[llvm-commits] [llvm] r101268 - in /llvm/trunk/include/llvm/CodeGen: ISDOpcodes.h SelectionDAGNodes.h
Dan Gohman
gohman at apple.com
Wed Apr 14 11:44:34 PDT 2010
Author: djg
Date: Wed Apr 14 13:44:34 2010
New Revision: 101268
URL: http://llvm.org/viewvc/llvm-project?rev=101268&view=rev
Log:
Split ISD::NodeType and a few related items out of SelectionDAGNodes.h
into a separate header to allow clients to use them without pulling in
SelectionDAG-specific declarations.
Added:
llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h
- copied, changed from r101240, llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h
Modified:
llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h
Copied: llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h (from r101240, llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h?p2=llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h&p1=llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h&r1=101240&r2=101268&rev=101268&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/ISDOpcodes.h Wed Apr 14 13:44:34 2010
@@ -1,4 +1,4 @@
-//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
+//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,55 +7,15 @@
//
//===----------------------------------------------------------------------===//
//
-// This file declares the SDNode class and derived classes, which are used to
-// represent the nodes and operations present in a SelectionDAG. These nodes
-// and operations are machine code level operations, with some similarities to
-// the GCC RTL representation.
-//
-// Clients should include the SelectionDAG.h file instead of this file directly.
+// This file declares codegen opcodes and related utilities.
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
-#define LLVM_CODEGEN_SELECTIONDAGNODES_H
-
-#include "llvm/Constants.h"
-#include "llvm/ADT/FoldingSet.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/ilist_node.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/System/DataTypes.h"
-#include "llvm/Support/DebugLoc.h"
-#include <cassert>
+#ifndef LLVM_CODEGEN_ISDOPCODES_H
+#define LLVM_CODEGEN_ISDOPCODES_H
namespace llvm {
-class SelectionDAG;
-class GlobalValue;
-class MachineBasicBlock;
-class MachineConstantPoolValue;
-class SDNode;
-class Value;
-class MCSymbol;
-template <typename T> struct DenseMapInfo;
-template <typename T> struct simplify_type;
-template <typename T> struct ilist_traits;
-
-void checkForCycles(const SDNode *N);
-
-/// SDVTList - This represents a list of ValueType's that has been intern'd by
-/// a SelectionDAG. Instances of this simple value class are returned by
-/// SelectionDAG::getVTList(...).
-///
-struct SDVTList {
- const EVT *VTs;
- unsigned int NumVTs;
-};
-
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
@@ -629,21 +589,6 @@
/// be used with SelectionDAG::getMemIntrinsicNode.
static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+100;
- /// Node predicates
-
- /// isBuildVectorAllOnes - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are ~0 or undef.
- bool isBuildVectorAllOnes(const SDNode *N);
-
- /// isBuildVectorAllZeros - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are 0 or undef.
- bool isBuildVectorAllZeros(const SDNode *N);
-
- /// isScalarToVector - Return true if the specified node is a
- /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
- /// element is not an undef.
- bool isScalarToVector(const SDNode *N);
-
//===--------------------------------------------------------------------===//
/// MemIndexedMode enum - This enum defines the load / store indexed
/// addressing modes.
@@ -809,1811 +754,8 @@
CVT_UU, // Unsigned from Unsigned
CVT_INVALID // Marker - Invalid opcode
};
-} // end llvm::ISD namespace
-
-
-//===----------------------------------------------------------------------===//
-/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
-/// values as the result of a computation. Many nodes return multiple values,
-/// from loads (which define a token and a return value) to ADDC (which returns
-/// a result and a carry value), to calls (which may return an arbitrary number
-/// of values).
-///
-/// As such, each use of a SelectionDAG computation must indicate the node that
-/// computes it as well as which return value to use from that node. This pair
-/// of information is represented with the SDValue value type.
-///
-class SDValue {
- SDNode *Node; // The node defining the value we are using.
- unsigned ResNo; // Which return value of the node we are using.
-public:
- SDValue() : Node(0), ResNo(0) {}
- SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
-
- /// get the index which selects a specific result in the SDNode
- unsigned getResNo() const { return ResNo; }
-
- /// get the SDNode which holds the desired result
- SDNode *getNode() const { return Node; }
-
- /// set the SDNode
- void setNode(SDNode *N) { Node = N; }
-
- inline SDNode *operator->() const { return Node; }
-
- bool operator==(const SDValue &O) const {
- return Node == O.Node && ResNo == O.ResNo;
- }
- bool operator!=(const SDValue &O) const {
- return !operator==(O);
- }
- bool operator<(const SDValue &O) const {
- return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
- }
-
- SDValue getValue(unsigned R) const {
- return SDValue(Node, R);
- }
-
- // isOperandOf - Return true if this node is an operand of N.
- bool isOperandOf(SDNode *N) const;
-
- /// getValueType - Return the ValueType of the referenced return value.
- ///
- inline EVT getValueType() const;
-
- /// getValueSizeInBits - Returns the size of the value in bits.
- ///
- unsigned getValueSizeInBits() const {
- return getValueType().getSizeInBits();
- }
-
- // Forwarding methods - These forward to the corresponding methods in SDNode.
- inline unsigned getOpcode() const;
- inline unsigned getNumOperands() const;
- inline const SDValue &getOperand(unsigned i) const;
- inline uint64_t getConstantOperandVal(unsigned i) const;
- inline bool isTargetMemoryOpcode() const;
- inline bool isTargetOpcode() const;
- inline bool isMachineOpcode() const;
- inline unsigned getMachineOpcode() const;
- inline const DebugLoc getDebugLoc() const;
-
-
- /// reachesChainWithoutSideEffects - Return true if this operand (which must
- /// be a chain) reaches the specified operand without crossing any
- /// side-effecting instructions. In practice, this looks through token
- /// factors and non-volatile loads. In order to remain efficient, this only
- /// looks a couple of nodes in, it does not do an exhaustive search.
- bool reachesChainWithoutSideEffects(SDValue Dest,
- unsigned Depth = 2) const;
-
- /// use_empty - Return true if there are no nodes using value ResNo
- /// of Node.
- ///
- inline bool use_empty() const;
-
- /// hasOneUse - Return true if there is exactly one node using value
- /// ResNo of Node.
- ///
- inline bool hasOneUse() const;
-};
-
-
-template<> struct DenseMapInfo<SDValue> {
- static inline SDValue getEmptyKey() {
- return SDValue((SDNode*)-1, -1U);
- }
- static inline SDValue getTombstoneKey() {
- return SDValue((SDNode*)-1, 0);
- }
- static unsigned getHashValue(const SDValue &Val) {
- return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
- (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
- }
- static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
- return LHS == RHS;
- }
-};
-template <> struct isPodLike<SDValue> { static const bool value = true; };
-
-
-/// simplify_type specializations - Allow casting operators to work directly on
-/// SDValues as if they were SDNode*'s.
-template<> struct simplify_type<SDValue> {
- typedef SDNode* SimpleType;
- static SimpleType getSimplifiedValue(const SDValue &Val) {
- return static_cast<SimpleType>(Val.getNode());
- }
-};
-template<> struct simplify_type<const SDValue> {
- typedef SDNode* SimpleType;
- static SimpleType getSimplifiedValue(const SDValue &Val) {
- return static_cast<SimpleType>(Val.getNode());
- }
-};
-
-/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
-/// which records the SDNode being used and the result number, a
-/// pointer to the SDNode using the value, and Next and Prev pointers,
-/// which link together all the uses of an SDNode.
-///
-class SDUse {
- /// Val - The value being used.
- SDValue Val;
- /// User - The user of this value.
- SDNode *User;
- /// Prev, Next - Pointers to the uses list of the SDNode referred by
- /// this operand.
- SDUse **Prev, *Next;
-
- SDUse(const SDUse &U); // Do not implement
- void operator=(const SDUse &U); // Do not implement
-
-public:
- SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
-
- /// Normally SDUse will just implicitly convert to an SDValue that it holds.
- operator const SDValue&() const { return Val; }
-
- /// If implicit conversion to SDValue doesn't work, the get() method returns
- /// the SDValue.
- const SDValue &get() const { return Val; }
-
- /// getUser - This returns the SDNode that contains this Use.
- SDNode *getUser() { return User; }
-
- /// getNext - Get the next SDUse in the use list.
- SDUse *getNext() const { return Next; }
-
- /// getNode - Convenience function for get().getNode().
- SDNode *getNode() const { return Val.getNode(); }
- /// getResNo - Convenience function for get().getResNo().
- unsigned getResNo() const { return Val.getResNo(); }
- /// getValueType - Convenience function for get().getValueType().
- EVT getValueType() const { return Val.getValueType(); }
-
- /// operator== - Convenience function for get().operator==
- bool operator==(const SDValue &V) const {
- return Val == V;
- }
-
- /// operator!= - Convenience function for get().operator!=
- bool operator!=(const SDValue &V) const {
- return Val != V;
- }
-
- /// operator< - Convenience function for get().operator<
- bool operator<(const SDValue &V) const {
- return Val < V;
- }
-
-private:
- friend class SelectionDAG;
- friend class SDNode;
-
- void setUser(SDNode *p) { User = p; }
-
- /// set - Remove this use from its existing use list, assign it the
- /// given value, and add it to the new value's node's use list.
- inline void set(const SDValue &V);
- /// setInitial - like set, but only supports initializing a newly-allocated
- /// SDUse with a non-null value.
- inline void setInitial(const SDValue &V);
- /// setNode - like set, but only sets the Node portion of the value,
- /// leaving the ResNo portion unmodified.
- inline void setNode(SDNode *N);
-
- void addToList(SDUse **List) {
- Next = *List;
- if (Next) Next->Prev = &Next;
- Prev = List;
- *List = this;
- }
-
- void removeFromList() {
- *Prev = Next;
- if (Next) Next->Prev = Prev;
- }
-};
-
-/// simplify_type specializations - Allow casting operators to work directly on
-/// SDValues as if they were SDNode*'s.
-template<> struct simplify_type<SDUse> {
- typedef SDNode* SimpleType;
- static SimpleType getSimplifiedValue(const SDUse &Val) {
- return static_cast<SimpleType>(Val.getNode());
- }
-};
-template<> struct simplify_type<const SDUse> {
- typedef SDNode* SimpleType;
- static SimpleType getSimplifiedValue(const SDUse &Val) {
- return static_cast<SimpleType>(Val.getNode());
- }
-};
-
-
-/// SDNode - Represents one node in the SelectionDAG.
-///
-class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
-private:
- /// NodeType - The operation that this node performs.
- ///
- int16_t NodeType;
-
- /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
- /// then they will be delete[]'d when the node is destroyed.
- uint16_t OperandsNeedDelete : 1;
-
- /// HasDebugValue - This tracks whether this node has one or more dbg_value
- /// nodes corresponding to it.
- uint16_t HasDebugValue : 1;
-
-protected:
- /// SubclassData - This member is defined by this class, but is not used for
- /// anything. Subclasses can use it to hold whatever state they find useful.
- /// This field is initialized to zero by the ctor.
- uint16_t SubclassData : 14;
-
-private:
- /// NodeId - Unique id per SDNode in the DAG.
- int NodeId;
-
- /// OperandList - The values that are used by this operation.
- ///
- SDUse *OperandList;
-
- /// ValueList - The types of the values this node defines. SDNode's may
- /// define multiple values simultaneously.
- const EVT *ValueList;
-
- /// UseList - List of uses for this SDNode.
- SDUse *UseList;
-
- /// NumOperands/NumValues - The number of entries in the Operand/Value list.
- unsigned short NumOperands, NumValues;
-
- /// debugLoc - source line information.
- DebugLoc debugLoc;
-
- /// getValueTypeList - Return a pointer to the specified value type.
- static const EVT *getValueTypeList(EVT VT);
-
- friend class SelectionDAG;
- friend struct ilist_traits<SDNode>;
-
-public:
- //===--------------------------------------------------------------------===//
- // Accessors
- //
-
- /// getOpcode - Return the SelectionDAG opcode value for this node. For
- /// pre-isel nodes (those for which isMachineOpcode returns false), these
- /// are the opcode values in the ISD and <target>ISD namespaces. For
- /// post-isel opcodes, see getMachineOpcode.
- unsigned getOpcode() const { return (unsigned short)NodeType; }
-
- /// isTargetOpcode - Test if this node has a target-specific opcode (in the
- /// \<target\>ISD namespace).
- bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
-
- /// isTargetMemoryOpcode - Test if this node has a target-specific
- /// memory-referencing opcode (in the \<target\>ISD namespace and
- /// greater than FIRST_TARGET_MEMORY_OPCODE).
- bool isTargetMemoryOpcode() const {
- return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
- }
-
- /// isMachineOpcode - Test if this node has a post-isel opcode, directly
- /// corresponding to a MachineInstr opcode.
- bool isMachineOpcode() const { return NodeType < 0; }
-
- /// getMachineOpcode - This may only be called if isMachineOpcode returns
- /// true. It returns the MachineInstr opcode value that the node's opcode
- /// corresponds to.
- unsigned getMachineOpcode() const {
- assert(isMachineOpcode() && "Not a MachineInstr opcode!");
- return ~NodeType;
- }
-
- /// getHasDebugValue - get this bit.
- bool getHasDebugValue() const { return HasDebugValue; }
-
- /// setHasDebugValue - set this bit.
- void setHasDebugValue(bool b) { HasDebugValue = b; }
-
- /// use_empty - Return true if there are no uses of this node.
- ///
- bool use_empty() const { return UseList == NULL; }
-
- /// hasOneUse - Return true if there is exactly one use of this node.
- ///
- bool hasOneUse() const {
- return !use_empty() && llvm::next(use_begin()) == use_end();
- }
-
- /// use_size - Return the number of uses of this node. This method takes
- /// time proportional to the number of uses.
- ///
- size_t use_size() const { return std::distance(use_begin(), use_end()); }
-
- /// getNodeId - Return the unique node id.
- ///
- int getNodeId() const { return NodeId; }
-
- /// setNodeId - Set unique node id.
- void setNodeId(int Id) { NodeId = Id; }
-
- /// getDebugLoc - Return the source location info.
- const DebugLoc getDebugLoc() const { return debugLoc; }
-
- /// setDebugLoc - Set source location info. Try to avoid this, putting
- /// it in the constructor is preferable.
- void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
-
- /// use_iterator - This class provides iterator support for SDUse
- /// operands that use a specific SDNode.
- class use_iterator
- : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
- SDUse *Op;
- explicit use_iterator(SDUse *op) : Op(op) {
- }
- friend class SDNode;
- public:
- typedef std::iterator<std::forward_iterator_tag,
- SDUse, ptrdiff_t>::reference reference;
- typedef std::iterator<std::forward_iterator_tag,
- SDUse, ptrdiff_t>::pointer pointer;
-
- use_iterator(const use_iterator &I) : Op(I.Op) {}
- use_iterator() : Op(0) {}
-
- bool operator==(const use_iterator &x) const {
- return Op == x.Op;
- }
- bool operator!=(const use_iterator &x) const {
- return !operator==(x);
- }
-
- /// atEnd - return true if this iterator is at the end of uses list.
- bool atEnd() const { return Op == 0; }
-
- // Iterator traversal: forward iteration only.
- use_iterator &operator++() { // Preincrement
- assert(Op && "Cannot increment end iterator!");
- Op = Op->getNext();
- return *this;
- }
-
- use_iterator operator++(int) { // Postincrement
- use_iterator tmp = *this; ++*this; return tmp;
- }
-
- /// Retrieve a pointer to the current user node.
- SDNode *operator*() const {
- assert(Op && "Cannot dereference end iterator!");
- return Op->getUser();
- }
-
- SDNode *operator->() const { return operator*(); }
-
- SDUse &getUse() const { return *Op; }
-
- /// getOperandNo - Retrieve the operand # of this use in its user.
- ///
- unsigned getOperandNo() const {
- assert(Op && "Cannot dereference end iterator!");
- return (unsigned)(Op - Op->getUser()->OperandList);
- }
- };
-
- /// use_begin/use_end - Provide iteration support to walk over all uses
- /// of an SDNode.
-
- use_iterator use_begin() const {
- return use_iterator(UseList);
- }
-
- static use_iterator use_end() { return use_iterator(0); }
-
-
- /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
- /// indicated value. This method ignores uses of other values defined by this
- /// operation.
- bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
-
- /// hasAnyUseOfValue - Return true if there are any use of the indicated
- /// value. This method ignores uses of other values defined by this operation.
- bool hasAnyUseOfValue(unsigned Value) const;
-
- /// isOnlyUserOf - Return true if this node is the only use of N.
- ///
- bool isOnlyUserOf(SDNode *N) const;
-
- /// isOperandOf - Return true if this node is an operand of N.
- ///
- bool isOperandOf(SDNode *N) const;
-
- /// isPredecessorOf - Return true if this node is a predecessor of N. This
- /// node is either an operand of N or it can be reached by recursively
- /// traversing up the operands.
- /// NOTE: this is an expensive method. Use it carefully.
- bool isPredecessorOf(SDNode *N) const;
-
- /// getNumOperands - Return the number of values used by this operation.
- ///
- unsigned getNumOperands() const { return NumOperands; }
-
- /// getConstantOperandVal - Helper method returns the integer value of a
- /// ConstantSDNode operand.
- uint64_t getConstantOperandVal(unsigned Num) const;
-
- const SDValue &getOperand(unsigned Num) const {
- assert(Num < NumOperands && "Invalid child # of SDNode!");
- return OperandList[Num];
- }
-
- typedef SDUse* op_iterator;
- op_iterator op_begin() const { return OperandList; }
- op_iterator op_end() const { return OperandList+NumOperands; }
-
- SDVTList getVTList() const {
- SDVTList X = { ValueList, NumValues };
- return X;
- }
-
- /// getFlaggedNode - If this node has a flag operand, return the node
- /// to which the flag operand points. Otherwise return NULL.
- SDNode *getFlaggedNode() const {
- if (getNumOperands() != 0 &&
- getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
- return getOperand(getNumOperands()-1).getNode();
- return 0;
- }
-
- // If this is a pseudo op, like copyfromreg, look to see if there is a
- // real target node flagged to it. If so, return the target node.
- const SDNode *getFlaggedMachineNode() const {
- const SDNode *FoundNode = this;
-
- // Climb up flag edges until a machine-opcode node is found, or the
- // end of the chain is reached.
- while (!FoundNode->isMachineOpcode()) {
- const SDNode *N = FoundNode->getFlaggedNode();
- if (!N) break;
- FoundNode = N;
- }
-
- return FoundNode;
- }
-
- /// getNumValues - Return the number of values defined/returned by this
- /// operator.
- ///
- unsigned getNumValues() const { return NumValues; }
-
- /// getValueType - Return the type of a specified result.
- ///
- EVT getValueType(unsigned ResNo) const {
- assert(ResNo < NumValues && "Illegal result number!");
- return ValueList[ResNo];
- }
-
- /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
- ///
- unsigned getValueSizeInBits(unsigned ResNo) const {
- return getValueType(ResNo).getSizeInBits();
- }
-
- typedef const EVT* value_iterator;
- value_iterator value_begin() const { return ValueList; }
- value_iterator value_end() const { return ValueList+NumValues; }
-
- /// getOperationName - Return the opcode of this operation for printing.
- ///
- std::string getOperationName(const SelectionDAG *G = 0) const;
- static const char* getIndexedModeName(ISD::MemIndexedMode AM);
- void print_types(raw_ostream &OS, const SelectionDAG *G) const;
- void print_details(raw_ostream &OS, const SelectionDAG *G) const;
- void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
- void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
-
- /// printrFull - Print a SelectionDAG node and all children down to
- /// the leaves. The given SelectionDAG allows target-specific nodes
- /// to be printed in human-readable form. Unlike printr, this will
- /// print the whole DAG, including children that appear multiple
- /// times.
- ///
- void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
-
- /// printrWithDepth - Print a SelectionDAG node and children up to
- /// depth "depth." The given SelectionDAG allows target-specific
- /// nodes to be printed in human-readable form. Unlike printr, this
- /// will print children that appear multiple times wherever they are
- /// used.
- ///
- void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0,
- unsigned depth = 100) const;
-
-
- /// dump - Dump this node, for debugging.
- void dump() const;
-
- /// dumpr - Dump (recursively) this node and its use-def subgraph.
- void dumpr() const;
-
- /// dump - Dump this node, for debugging.
- /// The given SelectionDAG allows target-specific nodes to be printed
- /// in human-readable form.
- void dump(const SelectionDAG *G) const;
-
- /// dumpr - Dump (recursively) this node and its use-def subgraph.
- /// The given SelectionDAG allows target-specific nodes to be printed
- /// in human-readable form.
- void dumpr(const SelectionDAG *G) const;
-
- /// dumprFull - printrFull to dbgs(). The given SelectionDAG allows
- /// target-specific nodes to be printed in human-readable form.
- /// Unlike dumpr, this will print the whole DAG, including children
- /// that appear multiple times.
- ///
- void dumprFull(const SelectionDAG *G = 0) const;
-
- /// dumprWithDepth - printrWithDepth to dbgs(). The given
- /// SelectionDAG allows target-specific nodes to be printed in
- /// human-readable form. Unlike dumpr, this will print children
- /// that appear multiple times wherever they are used.
- ///
- void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
-
-
- static bool classof(const SDNode *) { return true; }
-
- /// Profile - Gather unique data for the node.
- ///
- void Profile(FoldingSetNodeID &ID) const;
-
- /// addUse - This method should only be used by the SDUse class.
- ///
- void addUse(SDUse &U) { U.addToList(&UseList); }
-
-protected:
- static SDVTList getSDVTList(EVT VT) {
- SDVTList Ret = { getValueTypeList(VT), 1 };
- return Ret;
- }
-
- SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
- unsigned NumOps)
- : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
- SubclassData(0), NodeId(-1),
- OperandList(NumOps ? new SDUse[NumOps] : 0),
- ValueList(VTs.VTs), UseList(NULL),
- NumOperands(NumOps), NumValues(VTs.NumVTs),
- debugLoc(dl) {
- for (unsigned i = 0; i != NumOps; ++i) {
- OperandList[i].setUser(this);
- OperandList[i].setInitial(Ops[i]);
- }
- checkForCycles(this);
- }
-
- /// This constructor adds no operands itself; operands can be
- /// set later with InitOperands.
- SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
- : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
- SubclassData(0), NodeId(-1), OperandList(0), ValueList(VTs.VTs),
- UseList(NULL), NumOperands(0), NumValues(VTs.NumVTs),
- debugLoc(dl) {}
-
- /// InitOperands - Initialize the operands list of this with 1 operand.
- void InitOperands(SDUse *Ops, const SDValue &Op0) {
- Ops[0].setUser(this);
- Ops[0].setInitial(Op0);
- NumOperands = 1;
- OperandList = Ops;
- checkForCycles(this);
- }
-
- /// InitOperands - Initialize the operands list of this with 2 operands.
- void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
- Ops[0].setUser(this);
- Ops[0].setInitial(Op0);
- Ops[1].setUser(this);
- Ops[1].setInitial(Op1);
- NumOperands = 2;
- OperandList = Ops;
- checkForCycles(this);
- }
-
- /// InitOperands - Initialize the operands list of this with 3 operands.
- void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
- const SDValue &Op2) {
- Ops[0].setUser(this);
- Ops[0].setInitial(Op0);
- Ops[1].setUser(this);
- Ops[1].setInitial(Op1);
- Ops[2].setUser(this);
- Ops[2].setInitial(Op2);
- NumOperands = 3;
- OperandList = Ops;
- checkForCycles(this);
- }
-
- /// InitOperands - Initialize the operands list of this with 4 operands.
- void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
- const SDValue &Op2, const SDValue &Op3) {
- Ops[0].setUser(this);
- Ops[0].setInitial(Op0);
- Ops[1].setUser(this);
- Ops[1].setInitial(Op1);
- Ops[2].setUser(this);
- Ops[2].setInitial(Op2);
- Ops[3].setUser(this);
- Ops[3].setInitial(Op3);
- NumOperands = 4;
- OperandList = Ops;
- checkForCycles(this);
- }
-
- /// InitOperands - Initialize the operands list of this with N operands.
- void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
- for (unsigned i = 0; i != N; ++i) {
- Ops[i].setUser(this);
- Ops[i].setInitial(Vals[i]);
- }
- NumOperands = N;
- OperandList = Ops;
- checkForCycles(this);
- }
-
- /// DropOperands - Release the operands and set this node to have
- /// zero operands.
- void DropOperands();
-};
-
-
-// Define inline functions from the SDValue class.
-
-inline unsigned SDValue::getOpcode() const {
- return Node->getOpcode();
-}
-inline EVT SDValue::getValueType() const {
- return Node->getValueType(ResNo);
-}
-inline unsigned SDValue::getNumOperands() const {
- return Node->getNumOperands();
-}
-inline const SDValue &SDValue::getOperand(unsigned i) const {
- return Node->getOperand(i);
-}
-inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
- return Node->getConstantOperandVal(i);
-}
-inline bool SDValue::isTargetOpcode() const {
- return Node->isTargetOpcode();
-}
-inline bool SDValue::isTargetMemoryOpcode() const {
- return Node->isTargetMemoryOpcode();
-}
-inline bool SDValue::isMachineOpcode() const {
- return Node->isMachineOpcode();
-}
-inline unsigned SDValue::getMachineOpcode() const {
- return Node->getMachineOpcode();
-}
-inline bool SDValue::use_empty() const {
- return !Node->hasAnyUseOfValue(ResNo);
-}
-inline bool SDValue::hasOneUse() const {
- return Node->hasNUsesOfValue(1, ResNo);
-}
-inline const DebugLoc SDValue::getDebugLoc() const {
- return Node->getDebugLoc();
-}
-
-// Define inline functions from the SDUse class.
-
-inline void SDUse::set(const SDValue &V) {
- if (Val.getNode()) removeFromList();
- Val = V;
- if (V.getNode()) V.getNode()->addUse(*this);
-}
-
-inline void SDUse::setInitial(const SDValue &V) {
- Val = V;
- V.getNode()->addUse(*this);
-}
-
-inline void SDUse::setNode(SDNode *N) {
- if (Val.getNode()) removeFromList();
- Val.setNode(N);
- if (N) N->addUse(*this);
-}
-
-/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
-/// to allow co-allocation of node operands with the node itself.
-class UnarySDNode : public SDNode {
- SDUse Op;
-public:
- UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
- : SDNode(Opc, dl, VTs) {
- InitOperands(&Op, X);
- }
-};
-
-/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
-/// to allow co-allocation of node operands with the node itself.
-class BinarySDNode : public SDNode {
- SDUse Ops[2];
-public:
- BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
- : SDNode(Opc, dl, VTs) {
- InitOperands(Ops, X, Y);
- }
-};
-
-/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
-/// to allow co-allocation of node operands with the node itself.
-class TernarySDNode : public SDNode {
- SDUse Ops[3];
-public:
- TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
- SDValue Z)
- : SDNode(Opc, dl, VTs) {
- InitOperands(Ops, X, Y, Z);
- }
-};
-
-
-/// HandleSDNode - This class is used to form a handle around another node that
-/// is persistant and is updated across invocations of replaceAllUsesWith on its
-/// operand. This node should be directly created by end-users and not added to
-/// the AllNodes list.
-class HandleSDNode : public SDNode {
- SDUse Op;
-public:
- // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
- // fixed.
-#if __GNUC__==4 && __GNUC_MINOR__==2 && defined(__APPLE__) && !defined(__llvm__)
- explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
-#else
- explicit HandleSDNode(SDValue X)
-#endif
- : SDNode(ISD::HANDLENODE, DebugLoc(), getSDVTList(MVT::Other)) {
- InitOperands(&Op, X);
- }
- ~HandleSDNode();
- const SDValue &getValue() const { return Op; }
-};
-
-/// Abstact virtual class for operations for memory operations
-class MemSDNode : public SDNode {
-private:
- // MemoryVT - VT of in-memory value.
- EVT MemoryVT;
-
-protected:
- /// MMO - Memory reference information.
- MachineMemOperand *MMO;
-
-public:
- MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
- MachineMemOperand *MMO);
-
- MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
- unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
-
- bool readMem() const { return MMO->isLoad(); }
- bool writeMem() const { return MMO->isStore(); }
-
- /// Returns alignment and volatility of the memory access
- unsigned getOriginalAlignment() const {
- return MMO->getBaseAlignment();
- }
- unsigned getAlignment() const {
- return MMO->getAlignment();
- }
-
- /// getRawSubclassData - Return the SubclassData value, which contains an
- /// encoding of the volatile flag, as well as bits used by subclasses. This
- /// function should only be used to compute a FoldingSetNodeID value.
- unsigned getRawSubclassData() const {
- return SubclassData;
- }
-
- // We access subclass data here so that we can check consistency
- // with MachineMemOperand information.
- bool isVolatile() const { return (SubclassData >> 5) & 1; }
- bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
-
- /// Returns the SrcValue and offset that describes the location of the access
- const Value *getSrcValue() const { return MMO->getValue(); }
- int64_t getSrcValueOffset() const { return MMO->getOffset(); }
-
- /// getMemoryVT - Return the type of the in-memory value.
- EVT getMemoryVT() const { return MemoryVT; }
-
- /// getMemOperand - Return a MachineMemOperand object describing the memory
- /// reference performed by operation.
- MachineMemOperand *getMemOperand() const { return MMO; }
-
- /// refineAlignment - Update this MemSDNode's MachineMemOperand information
- /// to reflect the alignment of NewMMO, if it has a greater alignment.
- /// This must only be used when the new alignment applies to all users of
- /// this MachineMemOperand.
- void refineAlignment(const MachineMemOperand *NewMMO) {
- MMO->refineAlignment(NewMMO);
- }
-
- const SDValue &getChain() const { return getOperand(0); }
- const SDValue &getBasePtr() const {
- return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
- }
-
- // Methods to support isa and dyn_cast
- static bool classof(const MemSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- // For some targets, we lower some target intrinsics to a MemIntrinsicNode
- // with either an intrinsic or a target opcode.
- return N->getOpcode() == ISD::LOAD ||
- N->getOpcode() == ISD::STORE ||
- N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
- N->getOpcode() == ISD::ATOMIC_SWAP ||
- N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
- N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
- N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
- N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
- N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
- N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
- N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
- N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
- N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
- N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
- N->isTargetMemoryOpcode();
- }
-};
-
-/// AtomicSDNode - A SDNode reprenting atomic operations.
-///
-class AtomicSDNode : public MemSDNode {
- SDUse Ops[4];
-
-public:
- // Opc: opcode for atomic
- // VTL: value type list
- // Chain: memory chain for operaand
- // Ptr: address to update as a SDValue
- // Cmp: compare value
- // Swp: swap value
- // SrcVal: address to update as a Value (used for MemOperand)
- // Align: alignment of memory
- AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
- SDValue Chain, SDValue Ptr,
- SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
- : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
- assert(readMem() && "Atomic MachineMemOperand is not a load!");
- assert(writeMem() && "Atomic MachineMemOperand is not a store!");
- InitOperands(Ops, Chain, Ptr, Cmp, Swp);
- }
- AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
- SDValue Chain, SDValue Ptr,
- SDValue Val, MachineMemOperand *MMO)
- : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
- assert(readMem() && "Atomic MachineMemOperand is not a load!");
- assert(writeMem() && "Atomic MachineMemOperand is not a store!");
- InitOperands(Ops, Chain, Ptr, Val);
- }
-
- const SDValue &getBasePtr() const { return getOperand(1); }
- const SDValue &getVal() const { return getOperand(2); }
-
- bool isCompareAndSwap() const {
- unsigned Op = getOpcode();
- return Op == ISD::ATOMIC_CMP_SWAP;
- }
-
- // Methods to support isa and dyn_cast
- static bool classof(const AtomicSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
- N->getOpcode() == ISD::ATOMIC_SWAP ||
- N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
- N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
- N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
- N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
- N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
- N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
- N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
- N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
- N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
- N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
- }
-};
-
-/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
-/// memory and need an associated MachineMemOperand. Its opcode may be
-/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
-/// value not less than FIRST_TARGET_MEMORY_OPCODE.
-class MemIntrinsicSDNode : public MemSDNode {
-public:
- MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
- const SDValue *Ops, unsigned NumOps,
- EVT MemoryVT, MachineMemOperand *MMO)
- : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
- }
-
- // Methods to support isa and dyn_cast
- static bool classof(const MemIntrinsicSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- // We lower some target intrinsics to their target opcode
- // early a node with a target opcode can be of this class
- return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- N->getOpcode() == ISD::INTRINSIC_VOID ||
- N->isTargetMemoryOpcode();
- }
-};
-
-/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
-/// support for the llvm IR shufflevector instruction. It combines elements
-/// from two input vectors into a new input vector, with the selection and
-/// ordering of elements determined by an array of integers, referred to as
-/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
-/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
-/// An index of -1 is treated as undef, such that the code generator may put
-/// any value in the corresponding element of the result.
-class ShuffleVectorSDNode : public SDNode {
- SDUse Ops[2];
-
- // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
- // is freed when the SelectionDAG object is destroyed.
- const int *Mask;
-protected:
- friend class SelectionDAG;
- ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
- const int *M)
- : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
- InitOperands(Ops, N1, N2);
- }
-public:
-
- void getMask(SmallVectorImpl<int> &M) const {
- EVT VT = getValueType(0);
- M.clear();
- for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
- M.push_back(Mask[i]);
- }
- int getMaskElt(unsigned Idx) const {
- assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
- return Mask[Idx];
- }
-
- bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
- int getSplatIndex() const {
- assert(isSplat() && "Cannot get splat index for non-splat!");
- EVT VT = getValueType(0);
- for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
- if (Mask[i] != -1)
- return Mask[i];
- }
- return -1;
- }
- static bool isSplatMask(const int *Mask, EVT VT);
-
- static bool classof(const ShuffleVectorSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::VECTOR_SHUFFLE;
- }
-};
-
-class ConstantSDNode : public SDNode {
- const ConstantInt *Value;
- friend class SelectionDAG;
- ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
- : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
- DebugLoc(), getSDVTList(VT)), Value(val) {
- }
-public:
-
- const ConstantInt *getConstantIntValue() const { return Value; }
- const APInt &getAPIntValue() const { return Value->getValue(); }
- uint64_t getZExtValue() const { return Value->getZExtValue(); }
- int64_t getSExtValue() const { return Value->getSExtValue(); }
-
- bool isNullValue() const { return Value->isNullValue(); }
- bool isAllOnesValue() const { return Value->isAllOnesValue(); }
-
- static bool classof(const ConstantSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::Constant ||
- N->getOpcode() == ISD::TargetConstant;
- }
-};
-
-class ConstantFPSDNode : public SDNode {
- const ConstantFP *Value;
- friend class SelectionDAG;
- ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
- : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
- DebugLoc(), getSDVTList(VT)), Value(val) {
- }
-public:
-
- const APFloat& getValueAPF() const { return Value->getValueAPF(); }
- const ConstantFP *getConstantFPValue() const { return Value; }
-
- /// isZero - Return true if the value is positive or negative zero.
- bool isZero() const { return Value->isZero(); }
-
- /// isNaN - Return true if the value is a NaN.
- bool isNaN() const { return Value->isNaN(); }
-
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
-
- /// We leave the version with the double argument here because it's just so
- /// convenient to write "2.0" and the like. Without this function we'd
- /// have to duplicate its logic everywhere it's called.
- bool isExactlyValue(double V) const {
- bool ignored;
- // convert is not supported on this type
- if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
- return false;
- APFloat Tmp(V);
- Tmp.convert(Value->getValueAPF().getSemantics(),
- APFloat::rmNearestTiesToEven, &ignored);
- return isExactlyValue(Tmp);
- }
- bool isExactlyValue(const APFloat& V) const;
-
- bool isValueValidForType(EVT VT, const APFloat& Val);
-
- static bool classof(const ConstantFPSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::ConstantFP ||
- N->getOpcode() == ISD::TargetConstantFP;
- }
-};
-
-class GlobalAddressSDNode : public SDNode {
- GlobalValue *TheGlobal;
- int64_t Offset;
- unsigned char TargetFlags;
- friend class SelectionDAG;
- GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
- int64_t o, unsigned char TargetFlags);
-public:
-
- GlobalValue *getGlobal() const { return TheGlobal; }
- int64_t getOffset() const { return Offset; }
- unsigned char getTargetFlags() const { return TargetFlags; }
- // Return the address space this GlobalAddress belongs to.
- unsigned getAddressSpace() const;
-
- static bool classof(const GlobalAddressSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::GlobalAddress ||
- N->getOpcode() == ISD::TargetGlobalAddress ||
- N->getOpcode() == ISD::GlobalTLSAddress ||
- N->getOpcode() == ISD::TargetGlobalTLSAddress;
- }
-};
-
-class FrameIndexSDNode : public SDNode {
- int FI;
- friend class SelectionDAG;
- FrameIndexSDNode(int fi, EVT VT, bool isTarg)
- : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
- DebugLoc(), getSDVTList(VT)), FI(fi) {
- }
-public:
-
- int getIndex() const { return FI; }
-
- static bool classof(const FrameIndexSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::FrameIndex ||
- N->getOpcode() == ISD::TargetFrameIndex;
- }
-};
-
-class JumpTableSDNode : public SDNode {
- int JTI;
- unsigned char TargetFlags;
- friend class SelectionDAG;
- JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
- : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
- DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
- }
-public:
-
- int getIndex() const { return JTI; }
- unsigned char getTargetFlags() const { return TargetFlags; }
-
- static bool classof(const JumpTableSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::JumpTable ||
- N->getOpcode() == ISD::TargetJumpTable;
- }
-};
-
-class ConstantPoolSDNode : public SDNode {
- union {
- Constant *ConstVal;
- MachineConstantPoolValue *MachineCPVal;
- } Val;
- int Offset; // It's a MachineConstantPoolValue if top bit is set.
- unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
- unsigned char TargetFlags;
- friend class SelectionDAG;
- ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
- unsigned char TF)
- : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
- DebugLoc(),
- getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
- assert((int)Offset >= 0 && "Offset is too large");
- Val.ConstVal = c;
- }
- ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
- EVT VT, int o, unsigned Align, unsigned char TF)
- : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
- DebugLoc(),
- getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
- assert((int)Offset >= 0 && "Offset is too large");
- Val.MachineCPVal = v;
- Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
- }
-public:
-
-
- bool isMachineConstantPoolEntry() const {
- return (int)Offset < 0;
- }
-
- Constant *getConstVal() const {
- assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
- return Val.ConstVal;
- }
-
- MachineConstantPoolValue *getMachineCPVal() const {
- assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
- return Val.MachineCPVal;
- }
-
- int getOffset() const {
- return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
- }
-
- // Return the alignment of this constant pool object, which is either 0 (for
- // default alignment) or the desired value.
- unsigned getAlignment() const { return Alignment; }
- unsigned char getTargetFlags() const { return TargetFlags; }
-
- const Type *getType() const;
-
- static bool classof(const ConstantPoolSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::ConstantPool ||
- N->getOpcode() == ISD::TargetConstantPool;
- }
-};
-
-class BasicBlockSDNode : public SDNode {
- MachineBasicBlock *MBB;
- friend class SelectionDAG;
- /// Debug info is meaningful and potentially useful here, but we create
- /// blocks out of order when they're jumped to, which makes it a bit
- /// harder. Let's see if we need it first.
- explicit BasicBlockSDNode(MachineBasicBlock *mbb)
- : SDNode(ISD::BasicBlock, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) {
- }
-public:
-
- MachineBasicBlock *getBasicBlock() const { return MBB; }
-
- static bool classof(const BasicBlockSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::BasicBlock;
- }
-};
-
-/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
-/// BUILD_VECTORs.
-class BuildVectorSDNode : public SDNode {
- // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
- explicit BuildVectorSDNode(); // Do not implement
-public:
- /// isConstantSplat - Check if this is a constant splat, and if so, find the
- /// smallest element size that splats the vector. If MinSplatBits is
- /// nonzero, the element size must be at least that large. Note that the
- /// splat element may be the entire vector (i.e., a one element vector).
- /// Returns the splat element value in SplatValue. Any undefined bits in
- /// that value are zero, and the corresponding bits in the SplatUndef mask
- /// are set. The SplatBitSize value is set to the splat element size in
- /// bits. HasAnyUndefs is set to true if any bits in the vector are
- /// undefined. isBigEndian describes the endianness of the target.
- bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
- unsigned &SplatBitSize, bool &HasAnyUndefs,
- unsigned MinSplatBits = 0, bool isBigEndian = false);
-
- static inline bool classof(const BuildVectorSDNode *) { return true; }
- static inline bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::BUILD_VECTOR;
- }
-};
-
-/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
-/// used when the SelectionDAG needs to make a simple reference to something
-/// in the LLVM IR representation.
-///
-class SrcValueSDNode : public SDNode {
- const Value *V;
- friend class SelectionDAG;
- /// Create a SrcValue for a general value.
- explicit SrcValueSDNode(const Value *v)
- : SDNode(ISD::SRCVALUE, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
-
-public:
- /// getValue - return the contained Value.
- const Value *getValue() const { return V; }
-
- static bool classof(const SrcValueSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::SRCVALUE;
- }
-};
-
-class MDNodeSDNode : public SDNode {
- const MDNode *MD;
- friend class SelectionDAG;
- explicit MDNodeSDNode(const MDNode *md)
- : SDNode(ISD::MDNODE_SDNODE, DebugLoc(), getSDVTList(MVT::Other)), MD(md) {}
-public:
-
- const MDNode *getMD() const { return MD; }
-
- static bool classof(const MDNodeSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::MDNODE_SDNODE;
- }
-};
-
-
-class RegisterSDNode : public SDNode {
- unsigned Reg;
- friend class SelectionDAG;
- RegisterSDNode(unsigned reg, EVT VT)
- : SDNode(ISD::Register, DebugLoc(), getSDVTList(VT)), Reg(reg) {
- }
-public:
-
- unsigned getReg() const { return Reg; }
-
- static bool classof(const RegisterSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::Register;
- }
-};
-
-class BlockAddressSDNode : public SDNode {
- BlockAddress *BA;
- unsigned char TargetFlags;
- friend class SelectionDAG;
- BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
- unsigned char Flags)
- : SDNode(NodeTy, DebugLoc(), getSDVTList(VT)),
- BA(ba), TargetFlags(Flags) {
- }
-public:
- BlockAddress *getBlockAddress() const { return BA; }
- unsigned char getTargetFlags() const { return TargetFlags; }
-
- static bool classof(const BlockAddressSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::BlockAddress ||
- N->getOpcode() == ISD::TargetBlockAddress;
- }
-};
-
-class EHLabelSDNode : public SDNode {
- SDUse Chain;
- MCSymbol *Label;
- friend class SelectionDAG;
- EHLabelSDNode(DebugLoc dl, SDValue ch, MCSymbol *L)
- : SDNode(ISD::EH_LABEL, dl, getSDVTList(MVT::Other)), Label(L) {
- InitOperands(&Chain, ch);
- }
-public:
- MCSymbol *getLabel() const { return Label; }
-
- static bool classof(const EHLabelSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::EH_LABEL;
- }
-};
-
-class ExternalSymbolSDNode : public SDNode {
- const char *Symbol;
- unsigned char TargetFlags;
-
- friend class SelectionDAG;
- ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
- : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
- DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
- }
-public:
-
- const char *getSymbol() const { return Symbol; }
- unsigned char getTargetFlags() const { return TargetFlags; }
-
- static bool classof(const ExternalSymbolSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::ExternalSymbol ||
- N->getOpcode() == ISD::TargetExternalSymbol;
- }
-};
-
-class CondCodeSDNode : public SDNode {
- ISD::CondCode Condition;
- friend class SelectionDAG;
- explicit CondCodeSDNode(ISD::CondCode Cond)
- : SDNode(ISD::CONDCODE, DebugLoc(), getSDVTList(MVT::Other)),
- Condition(Cond) {
- }
-public:
-
- ISD::CondCode get() const { return Condition; }
-
- static bool classof(const CondCodeSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::CONDCODE;
- }
-};
-
-/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
-/// future and most targets don't support it.
-class CvtRndSatSDNode : public SDNode {
- ISD::CvtCode CvtCode;
- friend class SelectionDAG;
- explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
- unsigned NumOps, ISD::CvtCode Code)
- : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
- CvtCode(Code) {
- assert(NumOps == 5 && "wrong number of operations");
- }
-public:
- ISD::CvtCode getCvtCode() const { return CvtCode; }
-
- static bool classof(const CvtRndSatSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::CONVERT_RNDSAT;
- }
-};
-
-namespace ISD {
- struct ArgFlagsTy {
- private:
- static const uint64_t NoFlagSet = 0ULL;
- static const uint64_t ZExt = 1ULL<<0; ///< Zero extended
- static const uint64_t ZExtOffs = 0;
- static const uint64_t SExt = 1ULL<<1; ///< Sign extended
- static const uint64_t SExtOffs = 1;
- static const uint64_t InReg = 1ULL<<2; ///< Passed in register
- static const uint64_t InRegOffs = 2;
- static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr
- static const uint64_t SRetOffs = 3;
- static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value
- static const uint64_t ByValOffs = 4;
- static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain
- static const uint64_t NestOffs = 5;
- static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment
- static const uint64_t ByValAlignOffs = 6;
- static const uint64_t Split = 1ULL << 10;
- static const uint64_t SplitOffs = 10;
- static const uint64_t OrigAlign = 0x1FULL<<27;
- static const uint64_t OrigAlignOffs = 27;
- static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size
- static const uint64_t ByValSizeOffs = 32;
-
- static const uint64_t One = 1ULL; //< 1 of this type, for shifts
-
- uint64_t Flags;
- public:
- ArgFlagsTy() : Flags(0) { }
-
- bool isZExt() const { return Flags & ZExt; }
- void setZExt() { Flags |= One << ZExtOffs; }
-
- bool isSExt() const { return Flags & SExt; }
- void setSExt() { Flags |= One << SExtOffs; }
-
- bool isInReg() const { return Flags & InReg; }
- void setInReg() { Flags |= One << InRegOffs; }
-
- bool isSRet() const { return Flags & SRet; }
- void setSRet() { Flags |= One << SRetOffs; }
-
- bool isByVal() const { return Flags & ByVal; }
- void setByVal() { Flags |= One << ByValOffs; }
-
- bool isNest() const { return Flags & Nest; }
- void setNest() { Flags |= One << NestOffs; }
-
- unsigned getByValAlign() const {
- return (unsigned)
- ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
- }
- void setByValAlign(unsigned A) {
- Flags = (Flags & ~ByValAlign) |
- (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
- }
-
- bool isSplit() const { return Flags & Split; }
- void setSplit() { Flags |= One << SplitOffs; }
-
- unsigned getOrigAlign() const {
- return (unsigned)
- ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
- }
- void setOrigAlign(unsigned A) {
- Flags = (Flags & ~OrigAlign) |
- (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
- }
-
- unsigned getByValSize() const {
- return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
- }
- void setByValSize(unsigned S) {
- Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
- }
-
- /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
- std::string getArgFlagsString();
-
- /// getRawBits - Represent the flags as a bunch of bits.
- uint64_t getRawBits() const { return Flags; }
- };
-
- /// InputArg - This struct carries flags and type information about a
- /// single incoming (formal) argument or incoming (from the perspective
- /// of the caller) return value virtual register.
- ///
- struct InputArg {
- ArgFlagsTy Flags;
- EVT VT;
- bool Used;
-
- InputArg() : VT(MVT::Other), Used(false) {}
- InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
- : Flags(flags), VT(vt), Used(used) {
- assert(VT.isSimple() &&
- "InputArg value type must be Simple!");
- }
- };
-
- /// OutputArg - This struct carries flags and a value for a
- /// single outgoing (actual) argument or outgoing (from the perspective
- /// of the caller) return value virtual register.
- ///
- struct OutputArg {
- ArgFlagsTy Flags;
- SDValue Val;
- bool IsFixed;
-
- OutputArg() : IsFixed(false) {}
- OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
- : Flags(flags), Val(val), IsFixed(isfixed) {
- assert(Val.getValueType().isSimple() &&
- "OutputArg value type must be Simple!");
- }
- };
-}
-
-/// VTSDNode - This class is used to represent EVT's, which are used
-/// to parameterize some operations.
-class VTSDNode : public SDNode {
- EVT ValueType;
- friend class SelectionDAG;
- explicit VTSDNode(EVT VT)
- : SDNode(ISD::VALUETYPE, DebugLoc(), getSDVTList(MVT::Other)),
- ValueType(VT) {
- }
-public:
-
- EVT getVT() const { return ValueType; }
-
- static bool classof(const VTSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::VALUETYPE;
- }
-};
-
-/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
-///
-class LSBaseSDNode : public MemSDNode {
- //! Operand array for load and store
- /*!
- \note Moving this array to the base class captures more
- common functionality shared between LoadSDNode and
- StoreSDNode
- */
- SDUse Ops[4];
-public:
- LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
- unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
- EVT MemVT, MachineMemOperand *MMO)
- : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
- SubclassData |= AM << 2;
- assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
- InitOperands(Ops, Operands, numOperands);
- assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
- "Only indexed loads and stores have a non-undef offset operand");
- }
-
- const SDValue &getOffset() const {
- return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
- }
-
- /// getAddressingMode - Return the addressing mode for this load or store:
- /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
- ISD::MemIndexedMode getAddressingMode() const {
- return ISD::MemIndexedMode((SubclassData >> 2) & 7);
- }
-
- /// isIndexed - Return true if this is a pre/post inc/dec load/store.
- bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
-
- /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
- bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
-
- static bool classof(const LSBaseSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::LOAD ||
- N->getOpcode() == ISD::STORE;
- }
-};
-
-/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
-///
-class LoadSDNode : public LSBaseSDNode {
- friend class SelectionDAG;
- LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
- ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
- MachineMemOperand *MMO)
- : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
- VTs, AM, MemVT, MMO) {
- SubclassData |= (unsigned short)ETy;
- assert(getExtensionType() == ETy && "LoadExtType encoding error!");
- assert(readMem() && "Load MachineMemOperand is not a load!");
- assert(!writeMem() && "Load MachineMemOperand is a store!");
- }
-public:
-
- /// getExtensionType - Return whether this is a plain node,
- /// or one of the varieties of value-extending loads.
- ISD::LoadExtType getExtensionType() const {
- return ISD::LoadExtType(SubclassData & 3);
- }
-
- const SDValue &getBasePtr() const { return getOperand(1); }
- const SDValue &getOffset() const { return getOperand(2); }
-
- static bool classof(const LoadSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::LOAD;
- }
-};
-
-/// StoreSDNode - This class is used to represent ISD::STORE nodes.
-///
-class StoreSDNode : public LSBaseSDNode {
- friend class SelectionDAG;
- StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
- ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
- MachineMemOperand *MMO)
- : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
- VTs, AM, MemVT, MMO) {
- SubclassData |= (unsigned short)isTrunc;
- assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
- assert(!readMem() && "Store MachineMemOperand is a load!");
- assert(writeMem() && "Store MachineMemOperand is not a store!");
- }
-public:
-
- /// isTruncatingStore - Return true if the op does a truncation before store.
- /// For integers this is the same as doing a TRUNCATE and storing the result.
- /// For floats, it is the same as doing an FP_ROUND and storing the result.
- bool isTruncatingStore() const { return SubclassData & 1; }
-
- const SDValue &getValue() const { return getOperand(1); }
- const SDValue &getBasePtr() const { return getOperand(2); }
- const SDValue &getOffset() const { return getOperand(3); }
-
- static bool classof(const StoreSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->getOpcode() == ISD::STORE;
- }
-};
-
-/// MachineSDNode - An SDNode that represents everything that will be needed
-/// to construct a MachineInstr. These nodes are created during the
-/// instruction selection proper phase.
-///
-class MachineSDNode : public SDNode {
-public:
- typedef MachineMemOperand **mmo_iterator;
-
-private:
- friend class SelectionDAG;
- MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
- : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
-
- /// LocalOperands - Operands for this instruction, if they fit here. If
- /// they don't, this field is unused.
- SDUse LocalOperands[4];
-
- /// MemRefs - Memory reference descriptions for this instruction.
- mmo_iterator MemRefs;
- mmo_iterator MemRefsEnd;
-
-public:
- mmo_iterator memoperands_begin() const { return MemRefs; }
- mmo_iterator memoperands_end() const { return MemRefsEnd; }
- bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
-
- /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
- /// list. This does not transfer ownership.
- void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
- MemRefs = NewMemRefs;
- MemRefsEnd = NewMemRefsEnd;
- }
-
- static bool classof(const MachineSDNode *) { return true; }
- static bool classof(const SDNode *N) {
- return N->isMachineOpcode();
- }
-};
-
-class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
- SDNode, ptrdiff_t> {
- SDNode *Node;
- unsigned Operand;
-
- SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
-public:
- bool operator==(const SDNodeIterator& x) const {
- return Operand == x.Operand;
- }
- bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
-
- const SDNodeIterator &operator=(const SDNodeIterator &I) {
- assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
- Operand = I.Operand;
- return *this;
- }
-
- pointer operator*() const {
- return Node->getOperand(Operand).getNode();
- }
- pointer operator->() const { return operator*(); }
-
- SDNodeIterator& operator++() { // Preincrement
- ++Operand;
- return *this;
- }
- SDNodeIterator operator++(int) { // Postincrement
- SDNodeIterator tmp = *this; ++*this; return tmp;
- }
- size_t operator-(SDNodeIterator Other) const {
- assert(Node == Other.Node &&
- "Cannot compare iterators of two different nodes!");
- return Operand - Other.Operand;
- }
-
- static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
- static SDNodeIterator end (SDNode *N) {
- return SDNodeIterator(N, N->getNumOperands());
- }
-
- unsigned getOperand() const { return Operand; }
- const SDNode *getNode() const { return Node; }
-};
-
-template <> struct GraphTraits<SDNode*> {
- typedef SDNode NodeType;
- typedef SDNodeIterator ChildIteratorType;
- static inline NodeType *getEntryNode(SDNode *N) { return N; }
- static inline ChildIteratorType child_begin(NodeType *N) {
- return SDNodeIterator::begin(N);
- }
- static inline ChildIteratorType child_end(NodeType *N) {
- return SDNodeIterator::end(N);
- }
-};
-
-/// LargestSDNode - The largest SDNode class.
-///
-typedef LoadSDNode LargestSDNode;
-
-/// MostAlignedSDNode - The SDNode class with the greatest alignment
-/// requirement.
-///
-typedef GlobalAddressSDNode MostAlignedSDNode;
-
-namespace ISD {
- /// isNormalLoad - Returns true if the specified node is a non-extending
- /// and unindexed load.
- inline bool isNormalLoad(const SDNode *N) {
- const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
- return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
- Ld->getAddressingMode() == ISD::UNINDEXED;
- }
-
- /// isNON_EXTLoad - Returns true if the specified node is a non-extending
- /// load.
- inline bool isNON_EXTLoad(const SDNode *N) {
- return isa<LoadSDNode>(N) &&
- cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
- }
-
- /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
- ///
- inline bool isEXTLoad(const SDNode *N) {
- return isa<LoadSDNode>(N) &&
- cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
- }
-
- /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
- ///
- inline bool isSEXTLoad(const SDNode *N) {
- return isa<LoadSDNode>(N) &&
- cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
- }
-
- /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
- ///
- inline bool isZEXTLoad(const SDNode *N) {
- return isa<LoadSDNode>(N) &&
- cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
- }
-
- /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
- ///
- inline bool isUNINDEXEDLoad(const SDNode *N) {
- return isa<LoadSDNode>(N) &&
- cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
- }
-
- /// isNormalStore - Returns true if the specified node is a non-truncating
- /// and unindexed store.
- inline bool isNormalStore(const SDNode *N) {
- const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
- return St && !St->isTruncatingStore() &&
- St->getAddressingMode() == ISD::UNINDEXED;
- }
-
- /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
- /// store.
- inline bool isNON_TRUNCStore(const SDNode *N) {
- return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
- }
-
- /// isTRUNCStore - Returns true if the specified node is a truncating
- /// store.
- inline bool isTRUNCStore(const SDNode *N) {
- return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
- }
-
- /// isUNINDEXEDStore - Returns true if the specified node is an
- /// unindexed store.
- inline bool isUNINDEXEDStore(const SDNode *N) {
- return isa<StoreSDNode>(N) &&
- cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
- }
-}
+} // end llvm::ISD namespace
} // end llvm namespace
Modified: llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h?rev=101268&r1=101267&r2=101268&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/SelectionDAGNodes.h Wed Apr 14 13:44:34 2010
@@ -25,6 +25,7 @@
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/MathExtras.h"
@@ -56,579 +57,7 @@
unsigned int NumVTs;
};
-/// ISD namespace - This namespace contains an enum which represents all of the
-/// SelectionDAG node types and value types.
-///
namespace ISD {
-
- //===--------------------------------------------------------------------===//
- /// ISD::NodeType enum - This enum defines the target-independent operators
- /// for a SelectionDAG.
- ///
- /// Targets may also define target-dependent operator codes for SDNodes. For
- /// example, on x86, these are the enum values in the X86ISD namespace.
- /// Targets should aim to use target-independent operators to model their
- /// instruction sets as much as possible, and only use target-dependent
- /// operators when they have special requirements.
- ///
- /// Finally, during and after selection proper, SNodes may use special
- /// operator codes that correspond directly with MachineInstr opcodes. These
- /// are used to represent selected instructions. See the isMachineOpcode()
- /// and getMachineOpcode() member functions of SDNode.
- ///
- enum NodeType {
- // DELETED_NODE - This is an illegal value that is used to catch
- // errors. This opcode is not a legal opcode for any node.
- DELETED_NODE,
-
- // EntryToken - This is the marker used to indicate the start of the region.
- EntryToken,
-
- // TokenFactor - This node takes multiple tokens as input and produces a
- // single token result. This is used to represent the fact that the operand
- // operators are independent of each other.
- TokenFactor,
-
- // AssertSext, AssertZext - These nodes record if a register contains a
- // value that has already been zero or sign extended from a narrower type.
- // These nodes take two operands. The first is the node that has already
- // been extended, and the second is a value type node indicating the width
- // of the extension
- AssertSext, AssertZext,
-
- // Various leaf nodes.
- BasicBlock, VALUETYPE, CONDCODE, Register,
- Constant, ConstantFP,
- GlobalAddress, GlobalTLSAddress, FrameIndex,
- JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
-
- // The address of the GOT
- GLOBAL_OFFSET_TABLE,
-
- // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
- // llvm.returnaddress on the DAG. These nodes take one operand, the index
- // of the frame or return address to return. An index of zero corresponds
- // to the current function's frame or return address, an index of one to the
- // parent's frame or return address, and so on.
- FRAMEADDR, RETURNADDR,
-
- // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
- // first (possible) on-stack argument. This is needed for correct stack
- // adjustment during unwind.
- FRAME_TO_ARGS_OFFSET,
-
- // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
- // address of the exception block on entry to an landing pad block.
- EXCEPTIONADDR,
-
- // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
- // address of the Language Specific Data Area for the enclosing function.
- LSDAADDR,
-
- // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
- // the selection index of the exception thrown.
- EHSELECTION,
-
- // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
- // 'eh_return' gcc dwarf builtin, which is used to return from
- // exception. The general meaning is: adjust stack by OFFSET and pass
- // execution to HANDLER. Many platform-related details also :)
- EH_RETURN,
-
- // TargetConstant* - Like Constant*, but the DAG does not do any folding or
- // simplification of the constant.
- TargetConstant,
- TargetConstantFP,
-
- // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
- // anything else with this node, and this is valid in the target-specific
- // dag, turning into a GlobalAddress operand.
- TargetGlobalAddress,
- TargetGlobalTLSAddress,
- TargetFrameIndex,
- TargetJumpTable,
- TargetConstantPool,
- TargetExternalSymbol,
- TargetBlockAddress,
-
- /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
- /// This node represents a target intrinsic function with no side effects.
- /// The first operand is the ID number of the intrinsic from the
- /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
- /// node has returns the result of the intrinsic.
- INTRINSIC_WO_CHAIN,
-
- /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
- /// This node represents a target intrinsic function with side effects that
- /// returns a result. The first operand is a chain pointer. The second is
- /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
- /// operands to the intrinsic follow. The node has two results, the result
- /// of the intrinsic and an output chain.
- INTRINSIC_W_CHAIN,
-
- /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
- /// This node represents a target intrinsic function with side effects that
- /// does not return a result. The first operand is a chain pointer. The
- /// second is the ID number of the intrinsic from the llvm::Intrinsic
- /// namespace. The operands to the intrinsic follow.
- INTRINSIC_VOID,
-
- // CopyToReg - This node has three operands: a chain, a register number to
- // set to this value, and a value.
- CopyToReg,
-
- // CopyFromReg - This node indicates that the input value is a virtual or
- // physical register that is defined outside of the scope of this
- // SelectionDAG. The register is available from the RegisterSDNode object.
- CopyFromReg,
-
- // UNDEF - An undefined node
- UNDEF,
-
- // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
- // a Constant, which is required to be operand #1) half of the integer or
- // float value specified as operand #0. This is only for use before
- // legalization, for values that will be broken into multiple registers.
- EXTRACT_ELEMENT,
-
- // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
- // two values of the same integer value type, this produces a value twice as
- // big. Like EXTRACT_ELEMENT, this can only be used before legalization.
- BUILD_PAIR,
-
- // MERGE_VALUES - This node takes multiple discrete operands and returns
- // them all as its individual results. This nodes has exactly the same
- // number of inputs and outputs. This node is useful for some pieces of the
- // code generator that want to think about a single node with multiple
- // results, not multiple nodes.
- MERGE_VALUES,
-
- // Simple integer binary arithmetic operators.
- ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
-
- // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
- // a signed/unsigned value of type i[2*N], and return the full value as
- // two results, each of type iN.
- SMUL_LOHI, UMUL_LOHI,
-
- // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
- // remainder result.
- SDIVREM, UDIVREM,
-
- // CARRY_FALSE - This node is used when folding other nodes,
- // like ADDC/SUBC, which indicate the carry result is always false.
- CARRY_FALSE,
-
- // Carry-setting nodes for multiple precision addition and subtraction.
- // These nodes take two operands of the same value type, and produce two
- // results. The first result is the normal add or sub result, the second
- // result is the carry flag result.
- ADDC, SUBC,
-
- // Carry-using nodes for multiple precision addition and subtraction. These
- // nodes take three operands: The first two are the normal lhs and rhs to
- // the add or sub, and the third is the input carry flag. These nodes
- // produce two results; the normal result of the add or sub, and the output
- // carry flag. These nodes both read and write a carry flag to allow them
- // to them to be chained together for add and sub of arbitrarily large
- // values.
- ADDE, SUBE,
-
- // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
- // These nodes take two operands: the normal LHS and RHS to the add. They
- // produce two results: the normal result of the add, and a boolean that
- // indicates if an overflow occured (*not* a flag, because it may be stored
- // to memory, etc.). If the type of the boolean is not i1 then the high
- // bits conform to getBooleanContents.
- // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
- SADDO, UADDO,
-
- // Same for subtraction
- SSUBO, USUBO,
-
- // Same for multiplication
- SMULO, UMULO,
-
- // Simple binary floating point operators.
- FADD, FSUB, FMUL, FDIV, FREM,
-
- // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
- // DAG node does not require that X and Y have the same type, just that they
- // are both floating point. X and the result must have the same type.
- // FCOPYSIGN(f32, f64) is allowed.
- FCOPYSIGN,
-
- // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
- // value as an integer 0/1 value.
- FGETSIGN,
-
- /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
- /// specified, possibly variable, elements. The number of elements is
- /// required to be a power of two. The types of the operands must all be
- /// the same and must match the vector element type, except that integer
- /// types are allowed to be larger than the element type, in which case
- /// the operands are implicitly truncated.
- BUILD_VECTOR,
-
- /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
- /// at IDX replaced with VAL. If the type of VAL is larger than the vector
- /// element type then VAL is truncated before replacement.
- INSERT_VECTOR_ELT,
-
- /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
- /// identified by the (potentially variable) element number IDX. If the
- /// return type is an integer type larger than the element type of the
- /// vector, the result is extended to the width of the return type.
- EXTRACT_VECTOR_ELT,
-
- /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
- /// vector type with the same length and element type, this produces a
- /// concatenated vector result value, with length equal to the sum of the
- /// lengths of the input vectors.
- CONCAT_VECTORS,
-
- /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
- /// vector value) starting with the (potentially variable) element number
- /// IDX, which must be a multiple of the result vector length.
- EXTRACT_SUBVECTOR,
-
- /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
- /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int
- /// values that indicate which value (or undef) each result element will
- /// get. These constant ints are accessible through the
- /// ShuffleVectorSDNode class. This is quite similar to the Altivec
- /// 'vperm' instruction, except that the indices must be constants and are
- /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
- VECTOR_SHUFFLE,
-
- /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
- /// scalar value into element 0 of the resultant vector type. The top
- /// elements 1 to N-1 of the N-element vector are undefined. The type
- /// of the operand must match the vector element type, except when they
- /// are integer types. In this case the operand is allowed to be wider
- /// than the vector element type, and is implicitly truncated to it.
- SCALAR_TO_VECTOR,
-
- // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
- // an unsigned/signed value of type i[2*N], then return the top part.
- MULHU, MULHS,
-
- // Bitwise operators - logical and, logical or, logical xor, shift left,
- // shift right algebraic (shift in sign bits), shift right logical (shift in
- // zeroes), rotate left, rotate right, and byteswap.
- AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
-
- // Counting operators
- CTTZ, CTLZ, CTPOP,
-
- // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
- // i1 then the high bits must conform to getBooleanContents.
- SELECT,
-
- // Select with condition operator - This selects between a true value and
- // a false value (ops #2 and #3) based on the boolean result of comparing
- // the lhs and rhs (ops #0 and #1) of a conditional expression with the
- // condition code in op #4, a CondCodeSDNode.
- SELECT_CC,
-
- // SetCC operator - This evaluates to a true value iff the condition is
- // true. If the result value type is not i1 then the high bits conform
- // to getBooleanContents. The operands to this are the left and right
- // operands to compare (ops #0, and #1) and the condition code to compare
- // them with (op #2) as a CondCodeSDNode.
- SETCC,
-
- // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
- // integer elements with all bits of the result elements set to true if the
- // comparison is true or all cleared if the comparison is false. The
- // operands to this are the left and right operands to compare (LHS/RHS) and
- // the condition code to compare them with (COND) as a CondCodeSDNode.
- VSETCC,
-
- // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
- // integer shift operations, just like ADD/SUB_PARTS. The operation
- // ordering is:
- // [Lo,Hi] = op [LoLHS,HiLHS], Amt
- SHL_PARTS, SRA_PARTS, SRL_PARTS,
-
- // Conversion operators. These are all single input single output
- // operations. For all of these, the result type must be strictly
- // wider or narrower (depending on the operation) than the source
- // type.
-
- // SIGN_EXTEND - Used for integer types, replicating the sign bit
- // into new bits.
- SIGN_EXTEND,
-
- // ZERO_EXTEND - Used for integer types, zeroing the new bits.
- ZERO_EXTEND,
-
- // ANY_EXTEND - Used for integer types. The high bits are undefined.
- ANY_EXTEND,
-
- // TRUNCATE - Completely drop the high bits.
- TRUNCATE,
-
- // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
- // depends on the first letter) to floating point.
- SINT_TO_FP,
- UINT_TO_FP,
-
- // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
- // sign extend a small value in a large integer register (e.g. sign
- // extending the low 8 bits of a 32-bit register to fill the top 24 bits
- // with the 7th bit). The size of the smaller type is indicated by the 1th
- // operand, a ValueType node.
- SIGN_EXTEND_INREG,
-
- /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
- /// integer.
- FP_TO_SINT,
- FP_TO_UINT,
-
- /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
- /// down to the precision of the destination VT. TRUNC is a flag, which is
- /// always an integer that is zero or one. If TRUNC is 0, this is a
- /// normal rounding, if it is 1, this FP_ROUND is known to not change the
- /// value of Y.
- ///
- /// The TRUNC = 1 case is used in cases where we know that the value will
- /// not be modified by the node, because Y is not using any of the extra
- /// precision of source type. This allows certain transformations like
- /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
- /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
- FP_ROUND,
-
- // FLT_ROUNDS_ - Returns current rounding mode:
- // -1 Undefined
- // 0 Round to 0
- // 1 Round to nearest
- // 2 Round to +inf
- // 3 Round to -inf
- FLT_ROUNDS_,
-
- /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
- /// rounds it to a floating point value. It then promotes it and returns it
- /// in a register of the same size. This operation effectively just
- /// discards excess precision. The type to round down to is specified by
- /// the VT operand, a VTSDNode.
- FP_ROUND_INREG,
-
- /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
- FP_EXTEND,
-
- // BIT_CONVERT - This operator converts between integer, vector and FP
- // values, as if the value was stored to memory with one type and loaded
- // from the same address with the other type (or equivalently for vector
- // format conversions, etc). The source and result are required to have
- // the same bit size (e.g. f32 <-> i32). This can also be used for
- // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
- // getNode().
- BIT_CONVERT,
-
- // CONVERT_RNDSAT - This operator is used to support various conversions
- // between various types (float, signed, unsigned and vectors of those
- // types) with rounding and saturation. NOTE: Avoid using this operator as
- // most target don't support it and the operator might be removed in the
- // future. It takes the following arguments:
- // 0) value
- // 1) dest type (type to convert to)
- // 2) src type (type to convert from)
- // 3) rounding imm
- // 4) saturation imm
- // 5) ISD::CvtCode indicating the type of conversion to do
- CONVERT_RNDSAT,
-
- // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
- // promotions and truncation for half-precision (16 bit) floating
- // numbers. We need special nodes since FP16 is a storage-only type with
- // special semantics of operations.
- FP16_TO_FP32, FP32_TO_FP16,
-
- // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
- // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
- // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
- // point operations. These are inspired by libm.
- FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
- FLOG, FLOG2, FLOG10, FEXP, FEXP2,
- FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
-
- // LOAD and STORE have token chains as their first operand, then the same
- // operands as an LLVM load/store instruction, then an offset node that
- // is added / subtracted from the base pointer to form the address (for
- // indexed memory ops).
- LOAD, STORE,
-
- // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
- // to a specified boundary. This node always has two return values: a new
- // stack pointer value and a chain. The first operand is the token chain,
- // the second is the number of bytes to allocate, and the third is the
- // alignment boundary. The size is guaranteed to be a multiple of the stack
- // alignment, and the alignment is guaranteed to be bigger than the stack
- // alignment (if required) or 0 to get standard stack alignment.
- DYNAMIC_STACKALLOC,
-
- // Control flow instructions. These all have token chains.
-
- // BR - Unconditional branch. The first operand is the chain
- // operand, the second is the MBB to branch to.
- BR,
-
- // BRIND - Indirect branch. The first operand is the chain, the second
- // is the value to branch to, which must be of the same type as the target's
- // pointer type.
- BRIND,
-
- // BR_JT - Jumptable branch. The first operand is the chain, the second
- // is the jumptable index, the last one is the jumptable entry index.
- BR_JT,
-
- // BRCOND - Conditional branch. The first operand is the chain, the
- // second is the condition, the third is the block to branch to if the
- // condition is true. If the type of the condition is not i1, then the
- // high bits must conform to getBooleanContents.
- BRCOND,
-
- // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
- // that the condition is represented as condition code, and two nodes to
- // compare, rather than as a combined SetCC node. The operands in order are
- // chain, cc, lhs, rhs, block to branch to if condition is true.
- BR_CC,
-
- // INLINEASM - Represents an inline asm block. This node always has two
- // return values: a chain and a flag result. The inputs are as follows:
- // Operand #0 : Input chain.
- // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
- // Operand #2 : a MDNodeSDNode with the !srcloc metadata.
- // After this, it is followed by a list of operands with this format:
- // ConstantSDNode: Flags that encode whether it is a mem or not, the
- // of operands that follow, etc. See InlineAsm.h.
- // ... however many operands ...
- // Operand #last: Optional, an incoming flag.
- //
- // The variable width operands are required to represent target addressing
- // modes as a single "operand", even though they may have multiple
- // SDOperands.
- INLINEASM,
-
- // EH_LABEL - Represents a label in mid basic block used to track
- // locations needed for debug and exception handling tables. These nodes
- // take a chain as input and return a chain.
- EH_LABEL,
-
- // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
- // value, the same type as the pointer type for the system, and an output
- // chain.
- STACKSAVE,
-
- // STACKRESTORE has two operands, an input chain and a pointer to restore to
- // it returns an output chain.
- STACKRESTORE,
-
- // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
- // a call sequence, and carry arbitrary information that target might want
- // to know. The first operand is a chain, the rest are specified by the
- // target and not touched by the DAG optimizers.
- // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
- CALLSEQ_START, // Beginning of a call sequence
- CALLSEQ_END, // End of a call sequence
-
- // VAARG - VAARG has three operands: an input chain, a pointer, and a
- // SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
- VAARG,
-
- // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
- // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
- // source.
- VACOPY,
-
- // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
- // pointer, and a SRCVALUE.
- VAEND, VASTART,
-
- // SRCVALUE - This is a node type that holds a Value* that is used to
- // make reference to a value in the LLVM IR.
- SRCVALUE,
-
- // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
- // reference metadata in the IR.
- MDNODE_SDNODE,
-
- // PCMARKER - This corresponds to the pcmarker intrinsic.
- PCMARKER,
-
- // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
- // The only operand is a chain and a value and a chain are produced. The
- // value is the contents of the architecture specific cycle counter like
- // register (or other high accuracy low latency clock source)
- READCYCLECOUNTER,
-
- // HANDLENODE node - Used as a handle for various purposes.
- HANDLENODE,
-
- // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
- // It takes as input a token chain, the pointer to the trampoline,
- // the pointer to the nested function, the pointer to pass for the
- // 'nest' parameter, a SRCVALUE for the trampoline and another for
- // the nested function (allowing targets to access the original
- // Function*). It produces the result of the intrinsic and a token
- // chain as output.
- TRAMPOLINE,
-
- // TRAP - Trapping instruction
- TRAP,
-
- // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
- // their first operand. The other operands are the address to prefetch,
- // read / write specifier, and locality specifier.
- PREFETCH,
-
- // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
- // store-store, device)
- // This corresponds to the memory.barrier intrinsic.
- // it takes an input chain, 4 operands to specify the type of barrier, an
- // operand specifying if the barrier applies to device and uncached memory
- // and produces an output chain.
- MEMBARRIER,
-
- // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
- // this corresponds to the atomic.lcs intrinsic.
- // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
- // the return is always the original value in *ptr
- ATOMIC_CMP_SWAP,
-
- // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
- // this corresponds to the atomic.swap intrinsic.
- // amt is stored to *ptr atomically.
- // the return is always the original value in *ptr
- ATOMIC_SWAP,
-
- // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
- // this corresponds to the atomic.load.[OpName] intrinsic.
- // op(*ptr, amt) is stored to *ptr atomically.
- // the return is always the original value in *ptr
- ATOMIC_LOAD_ADD,
- ATOMIC_LOAD_SUB,
- ATOMIC_LOAD_AND,
- ATOMIC_LOAD_OR,
- ATOMIC_LOAD_XOR,
- ATOMIC_LOAD_NAND,
- ATOMIC_LOAD_MIN,
- ATOMIC_LOAD_MAX,
- ATOMIC_LOAD_UMIN,
- ATOMIC_LOAD_UMAX,
-
- /// BUILTIN_OP_END - This must be the last enum value in this list.
- /// The target-specific pre-isel opcode values start here.
- BUILTIN_OP_END
- };
-
- /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
- /// which do not reference a specific memory location should be less than
- /// this value. Those that do must not be less than this value, and can
- /// be used with SelectionDAG::getMemIntrinsicNode.
- static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+100;
-
/// Node predicates
/// isBuildVectorAllOnes - Return true if the specified node is a
@@ -643,174 +72,7 @@
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool isScalarToVector(const SDNode *N);
-
- //===--------------------------------------------------------------------===//
- /// MemIndexedMode enum - This enum defines the load / store indexed
- /// addressing modes.
- ///
- /// UNINDEXED "Normal" load / store. The effective address is already
- /// computed and is available in the base pointer. The offset
- /// operand is always undefined. In addition to producing a
- /// chain, an unindexed load produces one value (result of the
- /// load); an unindexed store does not produce a value.
- ///
- /// PRE_INC Similar to the unindexed mode where the effective address is
- /// PRE_DEC the value of the base pointer add / subtract the offset.
- /// It considers the computation as being folded into the load /
- /// store operation (i.e. the load / store does the address
- /// computation as well as performing the memory transaction).
- /// The base operand is always undefined. In addition to
- /// producing a chain, pre-indexed load produces two values
- /// (result of the load and the result of the address
- /// computation); a pre-indexed store produces one value (result
- /// of the address computation).
- ///
- /// POST_INC The effective address is the value of the base pointer. The
- /// POST_DEC value of the offset operand is then added to / subtracted
- /// from the base after memory transaction. In addition to
- /// producing a chain, post-indexed load produces two values
- /// (the result of the load and the result of the base +/- offset
- /// computation); a post-indexed store produces one value (the
- /// the result of the base +/- offset computation).
- ///
- enum MemIndexedMode {
- UNINDEXED = 0,
- PRE_INC,
- PRE_DEC,
- POST_INC,
- POST_DEC,
- LAST_INDEXED_MODE
- };
-
- //===--------------------------------------------------------------------===//
- /// LoadExtType enum - This enum defines the three variants of LOADEXT
- /// (load with extension).
- ///
- /// SEXTLOAD loads the integer operand and sign extends it to a larger
- /// integer result type.
- /// ZEXTLOAD loads the integer operand and zero extends it to a larger
- /// integer result type.
- /// EXTLOAD is used for three things: floating point extending loads,
- /// integer extending loads [the top bits are undefined], and vector
- /// extending loads [load into low elt].
- ///
- enum LoadExtType {
- NON_EXTLOAD = 0,
- EXTLOAD,
- SEXTLOAD,
- ZEXTLOAD,
- LAST_LOADEXT_TYPE
- };
-
- //===--------------------------------------------------------------------===//
- /// ISD::CondCode enum - These are ordered carefully to make the bitfields
- /// below work out, when considering SETFALSE (something that never exists
- /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
- /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
- /// to. If the "N" column is 1, the result of the comparison is undefined if
- /// the input is a NAN.
- ///
- /// All of these (except for the 'always folded ops') should be handled for
- /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
- /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
- ///
- /// Note that these are laid out in a specific order to allow bit-twiddling
- /// to transform conditions.
- enum CondCode {
- // Opcode N U L G E Intuitive operation
- SETFALSE, // 0 0 0 0 Always false (always folded)
- SETOEQ, // 0 0 0 1 True if ordered and equal
- SETOGT, // 0 0 1 0 True if ordered and greater than
- SETOGE, // 0 0 1 1 True if ordered and greater than or equal
- SETOLT, // 0 1 0 0 True if ordered and less than
- SETOLE, // 0 1 0 1 True if ordered and less than or equal
- SETONE, // 0 1 1 0 True if ordered and operands are unequal
- SETO, // 0 1 1 1 True if ordered (no nans)
- SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
- SETUEQ, // 1 0 0 1 True if unordered or equal
- SETUGT, // 1 0 1 0 True if unordered or greater than
- SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
- SETULT, // 1 1 0 0 True if unordered or less than
- SETULE, // 1 1 0 1 True if unordered, less than, or equal
- SETUNE, // 1 1 1 0 True if unordered or not equal
- SETTRUE, // 1 1 1 1 Always true (always folded)
- // Don't care operations: undefined if the input is a nan.
- SETFALSE2, // 1 X 0 0 0 Always false (always folded)
- SETEQ, // 1 X 0 0 1 True if equal
- SETGT, // 1 X 0 1 0 True if greater than
- SETGE, // 1 X 0 1 1 True if greater than or equal
- SETLT, // 1 X 1 0 0 True if less than
- SETLE, // 1 X 1 0 1 True if less than or equal
- SETNE, // 1 X 1 1 0 True if not equal
- SETTRUE2, // 1 X 1 1 1 Always true (always folded)
-
- SETCC_INVALID // Marker value.
- };
-
- /// isSignedIntSetCC - Return true if this is a setcc instruction that
- /// performs a signed comparison when used with integer operands.
- inline bool isSignedIntSetCC(CondCode Code) {
- return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
- }
-
- /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
- /// performs an unsigned comparison when used with integer operands.
- inline bool isUnsignedIntSetCC(CondCode Code) {
- return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
- }
-
- /// isTrueWhenEqual - Return true if the specified condition returns true if
- /// the two operands to the condition are equal. Note that if one of the two
- /// operands is a NaN, this value is meaningless.
- inline bool isTrueWhenEqual(CondCode Cond) {
- return ((int)Cond & 1) != 0;
- }
-
- /// getUnorderedFlavor - This function returns 0 if the condition is always
- /// false if an operand is a NaN, 1 if the condition is always true if the
- /// operand is a NaN, and 2 if the condition is undefined if the operand is a
- /// NaN.
- inline unsigned getUnorderedFlavor(CondCode Cond) {
- return ((int)Cond >> 3) & 3;
- }
-
- /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
- /// 'op' is a valid SetCC operation.
- CondCode getSetCCInverse(CondCode Operation, bool isInteger);
-
- /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
- /// when given the operation for (X op Y).
- CondCode getSetCCSwappedOperands(CondCode Operation);
-
- /// getSetCCOrOperation - Return the result of a logical OR between different
- /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
- /// function returns SETCC_INVALID if it is not possible to represent the
- /// resultant comparison.
- CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
-
- /// getSetCCAndOperation - Return the result of a logical AND between
- /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
- /// function returns SETCC_INVALID if it is not possible to represent the
- /// resultant comparison.
- CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
-
- //===--------------------------------------------------------------------===//
- /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
- /// supports.
- enum CvtCode {
- CVT_FF, // Float from Float
- CVT_FS, // Float from Signed
- CVT_FU, // Float from Unsigned
- CVT_SF, // Signed from Float
- CVT_UF, // Unsigned from Float
- CVT_SS, // Signed from Signed
- CVT_SU, // Signed from Unsigned
- CVT_US, // Unsigned from Signed
- CVT_UU, // Unsigned from Unsigned
- CVT_INVALID // Marker - Invalid opcode
- };
-} // end llvm::ISD namespace
-
+} // end llvm:ISD namespace
//===----------------------------------------------------------------------===//
/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
@@ -2614,7 +1876,6 @@
}
}
-
} // end llvm namespace
#endif
More information about the llvm-commits
mailing list