[llvm-commits] [llvm] r91459 - in /llvm/trunk: lib/Transforms/Scalar/ScalarReplAggregates.cpp test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
Daniel Dunbar
daniel at zuster.org
Wed Dec 16 02:58:08 PST 2009
Hi Bob,
I reverted this, it was one of the patches responsible for the failing
x86_64-apple-darwin10 bootstrap in my testing.
- Daniel
On Tue, Dec 15, 2009 at 2:00 PM, Bob Wilson <bob.wilson at apple.com> wrote:
> Author: bwilson
> Date: Tue Dec 15 16:00:51 2009
> New Revision: 91459
>
> URL: http://llvm.org/viewvc/llvm-project?rev=91459&view=rev
> Log:
> Reapply 91184 with fixes and an addition to the testcase to cover the problem
> found last time. Instead of trying to modify the IR while iterating over it,
> I've change it to keep a list of WeakVH references to dead instructions, and
> then delete those instructions later. I also added some special case code to
> detect and handle the situation when both operands of a memcpy intrinsic are
> referencing the same alloca.
>
> Added:
> llvm/trunk/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
> Modified:
> llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp
>
> Modified: llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp?rev=91459&r1=91458&r2=91459&view=diff
>
> ==============================================================================
> --- llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp (original)
> +++ llvm/trunk/lib/Transforms/Scalar/ScalarReplAggregates.cpp Tue Dec 15 16:00:51 2009
> @@ -74,6 +74,10 @@
> private:
> TargetData *TD;
>
> + /// DeadInsts - Keep track of instructions we have made dead, so that
> + /// we can remove them after we are done working.
> + SmallVector<WeakVH, 16> DeadInsts;
> +
> /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
> /// information about the uses. All these fields are initialized to false
> /// and set to true when something is learned.
> @@ -102,25 +106,30 @@
>
> int isSafeAllocaToScalarRepl(AllocaInst *AI);
>
> - void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
> - AllocaInfo &Info);
> - void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
> - AllocaInfo &Info);
> - void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
> - unsigned OpNo, AllocaInfo &Info);
> - void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
> - AllocaInfo &Info);
> + void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
> + uint64_t ArrayOffset, AllocaInfo &Info);
> + void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
> + uint64_t &ArrayOffset, AllocaInfo &Info);
> + void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t ArrayOffset,
> + uint64_t MemSize, const Type *MemOpType, bool isStore,
> + AllocaInfo &Info);
> + bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
> + unsigned FindElementAndOffset(const Type *&T, uint64_t &Offset);
>
> void DoScalarReplacement(AllocaInst *AI,
> std::vector<AllocaInst*> &WorkList);
> + void DeleteDeadInstructions();
> void CleanupGEP(GetElementPtrInst *GEP);
> - void CleanupAllocaUsers(AllocaInst *AI);
> + void CleanupAllocaUsers(Value *V);
> AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
>
> - void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
> - SmallVector<AllocaInst*, 32> &NewElts);
> -
> - void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
> + void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
> + SmallVector<AllocaInst*, 32> &NewElts);
> + void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
> + SmallVector<AllocaInst*, 32> &NewElts);
> + void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
> + SmallVector<AllocaInst*, 32> &NewElts);
> + void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
> AllocaInst *AI,
> SmallVector<AllocaInst*, 32> &NewElts);
> void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
> @@ -360,176 +369,37 @@
> }
> }
>
> - // Now that we have created the alloca instructions that we want to use,
> - // expand the getelementptr instructions to use them.
> - while (!AI->use_empty()) {
> - Instruction *User = cast<Instruction>(AI->use_back());
> - if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
> - RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
> - BCInst->eraseFromParent();
> - continue;
> - }
> -
> - // Replace:
> - // %res = load { i32, i32 }* %alloc
> - // with:
> - // %load.0 = load i32* %alloc.0
> - // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
> - // %load.1 = load i32* %alloc.1
> - // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
> - // (Also works for arrays instead of structs)
> - if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
> - Value *Insert = UndefValue::get(LI->getType());
> - for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
> - Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
> - Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
> - }
> - LI->replaceAllUsesWith(Insert);
> - LI->eraseFromParent();
> - continue;
> - }
> + // Now that we have created the new alloca instructions, rewrite all the
> + // uses of the old alloca.
> + DeadInsts.push_back(AI);
> + RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
>
> - // Replace:
> - // store { i32, i32 } %val, { i32, i32 }* %alloc
> - // with:
> - // %val.0 = extractvalue { i32, i32 } %val, 0
> - // store i32 %val.0, i32* %alloc.0
> - // %val.1 = extractvalue { i32, i32 } %val, 1
> - // store i32 %val.1, i32* %alloc.1
> - // (Also works for arrays instead of structs)
> - if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
> - Value *Val = SI->getOperand(0);
> - for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
> - Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
> - new StoreInst(Extract, ElementAllocas[i], SI);
> - }
> - SI->eraseFromParent();
> - continue;
> - }
> -
> - GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
> - // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
> - unsigned Idx =
> - (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
> -
> - assert(Idx < ElementAllocas.size() && "Index out of range?");
> - AllocaInst *AllocaToUse = ElementAllocas[Idx];
> -
> - Value *RepValue;
> - if (GEPI->getNumOperands() == 3) {
> - // Do not insert a new getelementptr instruction with zero indices, only
> - // to have it optimized out later.
> - RepValue = AllocaToUse;
> - } else {
> - // We are indexing deeply into the structure, so we still need a
> - // getelement ptr instruction to finish the indexing. This may be
> - // expanded itself once the worklist is rerun.
> - //
> - SmallVector<Value*, 8> NewArgs;
> - NewArgs.push_back(Constant::getNullValue(
> - Type::getInt32Ty(AI->getContext())));
> - NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
> - RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
> - NewArgs.end(), "", GEPI);
> - RepValue->takeName(GEPI);
> - }
> -
> - // If this GEP is to the start of the aggregate, check for memcpys.
> - if (Idx == 0 && GEPI->hasAllZeroIndices())
> - RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
> -
> - // Move all of the users over to the new GEP.
> - GEPI->replaceAllUsesWith(RepValue);
> - // Delete the old GEP
> - GEPI->eraseFromParent();
> - }
> + // Now erase any instructions that were made dead while rewriting the alloca.
> + DeleteDeadInstructions();
>
> - // Finally, delete the Alloca instruction
> - AI->eraseFromParent();
> NumReplaced++;
> }
>
> -/// isSafeElementUse - Check to see if this use is an allowed use for a
> -/// getelementptr instruction of an array aggregate allocation. isFirstElt
> -/// indicates whether Ptr is known to the start of the aggregate.
> -void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
> - AllocaInfo &Info) {
> - for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
> - I != E; ++I) {
> - Instruction *User = cast<Instruction>(*I);
> - switch (User->getOpcode()) {
> - case Instruction::Load: break;
> - case Instruction::Store:
> - // Store is ok if storing INTO the pointer, not storing the pointer
> - if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
> - break;
> - case Instruction::GetElementPtr: {
> - GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
> - bool AreAllZeroIndices = isFirstElt;
> - if (GEP->getNumOperands() > 1 &&
> - (!isa<ConstantInt>(GEP->getOperand(1)) ||
> - !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
> - // Using pointer arithmetic to navigate the array.
> - return MarkUnsafe(Info);
> -
> - // Verify that any array subscripts are in range.
> - for (gep_type_iterator GEPIt = gep_type_begin(GEP),
> - E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
> - // Ignore struct elements, no extra checking needed for these.
> - if (isa<StructType>(*GEPIt))
> - continue;
> -
> - // This GEP indexes an array. Verify that this is an in-range
> - // constant integer. Specifically, consider A[0][i]. We cannot know that
> - // the user isn't doing invalid things like allowing i to index an
> - // out-of-range subscript that accesses A[1]. Because of this, we have
> - // to reject SROA of any accesses into structs where any of the
> - // components are variables.
> - ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
> - if (!IdxVal) return MarkUnsafe(Info);
> -
> - // Are all indices still zero?
> - AreAllZeroIndices &= IdxVal->isZero();
> -
> - if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
> - if (IdxVal->getZExtValue() >= AT->getNumElements())
> - return MarkUnsafe(Info);
> - } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
> - if (IdxVal->getZExtValue() >= VT->getNumElements())
> - return MarkUnsafe(Info);
> - }
> +/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
> +/// recursively including all their operands that become trivially dead.
> +void SROA::DeleteDeadInstructions() {
> + while (!DeadInsts.empty()) {
> + Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
> + if (I == 0)
> + continue;
> +
> + for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
> + if (Instruction *U = dyn_cast<Instruction>(*OI)) {
> + // Zero out the operand and see if it becomes trivially dead.
> + *OI = 0;
> + if (isInstructionTriviallyDead(U))
> + DeadInsts.push_back(U);
> }
> -
> - isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
> - if (Info.isUnsafe) return;
> - break;
> - }
> - case Instruction::BitCast:
> - if (isFirstElt) {
> - isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
> - if (Info.isUnsafe) return;
> - break;
> - }
> - DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
> - return MarkUnsafe(Info);
> - case Instruction::Call:
> - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
> - if (isFirstElt) {
> - isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
> - if (Info.isUnsafe) return;
> - break;
> - }
> - }
> - DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
> - return MarkUnsafe(Info);
> - default:
> - DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
> - return MarkUnsafe(Info);
> - }
> +
> + I->eraseFromParent();
> }
> - return; // All users look ok :)
> }
> -
> +
> /// AllUsersAreLoads - Return true if all users of this value are loads.
> static bool AllUsersAreLoads(Value *Ptr) {
> for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
> @@ -539,72 +409,116 @@
> return true;
> }
>
> -/// isSafeUseOfAllocation - Check if this user is an allowed use for an
> -/// aggregate allocation.
> -void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
> - AllocaInfo &Info) {
> - if (BitCastInst *C = dyn_cast<BitCastInst>(User))
> - return isSafeUseOfBitCastedAllocation(C, AI, Info);
> -
> - if (LoadInst *LI = dyn_cast<LoadInst>(User))
> - if (!LI->isVolatile())
> - return;// Loads (returning a first class aggregrate) are always rewritable
> -
> - if (StoreInst *SI = dyn_cast<StoreInst>(User))
> - if (!SI->isVolatile() && SI->getOperand(0) != AI)
> - return;// Store is ok if storing INTO the pointer, not storing the pointer
> -
> - GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
> - if (GEPI == 0)
> - return MarkUnsafe(Info);
> -
> - gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
> +/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
> +/// performing scalar replacement of alloca AI. The results are flagged in
> +/// the Info parameter. Offset and ArrayOffset indicate the position within
> +/// AI that is referenced by this instruction.
> +void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
> + uint64_t ArrayOffset, AllocaInfo &Info) {
> + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
> + Instruction *User = cast<Instruction>(*UI);
>
> - // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
> - if (I == E ||
> - I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
> - return MarkUnsafe(Info);
> + if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
> + isSafeForScalarRepl(BC, AI, Offset, ArrayOffset, Info);
> + } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
> + uint64_t GEPArrayOffset = ArrayOffset;
> + uint64_t GEPOffset = Offset;
> + isSafeGEP(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
> + if (!Info.isUnsafe)
> + isSafeForScalarRepl(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
> + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
> + ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
> + if (Length)
> + isSafeMemAccess(AI, Offset, ArrayOffset, Length->getZExtValue(), 0,
> + UI.getOperandNo() == 1, Info);
> + else
> + MarkUnsafe(Info);
> + } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
> + if (!LI->isVolatile()) {
> + const Type *LIType = LI->getType();
> + isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(LIType),
> + LIType, false, Info);
> + } else
> + MarkUnsafe(Info);
> + } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
> + // Store is ok if storing INTO the pointer, not storing the pointer
> + if (!SI->isVolatile() && SI->getOperand(0) != I) {
> + const Type *SIType = SI->getOperand(0)->getType();
> + isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(SIType),
> + SIType, true, Info);
> + } else
> + MarkUnsafe(Info);
> + } else if (isa<DbgInfoIntrinsic>(UI)) {
> + // If one user is DbgInfoIntrinsic then check if all users are
> + // DbgInfoIntrinsics.
> + if (OnlyUsedByDbgInfoIntrinsics(I)) {
> + Info.needsCleanup = true;
> + return;
> + }
> + MarkUnsafe(Info);
> + } else {
> + DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
> + MarkUnsafe(Info);
> + }
> + if (Info.isUnsafe) return;
> }
> +}
>
> - ++I;
> - if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
> +/// isSafeGEP - Check if a GEP instruction can be handled for scalar
> +/// replacement. It is safe when all the indices are constant, in-bounds
> +/// references, and when the resulting offset corresponds to an element within
> +/// the alloca type. The results are flagged in the Info parameter. Upon
> +/// return, Offset is adjusted as specified by the GEP indices. For the
> +/// special case of a variable index to a 2-element array, ArrayOffset is set
> +/// to the array element size.
> +void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
> + uint64_t &Offset, uint64_t &ArrayOffset,
> + AllocaInfo &Info) {
> + gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
> + if (GEPIt == E)
> + return;
> +
> + // The first GEP index must be zero.
> + if (!isa<ConstantInt>(GEPIt.getOperand()) ||
> + !cast<ConstantInt>(GEPIt.getOperand())->isZero())
> + return MarkUnsafe(Info);
> + if (++GEPIt == E)
> + return;
>
> - bool IsAllZeroIndices = true;
> -
> // If the first index is a non-constant index into an array, see if we can
> // handle it as a special case.
> - if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
> - if (!isa<ConstantInt>(I.getOperand())) {
> - IsAllZeroIndices = 0;
> - uint64_t NumElements = AT->getNumElements();
> -
> - // If this is an array index and the index is not constant, we cannot
> - // promote... that is unless the array has exactly one or two elements in
> - // it, in which case we CAN promote it, but we have to canonicalize this
> - // out if this is the only problem.
> - if ((NumElements == 1 || NumElements == 2) &&
> - AllUsersAreLoads(GEPI)) {
> + const Type *ArrayEltTy = 0;
> + if (ArrayOffset == 0 && Offset == 0) {
> + if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
> + if (!isa<ConstantInt>(GEPIt.getOperand())) {
> + uint64_t NumElements = AT->getNumElements();
> +
> + // If this is an array index and the index is not constant, we cannot
> + // promote... that is unless the array has exactly one or two elements
> + // in it, in which case we CAN promote it, but we have to canonicalize
> + // this out if this is the only problem.
> + if ((NumElements != 1 && NumElements != 2) || !AllUsersAreLoads(GEPI))
> + return MarkUnsafe(Info);
> Info.needsCleanup = true;
> - return; // Canonicalization required!
> + ArrayOffset = TD->getTypeAllocSizeInBits(AT->getElementType());
> + ArrayEltTy = AT->getElementType();
> + ++GEPIt;
> }
> - return MarkUnsafe(Info);
> }
> }
> -
> +
> // Walk through the GEP type indices, checking the types that this indexes
> // into.
> - for (; I != E; ++I) {
> + for (; GEPIt != E; ++GEPIt) {
> // Ignore struct elements, no extra checking needed for these.
> - if (isa<StructType>(*I))
> + if (isa<StructType>(*GEPIt))
> continue;
> -
> - ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
> - if (!IdxVal) return MarkUnsafe(Info);
>
> - // Are all indices still zero?
> - IsAllZeroIndices &= IdxVal->isZero();
> -
> - if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
> + ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
> + if (!IdxVal)
> + return MarkUnsafe(Info);
> +
> + if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
> // This GEP indexes an array. Verify that this is an in-range constant
> // integer. Specifically, consider A[0][i]. We cannot know that the user
> // isn't doing invalid things like allowing i to index an out-of-range
> @@ -612,147 +526,255 @@
> // of any accesses into structs where any of the components are variables.
> if (IdxVal->getZExtValue() >= AT->getNumElements())
> return MarkUnsafe(Info);
> - } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
> + } else {
> + const VectorType *VT = dyn_cast<VectorType>(*GEPIt);
> + assert(VT && "unexpected type in GEP type iterator");
> if (IdxVal->getZExtValue() >= VT->getNumElements())
> return MarkUnsafe(Info);
> }
> }
> -
> - // If there are any non-simple uses of this getelementptr, make sure to reject
> - // them.
> - return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
> +
> + // All the indices are safe. Now compute the offset due to this GEP and
> + // check if the alloca has a component element at that offset.
> + if (ArrayOffset == 0) {
> + SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
> + Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
> + &Indices[0], Indices.size());
> + } else {
> + // Both array elements have the same type, so it suffices to check one of
> + // them. Copy the GEP indices starting from the array index, but replace
> + // that variable index with a constant zero.
> + SmallVector<Value*, 8> Indices(GEPI->op_begin() + 2, GEPI->op_end());
> + Indices[0] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
> + const Type *ArrayEltPtr = PointerType::getUnqual(ArrayEltTy);
> + Offset += TD->getIndexedOffset(ArrayEltPtr, &Indices[0], Indices.size());
> + }
> + if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
> + MarkUnsafe(Info);
> +}
> +
> +/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
> +/// alloca or has an offset and size that corresponds to a component element
> +/// within it. The offset checked here may have been formed from a GEP with a
> +/// pointer bitcasted to a different type.
> +void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset,
> + uint64_t ArrayOffset, uint64_t MemSize,
> + const Type *MemOpType, bool isStore,
> + AllocaInfo &Info) {
> + // Check if this is a load/store of the entire alloca.
> + if (Offset == 0 && ArrayOffset == 0 &&
> + MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
> + bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
> + // This is safe for MemIntrinsics (where MemOpType is 0), integer types
> + // (which are essentially the same as the MemIntrinsics, especially with
> + // regard to copying padding between elements), or references using the
> + // aggregate type of the alloca.
> + if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
> + if (!UsesAggregateType) {
> + if (isStore)
> + Info.isMemCpyDst = true;
> + else
> + Info.isMemCpySrc = true;
> + }
> + return;
> + }
> + }
> + // Check if the offset/size correspond to a component within the alloca type.
> + const Type *T = AI->getAllocatedType();
> + if (TypeHasComponent(T, Offset, MemSize) &&
> + (ArrayOffset == 0 || TypeHasComponent(T, Offset + ArrayOffset, MemSize)))
> + return;
> +
> + return MarkUnsafe(Info);
> }
>
> -/// isSafeMemIntrinsicOnAllocation - Check if the specified memory
> -/// intrinsic can be promoted by SROA. At this point, we know that the operand
> -/// of the memintrinsic is a pointer to the beginning of the allocation.
> -void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
> - unsigned OpNo, AllocaInfo &Info) {
> - // If not constant length, give up.
> - ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
> - if (!Length) return MarkUnsafe(Info);
> -
> - // If not the whole aggregate, give up.
> - if (Length->getZExtValue() !=
> - TD->getTypeAllocSize(AI->getType()->getElementType()))
> - return MarkUnsafe(Info);
> -
> - // We only know about memcpy/memset/memmove.
> - if (!isa<MemIntrinsic>(MI))
> - return MarkUnsafe(Info);
> -
> - // Otherwise, we can transform it. Determine whether this is a memcpy/set
> - // into or out of the aggregate.
> - if (OpNo == 1)
> - Info.isMemCpyDst = true;
> - else {
> - assert(OpNo == 2);
> - Info.isMemCpySrc = true;
> +/// TypeHasComponent - Return true if T has a component type with the
> +/// specified offset and size. If Size is zero, do not check the size.
> +bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
> + const Type *EltTy;
> + uint64_t EltSize;
> + if (const StructType *ST = dyn_cast<StructType>(T)) {
> + const StructLayout *Layout = TD->getStructLayout(ST);
> + unsigned EltIdx = Layout->getElementContainingOffset(Offset);
> + EltTy = ST->getContainedType(EltIdx);
> + EltSize = TD->getTypeAllocSize(EltTy);
> + Offset -= Layout->getElementOffset(EltIdx);
> + } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
> + EltTy = AT->getElementType();
> + EltSize = TD->getTypeAllocSize(EltTy);
> + Offset %= EltSize;
> + } else {
> + return false;
> }
> + if (Offset == 0 && (Size == 0 || EltSize == Size))
> + return true;
> + // Check if the component spans multiple elements.
> + if (Offset + Size > EltSize)
> + return false;
> + return TypeHasComponent(EltTy, Offset, Size);
> }
>
> -/// isSafeUseOfBitCastedAllocation - Check if all users of this bitcast
> -/// from an alloca are safe for SROA of that alloca.
> -void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
> - AllocaInfo &Info) {
> - for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
> - UI != E; ++UI) {
> - if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
> - isSafeUseOfBitCastedAllocation(BCU, AI, Info);
> - } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
> - isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
> - } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
> - if (SI->isVolatile())
> - return MarkUnsafe(Info);
> -
> - // If storing the entire alloca in one chunk through a bitcasted pointer
> - // to integer, we can transform it. This happens (for example) when you
> - // cast a {i32,i32}* to i64* and store through it. This is similar to the
> - // memcpy case and occurs in various "byval" cases and emulated memcpys.
> - if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
> - TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
> - TD->getTypeAllocSize(AI->getType()->getElementType())) {
> - Info.isMemCpyDst = true;
> - continue;
> - }
> - return MarkUnsafe(Info);
> - } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
> - if (LI->isVolatile())
> - return MarkUnsafe(Info);
> +/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
> +/// the instruction I, which references it, to use the separate elements.
> +/// Offset indicates the position within AI that is referenced by this
> +/// instruction.
> +void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
> + SmallVector<AllocaInst*, 32> &NewElts) {
> + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
> + Instruction *User = cast<Instruction>(*UI);
>
> - // If loading the entire alloca in one chunk through a bitcasted pointer
> - // to integer, we can transform it. This happens (for example) when you
> - // cast a {i32,i32}* to i64* and load through it. This is similar to the
> - // memcpy case and occurs in various "byval" cases and emulated memcpys.
> - if (isa<IntegerType>(LI->getType()) &&
> - TD->getTypeAllocSize(LI->getType()) ==
> - TD->getTypeAllocSize(AI->getType()->getElementType())) {
> - Info.isMemCpySrc = true;
> - continue;
> + if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
> + RewriteBitCast(BC, AI, Offset, NewElts);
> + } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
> + RewriteGEP(GEPI, AI, Offset, NewElts);
> + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
> + ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
> + uint64_t MemSize = Length->getZExtValue();
> + if (Offset == 0 &&
> + MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
> + RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
> + } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
> + const Type *LIType = LI->getType();
> + if (LIType == AI->getAllocatedType()) {
> + // Replace:
> + // %res = load { i32, i32 }* %alloc
> + // with:
> + // %load.0 = load i32* %alloc.0
> + // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
> + // %load.1 = load i32* %alloc.1
> + // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
> + // (Also works for arrays instead of structs)
> + Value *Insert = UndefValue::get(LIType);
> + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
> + Value *Load = new LoadInst(NewElts[i], "load", LI);
> + Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
> + }
> + LI->replaceAllUsesWith(Insert);
> + DeadInsts.push_back(LI);
> + } else if (isa<IntegerType>(LIType) &&
> + TD->getTypeAllocSize(LIType) ==
> + TD->getTypeAllocSize(AI->getAllocatedType())) {
> + // If this is a load of the entire alloca to an integer, rewrite it.
> + RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
> }
> - return MarkUnsafe(Info);
> - } else if (isa<DbgInfoIntrinsic>(UI)) {
> - // If one user is DbgInfoIntrinsic then check if all users are
> - // DbgInfoIntrinsics.
> - if (OnlyUsedByDbgInfoIntrinsics(BC)) {
> - Info.needsCleanup = true;
> - return;
> + } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
> + Value *Val = SI->getOperand(0);
> + const Type *SIType = Val->getType();
> + if (SIType == AI->getAllocatedType()) {
> + // Replace:
> + // store { i32, i32 } %val, { i32, i32 }* %alloc
> + // with:
> + // %val.0 = extractvalue { i32, i32 } %val, 0
> + // store i32 %val.0, i32* %alloc.0
> + // %val.1 = extractvalue { i32, i32 } %val, 1
> + // store i32 %val.1, i32* %alloc.1
> + // (Also works for arrays instead of structs)
> + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
> + Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
> + new StoreInst(Extract, NewElts[i], SI);
> + }
> + DeadInsts.push_back(SI);
> + } else if (isa<IntegerType>(SIType) &&
> + TD->getTypeAllocSize(SIType) ==
> + TD->getTypeAllocSize(AI->getAllocatedType())) {
> + // If this is a store of the entire alloca from an integer, rewrite it.
> + RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
> }
> - else
> - MarkUnsafe(Info);
> }
> - else {
> - return MarkUnsafe(Info);
> - }
> - if (Info.isUnsafe) return;
> }
> }
>
> -/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
> -/// to its first element. Transform users of the cast to use the new values
> -/// instead.
> -void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
> - SmallVector<AllocaInst*, 32> &NewElts) {
> - Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
> - while (UI != UE) {
> - Instruction *User = cast<Instruction>(*UI++);
> - if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
> - RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
> - if (BCU->use_empty()) BCU->eraseFromParent();
> - continue;
> - }
> +/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
> +/// and recursively continue updating all of its uses.
> +void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
> + SmallVector<AllocaInst*, 32> &NewElts) {
> + RewriteForScalarRepl(BC, AI, Offset, NewElts);
> + if (BC->getOperand(0) != AI)
> + return;
>
> - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
> - // This must be memcpy/memmove/memset of the entire aggregate.
> - // Split into one per element.
> - RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
> - continue;
> - }
> -
> - if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
> - // If this is a store of the entire alloca from an integer, rewrite it.
> - RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
> - continue;
> - }
> + // The bitcast references the original alloca. Replace its uses with
> + // references to the first new element alloca.
> + Instruction *Val = NewElts[0];
> + if (Val->getType() != BC->getDestTy()) {
> + Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
> + Val->takeName(BC);
> + }
> + BC->replaceAllUsesWith(Val);
> + DeadInsts.push_back(BC);
> +}
> +
> +/// FindElementAndOffset - Return the index of the element containing Offset
> +/// within the specified type, which must be either a struct or an array.
> +/// Sets T to the type of the element and Offset to the offset within that
> +/// element.
> +unsigned SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset) {
> + unsigned Idx = 0;
> + if (const StructType *ST = dyn_cast<StructType>(T)) {
> + const StructLayout *Layout = TD->getStructLayout(ST);
> + Idx = Layout->getElementContainingOffset(Offset);
> + T = ST->getContainedType(Idx);
> + Offset -= Layout->getElementOffset(Idx);
> + } else {
> + const ArrayType *AT = dyn_cast<ArrayType>(T);
> + assert(AT && "unexpected type for scalar replacement");
> + T = AT->getElementType();
> + uint64_t EltSize = TD->getTypeAllocSize(T);
> + Idx = (unsigned)(Offset / EltSize);
> + Offset -= Idx * EltSize;
> + }
> + return Idx;
> +}
> +
> +/// RewriteGEP - Check if this GEP instruction moves the pointer across
> +/// elements of the alloca that are being split apart, and if so, rewrite
> +/// the GEP to be relative to the new element.
> +void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
> + SmallVector<AllocaInst*, 32> &NewElts) {
> + uint64_t OldOffset = Offset;
> + SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
> + Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
> + &Indices[0], Indices.size());
> +
> + RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
> +
> + const Type *T = AI->getAllocatedType();
> + unsigned OldIdx = FindElementAndOffset(T, OldOffset);
> + if (GEPI->getOperand(0) == AI)
> + OldIdx = ~0U; // Force the GEP to be rewritten.
> +
> + T = AI->getAllocatedType();
> + uint64_t EltOffset = Offset;
> + unsigned Idx = FindElementAndOffset(T, EltOffset);
> +
> + // If this GEP does not move the pointer across elements of the alloca
> + // being split, then it does not needs to be rewritten.
> + if (Idx == OldIdx)
> + return;
>
> - if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
> - // If this is a load of the entire alloca to an integer, rewrite it.
> - RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
> - continue;
> - }
> -
> - // Otherwise it must be some other user of a gep of the first pointer. Just
> - // leave these alone.
> - continue;
> - }
> + const Type *i32Ty = Type::getInt32Ty(AI->getContext());
> + SmallVector<Value*, 8> NewArgs;
> + NewArgs.push_back(Constant::getNullValue(i32Ty));
> + while (EltOffset != 0) {
> + unsigned EltIdx = FindElementAndOffset(T, EltOffset);
> + NewArgs.push_back(ConstantInt::get(i32Ty, EltIdx));
> + }
> + Instruction *Val = NewElts[Idx];
> + if (NewArgs.size() > 1) {
> + Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
> + NewArgs.end(), "", GEPI);
> + Val->takeName(GEPI);
> + }
> + if (Val->getType() != GEPI->getType())
> + Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
> + GEPI->replaceAllUsesWith(Val);
> + DeadInsts.push_back(GEPI);
> }
>
> /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
> /// Rewrite it to copy or set the elements of the scalarized memory.
> -void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
> +void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
> AllocaInst *AI,
> SmallVector<AllocaInst*, 32> &NewElts) {
> -
> // If this is a memcpy/memmove, construct the other pointer as the
> // appropriate type. The "Other" pointer is the pointer that goes to memory
> // that doesn't have anything to do with the alloca that we are promoting. For
> @@ -761,28 +783,41 @@
> LLVMContext &Context = MI->getContext();
> unsigned MemAlignment = MI->getAlignment();
> if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
> - if (BCInst == MTI->getRawDest())
> + if (Inst == MTI->getRawDest())
> OtherPtr = MTI->getRawSource();
> else {
> - assert(BCInst == MTI->getRawSource());
> + assert(Inst == MTI->getRawSource());
> OtherPtr = MTI->getRawDest();
> }
> }
>
> - // Keep track of the other intrinsic argument, so it can be removed if it
> - // is dead when the intrinsic is replaced.
> - Value *PossiblyDead = OtherPtr;
> -
> // If there is an other pointer, we want to convert it to the same pointer
> // type as AI has, so we can GEP through it safely.
> if (OtherPtr) {
> - // It is likely that OtherPtr is a bitcast, if so, remove it.
> - if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
> - OtherPtr = BC->getOperand(0);
> - // All zero GEPs are effectively bitcasts.
> - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
> - if (GEP->hasAllZeroIndices())
> - OtherPtr = GEP->getOperand(0);
> +
> + // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
> + // optimization, but it's also required to detect the corner case where
> + // both pointer operands are referencing the same memory, and where
> + // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
> + // function is only called for mem intrinsics that access the whole
> + // aggregate, so non-zero GEPs are not an issue here.)
> + while (1) {
> + if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
> + OtherPtr = BC->getOperand(0);
> + continue;
> + }
> + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
> + // All zero GEPs are effectively bitcasts.
> + if (GEP->hasAllZeroIndices()) {
> + OtherPtr = GEP->getOperand(0);
> + continue;
> + }
> + }
> + break;
> + }
> + // If OtherPtr has already been rewritten, this intrinsic will be dead.
> + if (OtherPtr == NewElts[0])
> + return;
>
> if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
> if (BCE->getOpcode() == Instruction::BitCast)
> @@ -798,7 +833,7 @@
> // Process each element of the aggregate.
> Value *TheFn = MI->getOperand(0);
> const Type *BytePtrTy = MI->getRawDest()->getType();
> - bool SROADest = MI->getRawDest() == BCInst;
> + bool SROADest = MI->getRawDest() == Inst;
>
> Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
>
> @@ -807,12 +842,15 @@
> Value *OtherElt = 0;
> unsigned OtherEltAlign = MemAlignment;
>
> - if (OtherPtr) {
> + if (OtherPtr == AI) {
> + OtherElt = NewElts[i];
> + OtherEltAlign = 0;
> + } else if (OtherPtr) {
> Value *Idx[2] = { Zero,
> ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
> - OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
> + OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
> OtherPtr->getNameStr()+"."+Twine(i),
> - MI);
> + MI);
> uint64_t EltOffset;
> const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
> if (const StructType *ST =
> @@ -924,9 +962,7 @@
> CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
> }
> }
> - MI->eraseFromParent();
> - if (PossiblyDead)
> - RecursivelyDeleteTriviallyDeadInstructions(PossiblyDead);
> + DeadInsts.push_back(MI);
> }
>
> /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
> @@ -937,15 +973,9 @@
> // Extract each element out of the integer according to its structure offset
> // and store the element value to the individual alloca.
> Value *SrcVal = SI->getOperand(0);
> - const Type *AllocaEltTy = AI->getType()->getElementType();
> + const Type *AllocaEltTy = AI->getAllocatedType();
> uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
>
> - // If this isn't a store of an integer to the whole alloca, it may be a store
> - // to the first element. Just ignore the store in this case and normal SROA
> - // will handle it.
> - if (!isa<IntegerType>(SrcVal->getType()) ||
> - TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
> - return;
> // Handle tail padding by extending the operand
> if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
> SrcVal = new ZExtInst(SrcVal,
> @@ -1050,7 +1080,7 @@
> }
> }
>
> - SI->eraseFromParent();
> + DeadInsts.push_back(SI);
> }
>
> /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
> @@ -1059,16 +1089,9 @@
> SmallVector<AllocaInst*, 32> &NewElts) {
> // Extract each element out of the NewElts according to its structure offset
> // and form the result value.
> - const Type *AllocaEltTy = AI->getType()->getElementType();
> + const Type *AllocaEltTy = AI->getAllocatedType();
> uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
>
> - // If this isn't a load of the whole alloca to an integer, it may be a load
> - // of the first element. Just ignore the load in this case and normal SROA
> - // will handle it.
> - if (!isa<IntegerType>(LI->getType()) ||
> - TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
> - return;
> -
> DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
> << '\n');
>
> @@ -1139,10 +1162,9 @@
> ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
>
> LI->replaceAllUsesWith(ResultVal);
> - LI->eraseFromParent();
> + DeadInsts.push_back(LI);
> }
>
> -
> /// HasPadding - Return true if the specified type has any structure or
> /// alignment padding, false otherwise.
> static bool HasPadding(const Type *Ty, const TargetData &TD) {
> @@ -1192,14 +1214,10 @@
> // the users are safe to transform.
> AllocaInfo Info;
>
> - for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
> - I != E; ++I) {
> - isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
> - if (Info.isUnsafe) {
> - DEBUG(errs() << "Cannot transform: " << *AI << "\n due to user: "
> - << **I << '\n');
> - return 0;
> - }
> + isSafeForScalarRepl(AI, AI, 0, 0, Info);
> + if (Info.isUnsafe) {
> + DEBUG(errs() << "Cannot transform: " << *AI << '\n');
> + return 0;
> }
>
> // Okay, we know all the users are promotable. If the aggregate is a memcpy
> @@ -1208,7 +1226,7 @@
> // types, but may actually be used. In these cases, we refuse to promote the
> // struct.
> if (Info.isMemCpySrc && Info.isMemCpyDst &&
> - HasPadding(AI->getType()->getElementType(), *TD))
> + HasPadding(AI->getAllocatedType(), *TD))
> return 0;
>
> // If we require cleanup, return 1, otherwise return 3.
> @@ -1245,15 +1263,15 @@
> // Insert the new GEP instructions, which are properly indexed.
> SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
> Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
> - Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
> - Indices.begin(),
> - Indices.end(),
> - GEPI->getName()+".0", GEPI);
> + Value *ZeroIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
> + Indices.begin(),
> + Indices.end(),
> + GEPI->getName()+".0",GEPI);
> Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
> - Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
> - Indices.begin(),
> - Indices.end(),
> - GEPI->getName()+".1", GEPI);
> + Value *OneIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
> + Indices.begin(),
> + Indices.end(),
> + GEPI->getName()+".1", GEPI);
> // Replace all loads of the variable index GEP with loads from both
> // indexes and a select.
> while (!GEPI->use_empty()) {
> @@ -1264,22 +1282,24 @@
> LI->replaceAllUsesWith(R);
> LI->eraseFromParent();
> }
> - GEPI->eraseFromParent();
> }
>
> -
> /// CleanupAllocaUsers - If SROA reported that it can promote the specified
> /// allocation, but only if cleaned up, perform the cleanups required.
> -void SROA::CleanupAllocaUsers(AllocaInst *AI) {
> +void SROA::CleanupAllocaUsers(Value *V) {
> // At this point, we know that the end result will be SROA'd and promoted, so
> // we can insert ugly code if required so long as sroa+mem2reg will clean it
> // up.
> - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
> + for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
> UI != E; ) {
> User *U = *UI++;
> - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
> + if (isa<BitCastInst>(U)) {
> + CleanupAllocaUsers(U);
> + } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
> CleanupGEP(GEPI);
> - else {
> + CleanupAllocaUsers(GEPI);
> + if (GEPI->use_empty()) GEPI->eraseFromParent();
> + } else {
> Instruction *I = cast<Instruction>(U);
> SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
> if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
> @@ -1395,7 +1415,7 @@
>
> // Compute the offset that this GEP adds to the pointer.
> SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
> - uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
> + uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
> &Indices[0], Indices.size());
> // See if all uses can be converted.
> if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
> @@ -1457,7 +1477,7 @@
> if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
> // Compute the offset that this GEP adds to the pointer.
> SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
> - uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
> + uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
> &Indices[0], Indices.size());
> ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
> GEP->eraseFromParent();
>
> Added: llvm/trunk/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll?rev=91459&view=auto
>
> ==============================================================================
> --- llvm/trunk/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll (added)
> +++ llvm/trunk/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll Tue Dec 15 16:00:51 2009
> @@ -0,0 +1,89 @@
> +; RUN: opt < %s -scalarrepl -S | FileCheck %s
> +; Radar 7441282
> +
> +target datalayout = "e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-i64:32:32-f32:32:32-f64:32:32-v64:64:64-v128:128:128-a0:0:32-n32"
> +target triple = "thumbv7-apple-darwin10"
> +
> +%struct.__neon_int16x8x2_t = type { <8 x i16>, <8 x i16> }
> +%struct.int16x8_t = type { <8 x i16> }
> +%struct.int16x8x2_t = type { [2 x %struct.int16x8_t] }
> +%union..0anon = type { %struct.int16x8x2_t }
> +
> +define arm_apcscc void @test(<8 x i16> %tmp.0, %struct.int16x8x2_t* %dst) nounwind {
> +; CHECK: @test
> +; CHECK-NOT: alloca
> +; CHECK: "alloca point"
> +entry:
> + %tmp_addr = alloca %struct.int16x8_t ; <%struct.int16x8_t*> [#uses=3]
> + %dst_addr = alloca %struct.int16x8x2_t* ; <%struct.int16x8x2_t**> [#uses=2]
> + %__rv = alloca %union..0anon ; <%union..0anon*> [#uses=2]
> + %__bx = alloca %struct.int16x8_t ; <%struct.int16x8_t*> [#uses=2]
> + %__ax = alloca %struct.int16x8_t ; <%struct.int16x8_t*> [#uses=2]
> + %tmp2 = alloca %struct.int16x8x2_t ; <%struct.int16x8x2_t*> [#uses=2]
> + %0 = alloca %struct.int16x8x2_t ; <%struct.int16x8x2_t*> [#uses=2]
> + %"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
> + %1 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + store <8 x i16> %tmp.0, <8 x i16>* %1
> + store %struct.int16x8x2_t* %dst, %struct.int16x8x2_t** %dst_addr
> + %2 = getelementptr inbounds %struct.int16x8_t* %__ax, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + %3 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + %4 = load <8 x i16>* %3, align 16 ; <<8 x i16>> [#uses=1]
> + store <8 x i16> %4, <8 x i16>* %2, align 16
> + %5 = getelementptr inbounds %struct.int16x8_t* %__bx, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + %6 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + %7 = load <8 x i16>* %6, align 16 ; <<8 x i16>> [#uses=1]
> + store <8 x i16> %7, <8 x i16>* %5, align 16
> + %8 = getelementptr inbounds %struct.int16x8_t* %__ax, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + %9 = load <8 x i16>* %8, align 16 ; <<8 x i16>> [#uses=2]
> + %10 = getelementptr inbounds %struct.int16x8_t* %__bx, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + %11 = load <8 x i16>* %10, align 16 ; <<8 x i16>> [#uses=2]
> + %12 = getelementptr inbounds %union..0anon* %__rv, i32 0, i32 0 ; <%struct.int16x8x2_t*> [#uses=1]
> + %13 = bitcast %struct.int16x8x2_t* %12 to %struct.__neon_int16x8x2_t* ; <%struct.__neon_int16x8x2_t*> [#uses=2]
> + %14 = shufflevector <8 x i16> %9, <8 x i16> %11, <8 x i32> <i32 0, i32 8, i32 2, i32 10, i32 4, i32 12, i32 6, i32 14> ; <<8 x i16>> [#uses=1]
> + %15 = getelementptr inbounds %struct.__neon_int16x8x2_t* %13, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
> + store <8 x i16> %14, <8 x i16>* %15
> + %16 = shufflevector <8 x i16> %9, <8 x i16> %11, <8 x i32> <i32 1, i32 9, i32 3, i32 11, i32 5, i32 13, i32 7, i32 15> ; <<8 x i16>> [#uses=1]
> + %17 = getelementptr inbounds %struct.__neon_int16x8x2_t* %13, i32 0, i32 1 ; <<8 x i16>*> [#uses=1]
> + store <8 x i16> %16, <8 x i16>* %17
> + %18 = getelementptr inbounds %union..0anon* %__rv, i32 0, i32 0 ; <%struct.int16x8x2_t*> [#uses=1]
> + %19 = bitcast %struct.int16x8x2_t* %0 to i8* ; <i8*> [#uses=1]
> + %20 = bitcast %struct.int16x8x2_t* %18 to i8* ; <i8*> [#uses=1]
> + call void @llvm.memcpy.i32(i8* %19, i8* %20, i32 32, i32 16)
> + %tmp21 = bitcast %struct.int16x8x2_t* %tmp2 to i8* ; <i8*> [#uses=1]
> + %21 = bitcast %struct.int16x8x2_t* %0 to i8* ; <i8*> [#uses=1]
> + call void @llvm.memcpy.i32(i8* %tmp21, i8* %21, i32 32, i32 16)
> + %22 = load %struct.int16x8x2_t** %dst_addr, align 4 ; <%struct.int16x8x2_t*> [#uses=1]
> + %23 = bitcast %struct.int16x8x2_t* %22 to i8* ; <i8*> [#uses=1]
> + %tmp22 = bitcast %struct.int16x8x2_t* %tmp2 to i8* ; <i8*> [#uses=1]
> + call void @llvm.memcpy.i32(i8* %23, i8* %tmp22, i32 32, i32 16)
> + br label %return
> +
> +; CHECK: store <8 x i16>
> +; CHECK: store <8 x i16>
> +
> +return: ; preds = %entry
> + ret void
> +}
> +
> +; Radar 7466574
> +%struct._NSRange = type { i64 }
> +
> +define arm_apcscc void @test_memcpy_self() nounwind {
> +; CHECK: @test_memcpy_self
> +; CHECK-NOT: alloca
> +; CHECK: br i1
> +entry:
> + %range = alloca %struct._NSRange ; <%struct._NSRange*> [#uses=2]
> + br i1 undef, label %cond.true, label %cond.false
> +
> +cond.true: ; preds = %entry
> + %tmp3 = bitcast %struct._NSRange* %range to i8* ; <i8*> [#uses=1]
> + %tmp4 = bitcast %struct._NSRange* %range to i8* ; <i8*> [#uses=1]
> + call void @llvm.memcpy.i32(i8* %tmp3, i8* %tmp4, i32 8, i32 8)
> + ret void
> +
> +cond.false: ; preds = %entry
> + ret void
> +}
> +
> +declare void @llvm.memcpy.i32(i8* nocapture, i8* nocapture, i32, i32) nounwind
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
More information about the llvm-commits
mailing list