[llvm-commits] [llvm] r101268 - in /llvm/trunk/include/llvm/CodeGen: ISDOpcodes.h SelectionDAGNodes.h

Dan Gohman gohman at apple.com
Wed Apr 14 11:44:34 PDT 2010


Author: djg
Date: Wed Apr 14 13:44:34 2010
New Revision: 101268

URL: http://llvm.org/viewvc/llvm-project?rev=101268&view=rev
Log:
Split ISD::NodeType and a few related items out of SelectionDAGNodes.h
into a separate header to allow clients to use them without pulling in
SelectionDAG-specific declarations.

Added:
    llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h
      - copied, changed from r101240, llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h
Modified:
    llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h

Copied: llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h (from r101240, llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h?p2=llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h&p1=llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h&r1=101240&r2=101268&rev=101268&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h Wed Apr 14 13:44:34 2010
@@ -1,4 +1,4 @@
-//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
+//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -7,55 +7,15 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This file declares the SDNode class and derived classes, which are used to
-// represent the nodes and operations present in a SelectionDAG.  These nodes
-// and operations are machine code level operations, with some similarities to
-// the GCC RTL representation.
-//
-// Clients should include the SelectionDAG.h file instead of this file directly.
+// This file declares codegen opcodes and related utilities.
 //
 //===----------------------------------------------------------------------===//
 
-#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
-#define LLVM_CODEGEN_SELECTIONDAGNODES_H
-
-#include "llvm/Constants.h"
-#include "llvm/ADT/FoldingSet.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/ilist_node.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/System/DataTypes.h"
-#include "llvm/Support/DebugLoc.h"
-#include <cassert>
+#ifndef LLVM_CODEGEN_ISDOPCODES_H
+#define LLVM_CODEGEN_ISDOPCODES_H
 
 namespace llvm {
 
-class SelectionDAG;
-class GlobalValue;
-class MachineBasicBlock;
-class MachineConstantPoolValue;
-class SDNode;
-class Value;
-class MCSymbol;
-template <typename T> struct DenseMapInfo;
-template <typename T> struct simplify_type;
-template <typename T> struct ilist_traits;
-
-void checkForCycles(const SDNode *N);
-  
-/// SDVTList - This represents a list of ValueType's that has been intern'd by
-/// a SelectionDAG.  Instances of this simple value class are returned by
-/// SelectionDAG::getVTList(...).
-///
-struct SDVTList {
-  const EVT *VTs;
-  unsigned int NumVTs;
-};
-
 /// ISD namespace - This namespace contains an enum which represents all of the
 /// SelectionDAG node types and value types.
 ///
@@ -629,21 +589,6 @@
   /// be used with SelectionDAG::getMemIntrinsicNode.
   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+100;
 
-  /// Node predicates
-
-  /// isBuildVectorAllOnes - Return true if the specified node is a
-  /// BUILD_VECTOR where all of the elements are ~0 or undef.
-  bool isBuildVectorAllOnes(const SDNode *N);
-
-  /// isBuildVectorAllZeros - Return true if the specified node is a
-  /// BUILD_VECTOR where all of the elements are 0 or undef.
-  bool isBuildVectorAllZeros(const SDNode *N);
-
-  /// isScalarToVector - Return true if the specified node is a
-  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
-  /// element is not an undef.
-  bool isScalarToVector(const SDNode *N);
-
   //===--------------------------------------------------------------------===//
   /// MemIndexedMode enum - This enum defines the load / store indexed
   /// addressing modes.
@@ -809,1811 +754,8 @@
     CVT_UU,     // Unsigned from Unsigned
     CVT_INVALID // Marker - Invalid opcode
   };
-}  // end llvm::ISD namespace
-
-
-//===----------------------------------------------------------------------===//
-/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
-/// values as the result of a computation.  Many nodes return multiple values,
-/// from loads (which define a token and a return value) to ADDC (which returns
-/// a result and a carry value), to calls (which may return an arbitrary number
-/// of values).
-///
-/// As such, each use of a SelectionDAG computation must indicate the node that
-/// computes it as well as which return value to use from that node.  This pair
-/// of information is represented with the SDValue value type.
-///
-class SDValue {
-  SDNode *Node;       // The node defining the value we are using.
-  unsigned ResNo;     // Which return value of the node we are using.
-public:
-  SDValue() : Node(0), ResNo(0) {}
-  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
-
-  /// get the index which selects a specific result in the SDNode
-  unsigned getResNo() const { return ResNo; }
-
-  /// get the SDNode which holds the desired result
-  SDNode *getNode() const { return Node; }
-
-  /// set the SDNode
-  void setNode(SDNode *N) { Node = N; }
-
-  inline SDNode *operator->() const { return Node; }
-  
-  bool operator==(const SDValue &O) const {
-    return Node == O.Node && ResNo == O.ResNo;
-  }
-  bool operator!=(const SDValue &O) const {
-    return !operator==(O);
-  }
-  bool operator<(const SDValue &O) const {
-    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
-  }
-
-  SDValue getValue(unsigned R) const {
-    return SDValue(Node, R);
-  }
-
-  // isOperandOf - Return true if this node is an operand of N.
-  bool isOperandOf(SDNode *N) const;
-
-  /// getValueType - Return the ValueType of the referenced return value.
-  ///
-  inline EVT getValueType() const;
-
-  /// getValueSizeInBits - Returns the size of the value in bits.
-  ///
-  unsigned getValueSizeInBits() const {
-    return getValueType().getSizeInBits();
-  }
-
-  // Forwarding methods - These forward to the corresponding methods in SDNode.
-  inline unsigned getOpcode() const;
-  inline unsigned getNumOperands() const;
-  inline const SDValue &getOperand(unsigned i) const;
-  inline uint64_t getConstantOperandVal(unsigned i) const;
-  inline bool isTargetMemoryOpcode() const;
-  inline bool isTargetOpcode() const;
-  inline bool isMachineOpcode() const;
-  inline unsigned getMachineOpcode() const;
-  inline const DebugLoc getDebugLoc() const;
-
-
-  /// reachesChainWithoutSideEffects - Return true if this operand (which must
-  /// be a chain) reaches the specified operand without crossing any
-  /// side-effecting instructions.  In practice, this looks through token
-  /// factors and non-volatile loads.  In order to remain efficient, this only
-  /// looks a couple of nodes in, it does not do an exhaustive search.
-  bool reachesChainWithoutSideEffects(SDValue Dest,
-                                      unsigned Depth = 2) const;
-
-  /// use_empty - Return true if there are no nodes using value ResNo
-  /// of Node.
-  ///
-  inline bool use_empty() const;
-
-  /// hasOneUse - Return true if there is exactly one node using value
-  /// ResNo of Node.
-  ///
-  inline bool hasOneUse() const;
-};
-
-
-template<> struct DenseMapInfo<SDValue> {
-  static inline SDValue getEmptyKey() {
-    return SDValue((SDNode*)-1, -1U);
-  }
-  static inline SDValue getTombstoneKey() {
-    return SDValue((SDNode*)-1, 0);
-  }
-  static unsigned getHashValue(const SDValue &Val) {
-    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
-            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
-  }
-  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
-    return LHS == RHS;
-  }
-};
-template <> struct isPodLike<SDValue> { static const bool value = true; };
-
-
-/// simplify_type specializations - Allow casting operators to work directly on
-/// SDValues as if they were SDNode*'s.
-template<> struct simplify_type<SDValue> {
-  typedef SDNode* SimpleType;
-  static SimpleType getSimplifiedValue(const SDValue &Val) {
-    return static_cast<SimpleType>(Val.getNode());
-  }
-};
-template<> struct simplify_type<const SDValue> {
-  typedef SDNode* SimpleType;
-  static SimpleType getSimplifiedValue(const SDValue &Val) {
-    return static_cast<SimpleType>(Val.getNode());
-  }
-};
-
-/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
-/// which records the SDNode being used and the result number, a
-/// pointer to the SDNode using the value, and Next and Prev pointers,
-/// which link together all the uses of an SDNode.
-///
-class SDUse {
-  /// Val - The value being used.
-  SDValue Val;
-  /// User - The user of this value.
-  SDNode *User;
-  /// Prev, Next - Pointers to the uses list of the SDNode referred by
-  /// this operand.
-  SDUse **Prev, *Next;
-
-  SDUse(const SDUse &U);          // Do not implement
-  void operator=(const SDUse &U); // Do not implement
-
-public:
-  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
-
-  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
-  operator const SDValue&() const { return Val; }
-
-  /// If implicit conversion to SDValue doesn't work, the get() method returns
-  /// the SDValue.
-  const SDValue &get() const { return Val; }
-
-  /// getUser - This returns the SDNode that contains this Use.
-  SDNode *getUser() { return User; }
-
-  /// getNext - Get the next SDUse in the use list.
-  SDUse *getNext() const { return Next; }
-
-  /// getNode - Convenience function for get().getNode().
-  SDNode *getNode() const { return Val.getNode(); }
-  /// getResNo - Convenience function for get().getResNo().
-  unsigned getResNo() const { return Val.getResNo(); }
-  /// getValueType - Convenience function for get().getValueType().
-  EVT getValueType() const { return Val.getValueType(); }
-
-  /// operator== - Convenience function for get().operator==
-  bool operator==(const SDValue &V) const {
-    return Val == V;
-  }
-
-  /// operator!= - Convenience function for get().operator!=
-  bool operator!=(const SDValue &V) const {
-    return Val != V;
-  }
-
-  /// operator< - Convenience function for get().operator<
-  bool operator<(const SDValue &V) const {
-    return Val < V;
-  }
-
-private:
-  friend class SelectionDAG;
-  friend class SDNode;
-
-  void setUser(SDNode *p) { User = p; }
-
-  /// set - Remove this use from its existing use list, assign it the
-  /// given value, and add it to the new value's node's use list.
-  inline void set(const SDValue &V);
-  /// setInitial - like set, but only supports initializing a newly-allocated
-  /// SDUse with a non-null value.
-  inline void setInitial(const SDValue &V);
-  /// setNode - like set, but only sets the Node portion of the value,
-  /// leaving the ResNo portion unmodified.
-  inline void setNode(SDNode *N);
-
-  void addToList(SDUse **List) {
-    Next = *List;
-    if (Next) Next->Prev = &Next;
-    Prev = List;
-    *List = this;
-  }
-
-  void removeFromList() {
-    *Prev = Next;
-    if (Next) Next->Prev = Prev;
-  }
-};
-
-/// simplify_type specializations - Allow casting operators to work directly on
-/// SDValues as if they were SDNode*'s.
-template<> struct simplify_type<SDUse> {
-  typedef SDNode* SimpleType;
-  static SimpleType getSimplifiedValue(const SDUse &Val) {
-    return static_cast<SimpleType>(Val.getNode());
-  }
-};
-template<> struct simplify_type<const SDUse> {
-  typedef SDNode* SimpleType;
-  static SimpleType getSimplifiedValue(const SDUse &Val) {
-    return static_cast<SimpleType>(Val.getNode());
-  }
-};
-
-
-/// SDNode - Represents one node in the SelectionDAG.
-///
-class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
-private:
-  /// NodeType - The operation that this node performs.
-  ///
-  int16_t NodeType;
-
-  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
-  /// then they will be delete[]'d when the node is destroyed.
-  uint16_t OperandsNeedDelete : 1;
-
-  /// HasDebugValue - This tracks whether this node has one or more dbg_value
-  /// nodes corresponding to it.
-  uint16_t HasDebugValue : 1;
-
-protected:
-  /// SubclassData - This member is defined by this class, but is not used for
-  /// anything.  Subclasses can use it to hold whatever state they find useful.
-  /// This field is initialized to zero by the ctor.
-  uint16_t SubclassData : 14;
-
-private:
-  /// NodeId - Unique id per SDNode in the DAG.
-  int NodeId;
-
-  /// OperandList - The values that are used by this operation.
-  ///
-  SDUse *OperandList;
-
-  /// ValueList - The types of the values this node defines.  SDNode's may
-  /// define multiple values simultaneously.
-  const EVT *ValueList;
-
-  /// UseList - List of uses for this SDNode.
-  SDUse *UseList;
-
-  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
-  unsigned short NumOperands, NumValues;
-
-  /// debugLoc - source line information.
-  DebugLoc debugLoc;
-
-  /// getValueTypeList - Return a pointer to the specified value type.
-  static const EVT *getValueTypeList(EVT VT);
-
-  friend class SelectionDAG;
-  friend struct ilist_traits<SDNode>;
-
-public:
-  //===--------------------------------------------------------------------===//
-  //  Accessors
-  //
-
-  /// getOpcode - Return the SelectionDAG opcode value for this node. For
-  /// pre-isel nodes (those for which isMachineOpcode returns false), these
-  /// are the opcode values in the ISD and <target>ISD namespaces. For
-  /// post-isel opcodes, see getMachineOpcode.
-  unsigned getOpcode()  const { return (unsigned short)NodeType; }
-
-  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
-  /// \<target\>ISD namespace).
-  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
-
-  /// isTargetMemoryOpcode - Test if this node has a target-specific 
-  /// memory-referencing opcode (in the \<target\>ISD namespace and
-  /// greater than FIRST_TARGET_MEMORY_OPCODE).
-  bool isTargetMemoryOpcode() const {
-    return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
-  }
-
-  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
-  /// corresponding to a MachineInstr opcode.
-  bool isMachineOpcode() const { return NodeType < 0; }
-
-  /// getMachineOpcode - This may only be called if isMachineOpcode returns
-  /// true. It returns the MachineInstr opcode value that the node's opcode
-  /// corresponds to.
-  unsigned getMachineOpcode() const {
-    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
-    return ~NodeType;
-  }
-
-  /// getHasDebugValue - get this bit.
-  bool getHasDebugValue() const { return HasDebugValue; }
-
-  /// setHasDebugValue - set this bit.
-  void setHasDebugValue(bool b) { HasDebugValue = b; }
-
-  /// use_empty - Return true if there are no uses of this node.
-  ///
-  bool use_empty() const { return UseList == NULL; }
-
-  /// hasOneUse - Return true if there is exactly one use of this node.
-  ///
-  bool hasOneUse() const {
-    return !use_empty() && llvm::next(use_begin()) == use_end();
-  }
-
-  /// use_size - Return the number of uses of this node. This method takes
-  /// time proportional to the number of uses.
-  ///
-  size_t use_size() const { return std::distance(use_begin(), use_end()); }
-
-  /// getNodeId - Return the unique node id.
-  ///
-  int getNodeId() const { return NodeId; }
-
-  /// setNodeId - Set unique node id.
-  void setNodeId(int Id) { NodeId = Id; }
-
-  /// getDebugLoc - Return the source location info.
-  const DebugLoc getDebugLoc() const { return debugLoc; }
-
-  /// setDebugLoc - Set source location info.  Try to avoid this, putting
-  /// it in the constructor is preferable.
-  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
-
-  /// use_iterator - This class provides iterator support for SDUse
-  /// operands that use a specific SDNode.
-  class use_iterator
-    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
-    SDUse *Op;
-    explicit use_iterator(SDUse *op) : Op(op) {
-    }
-    friend class SDNode;
-  public:
-    typedef std::iterator<std::forward_iterator_tag,
-                          SDUse, ptrdiff_t>::reference reference;
-    typedef std::iterator<std::forward_iterator_tag,
-                          SDUse, ptrdiff_t>::pointer pointer;
-
-    use_iterator(const use_iterator &I) : Op(I.Op) {}
-    use_iterator() : Op(0) {}
-
-    bool operator==(const use_iterator &x) const {
-      return Op == x.Op;
-    }
-    bool operator!=(const use_iterator &x) const {
-      return !operator==(x);
-    }
-
-    /// atEnd - return true if this iterator is at the end of uses list.
-    bool atEnd() const { return Op == 0; }
-
-    // Iterator traversal: forward iteration only.
-    use_iterator &operator++() {          // Preincrement
-      assert(Op && "Cannot increment end iterator!");
-      Op = Op->getNext();
-      return *this;
-    }
-
-    use_iterator operator++(int) {        // Postincrement
-      use_iterator tmp = *this; ++*this; return tmp;
-    }
-
-    /// Retrieve a pointer to the current user node.
-    SDNode *operator*() const {
-      assert(Op && "Cannot dereference end iterator!");
-      return Op->getUser();
-    }
-
-    SDNode *operator->() const { return operator*(); }
-
-    SDUse &getUse() const { return *Op; }
-
-    /// getOperandNo - Retrieve the operand # of this use in its user.
-    ///
-    unsigned getOperandNo() const {
-      assert(Op && "Cannot dereference end iterator!");
-      return (unsigned)(Op - Op->getUser()->OperandList);
-    }
-  };
-
-  /// use_begin/use_end - Provide iteration support to walk over all uses
-  /// of an SDNode.
-
-  use_iterator use_begin() const {
-    return use_iterator(UseList);
-  }
-
-  static use_iterator use_end() { return use_iterator(0); }
-
-
-  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
-  /// indicated value.  This method ignores uses of other values defined by this
-  /// operation.
-  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
-
-  /// hasAnyUseOfValue - Return true if there are any use of the indicated
-  /// value. This method ignores uses of other values defined by this operation.
-  bool hasAnyUseOfValue(unsigned Value) const;
-
-  /// isOnlyUserOf - Return true if this node is the only use of N.
-  ///
-  bool isOnlyUserOf(SDNode *N) const;
-
-  /// isOperandOf - Return true if this node is an operand of N.
-  ///
-  bool isOperandOf(SDNode *N) const;
-
-  /// isPredecessorOf - Return true if this node is a predecessor of N. This
-  /// node is either an operand of N or it can be reached by recursively
-  /// traversing up the operands.
-  /// NOTE: this is an expensive method. Use it carefully.
-  bool isPredecessorOf(SDNode *N) const;
-
-  /// getNumOperands - Return the number of values used by this operation.
-  ///
-  unsigned getNumOperands() const { return NumOperands; }
-
-  /// getConstantOperandVal - Helper method returns the integer value of a
-  /// ConstantSDNode operand.
-  uint64_t getConstantOperandVal(unsigned Num) const;
-
-  const SDValue &getOperand(unsigned Num) const {
-    assert(Num < NumOperands && "Invalid child # of SDNode!");
-    return OperandList[Num];
-  }
-
-  typedef SDUse* op_iterator;
-  op_iterator op_begin() const { return OperandList; }
-  op_iterator op_end() const { return OperandList+NumOperands; }
-
-  SDVTList getVTList() const {
-    SDVTList X = { ValueList, NumValues };
-    return X;
-  }
-
-  /// getFlaggedNode - If this node has a flag operand, return the node
-  /// to which the flag operand points. Otherwise return NULL.
-  SDNode *getFlaggedNode() const {
-    if (getNumOperands() != 0 &&
-      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
-      return getOperand(getNumOperands()-1).getNode();
-    return 0;
-  }
-
-  // If this is a pseudo op, like copyfromreg, look to see if there is a
-  // real target node flagged to it.  If so, return the target node.
-  const SDNode *getFlaggedMachineNode() const {
-    const SDNode *FoundNode = this;
-
-    // Climb up flag edges until a machine-opcode node is found, or the
-    // end of the chain is reached.
-    while (!FoundNode->isMachineOpcode()) {
-      const SDNode *N = FoundNode->getFlaggedNode();
-      if (!N) break;
-      FoundNode = N;
-    }
-
-    return FoundNode;
-  }
-
-  /// getNumValues - Return the number of values defined/returned by this
-  /// operator.
-  ///
-  unsigned getNumValues() const { return NumValues; }
-
-  /// getValueType - Return the type of a specified result.
-  ///
-  EVT getValueType(unsigned ResNo) const {
-    assert(ResNo < NumValues && "Illegal result number!");
-    return ValueList[ResNo];
-  }
-
-  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
-  ///
-  unsigned getValueSizeInBits(unsigned ResNo) const {
-    return getValueType(ResNo).getSizeInBits();
-  }
-
-  typedef const EVT* value_iterator;
-  value_iterator value_begin() const { return ValueList; }
-  value_iterator value_end() const { return ValueList+NumValues; }
-
-  /// getOperationName - Return the opcode of this operation for printing.
-  ///
-  std::string getOperationName(const SelectionDAG *G = 0) const;
-  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
-  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
-  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
-  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
-  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
-
-  /// printrFull - Print a SelectionDAG node and all children down to
-  /// the leaves.  The given SelectionDAG allows target-specific nodes
-  /// to be printed in human-readable form.  Unlike printr, this will
-  /// print the whole DAG, including children that appear multiple
-  /// times.
-  ///
-  void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
-
-  /// printrWithDepth - Print a SelectionDAG node and children up to
-  /// depth "depth."  The given SelectionDAG allows target-specific
-  /// nodes to be printed in human-readable form.  Unlike printr, this
-  /// will print children that appear multiple times wherever they are
-  /// used.
-  ///
-  void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0,
-                       unsigned depth = 100) const;
-
-
-  /// dump - Dump this node, for debugging.
-  void dump() const;
-
-  /// dumpr - Dump (recursively) this node and its use-def subgraph.
-  void dumpr() const;
-
-  /// dump - Dump this node, for debugging.
-  /// The given SelectionDAG allows target-specific nodes to be printed
-  /// in human-readable form.
-  void dump(const SelectionDAG *G) const;
-
-  /// dumpr - Dump (recursively) this node and its use-def subgraph.
-  /// The given SelectionDAG allows target-specific nodes to be printed
-  /// in human-readable form.
-  void dumpr(const SelectionDAG *G) const;
-
-  /// dumprFull - printrFull to dbgs().  The given SelectionDAG allows
-  /// target-specific nodes to be printed in human-readable form.
-  /// Unlike dumpr, this will print the whole DAG, including children
-  /// that appear multiple times.
-  ///
-  void dumprFull(const SelectionDAG *G = 0) const;
-
-  /// dumprWithDepth - printrWithDepth to dbgs().  The given
-  /// SelectionDAG allows target-specific nodes to be printed in
-  /// human-readable form.  Unlike dumpr, this will print children
-  /// that appear multiple times wherever they are used.
-  ///
-  void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
-
-
-  static bool classof(const SDNode *) { return true; }
-
-  /// Profile - Gather unique data for the node.
-  ///
-  void Profile(FoldingSetNodeID &ID) const;
-
-  /// addUse - This method should only be used by the SDUse class.
-  ///
-  void addUse(SDUse &U) { U.addToList(&UseList); }
-
-protected:
-  static SDVTList getSDVTList(EVT VT) {
-    SDVTList Ret = { getValueTypeList(VT), 1 };
-    return Ret;
-  }
-
-  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
-         unsigned NumOps)
-    : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
-      SubclassData(0), NodeId(-1),
-      OperandList(NumOps ? new SDUse[NumOps] : 0),
-      ValueList(VTs.VTs), UseList(NULL),
-      NumOperands(NumOps), NumValues(VTs.NumVTs),
-      debugLoc(dl) {
-    for (unsigned i = 0; i != NumOps; ++i) {
-      OperandList[i].setUser(this);
-      OperandList[i].setInitial(Ops[i]);
-    }
-    checkForCycles(this);
-  }
-
-  /// This constructor adds no operands itself; operands can be
-  /// set later with InitOperands.
-  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
-    : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
-      SubclassData(0), NodeId(-1), OperandList(0), ValueList(VTs.VTs),
-      UseList(NULL), NumOperands(0), NumValues(VTs.NumVTs),
-      debugLoc(dl) {}
-
-  /// InitOperands - Initialize the operands list of this with 1 operand.
-  void InitOperands(SDUse *Ops, const SDValue &Op0) {
-    Ops[0].setUser(this);
-    Ops[0].setInitial(Op0);
-    NumOperands = 1;
-    OperandList = Ops;
-    checkForCycles(this);
-  }
-
-  /// InitOperands - Initialize the operands list of this with 2 operands.
-  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
-    Ops[0].setUser(this);
-    Ops[0].setInitial(Op0);
-    Ops[1].setUser(this);
-    Ops[1].setInitial(Op1);
-    NumOperands = 2;
-    OperandList = Ops;
-    checkForCycles(this);
-  }
-
-  /// InitOperands - Initialize the operands list of this with 3 operands.
-  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
-                    const SDValue &Op2) {
-    Ops[0].setUser(this);
-    Ops[0].setInitial(Op0);
-    Ops[1].setUser(this);
-    Ops[1].setInitial(Op1);
-    Ops[2].setUser(this);
-    Ops[2].setInitial(Op2);
-    NumOperands = 3;
-    OperandList = Ops;
-    checkForCycles(this);
-  }
-
-  /// InitOperands - Initialize the operands list of this with 4 operands.
-  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
-                    const SDValue &Op2, const SDValue &Op3) {
-    Ops[0].setUser(this);
-    Ops[0].setInitial(Op0);
-    Ops[1].setUser(this);
-    Ops[1].setInitial(Op1);
-    Ops[2].setUser(this);
-    Ops[2].setInitial(Op2);
-    Ops[3].setUser(this);
-    Ops[3].setInitial(Op3);
-    NumOperands = 4;
-    OperandList = Ops;
-    checkForCycles(this);
-  }
-
-  /// InitOperands - Initialize the operands list of this with N operands.
-  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
-    for (unsigned i = 0; i != N; ++i) {
-      Ops[i].setUser(this);
-      Ops[i].setInitial(Vals[i]);
-    }
-    NumOperands = N;
-    OperandList = Ops;
-    checkForCycles(this);
-  }
-
-  /// DropOperands - Release the operands and set this node to have
-  /// zero operands.
-  void DropOperands();
-};
-
-
-// Define inline functions from the SDValue class.
-
-inline unsigned SDValue::getOpcode() const {
-  return Node->getOpcode();
-}
-inline EVT SDValue::getValueType() const {
-  return Node->getValueType(ResNo);
-}
-inline unsigned SDValue::getNumOperands() const {
-  return Node->getNumOperands();
-}
-inline const SDValue &SDValue::getOperand(unsigned i) const {
-  return Node->getOperand(i);
-}
-inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
-  return Node->getConstantOperandVal(i);
-}
-inline bool SDValue::isTargetOpcode() const {
-  return Node->isTargetOpcode();
-}
-inline bool SDValue::isTargetMemoryOpcode() const {
-  return Node->isTargetMemoryOpcode();
-}
-inline bool SDValue::isMachineOpcode() const {
-  return Node->isMachineOpcode();
-}
-inline unsigned SDValue::getMachineOpcode() const {
-  return Node->getMachineOpcode();
-}
-inline bool SDValue::use_empty() const {
-  return !Node->hasAnyUseOfValue(ResNo);
-}
-inline bool SDValue::hasOneUse() const {
-  return Node->hasNUsesOfValue(1, ResNo);
-}
-inline const DebugLoc SDValue::getDebugLoc() const {
-  return Node->getDebugLoc();
-}
-
-// Define inline functions from the SDUse class.
-
-inline void SDUse::set(const SDValue &V) {
-  if (Val.getNode()) removeFromList();
-  Val = V;
-  if (V.getNode()) V.getNode()->addUse(*this);
-}
-
-inline void SDUse::setInitial(const SDValue &V) {
-  Val = V;
-  V.getNode()->addUse(*this);
-}
-
-inline void SDUse::setNode(SDNode *N) {
-  if (Val.getNode()) removeFromList();
-  Val.setNode(N);
-  if (N) N->addUse(*this);
-}
-
-/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
-/// to allow co-allocation of node operands with the node itself.
-class UnarySDNode : public SDNode {
-  SDUse Op;
-public:
-  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
-    : SDNode(Opc, dl, VTs) {
-    InitOperands(&Op, X);
-  }
-};
-
-/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
-/// to allow co-allocation of node operands with the node itself.
-class BinarySDNode : public SDNode {
-  SDUse Ops[2];
-public:
-  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
-    : SDNode(Opc, dl, VTs) {
-    InitOperands(Ops, X, Y);
-  }
-};
-
-/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
-/// to allow co-allocation of node operands with the node itself.
-class TernarySDNode : public SDNode {
-  SDUse Ops[3];
-public:
-  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
-                SDValue Z)
-    : SDNode(Opc, dl, VTs) {
-    InitOperands(Ops, X, Y, Z);
-  }
-};
-
-
-/// HandleSDNode - This class is used to form a handle around another node that
-/// is persistant and is updated across invocations of replaceAllUsesWith on its
-/// operand.  This node should be directly created by end-users and not added to
-/// the AllNodes list.
-class HandleSDNode : public SDNode {
-  SDUse Op;
-public:
-  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
-  // fixed.
-#if __GNUC__==4 && __GNUC_MINOR__==2 && defined(__APPLE__) && !defined(__llvm__)
-  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
-#else
-  explicit HandleSDNode(SDValue X)
-#endif
-    : SDNode(ISD::HANDLENODE, DebugLoc(), getSDVTList(MVT::Other)) {
-    InitOperands(&Op, X);
-  }
-  ~HandleSDNode();
-  const SDValue &getValue() const { return Op; }
-};
-
-/// Abstact virtual class for operations for memory operations
-class MemSDNode : public SDNode {
-private:
-  // MemoryVT - VT of in-memory value.
-  EVT MemoryVT;
-
-protected:
-  /// MMO - Memory reference information.
-  MachineMemOperand *MMO;
-
-public:
-  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
-            MachineMemOperand *MMO);
-
-  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
-            unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
-
-  bool readMem() const { return MMO->isLoad(); }
-  bool writeMem() const { return MMO->isStore(); }
-
-  /// Returns alignment and volatility of the memory access
-  unsigned getOriginalAlignment() const { 
-    return MMO->getBaseAlignment();
-  }
-  unsigned getAlignment() const {
-    return MMO->getAlignment();
-  }
-
-  /// getRawSubclassData - Return the SubclassData value, which contains an
-  /// encoding of the volatile flag, as well as bits used by subclasses. This
-  /// function should only be used to compute a FoldingSetNodeID value.
-  unsigned getRawSubclassData() const {
-    return SubclassData;
-  }
-
-  // We access subclass data here so that we can check consistency
-  // with MachineMemOperand information.
-  bool isVolatile() const { return (SubclassData >> 5) & 1; }
-  bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
-
-  /// Returns the SrcValue and offset that describes the location of the access
-  const Value *getSrcValue() const { return MMO->getValue(); }
-  int64_t getSrcValueOffset() const { return MMO->getOffset(); }
-
-  /// getMemoryVT - Return the type of the in-memory value.
-  EVT getMemoryVT() const { return MemoryVT; }
-
-  /// getMemOperand - Return a MachineMemOperand object describing the memory
-  /// reference performed by operation.
-  MachineMemOperand *getMemOperand() const { return MMO; }
-
-  /// refineAlignment - Update this MemSDNode's MachineMemOperand information
-  /// to reflect the alignment of NewMMO, if it has a greater alignment.
-  /// This must only be used when the new alignment applies to all users of
-  /// this MachineMemOperand.
-  void refineAlignment(const MachineMemOperand *NewMMO) {
-    MMO->refineAlignment(NewMMO);
-  }
-
-  const SDValue &getChain() const { return getOperand(0); }
-  const SDValue &getBasePtr() const {
-    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
-  }
-
-  // Methods to support isa and dyn_cast
-  static bool classof(const MemSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
-    // with either an intrinsic or a target opcode.
-    return N->getOpcode() == ISD::LOAD                ||
-           N->getOpcode() == ISD::STORE               ||
-           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
-           N->getOpcode() == ISD::ATOMIC_SWAP         ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
-           N->isTargetMemoryOpcode();
-  }
-};
-
-/// AtomicSDNode - A SDNode reprenting atomic operations.
-///
-class AtomicSDNode : public MemSDNode {
-  SDUse Ops[4];
-
-public:
-  // Opc:   opcode for atomic
-  // VTL:    value type list
-  // Chain:  memory chain for operaand
-  // Ptr:    address to update as a SDValue
-  // Cmp:    compare value
-  // Swp:    swap value
-  // SrcVal: address to update as a Value (used for MemOperand)
-  // Align:  alignment of memory
-  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
-               SDValue Chain, SDValue Ptr,
-               SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
-    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
-    assert(readMem() && "Atomic MachineMemOperand is not a load!");
-    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
-    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
-  }
-  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
-               SDValue Chain, SDValue Ptr,
-               SDValue Val, MachineMemOperand *MMO)
-    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
-    assert(readMem() && "Atomic MachineMemOperand is not a load!");
-    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
-    InitOperands(Ops, Chain, Ptr, Val);
-  }
-
-  const SDValue &getBasePtr() const { return getOperand(1); }
-  const SDValue &getVal() const { return getOperand(2); }
-
-  bool isCompareAndSwap() const {
-    unsigned Op = getOpcode();
-    return Op == ISD::ATOMIC_CMP_SWAP;
-  }
-
-  // Methods to support isa and dyn_cast
-  static bool classof(const AtomicSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
-           N->getOpcode() == ISD::ATOMIC_SWAP         ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
-           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
-  }
-};
-
-/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
-/// memory and need an associated MachineMemOperand. Its opcode may be
-/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
-/// value not less than FIRST_TARGET_MEMORY_OPCODE.
-class MemIntrinsicSDNode : public MemSDNode {
-public:
-  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
-                     const SDValue *Ops, unsigned NumOps,
-                     EVT MemoryVT, MachineMemOperand *MMO)
-    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
-  }
-
-  // Methods to support isa and dyn_cast
-  static bool classof(const MemIntrinsicSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    // We lower some target intrinsics to their target opcode
-    // early a node with a target opcode can be of this class
-    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
-           N->getOpcode() == ISD::INTRINSIC_VOID ||
-           N->isTargetMemoryOpcode();
-  }
-};
-
-/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
-/// support for the llvm IR shufflevector instruction.  It combines elements
-/// from two input vectors into a new input vector, with the selection and
-/// ordering of elements determined by an array of integers, referred to as
-/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
-/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
-/// An index of -1 is treated as undef, such that the code generator may put
-/// any value in the corresponding element of the result.
-class ShuffleVectorSDNode : public SDNode {
-  SDUse Ops[2];
-
-  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
-  // is freed when the SelectionDAG object is destroyed.
-  const int *Mask;
-protected:
-  friend class SelectionDAG;
-  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2, 
-                      const int *M)
-    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
-    InitOperands(Ops, N1, N2);
-  }
-public:
-
-  void getMask(SmallVectorImpl<int> &M) const {
-    EVT VT = getValueType(0);
-    M.clear();
-    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
-      M.push_back(Mask[i]);
-  }
-  int getMaskElt(unsigned Idx) const {
-    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
-    return Mask[Idx];
-  }
-  
-  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
-  int  getSplatIndex() const { 
-    assert(isSplat() && "Cannot get splat index for non-splat!");
-    EVT VT = getValueType(0);
-    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
-      if (Mask[i] != -1)
-        return Mask[i];
-    }
-    return -1;
-  }
-  static bool isSplatMask(const int *Mask, EVT VT);
-
-  static bool classof(const ShuffleVectorSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
-  }
-};
-  
-class ConstantSDNode : public SDNode {
-  const ConstantInt *Value;
-  friend class SelectionDAG;
-  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
-    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
-             DebugLoc(), getSDVTList(VT)), Value(val) {
-  }
-public:
-
-  const ConstantInt *getConstantIntValue() const { return Value; }
-  const APInt &getAPIntValue() const { return Value->getValue(); }
-  uint64_t getZExtValue() const { return Value->getZExtValue(); }
-  int64_t getSExtValue() const { return Value->getSExtValue(); }
-
-  bool isNullValue() const { return Value->isNullValue(); }
-  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
-
-  static bool classof(const ConstantSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::Constant ||
-           N->getOpcode() == ISD::TargetConstant;
-  }
-};
-
-class ConstantFPSDNode : public SDNode {
-  const ConstantFP *Value;
-  friend class SelectionDAG;
-  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
-    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
-             DebugLoc(), getSDVTList(VT)), Value(val) {
-  }
-public:
-
-  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
-  const ConstantFP *getConstantFPValue() const { return Value; }
-
-  /// isZero - Return true if the value is positive or negative zero.
-  bool isZero() const { return Value->isZero(); }
-
-  /// isNaN - Return true if the value is a NaN.
-  bool isNaN() const { return Value->isNaN(); }
-
-  /// isExactlyValue - We don't rely on operator== working on double values, as
-  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
-  /// As such, this method can be used to do an exact bit-for-bit comparison of
-  /// two floating point values.
-
-  /// We leave the version with the double argument here because it's just so
-  /// convenient to write "2.0" and the like.  Without this function we'd
-  /// have to duplicate its logic everywhere it's called.
-  bool isExactlyValue(double V) const {
-    bool ignored;
-    // convert is not supported on this type
-    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
-      return false;
-    APFloat Tmp(V);
-    Tmp.convert(Value->getValueAPF().getSemantics(),
-                APFloat::rmNearestTiesToEven, &ignored);
-    return isExactlyValue(Tmp);
-  }
-  bool isExactlyValue(const APFloat& V) const;
-
-  bool isValueValidForType(EVT VT, const APFloat& Val);
-
-  static bool classof(const ConstantFPSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::ConstantFP ||
-           N->getOpcode() == ISD::TargetConstantFP;
-  }
-};
-
-class GlobalAddressSDNode : public SDNode {
-  GlobalValue *TheGlobal;
-  int64_t Offset;
-  unsigned char TargetFlags;
-  friend class SelectionDAG;
-  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
-                      int64_t o, unsigned char TargetFlags);
-public:
-
-  GlobalValue *getGlobal() const { return TheGlobal; }
-  int64_t getOffset() const { return Offset; }
-  unsigned char getTargetFlags() const { return TargetFlags; }
-  // Return the address space this GlobalAddress belongs to.
-  unsigned getAddressSpace() const;
-
-  static bool classof(const GlobalAddressSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::GlobalAddress ||
-           N->getOpcode() == ISD::TargetGlobalAddress ||
-           N->getOpcode() == ISD::GlobalTLSAddress ||
-           N->getOpcode() == ISD::TargetGlobalTLSAddress;
-  }
-};
-
-class FrameIndexSDNode : public SDNode {
-  int FI;
-  friend class SelectionDAG;
-  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
-    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
-      DebugLoc(), getSDVTList(VT)), FI(fi) {
-  }
-public:
-
-  int getIndex() const { return FI; }
-
-  static bool classof(const FrameIndexSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::FrameIndex ||
-           N->getOpcode() == ISD::TargetFrameIndex;
-  }
-};
-
-class JumpTableSDNode : public SDNode {
-  int JTI;
-  unsigned char TargetFlags;
-  friend class SelectionDAG;
-  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
-    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
-      DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
-  }
-public:
-
-  int getIndex() const { return JTI; }
-  unsigned char getTargetFlags() const { return TargetFlags; }
-
-  static bool classof(const JumpTableSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::JumpTable ||
-           N->getOpcode() == ISD::TargetJumpTable;
-  }
-};
-
-class ConstantPoolSDNode : public SDNode {
-  union {
-    Constant *ConstVal;
-    MachineConstantPoolValue *MachineCPVal;
-  } Val;
-  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
-  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
-  unsigned char TargetFlags;
-  friend class SelectionDAG;
-  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
-                     unsigned char TF)
-    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
-             DebugLoc(),
-             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
-    assert((int)Offset >= 0 && "Offset is too large");
-    Val.ConstVal = c;
-  }
-  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
-                     EVT VT, int o, unsigned Align, unsigned char TF)
-    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
-             DebugLoc(),
-             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
-    assert((int)Offset >= 0 && "Offset is too large");
-    Val.MachineCPVal = v;
-    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
-  }
-public:
-  
-
-  bool isMachineConstantPoolEntry() const {
-    return (int)Offset < 0;
-  }
-
-  Constant *getConstVal() const {
-    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
-    return Val.ConstVal;
-  }
-
-  MachineConstantPoolValue *getMachineCPVal() const {
-    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
-    return Val.MachineCPVal;
-  }
-
-  int getOffset() const {
-    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
-  }
-
-  // Return the alignment of this constant pool object, which is either 0 (for
-  // default alignment) or the desired value.
-  unsigned getAlignment() const { return Alignment; }
-  unsigned char getTargetFlags() const { return TargetFlags; }
-
-  const Type *getType() const;
-
-  static bool classof(const ConstantPoolSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::ConstantPool ||
-           N->getOpcode() == ISD::TargetConstantPool;
-  }
-};
-
-class BasicBlockSDNode : public SDNode {
-  MachineBasicBlock *MBB;
-  friend class SelectionDAG;
-  /// Debug info is meaningful and potentially useful here, but we create
-  /// blocks out of order when they're jumped to, which makes it a bit
-  /// harder.  Let's see if we need it first.
-  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
-    : SDNode(ISD::BasicBlock, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) {
-  }
-public:
-
-  MachineBasicBlock *getBasicBlock() const { return MBB; }
-
-  static bool classof(const BasicBlockSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::BasicBlock;
-  }
-};
-
-/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
-/// BUILD_VECTORs.
-class BuildVectorSDNode : public SDNode {
-  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
-  explicit BuildVectorSDNode();        // Do not implement
-public:
-  /// isConstantSplat - Check if this is a constant splat, and if so, find the
-  /// smallest element size that splats the vector.  If MinSplatBits is
-  /// nonzero, the element size must be at least that large.  Note that the
-  /// splat element may be the entire vector (i.e., a one element vector).
-  /// Returns the splat element value in SplatValue.  Any undefined bits in
-  /// that value are zero, and the corresponding bits in the SplatUndef mask
-  /// are set.  The SplatBitSize value is set to the splat element size in
-  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
-  /// undefined.  isBigEndian describes the endianness of the target.
-  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
-                       unsigned &SplatBitSize, bool &HasAnyUndefs,
-                       unsigned MinSplatBits = 0, bool isBigEndian = false);
-
-  static inline bool classof(const BuildVectorSDNode *) { return true; }
-  static inline bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::BUILD_VECTOR;
-  }
-};
-
-/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
-/// used when the SelectionDAG needs to make a simple reference to something
-/// in the LLVM IR representation.
-///
-class SrcValueSDNode : public SDNode {
-  const Value *V;
-  friend class SelectionDAG;
-  /// Create a SrcValue for a general value.
-  explicit SrcValueSDNode(const Value *v)
-    : SDNode(ISD::SRCVALUE, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
-
-public:
-  /// getValue - return the contained Value.
-  const Value *getValue() const { return V; }
-
-  static bool classof(const SrcValueSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::SRCVALUE;
-  }
-};
-  
-class MDNodeSDNode : public SDNode {
-  const MDNode *MD;
-  friend class SelectionDAG;
-  explicit MDNodeSDNode(const MDNode *md)
-  : SDNode(ISD::MDNODE_SDNODE, DebugLoc(), getSDVTList(MVT::Other)), MD(md) {}
-public:
-  
-  const MDNode *getMD() const { return MD; }
-  
-  static bool classof(const MDNodeSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::MDNODE_SDNODE;
-  }
-};
-
-
-class RegisterSDNode : public SDNode {
-  unsigned Reg;
-  friend class SelectionDAG;
-  RegisterSDNode(unsigned reg, EVT VT)
-    : SDNode(ISD::Register, DebugLoc(), getSDVTList(VT)), Reg(reg) {
-  }
-public:
-
-  unsigned getReg() const { return Reg; }
-
-  static bool classof(const RegisterSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::Register;
-  }
-};
-
-class BlockAddressSDNode : public SDNode {
-  BlockAddress *BA;
-  unsigned char TargetFlags;
-  friend class SelectionDAG;
-  BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
-                     unsigned char Flags)
-    : SDNode(NodeTy, DebugLoc(), getSDVTList(VT)),
-             BA(ba), TargetFlags(Flags) {
-  }
-public:
-  BlockAddress *getBlockAddress() const { return BA; }
-  unsigned char getTargetFlags() const { return TargetFlags; }
-
-  static bool classof(const BlockAddressSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::BlockAddress ||
-           N->getOpcode() == ISD::TargetBlockAddress;
-  }
-};
-
-class EHLabelSDNode : public SDNode {
-  SDUse Chain;
-  MCSymbol *Label;
-  friend class SelectionDAG;
-  EHLabelSDNode(DebugLoc dl, SDValue ch, MCSymbol *L)
-    : SDNode(ISD::EH_LABEL, dl, getSDVTList(MVT::Other)), Label(L) {
-    InitOperands(&Chain, ch);
-  }
-public:
-  MCSymbol *getLabel() const { return Label; }
-
-  static bool classof(const EHLabelSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::EH_LABEL;
-  }
-};
-
-class ExternalSymbolSDNode : public SDNode {
-  const char *Symbol;
-  unsigned char TargetFlags;
-  
-  friend class SelectionDAG;
-  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
-    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
-             DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
-  }
-public:
-
-  const char *getSymbol() const { return Symbol; }
-  unsigned char getTargetFlags() const { return TargetFlags; }
-
-  static bool classof(const ExternalSymbolSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::ExternalSymbol ||
-           N->getOpcode() == ISD::TargetExternalSymbol;
-  }
-};
-
-class CondCodeSDNode : public SDNode {
-  ISD::CondCode Condition;
-  friend class SelectionDAG;
-  explicit CondCodeSDNode(ISD::CondCode Cond)
-    : SDNode(ISD::CONDCODE, DebugLoc(), getSDVTList(MVT::Other)),
-      Condition(Cond) {
-  }
-public:
-
-  ISD::CondCode get() const { return Condition; }
-
-  static bool classof(const CondCodeSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::CONDCODE;
-  }
-};
-  
-/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
-/// future and most targets don't support it.
-class CvtRndSatSDNode : public SDNode {
-  ISD::CvtCode CvtCode;
-  friend class SelectionDAG;
-  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
-                           unsigned NumOps, ISD::CvtCode Code)
-    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
-      CvtCode(Code) {
-    assert(NumOps == 5 && "wrong number of operations");
-  }
-public:
-  ISD::CvtCode getCvtCode() const { return CvtCode; }
-
-  static bool classof(const CvtRndSatSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::CONVERT_RNDSAT;
-  }
-};
-
-namespace ISD {
-  struct ArgFlagsTy {
-  private:
-    static const uint64_t NoFlagSet      = 0ULL;
-    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
-    static const uint64_t ZExtOffs       = 0;
-    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
-    static const uint64_t SExtOffs       = 1;
-    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
-    static const uint64_t InRegOffs      = 2;
-    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
-    static const uint64_t SRetOffs       = 3;
-    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
-    static const uint64_t ByValOffs      = 4;
-    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
-    static const uint64_t NestOffs       = 5;
-    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
-    static const uint64_t ByValAlignOffs = 6;
-    static const uint64_t Split          = 1ULL << 10;
-    static const uint64_t SplitOffs      = 10;
-    static const uint64_t OrigAlign      = 0x1FULL<<27;
-    static const uint64_t OrigAlignOffs  = 27;
-    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
-    static const uint64_t ByValSizeOffs  = 32;
-
-    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
-
-    uint64_t Flags;
-  public:
-    ArgFlagsTy() : Flags(0) { }
-
-    bool isZExt()   const { return Flags & ZExt; }
-    void setZExt()  { Flags |= One << ZExtOffs; }
-
-    bool isSExt()   const { return Flags & SExt; }
-    void setSExt()  { Flags |= One << SExtOffs; }
-
-    bool isInReg()  const { return Flags & InReg; }
-    void setInReg() { Flags |= One << InRegOffs; }
-
-    bool isSRet()   const { return Flags & SRet; }
-    void setSRet()  { Flags |= One << SRetOffs; }
-
-    bool isByVal()  const { return Flags & ByVal; }
-    void setByVal() { Flags |= One << ByValOffs; }
-
-    bool isNest()   const { return Flags & Nest; }
-    void setNest()  { Flags |= One << NestOffs; }
-
-    unsigned getByValAlign() const {
-      return (unsigned)
-        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
-    }
-    void setByValAlign(unsigned A) {
-      Flags = (Flags & ~ByValAlign) |
-        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
-    }
-
-    bool isSplit()   const { return Flags & Split; }
-    void setSplit()  { Flags |= One << SplitOffs; }
-
-    unsigned getOrigAlign() const {
-      return (unsigned)
-        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
-    }
-    void setOrigAlign(unsigned A) {
-      Flags = (Flags & ~OrigAlign) |
-        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
-    }
-
-    unsigned getByValSize() const {
-      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
-    }
-    void setByValSize(unsigned S) {
-      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
-    }
-
-    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
-    std::string getArgFlagsString();
-
-    /// getRawBits - Represent the flags as a bunch of bits.
-    uint64_t getRawBits() const { return Flags; }
-  };
-
-  /// InputArg - This struct carries flags and type information about a
-  /// single incoming (formal) argument or incoming (from the perspective
-  /// of the caller) return value virtual register.
-  ///
-  struct InputArg {
-    ArgFlagsTy Flags;
-    EVT VT;
-    bool Used;
-
-    InputArg() : VT(MVT::Other), Used(false) {}
-    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
-      : Flags(flags), VT(vt), Used(used) {
-      assert(VT.isSimple() &&
-             "InputArg value type must be Simple!");
-    }
-  };
-
-  /// OutputArg - This struct carries flags and a value for a
-  /// single outgoing (actual) argument or outgoing (from the perspective
-  /// of the caller) return value virtual register.
-  ///
-  struct OutputArg {
-    ArgFlagsTy Flags;
-    SDValue Val;
-    bool IsFixed;
-
-    OutputArg() : IsFixed(false) {}
-    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
-      : Flags(flags), Val(val), IsFixed(isfixed) {
-      assert(Val.getValueType().isSimple() &&
-             "OutputArg value type must be Simple!");
-    }
-  };
-}
-
-/// VTSDNode - This class is used to represent EVT's, which are used
-/// to parameterize some operations.
-class VTSDNode : public SDNode {
-  EVT ValueType;
-  friend class SelectionDAG;
-  explicit VTSDNode(EVT VT)
-    : SDNode(ISD::VALUETYPE, DebugLoc(), getSDVTList(MVT::Other)),
-      ValueType(VT) {
-  }
-public:
-
-  EVT getVT() const { return ValueType; }
-
-  static bool classof(const VTSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::VALUETYPE;
-  }
-};
-
-/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
-///
-class LSBaseSDNode : public MemSDNode {
-  //! Operand array for load and store
-  /*!
-    \note Moving this array to the base class captures more
-    common functionality shared between LoadSDNode and
-    StoreSDNode
-   */
-  SDUse Ops[4];
-public:
-  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
-               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
-               EVT MemVT, MachineMemOperand *MMO)
-    : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
-    SubclassData |= AM << 2;
-    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
-    InitOperands(Ops, Operands, numOperands);
-    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
-           "Only indexed loads and stores have a non-undef offset operand");
-  }
-
-  const SDValue &getOffset() const {
-    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
-  }
-
-  /// getAddressingMode - Return the addressing mode for this load or store:
-  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
-  ISD::MemIndexedMode getAddressingMode() const {
-    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
-  }
-
-  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
-  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
-
-  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
-  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
-
-  static bool classof(const LSBaseSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::LOAD ||
-           N->getOpcode() == ISD::STORE;
-  }
-};
-
-/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
-///
-class LoadSDNode : public LSBaseSDNode {
-  friend class SelectionDAG;
-  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
-             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
-             MachineMemOperand *MMO)
-    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
-                   VTs, AM, MemVT, MMO) {
-    SubclassData |= (unsigned short)ETy;
-    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
-    assert(readMem() && "Load MachineMemOperand is not a load!");
-    assert(!writeMem() && "Load MachineMemOperand is a store!");
-  }
-public:
-
-  /// getExtensionType - Return whether this is a plain node,
-  /// or one of the varieties of value-extending loads.
-  ISD::LoadExtType getExtensionType() const {
-    return ISD::LoadExtType(SubclassData & 3);
-  }
-
-  const SDValue &getBasePtr() const { return getOperand(1); }
-  const SDValue &getOffset() const { return getOperand(2); }
-
-  static bool classof(const LoadSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::LOAD;
-  }
-};
-
-/// StoreSDNode - This class is used to represent ISD::STORE nodes.
-///
-class StoreSDNode : public LSBaseSDNode {
-  friend class SelectionDAG;
-  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
-              ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
-              MachineMemOperand *MMO)
-    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
-                   VTs, AM, MemVT, MMO) {
-    SubclassData |= (unsigned short)isTrunc;
-    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
-    assert(!readMem() && "Store MachineMemOperand is a load!");
-    assert(writeMem() && "Store MachineMemOperand is not a store!");
-  }
-public:
-
-  /// isTruncatingStore - Return true if the op does a truncation before store.
-  /// For integers this is the same as doing a TRUNCATE and storing the result.
-  /// For floats, it is the same as doing an FP_ROUND and storing the result.
-  bool isTruncatingStore() const { return SubclassData & 1; }
-
-  const SDValue &getValue() const { return getOperand(1); }
-  const SDValue &getBasePtr() const { return getOperand(2); }
-  const SDValue &getOffset() const { return getOperand(3); }
-
-  static bool classof(const StoreSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->getOpcode() == ISD::STORE;
-  }
-};
-
-/// MachineSDNode - An SDNode that represents everything that will be needed
-/// to construct a MachineInstr. These nodes are created during the
-/// instruction selection proper phase.
-///
-class MachineSDNode : public SDNode {
-public:
-  typedef MachineMemOperand **mmo_iterator;
-
-private:
-  friend class SelectionDAG;
-  MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
-    : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
-
-  /// LocalOperands - Operands for this instruction, if they fit here. If
-  /// they don't, this field is unused.
-  SDUse LocalOperands[4];
-
-  /// MemRefs - Memory reference descriptions for this instruction.
-  mmo_iterator MemRefs;
-  mmo_iterator MemRefsEnd;
-
-public:
-  mmo_iterator memoperands_begin() const { return MemRefs; }
-  mmo_iterator memoperands_end() const { return MemRefsEnd; }
-  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
-
-  /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
-  /// list. This does not transfer ownership.
-  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
-    MemRefs = NewMemRefs;
-    MemRefsEnd = NewMemRefsEnd;
-  }
-
-  static bool classof(const MachineSDNode *) { return true; }
-  static bool classof(const SDNode *N) {
-    return N->isMachineOpcode();
-  }
-};
-
-class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
-                                            SDNode, ptrdiff_t> {
-  SDNode *Node;
-  unsigned Operand;
-
-  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
-public:
-  bool operator==(const SDNodeIterator& x) const {
-    return Operand == x.Operand;
-  }
-  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
-
-  const SDNodeIterator &operator=(const SDNodeIterator &I) {
-    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
-    Operand = I.Operand;
-    return *this;
-  }
-
-  pointer operator*() const {
-    return Node->getOperand(Operand).getNode();
-  }
-  pointer operator->() const { return operator*(); }
-
-  SDNodeIterator& operator++() {                // Preincrement
-    ++Operand;
-    return *this;
-  }
-  SDNodeIterator operator++(int) { // Postincrement
-    SDNodeIterator tmp = *this; ++*this; return tmp;
-  }
-  size_t operator-(SDNodeIterator Other) const {
-    assert(Node == Other.Node &&
-           "Cannot compare iterators of two different nodes!");
-    return Operand - Other.Operand;
-  }
-
-  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
-  static SDNodeIterator end  (SDNode *N) {
-    return SDNodeIterator(N, N->getNumOperands());
-  }
-
-  unsigned getOperand() const { return Operand; }
-  const SDNode *getNode() const { return Node; }
-};
-
-template <> struct GraphTraits<SDNode*> {
-  typedef SDNode NodeType;
-  typedef SDNodeIterator ChildIteratorType;
-  static inline NodeType *getEntryNode(SDNode *N) { return N; }
-  static inline ChildIteratorType child_begin(NodeType *N) {
-    return SDNodeIterator::begin(N);
-  }
-  static inline ChildIteratorType child_end(NodeType *N) {
-    return SDNodeIterator::end(N);
-  }
-};
-
-/// LargestSDNode - The largest SDNode class.
-///
-typedef LoadSDNode LargestSDNode;
-
-/// MostAlignedSDNode - The SDNode class with the greatest alignment
-/// requirement.
-///
-typedef GlobalAddressSDNode MostAlignedSDNode;
-
-namespace ISD {
-  /// isNormalLoad - Returns true if the specified node is a non-extending
-  /// and unindexed load.
-  inline bool isNormalLoad(const SDNode *N) {
-    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
-    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
-      Ld->getAddressingMode() == ISD::UNINDEXED;
-  }
-
-  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
-  /// load.
-  inline bool isNON_EXTLoad(const SDNode *N) {
-    return isa<LoadSDNode>(N) &&
-      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
-  }
-
-  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
-  ///
-  inline bool isEXTLoad(const SDNode *N) {
-    return isa<LoadSDNode>(N) &&
-      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
-  }
-
-  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
-  ///
-  inline bool isSEXTLoad(const SDNode *N) {
-    return isa<LoadSDNode>(N) &&
-      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
-  }
-
-  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
-  ///
-  inline bool isZEXTLoad(const SDNode *N) {
-    return isa<LoadSDNode>(N) &&
-      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
-  }
-
-  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
-  ///
-  inline bool isUNINDEXEDLoad(const SDNode *N) {
-    return isa<LoadSDNode>(N) &&
-      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
-  }
-
-  /// isNormalStore - Returns true if the specified node is a non-truncating
-  /// and unindexed store.
-  inline bool isNormalStore(const SDNode *N) {
-    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
-    return St && !St->isTruncatingStore() &&
-      St->getAddressingMode() == ISD::UNINDEXED;
-  }
-
-  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
-  /// store.
-  inline bool isNON_TRUNCStore(const SDNode *N) {
-    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
-  }
-
-  /// isTRUNCStore - Returns true if the specified node is a truncating
-  /// store.
-  inline bool isTRUNCStore(const SDNode *N) {
-    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
-  }
-
-  /// isUNINDEXEDStore - Returns true if the specified node is an
-  /// unindexed store.
-  inline bool isUNINDEXEDStore(const SDNode *N) {
-    return isa<StoreSDNode>(N) &&
-      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
-  }
-}
 
+} // end llvm::ISD namespace
 
 } // end llvm namespace
 

Modified: llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h?rev=101268&r1=101267&r2=101268&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h Wed Apr 14 13:44:34 2010
@@ -25,6 +25,7 @@
 #include "llvm/ADT/ilist_node.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
 #include "llvm/CodeGen/ValueTypes.h"
 #include "llvm/CodeGen/MachineMemOperand.h"
 #include "llvm/Support/MathExtras.h"
@@ -56,579 +57,7 @@
   unsigned int NumVTs;
 };
 
-/// ISD namespace - This namespace contains an enum which represents all of the
-/// SelectionDAG node types and value types.
-///
 namespace ISD {
-
-  //===--------------------------------------------------------------------===//
-  /// ISD::NodeType enum - This enum defines the target-independent operators
-  /// for a SelectionDAG.
-  ///
-  /// Targets may also define target-dependent operator codes for SDNodes. For
-  /// example, on x86, these are the enum values in the X86ISD namespace.
-  /// Targets should aim to use target-independent operators to model their
-  /// instruction sets as much as possible, and only use target-dependent
-  /// operators when they have special requirements.
-  ///
-  /// Finally, during and after selection proper, SNodes may use special
-  /// operator codes that correspond directly with MachineInstr opcodes. These
-  /// are used to represent selected instructions. See the isMachineOpcode()
-  /// and getMachineOpcode() member functions of SDNode.
-  ///
-  enum NodeType {
-    // DELETED_NODE - This is an illegal value that is used to catch
-    // errors.  This opcode is not a legal opcode for any node.
-    DELETED_NODE,
-
-    // EntryToken - This is the marker used to indicate the start of the region.
-    EntryToken,
-
-    // TokenFactor - This node takes multiple tokens as input and produces a
-    // single token result.  This is used to represent the fact that the operand
-    // operators are independent of each other.
-    TokenFactor,
-
-    // AssertSext, AssertZext - These nodes record if a register contains a
-    // value that has already been zero or sign extended from a narrower type.
-    // These nodes take two operands.  The first is the node that has already
-    // been extended, and the second is a value type node indicating the width
-    // of the extension
-    AssertSext, AssertZext,
-
-    // Various leaf nodes.
-    BasicBlock, VALUETYPE, CONDCODE, Register,
-    Constant, ConstantFP,
-    GlobalAddress, GlobalTLSAddress, FrameIndex,
-    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
-
-    // The address of the GOT
-    GLOBAL_OFFSET_TABLE,
-
-    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
-    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
-    // of the frame or return address to return.  An index of zero corresponds
-    // to the current function's frame or return address, an index of one to the
-    // parent's frame or return address, and so on.
-    FRAMEADDR, RETURNADDR,
-
-    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
-    // first (possible) on-stack argument. This is needed for correct stack
-    // adjustment during unwind.
-    FRAME_TO_ARGS_OFFSET,
-
-    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
-    // address of the exception block on entry to an landing pad block.
-    EXCEPTIONADDR,
-
-    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
-    // address of the Language Specific Data Area for the enclosing function.
-    LSDAADDR,
-
-    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
-    // the selection index of the exception thrown.
-    EHSELECTION,
-
-    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
-    // 'eh_return' gcc dwarf builtin, which is used to return from
-    // exception. The general meaning is: adjust stack by OFFSET and pass
-    // execution to HANDLER. Many platform-related details also :)
-    EH_RETURN,
-
-    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
-    // simplification of the constant.
-    TargetConstant,
-    TargetConstantFP,
-
-    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
-    // anything else with this node, and this is valid in the target-specific
-    // dag, turning into a GlobalAddress operand.
-    TargetGlobalAddress,
-    TargetGlobalTLSAddress,
-    TargetFrameIndex,
-    TargetJumpTable,
-    TargetConstantPool,
-    TargetExternalSymbol,
-    TargetBlockAddress,
-
-    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
-    /// This node represents a target intrinsic function with no side effects.
-    /// The first operand is the ID number of the intrinsic from the
-    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
-    /// node has returns the result of the intrinsic.
-    INTRINSIC_WO_CHAIN,
-
-    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
-    /// This node represents a target intrinsic function with side effects that
-    /// returns a result.  The first operand is a chain pointer.  The second is
-    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
-    /// operands to the intrinsic follow.  The node has two results, the result
-    /// of the intrinsic and an output chain.
-    INTRINSIC_W_CHAIN,
-
-    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
-    /// This node represents a target intrinsic function with side effects that
-    /// does not return a result.  The first operand is a chain pointer.  The
-    /// second is the ID number of the intrinsic from the llvm::Intrinsic
-    /// namespace.  The operands to the intrinsic follow.
-    INTRINSIC_VOID,
-
-    // CopyToReg - This node has three operands: a chain, a register number to
-    // set to this value, and a value.
-    CopyToReg,
-
-    // CopyFromReg - This node indicates that the input value is a virtual or
-    // physical register that is defined outside of the scope of this
-    // SelectionDAG.  The register is available from the RegisterSDNode object.
-    CopyFromReg,
-
-    // UNDEF - An undefined node
-    UNDEF,
-
-    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
-    // a Constant, which is required to be operand #1) half of the integer or
-    // float value specified as operand #0.  This is only for use before
-    // legalization, for values that will be broken into multiple registers.
-    EXTRACT_ELEMENT,
-
-    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
-    // two values of the same integer value type, this produces a value twice as
-    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
-    BUILD_PAIR,
-
-    // MERGE_VALUES - This node takes multiple discrete operands and returns
-    // them all as its individual results.  This nodes has exactly the same
-    // number of inputs and outputs. This node is useful for some pieces of the
-    // code generator that want to think about a single node with multiple
-    // results, not multiple nodes.
-    MERGE_VALUES,
-
-    // Simple integer binary arithmetic operators.
-    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
-
-    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
-    // a signed/unsigned value of type i[2*N], and return the full value as
-    // two results, each of type iN.
-    SMUL_LOHI, UMUL_LOHI,
-
-    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
-    // remainder result.
-    SDIVREM, UDIVREM,
-
-    // CARRY_FALSE - This node is used when folding other nodes,
-    // like ADDC/SUBC, which indicate the carry result is always false.
-    CARRY_FALSE,
-
-    // Carry-setting nodes for multiple precision addition and subtraction.
-    // These nodes take two operands of the same value type, and produce two
-    // results.  The first result is the normal add or sub result, the second
-    // result is the carry flag result.
-    ADDC, SUBC,
-
-    // Carry-using nodes for multiple precision addition and subtraction.  These
-    // nodes take three operands: The first two are the normal lhs and rhs to
-    // the add or sub, and the third is the input carry flag.  These nodes
-    // produce two results; the normal result of the add or sub, and the output
-    // carry flag.  These nodes both read and write a carry flag to allow them
-    // to them to be chained together for add and sub of arbitrarily large
-    // values.
-    ADDE, SUBE,
-
-    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
-    // These nodes take two operands: the normal LHS and RHS to the add. They
-    // produce two results: the normal result of the add, and a boolean that
-    // indicates if an overflow occured (*not* a flag, because it may be stored
-    // to memory, etc.).  If the type of the boolean is not i1 then the high
-    // bits conform to getBooleanContents.
-    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
-    SADDO, UADDO,
-
-    // Same for subtraction
-    SSUBO, USUBO,
-
-    // Same for multiplication
-    SMULO, UMULO,
-
-    // Simple binary floating point operators.
-    FADD, FSUB, FMUL, FDIV, FREM,
-
-    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
-    // DAG node does not require that X and Y have the same type, just that they
-    // are both floating point.  X and the result must have the same type.
-    // FCOPYSIGN(f32, f64) is allowed.
-    FCOPYSIGN,
-
-    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
-    // value as an integer 0/1 value.
-    FGETSIGN,
-
-    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
-    /// specified, possibly variable, elements.  The number of elements is
-    /// required to be a power of two.  The types of the operands must all be
-    /// the same and must match the vector element type, except that integer
-    /// types are allowed to be larger than the element type, in which case
-    /// the operands are implicitly truncated.
-    BUILD_VECTOR,
-
-    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
-    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
-    /// element type then VAL is truncated before replacement.
-    INSERT_VECTOR_ELT,
-
-    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
-    /// identified by the (potentially variable) element number IDX.  If the
-    /// return type is an integer type larger than the element type of the
-    /// vector, the result is extended to the width of the return type.
-    EXTRACT_VECTOR_ELT,
-
-    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
-    /// vector type with the same length and element type, this produces a
-    /// concatenated vector result value, with length equal to the sum of the
-    /// lengths of the input vectors.
-    CONCAT_VECTORS,
-
-    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
-    /// vector value) starting with the (potentially variable) element number
-    /// IDX, which must be a multiple of the result vector length.
-    EXTRACT_SUBVECTOR,
-
-    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as 
-    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
-    /// values that indicate which value (or undef) each result element will
-    /// get.  These constant ints are accessible through the 
-    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec 
-    /// 'vperm' instruction, except that the indices must be constants and are
-    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
-    VECTOR_SHUFFLE,
-
-    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
-    /// scalar value into element 0 of the resultant vector type.  The top
-    /// elements 1 to N-1 of the N-element vector are undefined.  The type
-    /// of the operand must match the vector element type, except when they
-    /// are integer types.  In this case the operand is allowed to be wider
-    /// than the vector element type, and is implicitly truncated to it.
-    SCALAR_TO_VECTOR,
-
-    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
-    // an unsigned/signed value of type i[2*N], then return the top part.
-    MULHU, MULHS,
-
-    // Bitwise operators - logical and, logical or, logical xor, shift left,
-    // shift right algebraic (shift in sign bits), shift right logical (shift in
-    // zeroes), rotate left, rotate right, and byteswap.
-    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
-
-    // Counting operators
-    CTTZ, CTLZ, CTPOP,
-
-    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
-    // i1 then the high bits must conform to getBooleanContents.
-    SELECT,
-
-    // Select with condition operator - This selects between a true value and
-    // a false value (ops #2 and #3) based on the boolean result of comparing
-    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
-    // condition code in op #4, a CondCodeSDNode.
-    SELECT_CC,
-
-    // SetCC operator - This evaluates to a true value iff the condition is
-    // true.  If the result value type is not i1 then the high bits conform
-    // to getBooleanContents.  The operands to this are the left and right
-    // operands to compare (ops #0, and #1) and the condition code to compare
-    // them with (op #2) as a CondCodeSDNode.
-    SETCC,
-
-    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
-    // integer elements with all bits of the result elements set to true if the
-    // comparison is true or all cleared if the comparison is false.  The
-    // operands to this are the left and right operands to compare (LHS/RHS) and
-    // the condition code to compare them with (COND) as a CondCodeSDNode.
-    VSETCC,
-
-    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
-    // integer shift operations, just like ADD/SUB_PARTS.  The operation
-    // ordering is:
-    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
-    SHL_PARTS, SRA_PARTS, SRL_PARTS,
-
-    // Conversion operators.  These are all single input single output
-    // operations.  For all of these, the result type must be strictly
-    // wider or narrower (depending on the operation) than the source
-    // type.
-
-    // SIGN_EXTEND - Used for integer types, replicating the sign bit
-    // into new bits.
-    SIGN_EXTEND,
-
-    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
-    ZERO_EXTEND,
-
-    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
-    ANY_EXTEND,
-
-    // TRUNCATE - Completely drop the high bits.
-    TRUNCATE,
-
-    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
-    // depends on the first letter) to floating point.
-    SINT_TO_FP,
-    UINT_TO_FP,
-
-    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
-    // sign extend a small value in a large integer register (e.g. sign
-    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
-    // with the 7th bit).  The size of the smaller type is indicated by the 1th
-    // operand, a ValueType node.
-    SIGN_EXTEND_INREG,
-
-    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
-    /// integer.
-    FP_TO_SINT,
-    FP_TO_UINT,
-
-    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
-    /// down to the precision of the destination VT.  TRUNC is a flag, which is
-    /// always an integer that is zero or one.  If TRUNC is 0, this is a
-    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
-    /// value of Y.
-    ///
-    /// The TRUNC = 1 case is used in cases where we know that the value will
-    /// not be modified by the node, because Y is not using any of the extra
-    /// precision of source type.  This allows certain transformations like
-    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
-    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
-    FP_ROUND,
-
-    // FLT_ROUNDS_ - Returns current rounding mode:
-    // -1 Undefined
-    //  0 Round to 0
-    //  1 Round to nearest
-    //  2 Round to +inf
-    //  3 Round to -inf
-    FLT_ROUNDS_,
-
-    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
-    /// rounds it to a floating point value.  It then promotes it and returns it
-    /// in a register of the same size.  This operation effectively just
-    /// discards excess precision.  The type to round down to is specified by
-    /// the VT operand, a VTSDNode.
-    FP_ROUND_INREG,
-
-    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
-    FP_EXTEND,
-
-    // BIT_CONVERT - This operator converts between integer, vector and FP
-    // values, as if the value was stored to memory with one type and loaded
-    // from the same address with the other type (or equivalently for vector
-    // format conversions, etc).  The source and result are required to have
-    // the same bit size (e.g.  f32 <-> i32).  This can also be used for
-    // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
-    // getNode().
-    BIT_CONVERT,
-
-    // CONVERT_RNDSAT - This operator is used to support various conversions
-    // between various types (float, signed, unsigned and vectors of those
-    // types) with rounding and saturation. NOTE: Avoid using this operator as
-    // most target don't support it and the operator might be removed in the
-    // future. It takes the following arguments:
-    //   0) value
-    //   1) dest type (type to convert to)
-    //   2) src type (type to convert from)
-    //   3) rounding imm
-    //   4) saturation imm
-    //   5) ISD::CvtCode indicating the type of conversion to do
-    CONVERT_RNDSAT,
-
-    // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
-    // promotions and truncation for half-precision (16 bit) floating
-    // numbers. We need special nodes since FP16 is a storage-only type with
-    // special semantics of operations.
-    FP16_TO_FP32, FP32_TO_FP16,
-
-    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
-    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
-    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
-    // point operations. These are inspired by libm.
-    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
-    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
-    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
-
-    // LOAD and STORE have token chains as their first operand, then the same
-    // operands as an LLVM load/store instruction, then an offset node that
-    // is added / subtracted from the base pointer to form the address (for
-    // indexed memory ops).
-    LOAD, STORE,
-
-    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
-    // to a specified boundary.  This node always has two return values: a new
-    // stack pointer value and a chain. The first operand is the token chain,
-    // the second is the number of bytes to allocate, and the third is the
-    // alignment boundary.  The size is guaranteed to be a multiple of the stack
-    // alignment, and the alignment is guaranteed to be bigger than the stack
-    // alignment (if required) or 0 to get standard stack alignment.
-    DYNAMIC_STACKALLOC,
-
-    // Control flow instructions.  These all have token chains.
-
-    // BR - Unconditional branch.  The first operand is the chain
-    // operand, the second is the MBB to branch to.
-    BR,
-
-    // BRIND - Indirect branch.  The first operand is the chain, the second
-    // is the value to branch to, which must be of the same type as the target's
-    // pointer type.
-    BRIND,
-
-    // BR_JT - Jumptable branch. The first operand is the chain, the second
-    // is the jumptable index, the last one is the jumptable entry index.
-    BR_JT,
-
-    // BRCOND - Conditional branch.  The first operand is the chain, the
-    // second is the condition, the third is the block to branch to if the
-    // condition is true.  If the type of the condition is not i1, then the
-    // high bits must conform to getBooleanContents.
-    BRCOND,
-
-    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
-    // that the condition is represented as condition code, and two nodes to
-    // compare, rather than as a combined SetCC node.  The operands in order are
-    // chain, cc, lhs, rhs, block to branch to if condition is true.
-    BR_CC,
-
-    // INLINEASM - Represents an inline asm block.  This node always has two
-    // return values: a chain and a flag result.  The inputs are as follows:
-    //   Operand #0   : Input chain.
-    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
-    //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
-    //   After this, it is followed by a list of operands with this format:
-    //     ConstantSDNode: Flags that encode whether it is a mem or not, the
-    //                     of operands that follow, etc.  See InlineAsm.h.
-    //     ... however many operands ...
-    //   Operand #last: Optional, an incoming flag.
-    //
-    // The variable width operands are required to represent target addressing
-    // modes as a single "operand", even though they may have multiple
-    // SDOperands.
-    INLINEASM,
-
-    // EH_LABEL - Represents a label in mid basic block used to track
-    // locations needed for debug and exception handling tables.  These nodes
-    // take a chain as input and return a chain.
-    EH_LABEL,
-
-    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
-    // value, the same type as the pointer type for the system, and an output
-    // chain.
-    STACKSAVE,
-
-    // STACKRESTORE has two operands, an input chain and a pointer to restore to
-    // it returns an output chain.
-    STACKRESTORE,
-
-    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
-    // a call sequence, and carry arbitrary information that target might want
-    // to know.  The first operand is a chain, the rest are specified by the
-    // target and not touched by the DAG optimizers.
-    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
-    CALLSEQ_START,  // Beginning of a call sequence
-    CALLSEQ_END,    // End of a call sequence
-
-    // VAARG - VAARG has three operands: an input chain, a pointer, and a
-    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
-    VAARG,
-
-    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
-    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
-    // source.
-    VACOPY,
-
-    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
-    // pointer, and a SRCVALUE.
-    VAEND, VASTART,
-
-    // SRCVALUE - This is a node type that holds a Value* that is used to
-    // make reference to a value in the LLVM IR.
-    SRCVALUE,
-    
-    // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
-    // reference metadata in the IR.
-    MDNODE_SDNODE,
-
-    // PCMARKER - This corresponds to the pcmarker intrinsic.
-    PCMARKER,
-
-    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
-    // The only operand is a chain and a value and a chain are produced.  The
-    // value is the contents of the architecture specific cycle counter like
-    // register (or other high accuracy low latency clock source)
-    READCYCLECOUNTER,
-
-    // HANDLENODE node - Used as a handle for various purposes.
-    HANDLENODE,
-
-    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
-    // It takes as input a token chain, the pointer to the trampoline,
-    // the pointer to the nested function, the pointer to pass for the
-    // 'nest' parameter, a SRCVALUE for the trampoline and another for
-    // the nested function (allowing targets to access the original
-    // Function*).  It produces the result of the intrinsic and a token
-    // chain as output.
-    TRAMPOLINE,
-
-    // TRAP - Trapping instruction
-    TRAP,
-
-    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
-    // their first operand. The other operands are the address to prefetch,
-    // read / write specifier, and locality specifier.
-    PREFETCH,
-
-    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
-    //                       store-store, device)
-    // This corresponds to the memory.barrier intrinsic.
-    // it takes an input chain, 4 operands to specify the type of barrier, an
-    // operand specifying if the barrier applies to device and uncached memory
-    // and produces an output chain.
-    MEMBARRIER,
-
-    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
-    // this corresponds to the atomic.lcs intrinsic.
-    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
-    // the return is always the original value in *ptr
-    ATOMIC_CMP_SWAP,
-
-    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
-    // this corresponds to the atomic.swap intrinsic.
-    // amt is stored to *ptr atomically.
-    // the return is always the original value in *ptr
-    ATOMIC_SWAP,
-
-    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
-    // this corresponds to the atomic.load.[OpName] intrinsic.
-    // op(*ptr, amt) is stored to *ptr atomically.
-    // the return is always the original value in *ptr
-    ATOMIC_LOAD_ADD,
-    ATOMIC_LOAD_SUB,
-    ATOMIC_LOAD_AND,
-    ATOMIC_LOAD_OR,
-    ATOMIC_LOAD_XOR,
-    ATOMIC_LOAD_NAND,
-    ATOMIC_LOAD_MIN,
-    ATOMIC_LOAD_MAX,
-    ATOMIC_LOAD_UMIN,
-    ATOMIC_LOAD_UMAX,
-
-    /// BUILTIN_OP_END - This must be the last enum value in this list.
-    /// The target-specific pre-isel opcode values start here.
-    BUILTIN_OP_END
-  };
-
-  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
-  /// which do not reference a specific memory location should be less than
-  /// this value. Those that do must not be less than this value, and can
-  /// be used with SelectionDAG::getMemIntrinsicNode.
-  static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+100;
-
   /// Node predicates
 
   /// isBuildVectorAllOnes - Return true if the specified node is a
@@ -643,174 +72,7 @@
   /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
   /// element is not an undef.
   bool isScalarToVector(const SDNode *N);
-
-  //===--------------------------------------------------------------------===//
-  /// MemIndexedMode enum - This enum defines the load / store indexed
-  /// addressing modes.
-  ///
-  /// UNINDEXED    "Normal" load / store. The effective address is already
-  ///              computed and is available in the base pointer. The offset
-  ///              operand is always undefined. In addition to producing a
-  ///              chain, an unindexed load produces one value (result of the
-  ///              load); an unindexed store does not produce a value.
-  ///
-  /// PRE_INC      Similar to the unindexed mode where the effective address is
-  /// PRE_DEC      the value of the base pointer add / subtract the offset.
-  ///              It considers the computation as being folded into the load /
-  ///              store operation (i.e. the load / store does the address
-  ///              computation as well as performing the memory transaction).
-  ///              The base operand is always undefined. In addition to
-  ///              producing a chain, pre-indexed load produces two values
-  ///              (result of the load and the result of the address
-  ///              computation); a pre-indexed store produces one value (result
-  ///              of the address computation).
-  ///
-  /// POST_INC     The effective address is the value of the base pointer. The
-  /// POST_DEC     value of the offset operand is then added to / subtracted
-  ///              from the base after memory transaction. In addition to
-  ///              producing a chain, post-indexed load produces two values
-  ///              (the result of the load and the result of the base +/- offset
-  ///              computation); a post-indexed store produces one value (the
-  ///              the result of the base +/- offset computation).
-  ///
-  enum MemIndexedMode {
-    UNINDEXED = 0,
-    PRE_INC,
-    PRE_DEC,
-    POST_INC,
-    POST_DEC,
-    LAST_INDEXED_MODE
-  };
-
-  //===--------------------------------------------------------------------===//
-  /// LoadExtType enum - This enum defines the three variants of LOADEXT
-  /// (load with extension).
-  ///
-  /// SEXTLOAD loads the integer operand and sign extends it to a larger
-  ///          integer result type.
-  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
-  ///          integer result type.
-  /// EXTLOAD  is used for three things: floating point extending loads,
-  ///          integer extending loads [the top bits are undefined], and vector
-  ///          extending loads [load into low elt].
-  ///
-  enum LoadExtType {
-    NON_EXTLOAD = 0,
-    EXTLOAD,
-    SEXTLOAD,
-    ZEXTLOAD,
-    LAST_LOADEXT_TYPE
-  };
-
-  //===--------------------------------------------------------------------===//
-  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
-  /// below work out, when considering SETFALSE (something that never exists
-  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
-  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
-  /// to.  If the "N" column is 1, the result of the comparison is undefined if
-  /// the input is a NAN.
-  ///
-  /// All of these (except for the 'always folded ops') should be handled for
-  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
-  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
-  ///
-  /// Note that these are laid out in a specific order to allow bit-twiddling
-  /// to transform conditions.
-  enum CondCode {
-    // Opcode          N U L G E       Intuitive operation
-    SETFALSE,      //    0 0 0 0       Always false (always folded)
-    SETOEQ,        //    0 0 0 1       True if ordered and equal
-    SETOGT,        //    0 0 1 0       True if ordered and greater than
-    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
-    SETOLT,        //    0 1 0 0       True if ordered and less than
-    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
-    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
-    SETO,          //    0 1 1 1       True if ordered (no nans)
-    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
-    SETUEQ,        //    1 0 0 1       True if unordered or equal
-    SETUGT,        //    1 0 1 0       True if unordered or greater than
-    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
-    SETULT,        //    1 1 0 0       True if unordered or less than
-    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
-    SETUNE,        //    1 1 1 0       True if unordered or not equal
-    SETTRUE,       //    1 1 1 1       Always true (always folded)
-    // Don't care operations: undefined if the input is a nan.
-    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
-    SETEQ,         //  1 X 0 0 1       True if equal
-    SETGT,         //  1 X 0 1 0       True if greater than
-    SETGE,         //  1 X 0 1 1       True if greater than or equal
-    SETLT,         //  1 X 1 0 0       True if less than
-    SETLE,         //  1 X 1 0 1       True if less than or equal
-    SETNE,         //  1 X 1 1 0       True if not equal
-    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
-
-    SETCC_INVALID       // Marker value.
-  };
-
-  /// isSignedIntSetCC - Return true if this is a setcc instruction that
-  /// performs a signed comparison when used with integer operands.
-  inline bool isSignedIntSetCC(CondCode Code) {
-    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
-  }
-
-  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
-  /// performs an unsigned comparison when used with integer operands.
-  inline bool isUnsignedIntSetCC(CondCode Code) {
-    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
-  }
-
-  /// isTrueWhenEqual - Return true if the specified condition returns true if
-  /// the two operands to the condition are equal.  Note that if one of the two
-  /// operands is a NaN, this value is meaningless.
-  inline bool isTrueWhenEqual(CondCode Cond) {
-    return ((int)Cond & 1) != 0;
-  }
-
-  /// getUnorderedFlavor - This function returns 0 if the condition is always
-  /// false if an operand is a NaN, 1 if the condition is always true if the
-  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
-  /// NaN.
-  inline unsigned getUnorderedFlavor(CondCode Cond) {
-    return ((int)Cond >> 3) & 3;
-  }
-
-  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
-  /// 'op' is a valid SetCC operation.
-  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
-
-  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
-  /// when given the operation for (X op Y).
-  CondCode getSetCCSwappedOperands(CondCode Operation);
-
-  /// getSetCCOrOperation - Return the result of a logical OR between different
-  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
-  /// function returns SETCC_INVALID if it is not possible to represent the
-  /// resultant comparison.
-  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
-
-  /// getSetCCAndOperation - Return the result of a logical AND between
-  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
-  /// function returns SETCC_INVALID if it is not possible to represent the
-  /// resultant comparison.
-  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
-
-  //===--------------------------------------------------------------------===//
-  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
-  /// supports.
-  enum CvtCode {
-    CVT_FF,     // Float from Float
-    CVT_FS,     // Float from Signed
-    CVT_FU,     // Float from Unsigned
-    CVT_SF,     // Signed from Float
-    CVT_UF,     // Unsigned from Float
-    CVT_SS,     // Signed from Signed
-    CVT_SU,     // Signed from Unsigned
-    CVT_US,     // Unsigned from Signed
-    CVT_UU,     // Unsigned from Unsigned
-    CVT_INVALID // Marker - Invalid opcode
-  };
-}  // end llvm::ISD namespace
-
+}  // end llvm:ISD namespace
 
 //===----------------------------------------------------------------------===//
 /// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
@@ -2614,7 +1876,6 @@
   }
 }
 
-
 } // end llvm namespace
 
 #endif





More information about the llvm-commits mailing list