    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
+      if (!UsesAggregateType) {
+        if (isStore)
+          Info.isMemCpyDst = true;
+        else
+          Info.isMemCpySrc = true;
+      }
+      return;
+    }
+  }
+  // Check if the offset/size correspond to a component within the alloca type.
+  const Type *T = AI->getAllocatedType();
+  if (TypeHasComponent(T, Offset, MemSize))
+    return;
+
+  return MarkUnsafe(Info);
 }
 
-/// HasPadding - Return true if the specified type has any structure or
-/// alignment padding, false otherwise.
-static bool HasPadding(const Type *Ty, const TargetData &TD) {
-  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
-    const StructLayout *SL = TD.getStructLayout(STy);
-    unsigned PrevFieldBitOffset = 0;
-    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
-      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
+/// TypeHasComponent - Return true if T has a component type with the
+/// specified offset and size.  If Size is zero, do not check the size.
+bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
+  const Type *EltTy;
+  uint64_t EltSize;
+  if (const StructType *ST = dyn_cast<StructType>(T)) {
+    const StructLayout *Layout = TD->getStructLayout(ST);
+    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
+    EltTy = ST->getContainedType(EltIdx);
+    EltSize = TD->getTypeAllocSize(EltTy);
+    Offset -= Layout->getElementOffset(EltIdx);
+  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
+    EltTy = AT->getElementType();
+    EltSize = TD->getTypeAllocSize(EltTy);
+    if (Offset >= AT->getNumElements() * EltSize)
+      return false;
+    Offset %= EltSize;
+  } else {
+    return false;
+  }
+  if (Offset == 0 && (Size == 0 || EltSize == Size))
+    return true;
+  // Check if the component spans multiple elements.
+  if (Offset + Size > EltSize)
+    return false;
+  return TypeHasComponent(EltTy, Offset, Size);
+}
 
-      // Padding in sub-elements?
-      if (HasPadding(STy->getElementType(i), TD))
-        return true;
+/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
+/// the instruction I, which references it, to use the separate elements.
+/// Offset indicates the position within AI that is referenced by this
+/// instruction.
+void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
+                                SmallVector<AllocaInst*, 32> &NewElts) {
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
+    Instruction *User = cast<Instruction>(*UI);
 
-      // Check to see if there is any padding between this element and the
-      // previous one.
-      if (i) {
-        unsigned PrevFieldEnd =
-        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
-        if (PrevFieldEnd < FieldBitOffset)
-          return true;
+    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
+      RewriteBitCast(BC, AI, Offset, NewElts);
+    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
+      RewriteGEP(GEPI, AI, Offset, NewElts);
+    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+      uint64_t MemSize = Length->getZExtValue();
+      if (Offset == 0 &&
+          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
+        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
+      // Otherwise the intrinsic can only touch a single element and the
+      // address operand will be updated, so nothing else needs to be done.
+    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+      const Type *LIType = LI->getType();
+      if (LIType == AI->getAllocatedType()) {
+        // Replace:
+        //   %res = load { i32, i32 }* %alloc
+        // with:
+        //   %load.0 = load i32* %alloc.0
+        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
+        //   %load.1 = load i32* %alloc.1
+        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
+        // (Also works for arrays instead of structs)
+        Value *Insert = UndefValue::get(LIType);
+        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+          Value *Load = new LoadInst(NewElts[i], "load", LI);
+          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
+        }
+        LI->replaceAllUsesWith(Insert);
+        DeadInsts.push_back(LI);
+      } else if (LIType->isIntegerTy() &&
+                 TD->getTypeAllocSize(LIType) ==
+                 TD->getTypeAllocSize(AI->getAllocatedType())) {
+        // If this is a load of the entire alloca to an integer, rewrite it.
+        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
+      }
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+      Value *Val = SI->getOperand(0);
+      const Type *SIType = Val->getType();
+      if (SIType == AI->getAllocatedType()) {
+        // Replace:
+        //   store { i32, i32 } %val, { i32, i32 }* %alloc
+        // with:
+        //   %val.0 = extractvalue { i32, i32 } %val, 0
+        //   store i32 %val.0, i32* %alloc.0
+        //   %val.1 = extractvalue { i32, i32 } %val, 1
+        //   store i32 %val.1, i32* %alloc.1
+        // (Also works for arrays instead of structs)
+        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
+          new StoreInst(Extract, NewElts[i], SI);
+        }
+        DeadInsts.push_back(SI);
+      } else if (SIType->isIntegerTy() &&
+                 TD->getTypeAllocSize(SIType) ==
+                 TD->getTypeAllocSize(AI->getAllocatedType())) {
+        // If this is a store of the entire alloca from an integer, rewrite it.
+        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
       }
-
-      PrevFieldBitOffset = FieldBitOffset;
     }
+  }
+}
 
-    //  Check for tail padding.
-    if (unsigned EltCount = STy->getNumElements()) {
-      unsigned PrevFieldEnd = PrevFieldBitOffset +
-                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
-      if (PrevFieldEnd < SL->getSizeInBits())
-        return true;
-    }
+/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
+/// and recursively continue updating all of its uses.
+void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
+                          SmallVector<AllocaInst*, 32> &NewElts) {
+  RewriteForScalarRepl(BC, AI, Offset, NewElts);
+  if (BC->getOperand(0) != AI)
+    return;
 
-  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
-    return HasPadding(ATy->getElementType(), TD);
-  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
-    return HasPadding(VTy->getElementType(), TD);
+  // The bitcast references the original alloca.  Replace its uses with
+  // references to the first new element alloca.
+  Instruction *Val = NewElts[0];
+  if (Val->getType() != BC->getDestTy()) {
+    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
+    Val->takeName(BC);
   }
-  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
+  BC->replaceAllUsesWith(Val);
+  DeadInsts.push_back(BC);
 }
 
-/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
-/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
-/// or 1 if safe after canonicalization has been performed.
-bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
-  // Loop over the use list of the alloca.  We can only transform it if all of
-  // the users are safe to transform.
-  AllocaInfo Info;
-  
-  isSafeForScalarRepl(AI, AI, 0, Info);
-  if (Info.isUnsafe) {
-    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
-    return false;
+/// FindElementAndOffset - Return the index of the element containing Offset
+/// within the specified type, which must be either a struct or an array.
+/// Sets T to the type of the element and Offset to the offset within that
+/// element.  IdxTy is set to the type of the index result to be used in a
+/// GEP instruction.
+uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
+                                    const Type *&IdxTy) {
+  uint64_t Idx = 0;
+  if (const StructType *ST = dyn_cast<StructType>(T)) {
+    const StructLayout *Layout = TD->getStructLayout(ST);
+    Idx = Layout->getElementContainingOffset(Offset);
+    T = ST->getContainedType(Idx);
+    Offset -= Layout->getElementOffset(Idx);
+    IdxTy = Type::getInt32Ty(T->getContext());
+    return Idx;
   }
-  
-  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
-  // source and destination, we have to be careful.  In particular, the memcpy
-  // could be moving around elements that live in structure padding of the LLVM
-  // types, but may actually be used.  In these cases, we refuse to promote the
-  // struct.
-  if (Info.isMemCpySrc && Info.isMemCpyDst &&
-      HasPadding(AI->getAllocatedType(), *TD))
-    return false;
-
-  return true;
+  const ArrayType *AT = cast<ArrayType>(T);
+  T = AT->getElementType();
+  uint64_t EltSize = TD->getTypeAllocSize(T);
+  Idx = Offset / EltSize;
+  Offset -= Idx * EltSize;
+  IdxTy = Type::getInt64Ty(T->getContext());
+  return Idx;
 }
 
-/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
-/// the offset specified by Offset (which is specified in bytes).
-///
-/// There are two cases we handle here:
-///   1) A union of vector types of the same size and potentially its elements.
-///      Here we turn element accesses into insert/extract element operations.
-///      This promotes a <4 x float> with a store of float to the third element
-///      into a <4 x float> that uses insert element.
-///   2) A fully general blob of memory, which we turn into some (potentially
-///      large) integer type with extract and insert operations where the loads
-///      and stores would mutate the memory.
-void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
-  // Remember if we saw a vector type.
-  HadAVector |= In->isVectorTy();
-  
-  if (VectorTy && VectorTy->isVoidTy())
+/// RewriteGEP - Check if this GEP instruction moves the pointer across
+/// elements of the alloca that are being split apart, and if so, rewrite
+/// the GEP to be relative to the new element.
+void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
+                      SmallVector<AllocaInst*, 32> &NewElts) {
+  uint64_t OldOffset = Offset;
+  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
+  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
+                                 &Indices[0], Indices.size());
+
+  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
+
+  const Type *T = AI->getAllocatedType();
+  const Type *IdxTy;
+  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
+  if (GEPI->getOperand(0) == AI)
+    OldIdx = ~0ULL; // Force the GEP to be rewritten.
+
+  T = AI->getAllocatedType();
+  uint64_t EltOffset = Offset;
+  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+
+  // If this GEP does not move the pointer across elements of the alloca
+  // being split, then it does not needs to be rewritten.
+  if (Idx == OldIdx)
     return;
-  
-  // If this could be contributing to a vector, analyze it.
 
-  // If the In type is a vector that is the same size as the alloca, see if it
-  // matches the existing VecTy.
-  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
-    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
-      // If we're storing/loading a vector of the right size, allow it as a
-      // vector.  If this the first vector we see, remember the type so that
-      // we know the element size.
-      if (VectorTy == 0)
-        VectorTy = VInTy;
-      return;
-    }
-  } else if (In->isFloatTy() || In->isDoubleTy() ||
-             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
-              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
-    // If we're accessing something that could be an element of a vector, see
-    // if the implied vector agrees with what we already have and if Offset is
-    // compatible with it.
-    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
-    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
-        (VectorTy == 0 || 
-         cast<VectorType>(VectorTy)->getElementType()
-               ->getPrimitiveSizeInBits()/8 == EltSize)) {
-      if (VectorTy == 0)
-        VectorTy = VectorType::get(In, AllocaSize/EltSize);
-      return;
-    }
+  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
+  SmallVector<Value*, 8> NewArgs;
+  NewArgs.push_back(Constant::getNullValue(i32Ty));
+  while (EltOffset != 0) {
+    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
+    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
   }
-  
-  // Otherwise, we have a case that we can't handle with an optimized vector
-  // form.  We can still turn this into a large integer.
-  VectorTy = Type::getVoidTy(In->getContext());
+  Instruction *Val = NewElts[Idx];
+  if (NewArgs.size() > 1) {
+    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
+                                            NewArgs.end(), "", GEPI);
+    Val->takeName(GEPI);
+  }
+  if (Val->getType() != GEPI->getType())
+    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
+  GEPI->replaceAllUsesWith(Val);
+  DeadInsts.push_back(GEPI);
 }
 
-/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
-/// its accesses to a single vector type, return true and set VecTy to
-/// the new type.  If we could convert the alloca into a single promotable
-/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
-/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
-/// is the current offset from the base of the alloca being analyzed.
-///
-/// If we see at least one access to the value that is as a vector type, set the
-/// SawVec flag.
-bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
-    
-    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      // Don't break volatile loads.
-      if (LI->isVolatile())
-        return false;
-      MergeInType(LI->getType(), Offset);
-      continue;
-    }
-    
-    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
-      // Storing the pointer, not into the value?
-      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
-      MergeInType(SI->getOperand(0)->getType(), Offset);
-      continue;
-    }
-    
-    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
-      if (!CanConvertToScalar(BCI, Offset))
-        return false;
-      IsNotTrivial = true;
-      continue;
-    }
-
-    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
-      // If this is a GEP with a variable indices, we can't handle it.
-      if (!GEP->hasAllConstantIndices())
-        return false;
-      
-      // Compute the offset that this GEP adds to the pointer.
-      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
-      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
-                                               &Indices[0], Indices.size());
-      // See if all uses can be converted.
-      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
-        return false;
-      IsNotTrivial = true;
-      continue;
+/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
+/// Rewrite it to copy or set the elements of the scalarized memory.
+void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+                                        AllocaInst *AI,
+                                        SmallVector<AllocaInst*, 32> &NewElts) {
+  // If this is a memcpy/memmove, construct the other pointer as the
+  // appropriate type.  The "Other" pointer is the pointer that goes to memory
+  // that doesn't have anything to do with the alloca that we are promoting. For
+  // memset, this Value* stays null.
+  Value *OtherPtr = 0;
+  LLVMContext &Context = MI->getContext();
+  unsigned MemAlignment = MI->getAlignment();
+  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
+    if (Inst == MTI->getRawDest())
+      OtherPtr = MTI->getRawSource();
+    else {
+      assert(Inst == MTI->getRawSource());
+      OtherPtr = MTI->getRawDest();
     }
+  }
 
-    // If this is a constant sized memset of a constant value (e.g. 0) we can
-    // handle it.
-    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
-      // Store of constant value and constant size.
-      if (isa<ConstantInt>(MSI->getValue()) &&
-          isa<ConstantInt>(MSI->getLength())) {
-        IsNotTrivial = true;
+  // If there is an other pointer, we want to convert it to the same pointer
+  // type as AI has, so we can GEP through it safely.
+  if (OtherPtr) {
+
+    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
+    // optimization, but it's also required to detect the corner case where
+    // both pointer operands are referencing the same memory, and where
+    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
+    // function is only called for mem intrinsics that access the whole
+    // aggregate, so non-zero GEPs are not an issue here.)
+    while (1) {
+      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
+        OtherPtr = BC->getOperand(0);
         continue;
       }
-    }
-
-    // If this is a memcpy or memmove into or out of the whole allocation, we
-    // can handle it like a load or store of the scalar type.
-    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
-      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
-        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
-          IsNotTrivial = true;
+      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
+        // All zero GEPs are effectively bitcasts.
+        if (GEP->hasAllZeroIndices()) {
+          OtherPtr = GEP->getOperand(0);
           continue;
         }
+      }
+      break;
+    }
+    // Copying the alloca to itself is a no-op: just delete it.
+    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
+      // This code will run twice for a no-op memcpy -- once for each operand.
+      // Put only one reference to MI on the DeadInsts list.
+      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
+             E = DeadInsts.end(); I != E; ++I)
+        if (*I == MI) return;
+      DeadInsts.push_back(MI);
+      return;
     }
     
-    // Otherwise, we cannot handle this!
-    return false;
+    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
+      if (BCE->getOpcode() == Instruction::BitCast)
+        OtherPtr = BCE->getOperand(0);
+    
+    // If the pointer is not the right type, insert a bitcast to the right
+    // type.
+    if (OtherPtr->getType() != AI->getType())
+      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
+                                 MI);
   }
   
-  return true;
-}
-
-/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
-/// directly.  This happens when we are converting an "integer union" to a
-/// single integer scalar, or when we are converting a "vector union" to a
-/// vector with insert/extractelement instructions.
-///
-/// Offset is an offset from the original alloca, in bits that need to be
-/// shifted to the right.  By the end of this, there should be no uses of Ptr.
-void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
-                                              uint64_t Offset) {
-  while (!Ptr->use_empty()) {
-    Instruction *User = cast<Instruction>(Ptr->use_back());
-
-    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
-      ConvertUsesToScalar(CI, NewAI, Offset);
-      CI->eraseFromParent();
-      continue;
-    }
+  // Process each element of the aggregate.
+  Value *TheFn = MI->getCalledValue();
+  const Type *BytePtrTy = MI->getRawDest()->getType();
+  bool SROADest = MI->getRawDest() == Inst;
+  
+  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
 
-    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
-      // Compute the offset that this GEP adds to the pointer.
-      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
-      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
-                                               &Indices[0], Indices.size());
-      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
-      GEP->eraseFromParent();
-      continue;
-    }
-    
-    IRBuilder<> Builder(User->getParent(), User);
-    
-    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      // The load is a bit extract from NewAI shifted right by Offset bits.
-      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
-      Value *NewLoadVal
-        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
-      LI->replaceAllUsesWith(NewLoadVal);
-      LI->eraseFromParent();
-      continue;
-    }
+  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+    // If this is a memcpy/memmove, emit a GEP of the other element address.
+    Value *OtherElt = 0;
+    unsigned OtherEltAlign = MemAlignment;
     
-    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
-      assert(SI->getOperand(0) != Ptr && "Consistency error!");
-      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
-      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
-                                             Builder);
-      Builder.CreateStore(New, NewAI);
-      SI->eraseFromParent();
+    if (OtherPtr) {
+      Value *Idx[2] = { Zero,
+                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
+      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
+                                              OtherPtr->getName()+"."+Twine(i),
+                                                   MI);
+      uint64_t EltOffset;
+      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
+      if (const StructType *ST =
+            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
+        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
+      } else {
+        const Type *EltTy =
+          cast<SequentialType>(OtherPtr->getType())->getElementType();
+        EltOffset = TD->getTypeAllocSize(EltTy)*i;
+      }
       
-      // If the load we just inserted is now dead, then the inserted store
-      // overwrote the entire thing.
-      if (Old->use_empty())
-        Old->eraseFromParent();
-      continue;
+      // The alignment of the other pointer is the guaranteed alignment of the
+      // element, which is affected by both the known alignment of the whole
+      // mem intrinsic and the alignment of the element.  If the alignment of
+      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
+      // known alignment is just 4 bytes.
+      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
     }
     
-    // If this is a constant sized memset of a constant value (e.g. 0) we can
-    // transform it into a store of the expanded constant value.
-    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
-      assert(MSI->getRawDest() == Ptr && "Consistency error!");
-      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
-      if (NumBytes != 0) {
-        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
-        
-        // Compute the value replicated the right number of times.
-        APInt APVal(NumBytes*8, Val);
-
-        // Splat the value if non-zero.
-        if (Val)
-          for (unsigned i = 1; i != NumBytes; ++i)
-            APVal |= APVal << 8;
-        
-        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
-        Value *New = ConvertScalar_InsertValue(
-                                    ConstantInt::get(User->getContext(), APVal),
-                                               Old, Offset, Builder);
-        Builder.CreateStore(New, NewAI);
-        
-        // If the load we just inserted is now dead, then the memset overwrote
-        // the entire thing.
-        if (Old->use_empty())
-          Old->eraseFromParent();        
+    Value *EltPtr = NewElts[i];
+    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
+    
+    // If we got down to a scalar, insert a load or store as appropriate.
+    if (EltTy->isSingleValueType()) {
+      if (isa<MemTransferInst>(MI)) {
+        if (SROADest) {
+          // From Other to Alloca.
+          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
+          new StoreInst(Elt, EltPtr, MI);
+        } else {
+          // From Alloca to Other.
+          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
+          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
+        }
+        continue;
       }
-      MSI->eraseFromParent();
-      continue;
-    }
-
-    // If this is a memcpy or memmove into or out of the whole allocation, we
-    // can handle it like a load or store of the scalar type.
-    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
-      assert(Offset == 0 && "must be store to start of alloca");
-      
-      // If the source and destination are both to the same alloca, then this is
-      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
-      // as appropriate.
-      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
+      assert(isa<MemSetInst>(MI));
       
-      if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
-        // Dest must be OrigAI, change this to be a load from the original
-        // pointer (bitcasted), then a store to our new alloca.
-        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
-        Value *SrcPtr = MTI->getSource();
-        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
-        
-        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
-        SrcVal->setAlignment(MTI->getAlignment());
-        Builder.CreateStore(SrcVal, NewAI);
-      } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
-        // Src must be OrigAI, change this to be a load from NewAI then a store
-        // through the original dest pointer (bitcasted).
-        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
-        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
+      // If the stored element is zero (common case), just store a null
+      // constant.
+      Constant *StoreVal;
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(1))) {
+        if (CI->isZero()) {
+          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
+        } else {
+          // If EltTy is a vector type, get the element type.
+          const Type *ValTy = EltTy->getScalarType();
 
-        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
-        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
-        NewStore->setAlignment(MTI->getAlignment());
-      } else {
-        // Noop transfer. Src == Dst
+          // Construct an integer with the right value.
+          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
+          APInt OneVal(EltSize, CI->getZExtValue());
+          APInt TotalVal(OneVal);
+          // Set each byte.
+          for (unsigned i = 0; 8*i < EltSize; ++i) {
+            TotalVal = TotalVal.shl(8);
+            TotalVal |= OneVal;
+          }
+          
+          // Convert the integer value to the appropriate type.
+          StoreVal = ConstantInt::get(Context, TotalVal);
+          if (ValTy->isPointerTy())
+            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
+          else if (ValTy->isFloatingPointTy())
+            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
+          assert(StoreVal->getType() == ValTy && "Type mismatch!");
+          
+          // If the requested value was a vector constant, create it.
+          if (EltTy != ValTy) {
+            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
+            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
+            StoreVal = ConstantVector::get(&Elts[0], NumElts);
+          }
+        }
+        new StoreInst(StoreVal, EltPtr, MI);
+        continue;
+      }
+      // Otherwise, if we're storing a byte variable, use a memset call for
+      // this element.
+    }
+    
+    // Cast the element pointer to BytePtrTy.
+    if (EltPtr->getType() != BytePtrTy)
+      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
+    
+    // Cast the other pointer (if we have one) to BytePtrTy. 
+    if (OtherElt && OtherElt->getType() != BytePtrTy) {
+      // Preserve address space of OtherElt
+      const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
+      const PointerType* PTy = cast<PointerType>(BytePtrTy);
+      if (OtherPTy->getElementType() != PTy->getElementType()) {
+        Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
+                                             OtherPTy->getAddressSpace());
+        OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
+                                   OtherElt->getNameStr(), MI);
       }
-
-      MTI->eraseFromParent();
-      continue;
     }
     
-    llvm_unreachable("Unsupported operation!");
+    unsigned EltSize = TD->getTypeAllocSize(EltTy);
+    
+    // Finally, insert the meminst for this element.
+    if (isa<MemTransferInst>(MI)) {
+      Value *Ops[] = {
+        SROADest ? EltPtr : OtherElt,  // Dest ptr
+        SROADest ? OtherElt : EltPtr,  // Src ptr
+        ConstantInt::get(MI->getOperand(2)->getType(), EltSize), // Size
+        // Align
+        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
+        MI->getVolatileCst()
+      };
+      // In case we fold the address space overloaded memcpy of A to B
+      // with memcpy of B to C, change the function to be a memcpy of A to C.
+      const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
+                            Ops[2]->getType() };
+      Module *M = MI->getParent()->getParent()->getParent();
+      TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
+      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
+    } else {
+      assert(isa<MemSetInst>(MI));
+      Value *Ops[] = {
+        EltPtr, MI->getOperand(1),  // Dest, Value,
+        ConstantInt::get(MI->getOperand(2)->getType(), EltSize), // Size
+        Zero,  // Align
+        ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
+      };
+      const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
+      Module *M = MI->getParent()->getParent()->getParent();
+      TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
+      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
+    }
   }
+  DeadInsts.push_back(MI);
 }
 
-/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
-/// or vector value FromVal, extracting the bits from the offset specified by
-/// Offset.  This returns the value, which is of type ToType.
-///
-/// This happens when we are converting an "integer union" to a single
-/// integer scalar, or when we are converting a "vector union" to a vector with
-/// insert/extractelement instructions.
-///
-/// Offset is an offset from the original alloca, in bits that need to be
-/// shifted to the right.
-Value *ConvertToScalarInfo::
-ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
-                           uint64_t Offset, IRBuilder<> &Builder) {
-  // If the load is of the whole new alloca, no conversion is needed.
-  if (FromVal->getType() == ToType && Offset == 0)
-    return FromVal;
-
-  // If the result alloca is a vector type, this is either an element
-  // access or a bitcast to another vector type of the same size.
-  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
-    if (ToType->isVectorTy())
-      return Builder.CreateBitCast(FromVal, ToType, "tmp");
-
-    // Otherwise it must be an element access.
-    unsigned Elt = 0;
-    if (Offset) {
-      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
-      Elt = Offset/EltSize;
-      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
-    }
-    // Return the element extracted out of it.
-    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
-                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
-    if (V->getType() != ToType)
-      V = Builder.CreateBitCast(V, ToType, "tmp");
-    return V;
-  }
-  
-  // If ToType is a first class aggregate, extract out each of the pieces and
-  // use insertvalue's to form the FCA.
-  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
-    const StructLayout &Layout = *TD.getStructLayout(ST);
-    Value *Res = UndefValue::get(ST);
-    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
-      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
-                                        Offset+Layout.getElementOffsetInBits(i),
-                                              Builder);
-      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
-    }
-    return Res;
-  }
+/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
+/// overwrites the entire allocation.  Extract out the pieces of the stored
+/// integer and store them individually.
+void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
+                                         SmallVector<AllocaInst*, 32> &NewElts){
+  // Extract each element out of the integer according to its structure offset
+  // and store the element value to the individual alloca.
+  Value *SrcVal = SI->getOperand(0);
+  const Type *AllocaEltTy = AI->getAllocatedType();
+  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   
-  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
-    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
-    Value *Res = UndefValue::get(AT);
-    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
-      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
-                                              Offset+i*EltSize, Builder);
-      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
-    }
-    return Res;
-  }
+  // Handle tail padding by extending the operand
+  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+    SrcVal = new ZExtInst(SrcVal,
+                          IntegerType::get(SI->getContext(), AllocaSizeBits), 
+                          "", SI);
 
-  // Otherwise, this must be a union that was converted to an integer value.
-  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
+  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
+               << '\n');
 
-  // If this is a big-endian system and the load is narrower than the
-  // full alloca type, we need to do a shift to get the right bits.
-  int ShAmt = 0;
-  if (TD.isBigEndian()) {
-    // On big-endian machines, the lowest bit is stored at the bit offset
-    // from the pointer given by getTypeStoreSizeInBits.  This matters for
-    // integers with a bitwidth that is not a multiple of 8.
-    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
-            TD.getTypeStoreSizeInBits(ToType) - Offset;
+  // There are two forms here: AI could be an array or struct.  Both cases
+  // have different ways to compute the element offset.
+  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
+    const StructLayout *Layout = TD->getStructLayout(EltSTy);
+    
+    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+      // Get the number of bits to shift SrcVal to get the value.
+      const Type *FieldTy = EltSTy->getElementType(i);
+      uint64_t Shift = Layout->getElementOffsetInBits(i);
+      
+      if (TD->isBigEndian())
+        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
+      
+      Value *EltVal = SrcVal;
+      if (Shift) {
+        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
+        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
+                                            "sroa.store.elt", SI);
+      }
+      
+      // Truncate down to an integer of the right size.
+      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+      
+      // Ignore zero sized fields like {}, they obviously contain no data.
+      if (FieldSizeBits == 0) continue;
+      
+      if (FieldSizeBits != AllocaSizeBits)
+        EltVal = new TruncInst(EltVal,
+                             IntegerType::get(SI->getContext(), FieldSizeBits),
+                              "", SI);
+      Value *DestField = NewElts[i];
+      if (EltVal->getType() == FieldTy) {
+        // Storing to an integer field of this size, just do it.
+      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
+        // Bitcast to the right element type (for fp/vector values).
+        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
+      } else {
+        // Otherwise, bitcast the dest pointer (for aggregates).
+        DestField = new BitCastInst(DestField,
+                              PointerType::getUnqual(EltVal->getType()),
+                                    "", SI);
+      }
+      new StoreInst(EltVal, DestField, SI);
+    }
+    
   } else {
-    ShAmt = Offset;
-  }
-
-  // Note: we support negative bitwidths (with shl) which are not defined.
-  // We do this to support (f.e.) loads off the end of a structure where
-  // only some bits are used.
-  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
-    FromVal = Builder.CreateLShr(FromVal,
-                                 ConstantInt::get(FromVal->getType(),
-                                                           ShAmt), "tmp");
-  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
-    FromVal = Builder.CreateShl(FromVal, 
-                                ConstantInt::get(FromVal->getType(),
-                                                          -ShAmt), "tmp");
-
-  // Finally, unconditionally truncate the integer to the right width.
-  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
-  if (LIBitWidth < NTy->getBitWidth())
-    FromVal =
-      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), 
-                                                    LIBitWidth), "tmp");
-  else if (LIBitWidth > NTy->getBitWidth())
-    FromVal =
-       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), 
-                                                    LIBitWidth), "tmp");
+    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
+    const Type *ArrayEltTy = ATy->getElementType();
+    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
+    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
 
-  // If the result is an integer, this is a trunc or bitcast.
-  if (ToType->isIntegerTy()) {
-    // Should be done.
-  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
-    // Just do a bitcast, we know the sizes match up.
-    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
-  } else {
-    // Otherwise must be a pointer.
-    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
+    uint64_t Shift;
+    
+    if (TD->isBigEndian())
+      Shift = AllocaSizeBits-ElementOffset;
+    else 
+      Shift = 0;
+    
+    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+      // Ignore zero sized fields like {}, they obviously contain no data.
+      if (ElementSizeBits == 0) continue;
+      
+      Value *EltVal = SrcVal;
+      if (Shift) {
+        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
+        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
+                                            "sroa.store.elt", SI);
+      }
+      
+      // Truncate down to an integer of the right size.
+      if (ElementSizeBits != AllocaSizeBits)
+        EltVal = new TruncInst(EltVal, 
+                               IntegerType::get(SI->getContext(), 
+                                                ElementSizeBits),"",SI);
+      Value *DestField = NewElts[i];
+      if (EltVal->getType() == ArrayEltTy) {
+        // Storing to an integer field of this size, just do it.
+      } else if (ArrayEltTy->isFloatingPointTy() ||
+                 ArrayEltTy->isVectorTy()) {
+        // Bitcast to the right element type (for fp/vector values).
+        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
+      } else {
+        // Otherwise, bitcast the dest pointer (for aggregates).
+        DestField = new BitCastInst(DestField,
+                              PointerType::getUnqual(EltVal->getType()),
+                                    "", SI);
+      }
+      new StoreInst(EltVal, DestField, SI);
+      
+      if (TD->isBigEndian())
+        Shift -= ElementOffset;
+      else 
+        Shift += ElementOffset;
+    }
   }
-  assert(FromVal->getType() == ToType && "Didn't convert right?");
-  return FromVal;
+  
+  DeadInsts.push_back(SI);
 }
 
-/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
-/// or vector value "Old" at the offset specified by Offset.
-///
-/// This happens when we are converting an "integer union" to a
-/// single integer scalar, or when we are converting a "vector union" to a
-/// vector with insert/extractelement instructions.
-///
-/// Offset is an offset from the original alloca, in bits that need to be
-/// shifted to the right.
-Value *ConvertToScalarInfo::
-ConvertScalar_InsertValue(Value *SV, Value *Old,
-                          uint64_t Offset, IRBuilder<> &Builder) {
-  // Convert the stored type to the actual type, shift it left to insert
-  // then 'or' into place.
-  const Type *AllocaType = Old->getType();
-  LLVMContext &Context = Old->getContext();
-
-  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
-    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
-    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
+/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
+/// an integer.  Load the individual pieces to form the aggregate value.
+void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
+                                        SmallVector<AllocaInst*, 32> &NewElts) {
+  // Extract each element out of the NewElts according to its structure offset
+  // and form the result value.
+  const Type *AllocaEltTy = AI->getAllocatedType();
+  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+  
+  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
+               << '\n');
+  
+  // There are two forms here: AI could be an array or struct.  Both cases
+  // have different ways to compute the element offset.
+  const StructLayout *Layout = 0;
+  uint64_t ArrayEltBitOffset = 0;
+  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
+    Layout = TD->getStructLayout(EltSTy);
+  } else {
+    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
+    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
+  }    
+  
+  Value *ResultVal = 
+    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
+  
+  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+    // Load the value from the alloca.  If the NewElt is an aggregate, cast
+    // the pointer to an integer of the same size before doing the load.
+    Value *SrcField = NewElts[i];
+    const Type *FieldTy =
+      cast<PointerType>(SrcField->getType())->getElementType();
+    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
     
-    // Changing the whole vector with memset or with an access of a different
-    // vector type?
-    if (ValSize == VecSize)
-      return Builder.CreateBitCast(SV, AllocaType, "tmp");
+    // Ignore zero sized fields like {}, they obviously contain no data.
+    if (FieldSizeBits == 0) continue;
+    
+    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), 
+                                                     FieldSizeBits);
+    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
+        !FieldTy->isVectorTy())
+      SrcField = new BitCastInst(SrcField,
+                                 PointerType::getUnqual(FieldIntTy),
+                                 "", LI);
+    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
 
-    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+    // If SrcField is a fp or vector of the right size but that isn't an
+    // integer type, bitcast to an integer so we can shift it.
+    if (SrcField->getType() != FieldIntTy)
+      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
 
-    // Must be an element insertion.
-    unsigned Elt = Offset/EltSize;
+    // Zero extend the field to be the same size as the final alloca so that
+    // we can shift and insert it.
+    if (SrcField->getType() != ResultVal->getType())
+      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
     
-    if (SV->getType() != VTy->getElementType())
-      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
+    // Determine the number of bits to shift SrcField.
+    uint64_t Shift;
+    if (Layout) // Struct case.
+      Shift = Layout->getElementOffsetInBits(i);
+    else  // Array case.
+      Shift = i*ArrayEltBitOffset;
     
-    SV = Builder.CreateInsertElement(Old, SV, 
-                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
-                                     "tmp");
-    return SV;
-  }
-  
-  // If SV is a first-class aggregate value, insert each value recursively.
-  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
-    const StructLayout &Layout = *TD.getStructLayout(ST);
-    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
-      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
-      Old = ConvertScalar_InsertValue(Elt, Old, 
-                                      Offset+Layout.getElementOffsetInBits(i),
-                                      Builder);
-    }
-    return Old;
-  }
-  
-  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
-    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
-    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
-      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
-      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
+    if (TD->isBigEndian())
+      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
+    
+    if (Shift) {
+      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
+      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
     }
-    return Old;
+
+    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
   }
 
-  // If SV is a float, convert it to the appropriate integer type.
-  // If it is a pointer, do the same.
-  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
-  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
-  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
-  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
-  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
-    SV = Builder.CreateBitCast(SV,
-                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
-  else if (SV->getType()->isPointerTy())
-    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
+  // Handle tail padding by truncating the result
+  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
+    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 
-  // Zero extend or truncate the value if needed.
-  if (SV->getType() != AllocaType) {
-    if (SV->getType()->getPrimitiveSizeInBits() <
-             AllocaType->getPrimitiveSizeInBits())
-      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
-    else {
-      // Truncation may be needed if storing more than the alloca can hold
-      // (undefined behavior).
-      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
-      SrcWidth = DestWidth;
-      SrcStoreWidth = DestStoreWidth;
+  LI->replaceAllUsesWith(ResultVal);
+  DeadInsts.push_back(LI);
+}
+
+/// HasPadding - Return true if the specified type has any structure or
+/// alignment padding, false otherwise.
+static bool HasPadding(const Type *Ty, const TargetData &TD) {
+  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+    const StructLayout *SL = TD.getStructLayout(STy);
+    unsigned PrevFieldBitOffset = 0;
+    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
+
+      // Padding in sub-elements?
+      if (HasPadding(STy->getElementType(i), TD))
+        return true;
+
+      // Check to see if there is any padding between this element and the
+      // previous one.
+      if (i) {
+        unsigned PrevFieldEnd =
+        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
+        if (PrevFieldEnd < FieldBitOffset)
+          return true;
+      }
+
+      PrevFieldBitOffset = FieldBitOffset;
     }
-  }
 
-  // If this is a big-endian system and the store is narrower than the
-  // full alloca type, we need to do a shift to get the right bits.
-  int ShAmt = 0;
-  if (TD.isBigEndian()) {
-    // On big-endian machines, the lowest bit is stored at the bit offset
-    // from the pointer given by getTypeStoreSizeInBits.  This matters for
-    // integers with a bitwidth that is not a multiple of 8.
-    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
-  } else {
-    ShAmt = Offset;
-  }
+    //  Check for tail padding.
+    if (unsigned EltCount = STy->getNumElements()) {
+      unsigned PrevFieldEnd = PrevFieldBitOffset +
+                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
+      if (PrevFieldEnd < SL->getSizeInBits())
+        return true;
+    }
 
-  // Note: we support negative bitwidths (with shr) which are not defined.
-  // We do this to support (f.e.) stores off the end of a structure where
-  // only some bits in the structure are set.
-  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
-  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
-    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
-                           ShAmt), "tmp");
-    Mask <<= ShAmt;
-  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
-    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
-                            -ShAmt), "tmp");
-    Mask = Mask.lshr(-ShAmt);
+  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+    return HasPadding(ATy->getElementType(), TD);
+  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+    return HasPadding(VTy->getElementType(), TD);
   }
+  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
+}
 
-  // Mask out the bits we are about to insert from the old value, and or
-  // in the new bits.
-  if (SrcWidth != DestWidth) {
-    assert(DestWidth > SrcWidth);
-    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
-    SV = Builder.CreateOr(Old, SV, "ins");
+/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
+/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
+/// or 1 if safe after canonicalization has been performed.
+bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
+  // Loop over the use list of the alloca.  We can only transform it if all of
+  // the users are safe to transform.
+  AllocaInfo Info;
+  
+  isSafeForScalarRepl(AI, AI, 0, Info);
+  if (Info.isUnsafe) {
+    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
+    return false;
   }
-  return SV;
+  
+  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
+  // source and destination, we have to be careful.  In particular, the memcpy
+  // could be moving around elements that live in structure padding of the LLVM
+  // types, but may actually be used.  In these cases, we refuse to promote the
+  // struct.
+  if (Info.isMemCpySrc && Info.isMemCpyDst &&
+      HasPadding(AI->getAllocatedType(), *TD))
+    return false;
+
+  return true;
 }
 
 





More information about the llvm-commits mailing list