[llvm-commits] [llvm] r89667 - in /llvm/trunk/lib/CodeGen/SelectionDAG: FunctionLoweringInfo.cpp FunctionLoweringInfo.h SelectionDAGBuild.cpp SelectionDAGBuild.h SelectionDAGISel.cpp
Dan Gohman
gohman at apple.com
Mon Nov 23 09:16:22 PST 2009
Author: djg
Date: Mon Nov 23 11:16:22 2009
New Revision: 89667
URL: http://llvm.org/viewvc/llvm-project?rev=89667&view=rev
Log:
Move the FunctionLoweringInfo class and some related utility functions out
of SelectionDAGBuild.h/cpp into its own files, to help separate
general lowering logic from SelectionDAG-specific lowering logic.
Added:
llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
- copied, changed from r89623, llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h
- copied, changed from r88738, llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
Modified:
llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Copied: llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (from r89623, llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp?p2=llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp&p1=llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp&r1=89623&r2=89667&rev=89667&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp Mon Nov 23 11:16:22 2009
@@ -1,4 +1,4 @@
-//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
+//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,39 +7,24 @@
//
//===----------------------------------------------------------------------===//
//
-// This implements routines for translating from LLVM IR into SelectionDAG IR.
+// This implements routines for translating functions from LLVM IR into
+// Machine IR.
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "isel"
-#include "SelectionDAGBuild.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Constants.h"
-#include "llvm/Constants.h"
+#define DEBUG_TYPE "function-lowering-info"
+#include "FunctionLoweringInfo.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
-#include "llvm/CodeGen/FastISel.h"
-#include "llvm/CodeGen/GCStrategy.h"
-#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
@@ -57,25 +42,14 @@
#include <algorithm>
using namespace llvm;
-/// LimitFloatPrecision - Generate low-precision inline sequences for
-/// some float libcalls (6, 8 or 12 bits).
-static unsigned LimitFloatPrecision;
-
-static cl::opt<unsigned, true>
-LimitFPPrecision("limit-float-precision",
- cl::desc("Generate low-precision inline sequences "
- "for some float libcalls"),
- cl::location(LimitFloatPrecision),
- cl::init(0));
-
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
/// of insertvalue or extractvalue indices that identify a member, return
/// the linearized index of the start of the member.
///
-static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex = 0) {
+unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+ const unsigned *Indices,
+ const unsigned *IndicesEnd,
+ unsigned CurIndex) {
// Base case: We're done.
if (Indices && Indices == IndicesEnd)
return CurIndex;
@@ -113,10 +87,10 @@
/// If Offsets is non-null, it points to a vector to be filled in
/// with the in-memory offsets of each of the individual values.
///
-static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets = 0,
- uint64_t StartingOffset = 0) {
+void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+ SmallVectorImpl<EVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets,
+ uint64_t StartingOffset) {
// Given a struct type, recursively traverse the elements.
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
@@ -146,101 +120,6 @@
Offsets->push_back(StartingOffset);
}
-namespace llvm {
- /// RegsForValue - This struct represents the registers (physical or virtual)
- /// that a particular set of values is assigned, and the type information about
- /// the value. The most common situation is to represent one value at a time,
- /// but struct or array values are handled element-wise as multiple values.
- /// The splitting of aggregates is performed recursively, so that we never
- /// have aggregate-typed registers. The values at this point do not necessarily
- /// have legal types, so each value may require one or more registers of some
- /// legal type.
- ///
- struct VISIBILITY_HIDDEN RegsForValue {
- /// TLI - The TargetLowering object.
- ///
- const TargetLowering *TLI;
-
- /// ValueVTs - The value types of the values, which may not be legal, and
- /// may need be promoted or synthesized from one or more registers.
- ///
- SmallVector<EVT, 4> ValueVTs;
-
- /// RegVTs - The value types of the registers. This is the same size as
- /// ValueVTs and it records, for each value, what the type of the assigned
- /// register or registers are. (Individual values are never synthesized
- /// from more than one type of register.)
- ///
- /// With virtual registers, the contents of RegVTs is redundant with TLI's
- /// getRegisterType member function, however when with physical registers
- /// it is necessary to have a separate record of the types.
- ///
- SmallVector<EVT, 4> RegVTs;
-
- /// Regs - This list holds the registers assigned to the values.
- /// Each legal or promoted value requires one register, and each
- /// expanded value requires multiple registers.
- ///
- SmallVector<unsigned, 4> Regs;
-
- RegsForValue() : TLI(0) {}
-
- RegsForValue(const TargetLowering &tli,
- const SmallVector<unsigned, 4> ®s,
- EVT regvt, EVT valuevt)
- : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
- RegsForValue(const TargetLowering &tli,
- const SmallVector<unsigned, 4> ®s,
- const SmallVector<EVT, 4> ®vts,
- const SmallVector<EVT, 4> &valuevts)
- : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
- RegsForValue(LLVMContext &Context, const TargetLowering &tli,
- unsigned Reg, const Type *Ty) : TLI(&tli) {
- ComputeValueVTs(tli, Ty, ValueVTs);
-
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
- EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- Reg += NumRegs;
- }
- }
-
- /// append - Add the specified values to this one.
- void append(const RegsForValue &RHS) {
- TLI = RHS.TLI;
- ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
- RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
- Regs.append(RHS.Regs.begin(), RHS.Regs.end());
- }
-
-
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVTs value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag) const;
-
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag) const;
-
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker, matching input operand index
- /// (if applicable), and includes the number of values added into it.
- void AddInlineAsmOperands(unsigned Code,
- bool HasMatching, unsigned MatchingIdx,
- SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
- };
-}
-
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
@@ -276,7 +155,6 @@
}
void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
- SelectionDAG &DAG,
bool EnableFastISel) {
Fn = &fn;
MF = &mf;
@@ -346,7 +224,7 @@
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
+ unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
@@ -356,6 +234,20 @@
}
}
+/// clear - Clear out all the function-specific state. This returns this
+/// FunctionLoweringInfo to an empty state, ready to be used for a
+/// different function.
+void FunctionLoweringInfo::clear() {
+ MBBMap.clear();
+ ValueMap.clear();
+ StaticAllocaMap.clear();
+#ifndef NDEBUG
+ CatchInfoLost.clear();
+ CatchInfoFound.clear();
+#endif
+ LiveOutRegInfo.clear();
+}
+
unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
}
@@ -384,5727 +276,3 @@
}
return FirstReg;
}
-
-/// getCopyFromParts - Create a value that contains the specified legal parts
-/// combined into the value they represent. If the parts combine to a type
-/// larger then ValueVT then AssertOp can be used to specify whether the extra
-/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
-/// (ISD::AssertSext).
-static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
- const SDValue *Parts,
- unsigned NumParts, EVT PartVT, EVT ValueVT,
- ISD::NodeType AssertOp = ISD::DELETED_NODE) {
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
-
- if (NumParts > 1) {
- // Assemble the value from multiple parts.
- if (!ValueVT.isVector() && ValueVT.isInteger()) {
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned ValueBits = ValueVT.getSizeInBits();
-
- // Assemble the power of 2 part.
- unsigned RoundParts = NumParts & (NumParts - 1) ?
- 1 << Log2_32(NumParts) : NumParts;
- unsigned RoundBits = PartBits * RoundParts;
- EVT RoundVT = RoundBits == ValueBits ?
- ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
- SDValue Lo, Hi;
-
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
-
- if (RoundParts > 2) {
- Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
- Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
- PartVT, HalfVT);
- } else {
- Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
- Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
- }
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
-
- if (RoundParts < NumParts) {
- // Assemble the trailing non-power-of-2 part.
- unsigned OddParts = NumParts - RoundParts;
- EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
- Hi = getCopyFromParts(DAG, dl,
- Parts+RoundParts, OddParts, PartVT, OddVT);
-
- // Combine the round and odd parts.
- Lo = Val;
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
- Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(),
- TLI.getPointerTy()));
- Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
- Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
- }
- } else if (ValueVT.isVector()) {
- // Handle a multi-element vector.
- EVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs =
- TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(RegisterVT == Parts[0].getValueType() &&
- "Part type doesn't match part!");
-
- // Assemble the parts into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- if (NumIntermediates == NumParts) {
- // If the register was not expanded, truncate or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
- PartVT, IntermediateVT);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, build the intermediate operands
- // from the parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
- PartVT, IntermediateVT);
- }
-
- // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
- // operands.
- Val = DAG.getNode(IntermediateVT.isVector() ?
- ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
- ValueVT, &Ops[0], NumIntermediates);
- } else if (PartVT.isFloatingPoint()) {
- // FP split into multiple FP parts (for ppcf128)
- assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
- "Unexpected split");
- SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
- Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
- } else {
- // FP split into integer parts (soft fp)
- assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
- !PartVT.isVector() && "Unexpected split");
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
- }
- }
-
- // There is now one part, held in Val. Correct it to match ValueVT.
- PartVT = Val.getValueType();
-
- if (PartVT == ValueVT)
- return Val;
-
- if (PartVT.isVector()) {
- assert(ValueVT.isVector() && "Unknown vector conversion!");
- return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
- }
-
- if (ValueVT.isVector()) {
- assert(ValueVT.getVectorElementType() == PartVT &&
- ValueVT.getVectorNumElements() == 1 &&
- "Only trivial scalar-to-vector conversions should get here!");
- return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
- }
-
- if (PartVT.isInteger() &&
- ValueVT.isInteger()) {
- if (ValueVT.bitsLT(PartVT)) {
- // For a truncate, see if we have any information to
- // indicate whether the truncated bits will always be
- // zero or sign-extension.
- if (AssertOp != ISD::DELETED_NODE)
- Val = DAG.getNode(AssertOp, dl, PartVT, Val,
- DAG.getValueType(ValueVT));
- return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
- } else {
- return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
- }
- }
-
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- if (ValueVT.bitsLT(Val.getValueType()))
- // FP_ROUND's are always exact here.
- return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
- DAG.getIntPtrConstant(1));
- return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
- }
-
- if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
- return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
-
- llvm_unreachable("Unknown mismatch!");
- return SDValue();
-}
-
-/// getCopyToParts - Create a series of nodes that contain the specified value
-/// split into legal parts. If the parts contain more bits than Val, then, for
-/// integers, ExtendKind can be used to specify how to generate the extra bits.
-static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
- SDValue *Parts, unsigned NumParts, EVT PartVT,
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT PtrVT = TLI.getPointerTy();
- EVT ValueVT = Val.getValueType();
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned OrigNumParts = NumParts;
- assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
-
- if (!NumParts)
- return;
-
- if (!ValueVT.isVector()) {
- if (PartVT == ValueVT) {
- assert(NumParts == 1 && "No-op copy with multiple parts!");
- Parts[0] = Val;
- return;
- }
-
- if (NumParts * PartBits > ValueVT.getSizeInBits()) {
- // If the parts cover more bits than the value has, promote the value.
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- assert(NumParts == 1 && "Do not know what to promote to!");
- Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
- } else if (PartVT.isInteger() && ValueVT.isInteger()) {
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
- } else {
- llvm_unreachable("Unknown mismatch!");
- }
- } else if (PartBits == ValueVT.getSizeInBits()) {
- // Different types of the same size.
- assert(NumParts == 1 && PartVT != ValueVT);
- Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
- } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
- // If the parts cover less bits than value has, truncate the value.
- if (PartVT.isInteger() && ValueVT.isInteger()) {
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
- } else {
- llvm_unreachable("Unknown mismatch!");
- }
- }
-
- // The value may have changed - recompute ValueVT.
- ValueVT = Val.getValueType();
- assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
- "Failed to tile the value with PartVT!");
-
- if (NumParts == 1) {
- assert(PartVT == ValueVT && "Type conversion failed!");
- Parts[0] = Val;
- return;
- }
-
- // Expand the value into multiple parts.
- if (NumParts & (NumParts - 1)) {
- // The number of parts is not a power of 2. Split off and copy the tail.
- assert(PartVT.isInteger() && ValueVT.isInteger() &&
- "Do not know what to expand to!");
- unsigned RoundParts = 1 << Log2_32(NumParts);
- unsigned RoundBits = RoundParts * PartBits;
- unsigned OddParts = NumParts - RoundParts;
- SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
- DAG.getConstant(RoundBits,
- TLI.getPointerTy()));
- getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
- if (TLI.isBigEndian())
- // The odd parts were reversed by getCopyToParts - unreverse them.
- std::reverse(Parts + RoundParts, Parts + NumParts);
- NumParts = RoundParts;
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
- }
-
- // The number of parts is a power of 2. Repeatedly bisect the value using
- // EXTRACT_ELEMENT.
- Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
- EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
- Val);
- for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
- for (unsigned i = 0; i < NumParts; i += StepSize) {
- unsigned ThisBits = StepSize * PartBits / 2;
- EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
- SDValue &Part0 = Parts[i];
- SDValue &Part1 = Parts[i+StepSize/2];
-
- Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
- ThisVT, Part0,
- DAG.getConstant(1, PtrVT));
- Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
- ThisVT, Part0,
- DAG.getConstant(0, PtrVT));
-
- if (ThisBits == PartBits && ThisVT != PartVT) {
- Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
- PartVT, Part0);
- Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
- PartVT, Part1);
- }
- }
- }
-
- if (TLI.isBigEndian())
- std::reverse(Parts, Parts + OrigNumParts);
-
- return;
- }
-
- // Vector ValueVT.
- if (NumParts == 1) {
- if (PartVT != ValueVT) {
- if (PartVT.isVector()) {
- Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
- } else {
- assert(ValueVT.getVectorElementType() == PartVT &&
- ValueVT.getVectorNumElements() == 1 &&
- "Only trivial vector-to-scalar conversions should get here!");
- Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- PartVT, Val,
- DAG.getConstant(0, PtrVT));
- }
- }
-
- Parts[0] = Val;
- return;
- }
-
- // Handle a multi-element vector.
- EVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
- IntermediateVT, NumIntermediates, RegisterVT);
- unsigned NumElements = ValueVT.getVectorNumElements();
-
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
-
- // Split the vector into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- for (unsigned i = 0; i != NumIntermediates; ++i)
- if (IntermediateVT.isVector())
- Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
- IntermediateVT, Val,
- DAG.getConstant(i * (NumElements / NumIntermediates),
- PtrVT));
- else
- Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- IntermediateVT, Val,
- DAG.getConstant(i, PtrVT));
-
- // Split the intermediate operands into legal parts.
- if (NumParts == NumIntermediates) {
- // If the register was not expanded, promote or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, split each the value into
- // legal parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
- }
-}
-
-
-void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
- AA = &aa;
- GFI = gfi;
- TD = DAG.getTarget().getTargetData();
-}
-
-/// clear - Clear out the curret SelectionDAG and the associated
-/// state and prepare this SelectionDAGLowering object to be used
-/// for a new block. This doesn't clear out information about
-/// additional blocks that are needed to complete switch lowering
-/// or PHI node updating; that information is cleared out as it is
-/// consumed.
-void SelectionDAGLowering::clear() {
- NodeMap.clear();
- PendingLoads.clear();
- PendingExports.clear();
- EdgeMapping.clear();
- DAG.clear();
- CurDebugLoc = DebugLoc::getUnknownLoc();
- HasTailCall = false;
-}
-
-/// getRoot - Return the current virtual root of the Selection DAG,
-/// flushing any PendingLoad items. This must be done before emitting
-/// a store or any other node that may need to be ordered after any
-/// prior load instructions.
-///
-SDValue SelectionDAGLowering::getRoot() {
- if (PendingLoads.empty())
- return DAG.getRoot();
-
- if (PendingLoads.size() == 1) {
- SDValue Root = PendingLoads[0];
- DAG.setRoot(Root);
- PendingLoads.clear();
- return Root;
- }
-
- // Otherwise, we have to make a token factor node.
- SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &PendingLoads[0], PendingLoads.size());
- PendingLoads.clear();
- DAG.setRoot(Root);
- return Root;
-}
-
-/// getControlRoot - Similar to getRoot, but instead of flushing all the
-/// PendingLoad items, flush all the PendingExports items. It is necessary
-/// to do this before emitting a terminator instruction.
-///
-SDValue SelectionDAGLowering::getControlRoot() {
- SDValue Root = DAG.getRoot();
-
- if (PendingExports.empty())
- return Root;
-
- // Turn all of the CopyToReg chains into one factored node.
- if (Root.getOpcode() != ISD::EntryToken) {
- unsigned i = 0, e = PendingExports.size();
- for (; i != e; ++i) {
- assert(PendingExports[i].getNode()->getNumOperands() > 1);
- if (PendingExports[i].getNode()->getOperand(0) == Root)
- break; // Don't add the root if we already indirectly depend on it.
- }
-
- if (i == e)
- PendingExports.push_back(Root);
- }
-
- Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &PendingExports[0],
- PendingExports.size());
- PendingExports.clear();
- DAG.setRoot(Root);
- return Root;
-}
-
-void SelectionDAGLowering::visit(Instruction &I) {
- visit(I.getOpcode(), I);
-}
-
-void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
- // Note: this doesn't use InstVisitor, because it has to work with
- // ConstantExpr's in addition to instructions.
- switch (Opcode) {
- default: llvm_unreachable("Unknown instruction type encountered!");
- // Build the switch statement using the Instruction.def file.
-#define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
-#include "llvm/Instruction.def"
- }
-}
-
-SDValue SelectionDAGLowering::getValue(const Value *V) {
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
-
- if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
- EVT VT = TLI.getValueType(V->getType(), true);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return N = DAG.getConstant(*CI, VT);
-
- if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return N = DAG.getGlobalAddress(GV, VT);
-
- if (isa<ConstantPointerNull>(C))
- return N = DAG.getConstant(0, TLI.getPointerTy());
-
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return N = DAG.getConstantFP(*CFP, VT);
-
- if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
- return N = DAG.getUNDEF(VT);
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- visit(CE->getOpcode(), *CE);
- SDValue N1 = NodeMap[V];
- assert(N1.getNode() && "visit didn't populate the ValueMap!");
- return N1;
- }
-
- if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
- SmallVector<SDValue, 4> Constants;
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI) {
- SDNode *Val = getValue(*OI).getNode();
- // If the operand is an empty aggregate, there are no values.
- if (!Val) continue;
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Constants.push_back(SDValue(Val, i));
- }
- return DAG.getMergeValues(&Constants[0], Constants.size(),
- getCurDebugLoc());
- }
-
- if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
- assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
- "Unknown struct or array constant!");
-
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, C->getType(), ValueVTs);
- unsigned NumElts = ValueVTs.size();
- if (NumElts == 0)
- return SDValue(); // empty struct
- SmallVector<SDValue, 4> Constants(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- EVT EltVT = ValueVTs[i];
- if (isa<UndefValue>(C))
- Constants[i] = DAG.getUNDEF(EltVT);
- else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, EltVT);
- else
- Constants[i] = DAG.getConstant(0, EltVT);
- }
- return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc());
- }
-
- if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
- return DAG.getBlockAddress(BA, VT);
-
- const VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = VecTy->getNumElements();
-
- // Now that we know the number and type of the elements, get that number of
- // elements into the Ops array based on what kind of constant it is.
- SmallVector<SDValue, 16> Ops;
- if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
- for (unsigned i = 0; i != NumElements; ++i)
- Ops.push_back(getValue(CP->getOperand(i)));
- } else {
- assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- EVT EltVT = TLI.getValueType(VecTy->getElementType());
-
- SDValue Op;
- if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, EltVT);
- else
- Op = DAG.getConstant(0, EltVT);
- Ops.assign(NumElements, Op);
- }
-
- // Create a BUILD_VECTOR node.
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size());
- }
-
- // If this is a static alloca, generate it as the frameindex instead of
- // computation.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
- }
-
- unsigned InReg = FuncInfo.ValueMap[V];
- assert(InReg && "Value not in map!");
-
- RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
-}
-
-/// Get the EVTs and ArgFlags collections that represent the return type
-/// of the given function. This does not require a DAG or a return value, and
-/// is suitable for use before any DAGs for the function are constructed.
-static void getReturnInfo(const Type* ReturnType,
- Attributes attr, SmallVectorImpl<EVT> &OutVTs,
- SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
- TargetLowering &TLI,
- SmallVectorImpl<uint64_t> *Offsets = 0) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
- unsigned NumValues = ValueVTs.size();
- if ( NumValues == 0 ) return;
-
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
-
- if (attr & Attribute::SExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (attr & Attribute::ZExt)
- ExtendKind = ISD::ZERO_EXTEND;
-
- // FIXME: C calling convention requires the return type to be promoted to
- // at least 32-bit. But this is not necessary for non-C calling
- // conventions. The frontend should mark functions whose return values
- // require promoting with signext or zeroext attributes.
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
- EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
- if (VT.bitsLT(MinVT))
- VT = MinVT;
- }
-
- unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
- EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (attr & Attribute::InReg)
- Flags.setInReg();
-
- // Propagate extension type if any
- if (attr & Attribute::SExt)
- Flags.setSExt();
- else if (attr & Attribute::ZExt)
- Flags.setZExt();
-
- for (unsigned i = 0; i < NumParts; ++i) {
- OutVTs.push_back(PartVT);
- OutFlags.push_back(Flags);
- }
- }
-}
-
-void SelectionDAGLowering::visitRet(ReturnInst &I) {
- SDValue Chain = getControlRoot();
- SmallVector<ISD::OutputArg, 8> Outs;
- FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
-
- if (!FLI.CanLowerReturn) {
- unsigned DemoteReg = FLI.DemoteRegister;
- const Function *F = I.getParent()->getParent();
-
- // Emit a store of the return value through the virtual register.
- // Leave Outs empty so that LowerReturn won't try to load return
- // registers the usual way.
- SmallVector<EVT, 1> PtrValueVTs;
- ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
- PtrValueVTs);
-
- SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
- SDValue RetOp = getValue(I.getOperand(0));
-
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
-
- SmallVector<SDValue, 4> Chains(NumValues);
- EVT PtrVT = PtrValueVTs[0];
- for (unsigned i = 0; i != NumValues; ++i)
- Chains[i] = DAG.getStore(Chain, getCurDebugLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + i),
- DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
- DAG.getConstant(Offsets[i], PtrVT)),
- NULL, Offsets[i], false, 0);
- Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], NumValues);
- }
- else {
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) continue;
-
- SDValue RetOp = getValue(I.getOperand(i));
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
-
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
-
- const Function *F = I.getParent()->getParent();
- if (F->paramHasAttr(0, Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->paramHasAttr(0, Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
-
- // FIXME: C calling convention requires the return type to be promoted to
- // at least 32-bit. But this is not necessary for non-C calling
- // conventions. The frontend should mark functions whose return values
- // require promoting with signext or zeroext attributes.
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
- EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
- if (VT.bitsLT(MinVT))
- VT = MinVT;
- }
-
- unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
- EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- getCopyToParts(DAG, getCurDebugLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + j),
- &Parts[0], NumParts, PartVT, ExtendKind);
-
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (F->paramHasAttr(0, Attribute::InReg))
- Flags.setInReg();
-
- // Propagate extension type if any
- if (F->paramHasAttr(0, Attribute::SExt))
- Flags.setSExt();
- else if (F->paramHasAttr(0, Attribute::ZExt))
- Flags.setZExt();
-
- for (unsigned i = 0; i < NumParts; ++i)
- Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
- }
- }
- }
-
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- CallingConv::ID CallConv =
- DAG.getMachineFunction().getFunction()->getCallingConv();
- Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
- Outs, getCurDebugLoc(), DAG);
-
- // Verify that the target's LowerReturn behaved as expected.
- assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
- "LowerReturn didn't return a valid chain!");
-
- // Update the DAG with the new chain value resulting from return lowering.
- DAG.setRoot(Chain);
-}
-
-/// CopyToExportRegsIfNeeded - If the given value has virtual registers
-/// created for it, emit nodes to copy the value into the virtual
-/// registers.
-void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value *V) {
- if (!V->use_empty()) {
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end())
- CopyValueToVirtualRegister(V, VMI->second);
- }
-}
-
-/// ExportFromCurrentBlock - If this condition isn't known to be exported from
-/// the current basic block, add it to ValueMap now so that we'll get a
-/// CopyTo/FromReg.
-void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
- // No need to export constants.
- if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
-
- // Already exported?
- if (FuncInfo.isExportedInst(V)) return;
-
- unsigned Reg = FuncInfo.InitializeRegForValue(V);
- CopyValueToVirtualRegister(V, Reg);
-}
-
-bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
- const BasicBlock *FromBB) {
- // The operands of the setcc have to be in this block. We don't know
- // how to export them from some other block.
- if (Instruction *VI = dyn_cast<Instruction>(V)) {
- // Can export from current BB.
- if (VI->getParent() == FromBB)
- return true;
-
- // Is already exported, noop.
- return FuncInfo.isExportedInst(V);
- }
-
- // If this is an argument, we can export it if the BB is the entry block or
- // if it is already exported.
- if (isa<Argument>(V)) {
- if (FromBB == &FromBB->getParent()->getEntryBlock())
- return true;
-
- // Otherwise, can only export this if it is already exported.
- return FuncInfo.isExportedInst(V);
- }
-
- // Otherwise, constants can always be exported.
- return true;
-}
-
-static bool InBlock(const Value *V, const BasicBlock *BB) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == BB;
- return true;
-}
-
-/// getFCmpCondCode - Return the ISD condition code corresponding to
-/// the given LLVM IR floating-point condition code. This includes
-/// consideration of global floating-point math flags.
-///
-static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
- ISD::CondCode FPC, FOC;
- switch (Pred) {
- case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
- case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
- case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
- case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
- case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
- case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
- case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
- case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
- case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
- case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
- case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
- case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
- case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
- case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
- case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
- case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
- default:
- llvm_unreachable("Invalid FCmp predicate opcode!");
- FOC = FPC = ISD::SETFALSE;
- break;
- }
- if (FiniteOnlyFPMath())
- return FOC;
- else
- return FPC;
-}
-
-/// getICmpCondCode - Return the ISD condition code corresponding to
-/// the given LLVM IR integer condition code.
-///
-static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
- switch (Pred) {
- case ICmpInst::ICMP_EQ: return ISD::SETEQ;
- case ICmpInst::ICMP_NE: return ISD::SETNE;
- case ICmpInst::ICMP_SLE: return ISD::SETLE;
- case ICmpInst::ICMP_ULE: return ISD::SETULE;
- case ICmpInst::ICMP_SGE: return ISD::SETGE;
- case ICmpInst::ICMP_UGE: return ISD::SETUGE;
- case ICmpInst::ICMP_SLT: return ISD::SETLT;
- case ICmpInst::ICMP_ULT: return ISD::SETULT;
- case ICmpInst::ICMP_SGT: return ISD::SETGT;
- case ICmpInst::ICMP_UGT: return ISD::SETUGT;
- default:
- llvm_unreachable("Invalid ICmp predicate opcode!");
- return ISD::SETNE;
- }
-}
-
-/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
-/// This function emits a branch and is used at the leaves of an OR or an
-/// AND operator tree.
-///
-void
-SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB) {
- const BasicBlock *BB = CurBB->getBasicBlock();
-
- // If the leaf of the tree is a comparison, merge the condition into
- // the caseblock.
- if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
- // The operands of the cmp have to be in this block. We don't know
- // how to export them from some other block. If this is the first block
- // of the sequence, no exporting is needed.
- if (CurBB == CurMBB ||
- (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
- isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
- ISD::CondCode Condition;
- if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
- Condition = getICmpCondCode(IC->getPredicate());
- } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
- Condition = getFCmpCondCode(FC->getPredicate());
- } else {
- Condition = ISD::SETEQ; // silence warning.
- llvm_unreachable("Unknown compare instruction");
- }
-
- CaseBlock CB(Condition, BOp->getOperand(0),
- BOp->getOperand(1), NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- return;
- }
- }
-
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
- NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
-}
-
-/// FindMergedConditions - If Cond is an expression like
-void SelectionDAGLowering::FindMergedConditions(Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- unsigned Opc) {
- // If this node is not part of the or/and tree, emit it as a branch.
- Instruction *BOp = dyn_cast<Instruction>(Cond);
- if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
- (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
- BOp->getParent() != CurBB->getBasicBlock() ||
- !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
- !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
- EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
- return;
- }
-
- // Create TmpBB after CurBB.
- MachineFunction::iterator BBI = CurBB;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
- CurBB->getParent()->insert(++BBI, TmpBB);
-
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
-
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
-
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
- } else {
- assert(Opc == Instruction::And && "Unknown merge op!");
- // Codegen X & Y as:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
-
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
-
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
- }
-}
-
-/// If the set of cases should be emitted as a series of branches, return true.
-/// If we should emit this as a bunch of and/or'd together conditions, return
-/// false.
-bool
-SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
- if (Cases.size() != 2) return true;
-
- // If this is two comparisons of the same values or'd or and'd together, they
- // will get folded into a single comparison, so don't emit two blocks.
- if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
- Cases[0].CmpRHS == Cases[1].CmpRHS) ||
- (Cases[0].CmpRHS == Cases[1].CmpLHS &&
- Cases[0].CmpLHS == Cases[1].CmpRHS)) {
- return false;
- }
-
- return true;
-}
-
-void SelectionDAGLowering::visitBr(BranchInst &I) {
- // Update machine-CFG edges.
- MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
-
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- if (I.isUnconditional()) {
- // Update machine-CFG edges.
- CurMBB->addSuccessor(Succ0MBB);
-
- // If this is not a fall-through branch, emit the branch.
- if (Succ0MBB != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Succ0MBB)));
- return;
- }
-
- // If this condition is one of the special cases we handle, do special stuff
- // now.
- Value *CondVal = I.getCondition();
- MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
-
- // If this is a series of conditions that are or'd or and'd together, emit
- // this as a sequence of branches instead of setcc's with and/or operations.
- // For example, instead of something like:
- // cmp A, B
- // C = seteq
- // cmp D, E
- // F = setle
- // or C, F
- // jnz foo
- // Emit:
- // cmp A, B
- // je foo
- // cmp D, E
- // jle foo
- //
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
- if (BOp->hasOneUse() &&
- (BOp->getOpcode() == Instruction::And ||
- BOp->getOpcode() == Instruction::Or)) {
- FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
- // If the compares in later blocks need to use values not currently
- // exported from this block, export them now. This block should always
- // be the first entry.
- assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
-
- // Allow some cases to be rejected.
- if (ShouldEmitAsBranches(SwitchCases)) {
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
- ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
- ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
- }
-
- // Emit the branch for this block.
- visitSwitchCase(SwitchCases[0]);
- SwitchCases.erase(SwitchCases.begin());
- return;
- }
-
- // Okay, we decided not to do this, remove any inserted MBB's and clear
- // SwitchCases.
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
- FuncInfo.MF->erase(SwitchCases[i].ThisBB);
-
- SwitchCases.clear();
- }
- }
-
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
- NULL, Succ0MBB, Succ1MBB, CurMBB);
- // Use visitSwitchCase to actually insert the fast branch sequence for this
- // cond branch.
- visitSwitchCase(CB);
-}
-
-/// visitSwitchCase - Emits the necessary code to represent a single node in
-/// the binary search tree resulting from lowering a switch instruction.
-void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
- SDValue Cond;
- SDValue CondLHS = getValue(CB.CmpLHS);
- DebugLoc dl = getCurDebugLoc();
-
- // Build the setcc now.
- if (CB.CmpMHS == NULL) {
- // Fold "(X == true)" to X and "(X == false)" to !X to
- // handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ)
- Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, CondLHS.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
- } else
- Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
- } else {
- assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
-
- const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
-
- SDValue CmpOp = getValue(CB.CmpMHS);
- EVT VT = CmpOp.getValueType();
-
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
- ISD::SETLE);
- } else {
- SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, VT));
- Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, VT), ISD::SETULE);
- }
- }
-
- // Update successor info
- CurMBB->addSuccessor(CB.TrueBB);
- CurMBB->addSuccessor(CB.FalseBB);
-
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- // If the lhs block is the next block, invert the condition so that we can
- // fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock) {
- std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, Cond.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
- }
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(CB.TrueBB));
-
- // If the branch was constant folded, fix up the CFG.
- if (BrCond.getOpcode() == ISD::BR) {
- CurMBB->removeSuccessor(CB.FalseBB);
- DAG.setRoot(BrCond);
- } else {
- // Otherwise, go ahead and insert the false branch.
- if (BrCond == getControlRoot())
- CurMBB->removeSuccessor(CB.TrueBB);
-
- if (CB.FalseBB == NextBlock)
- DAG.setRoot(BrCond);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(CB.FalseBB)));
- }
-}
-
-/// visitJumpTable - Emit JumpTable node in the current MBB
-void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
- // Emit the code for the jump table
- assert(JT.Reg != -1U && "Should lower JT Header first!");
- EVT PTy = TLI.getPointerTy();
- SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
- JT.Reg, PTy);
- SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
- DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
- MVT::Other, Index.getValue(1),
- Table, Index));
-}
-
-/// visitJumpTableHeader - This function emits necessary code to produce index
-/// in the JumpTable from switch case.
-void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
- JumpTableHeader &JTH) {
- // Subtract the lowest switch case value from the value being switched on and
- // conditional branch to default mbb if the result is greater than the
- // difference between smallest and largest cases.
- SDValue SwitchOp = getValue(JTH.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
- DAG.getConstant(JTH.First, VT));
-
- // The SDNode we just created, which holds the value being switched on minus
- // the the smallest case value, needs to be copied to a virtual register so it
- // can be used as an index into the jump table in a subsequent basic block.
- // This value may be smaller or larger than the target's pointer type, and
- // therefore require extension or truncating.
- SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
-
- unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
- JumpTableReg, SwitchOp);
- JT.Reg = JumpTableReg;
-
- // Emit the range check for the jump table, and branch to the default block
- // for the switch statement if the value being switched on exceeds the largest
- // case in the switch.
- SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(SUB.getValueType()), SUB,
- DAG.getConstant(JTH.Last-JTH.First,VT),
- ISD::SETUGT);
-
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, CopyTo, CMP,
- DAG.getBasicBlock(JT.Default));
-
- if (JT.MBB == NextBlock)
- DAG.setRoot(BrCond);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
- DAG.getBasicBlock(JT.MBB)));
-}
-
-/// visitBitTestHeader - This function emits necessary code to produce value
-/// suitable for "bit tests"
-void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
- // Subtract the minimum value
- SDValue SwitchOp = getValue(B.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
- DAG.getConstant(B.First, VT));
-
- // Check range
- SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(SUB.getValueType()),
- SUB, DAG.getConstant(B.Range, VT),
- ISD::SETUGT);
-
- SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
-
- B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
- B.Reg, ShiftOp);
-
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- MachineBasicBlock* MBB = B.Cases[0].ThisBB;
-
- CurMBB->addSuccessor(B.Default);
- CurMBB->addSuccessor(MBB);
-
- SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, CopyTo, RangeCmp,
- DAG.getBasicBlock(B.Default));
-
- if (MBB == NextBlock)
- DAG.setRoot(BrRange);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
- DAG.getBasicBlock(MBB)));
-}
-
-/// visitBitTestCase - this function produces one "bit test"
-void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
- unsigned Reg,
- BitTestCase &B) {
- // Make desired shift
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
- TLI.getPointerTy());
- SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
- TLI.getPointerTy(),
- DAG.getConstant(1, TLI.getPointerTy()),
- ShiftOp);
-
- // Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
- TLI.getPointerTy(), SwitchVal,
- DAG.getConstant(B.Mask, TLI.getPointerTy()));
- SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(AndOp.getValueType()),
- AndOp, DAG.getConstant(0, TLI.getPointerTy()),
- ISD::SETNE);
-
- CurMBB->addSuccessor(B.TargetBB);
- CurMBB->addSuccessor(NextMBB);
-
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- AndCmp, DAG.getBasicBlock(B.TargetBB));
-
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- if (NextMBB == NextBlock)
- DAG.setRoot(BrAnd);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
- DAG.getBasicBlock(NextMBB)));
-}
-
-void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
- // Retrieve successors.
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
- MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
-
- const Value *Callee(I.getCalledValue());
- if (isa<InlineAsm>(Callee))
- visitInlineAsm(&I);
- else
- LowerCallTo(&I, getValue(Callee), false, LandingPad);
-
- // If the value of the invoke is used outside of its defining block, make it
- // available as a virtual register.
- CopyToExportRegsIfNeeded(&I);
-
- // Update successor info
- CurMBB->addSuccessor(Return);
- CurMBB->addSuccessor(LandingPad);
-
- // Drop into normal successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
-}
-
-void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
-}
-
-/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
-/// small case ranges).
-bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default) {
- Case& BackCase = *(CR.Range.second-1);
-
- // Size is the number of Cases represented by this range.
- size_t Size = CR.Range.second - CR.Range.first;
- if (Size > 3)
- return false;
-
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CR.CaseBB;
-
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- // TODO: If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
-
- // Rearrange the case blocks so that the last one falls through if possible.
- if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
- // The last case block won't fall through into 'NextBlock' if we emit the
- // branches in this order. See if rearranging a case value would help.
- for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
- if (I->BB == NextBlock) {
- std::swap(*I, BackCase);
- break;
- }
- }
- }
-
- // Create a CaseBlock record representing a conditional branch to
- // the Case's target mbb if the value being switched on SV is equal
- // to C.
- MachineBasicBlock *CurBlock = CR.CaseBB;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- MachineBasicBlock *FallThrough;
- if (I != E-1) {
- FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
- CurMF->insert(BBI, FallThrough);
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- } else {
- // If the last case doesn't match, go to the default block.
- FallThrough = Default;
- }
-
- Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->High == I->Low) {
- // This is just small small case range :) containing exactly 1 case
- CC = ISD::SETEQ;
- LHS = SV; RHS = I->High; MHS = NULL;
- } else {
- CC = ISD::SETLE;
- LHS = I->Low; MHS = SV; RHS = I->High;
- }
- CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
-
- // If emitting the first comparison, just call visitSwitchCase to emit the
- // code into the current block. Otherwise, push the CaseBlock onto the
- // vector to be later processed by SDISel, and insert the node's MBB
- // before the next MBB.
- if (CurBlock == CurMBB)
- visitSwitchCase(CB);
- else
- SwitchCases.push_back(CB);
-
- CurBlock = FallThrough;
- }
-
- return true;
-}
-
-static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return !DisableJumpTables &&
- (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
-}
-
-static APInt ComputeRange(const APInt &First, const APInt &Last) {
- APInt LastExt(Last), FirstExt(First);
- uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
- LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
- return (LastExt - FirstExt + 1ULL);
-}
-
-/// handleJTSwitchCase - Emit jumptable for current switch case range
-bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default) {
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
-
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
-
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
-
- if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
- return false;
-
- APInt Range = ComputeRange(First, Last);
- double Density = TSize.roundToDouble() / Range.roundToDouble();
- if (Density < 0.4)
- return false;
-
- DEBUG(errs() << "Lowering jump table\n"
- << "First entry: " << First << ". Last entry: " << Last << '\n'
- << "Range: " << Range
- << "Size: " << TSize << ". Density: " << Density << "\n\n");
-
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
-
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
-
- // Create a new basic block to hold the code for loading the address
- // of the jump table, and jumping to it. Update successor information;
- // we will either branch to the default case for the switch, or the jump
- // table.
- MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, JumpTableBB);
- CR.CaseBB->addSuccessor(Default);
- CR.CaseBB->addSuccessor(JumpTableBB);
-
- // Build a vector of destination BBs, corresponding to each target
- // of the jump table. If the value of the jump table slot corresponds to
- // a case statement, push the case's BB onto the vector, otherwise, push
- // the default BB.
- std::vector<MachineBasicBlock*> DestBBs;
- APInt TEI = First;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
- const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
- const APInt& High = cast<ConstantInt>(I->High)->getValue();
-
- if (Low.sle(TEI) && TEI.sle(High)) {
- DestBBs.push_back(I->BB);
- if (TEI==High)
- ++I;
- } else {
- DestBBs.push_back(Default);
- }
- }
-
- // Update successor info. Add one edge to each unique successor.
- BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
- for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
- E = DestBBs.end(); I != E; ++I) {
- if (!SuccsHandled[(*I)->getNumber()]) {
- SuccsHandled[(*I)->getNumber()] = true;
- JumpTableBB->addSuccessor(*I);
- }
- }
-
- // Create a jump table index for this jump table, or return an existing
- // one.
- unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
-
- // Set the jump table information so that we can codegen it as a second
- // MachineBasicBlock
- JumpTable JT(-1U, JTI, JumpTableBB, Default);
- JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
- if (CR.CaseBB == CurMBB)
- visitJumpTableHeader(JT, JTH);
-
- JTCases.push_back(JumpTableBlock(JTH, JT));
-
- return true;
-}
-
-/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
-/// 2 subtrees.
-bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default) {
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
-
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
-
- // Size is the number of Cases represented by this range.
- unsigned Size = CR.Range.second - CR.Range.first;
-
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
- double FMetric = 0;
- CaseItr Pivot = CR.Range.first + Size/2;
-
- // Select optimal pivot, maximizing sum density of LHS and RHS. This will
- // (heuristically) allow us to emit JumpTable's later.
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
-
- APInt LSize = FrontCase.size();
- APInt RSize = TSize-LSize;
- DEBUG(errs() << "Selecting best pivot: \n"
- << "First: " << First << ", Last: " << Last <<'\n'
- << "LSize: " << LSize << ", RSize: " << RSize << '\n');
- for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
- J!=E; ++I, ++J) {
- const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
- const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
- APInt Range = ComputeRange(LEnd, RBegin);
- assert((Range - 2ULL).isNonNegative() &&
- "Invalid case distance");
- double LDensity = (double)LSize.roundToDouble() /
- (LEnd - First + 1ULL).roundToDouble();
- double RDensity = (double)RSize.roundToDouble() /
- (Last - RBegin + 1ULL).roundToDouble();
- double Metric = Range.logBase2()*(LDensity+RDensity);
- // Should always split in some non-trivial place
- DEBUG(errs() <<"=>Step\n"
- << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
- << "LDensity: " << LDensity
- << ", RDensity: " << RDensity << '\n'
- << "Metric: " << Metric << '\n');
- if (FMetric < Metric) {
- Pivot = J;
- FMetric = Metric;
- DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
- }
-
- LSize += J->size();
- RSize -= J->size();
- }
- if (areJTsAllowed(TLI)) {
- // If our case is dense we *really* should handle it earlier!
- assert((FMetric > 0) && "Should handle dense range earlier!");
- } else {
- Pivot = CR.Range.first + Size/2;
- }
-
- CaseRange LHSR(CR.Range.first, Pivot);
- CaseRange RHSR(Pivot, CR.Range.second);
- Constant *C = Pivot->Low;
- MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
-
- // We know that we branch to the LHS if the Value being switched on is
- // less than the Pivot value, C. We use this to optimize our binary
- // tree a bit, by recognizing that if SV is greater than or equal to the
- // LHS's Case Value, and that Case Value is exactly one less than the
- // Pivot's Value, then we can branch directly to the LHS's Target,
- // rather than creating a leaf node for it.
- if ((LHSR.second - LHSR.first) == 1 &&
- LHSR.first->High == CR.GE &&
- cast<ConstantInt>(C)->getValue() ==
- (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
- TrueBB = LHSR.first->BB;
- } else {
- TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, TrueBB);
- WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
-
- // Similar to the optimization above, if the Value being switched on is
- // known to be less than the Constant CR.LT, and the current Case Value
- // is CR.LT - 1, then we can branch directly to the target block for
- // the current Case Value, rather than emitting a RHS leaf node for it.
- if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
- cast<ConstantInt>(RHSR.first->Low)->getValue() ==
- (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
- FalseBB = RHSR.first->BB;
- } else {
- FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, FalseBB);
- WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
-
- // Create a CaseBlock record representing a conditional branch to
- // the LHS node if the value being switched on SV is less than C.
- // Otherwise, branch to LHS.
- CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
-
- if (CR.CaseBB == CurMBB)
- visitSwitchCase(CB);
- else
- SwitchCases.push_back(CB);
-
- return true;
-}
-
-/// handleBitTestsSwitchCase - if current case range has few destination and
-/// range span less, than machine word bitwidth, encode case range into series
-/// of masks and emit bit tests with these masks.
-bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default){
- EVT PTy = TLI.getPointerTy();
- unsigned IntPtrBits = PTy.getSizeInBits();
-
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
-
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // If target does not have legal shift left, do not emit bit tests at all.
- if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
- return false;
-
- size_t numCmps = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I) {
- // Single case counts one, case range - two.
- numCmps += (I->Low == I->High ? 1 : 2);
- }
-
- // Count unique destinations
- SmallSet<MachineBasicBlock*, 4> Dests;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- Dests.insert(I->BB);
- if (Dests.size() > 3)
- // Don't bother the code below, if there are too much unique destinations
- return false;
- }
- DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
- << "Total number of comparisons: " << numCmps << '\n');
-
- // Compute span of values.
- const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
- APInt cmpRange = maxValue - minValue;
-
- DEBUG(errs() << "Compare range: " << cmpRange << '\n'
- << "Low bound: " << minValue << '\n'
- << "High bound: " << maxValue << '\n');
-
- if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
- (!(Dests.size() == 1 && numCmps >= 3) &&
- !(Dests.size() == 2 && numCmps >= 5) &&
- !(Dests.size() >= 3 && numCmps >= 6)))
- return false;
-
- DEBUG(errs() << "Emitting bit tests\n");
- APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
-
- // Optimize the case where all the case values fit in a
- // word without having to subtract minValue. In this case,
- // we can optimize away the subtraction.
- if (minValue.isNonNegative() &&
- maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
- cmpRange = maxValue;
- } else {
- lowBound = minValue;
- }
-
- CaseBitsVector CasesBits;
- unsigned i, count = 0;
-
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- MachineBasicBlock* Dest = I->BB;
- for (i = 0; i < count; ++i)
- if (Dest == CasesBits[i].BB)
- break;
-
- if (i == count) {
- assert((count < 3) && "Too much destinations to test!");
- CasesBits.push_back(CaseBits(0, Dest, 0));
- count++;
- }
-
- const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
- const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
-
- uint64_t lo = (lowValue - lowBound).getZExtValue();
- uint64_t hi = (highValue - lowBound).getZExtValue();
-
- for (uint64_t j = lo; j <= hi; j++) {
- CasesBits[i].Mask |= 1ULL << j;
- CasesBits[i].Bits++;
- }
-
- }
- std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
-
- BitTestInfo BTC;
-
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
-
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
-
- DEBUG(errs() << "Cases:\n");
- for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
- DEBUG(errs() << "Mask: " << CasesBits[i].Mask
- << ", Bits: " << CasesBits[i].Bits
- << ", BB: " << CasesBits[i].BB << '\n');
-
- MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, CaseBB);
- BTC.push_back(BitTestCase(CasesBits[i].Mask,
- CaseBB,
- CasesBits[i].BB));
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
-
- BitTestBlock BTB(lowBound, cmpRange, SV,
- -1U, (CR.CaseBB == CurMBB),
- CR.CaseBB, Default, BTC);
-
- if (CR.CaseBB == CurMBB)
- visitBitTestHeader(BTB);
-
- BitTestCases.push_back(BTB);
-
- return true;
-}
-
-
-/// Clusterify - Transform simple list of Cases into list of CaseRange's
-size_t SelectionDAGLowering::Clusterify(CaseVector& Cases,
- const SwitchInst& SI) {
- size_t numCmps = 0;
-
- // Start with "simple" cases
- for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
- MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
- Cases.push_back(Case(SI.getSuccessorValue(i),
- SI.getSuccessorValue(i),
- SMBB));
- }
- std::sort(Cases.begin(), Cases.end(), CaseCmp());
-
- // Merge case into clusters
- if (Cases.size() >= 2)
- // Must recompute end() each iteration because it may be
- // invalidated by erase if we hold on to it
- for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
- const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
- const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
- MachineBasicBlock* nextBB = J->BB;
- MachineBasicBlock* currentBB = I->BB;
-
- // If the two neighboring cases go to the same destination, merge them
- // into a single case.
- if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
- I->High = J->High;
- J = Cases.erase(J);
- } else {
- I = J++;
- }
- }
-
- for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
- if (I->Low != I->High)
- // A range counts double, since it requires two compares.
- ++numCmps;
- }
-
- return numCmps;
-}
-
-void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
-
- MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
-
- // If there is only the default destination, branch to it if it is not the
- // next basic block. Otherwise, just fall through.
- if (SI.getNumOperands() == 2) {
- // Update machine-CFG edges.
-
- // If this is not a fall-through branch, emit the branch.
- CurMBB->addSuccessor(Default);
- if (Default != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Default)));
- return;
- }
-
- // If there are any non-default case statements, create a vector of Cases
- // representing each one, and sort the vector so that we can efficiently
- // create a binary search tree from them.
- CaseVector Cases;
- size_t numCmps = Clusterify(Cases, SI);
- DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << '\n');
- numCmps = 0;
-
- // Get the Value to be switched on and default basic blocks, which will be
- // inserted into CaseBlock records, representing basic blocks in the binary
- // search tree.
- Value *SV = SI.getOperand(0);
-
- // Push the initial CaseRec onto the worklist
- CaseRecVector WorkList;
- WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
-
- while (!WorkList.empty()) {
- // Grab a record representing a case range to process off the worklist
- CaseRec CR = WorkList.back();
- WorkList.pop_back();
-
- if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
- continue;
-
- // If the range has few cases (two or less) emit a series of specific
- // tests.
- if (handleSmallSwitchRange(CR, WorkList, SV, Default))
- continue;
-
- // If the switch has more than 5 blocks, and at least 40% dense, and the
- // target supports indirect branches, then emit a jump table rather than
- // lowering the switch to a binary tree of conditional branches.
- if (handleJTSwitchCase(CR, WorkList, SV, Default))
- continue;
-
- // Emit binary tree. We need to pick a pivot, and push left and right ranges
- // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
- handleBTSplitSwitchCase(CR, WorkList, SV, Default);
- }
-}
-
-void SelectionDAGLowering::visitIndirectBr(IndirectBrInst &I) {
- // Update machine-CFG edges.
- for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
- CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
-
- DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- getValue(I.getAddress())));
-}
-
-
-void SelectionDAGLowering::visitFSub(User &I) {
- // -0.0 - X --> fneg
- const Type *Ty = I.getType();
- if (isa<VectorType>(Ty)) {
- if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
- const VectorType *DestTy = cast<VectorType>(I.getType());
- const Type *ElTy = DestTy->getElementType();
- unsigned VL = DestTy->getNumElements();
- std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
- Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
- if (CV == CNZ) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
- Op2.getValueType(), Op2));
- return;
- }
- }
- }
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
- if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
- Op2.getValueType(), Op2));
- return;
- }
-
- visitBinary(I, ISD::FSUB);
-}
-
-void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
-
- setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
- Op1.getValueType(), Op1, Op2));
-}
-
-void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- if (!isa<VectorType>(I.getType()) &&
- Op2.getValueType() != TLI.getShiftAmountTy()) {
- // If the operand is smaller than the shift count type, promote it.
- EVT PTy = TLI.getPointerTy();
- EVT STy = TLI.getShiftAmountTy();
- if (STy.bitsGT(Op2.getValueType()))
- Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
- TLI.getShiftAmountTy(), Op2);
- // If the operand is larger than the shift count type but the shift
- // count type has enough bits to represent any shift value, truncate
- // it now. This is a common case and it exposes the truncate to
- // optimization early.
- else if (STy.getSizeInBits() >=
- Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
- Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getShiftAmountTy(), Op2);
- // Otherwise we'll need to temporarily settle for some other
- // convenient type; type legalization will make adjustments as
- // needed.
- else if (PTy.bitsLT(Op2.getValueType()))
- Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(), Op2);
- else if (PTy.bitsGT(Op2.getValueType()))
- Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(), Op2);
- }
-
- setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
- Op1.getValueType(), Op1, Op2));
-}
-
-void SelectionDAGLowering::visitICmp(User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
-
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
-}
-
-void SelectionDAGLowering::visitFCmp(User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
-}
-
-void SelectionDAGLowering::visitSelect(User &I) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues != 0) {
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Cond = getValue(I.getOperand(0));
- SDValue TrueVal = getValue(I.getOperand(1));
- SDValue FalseVal = getValue(I.getOperand(2));
-
- for (unsigned i = 0; i != NumValues; ++i)
- Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
- TrueVal.getValueType(), Cond,
- SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
- SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
-
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
-}
-
-
-void SelectionDAGLowering::visitTrunc(User &I) {
- // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitZExt(User &I) {
- // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // ZExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitSExt(User &I) {
- // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // SExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitFPTrunc(User &I) {
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
- DestVT, N, DAG.getIntPtrConstant(0)));
-}
-
-void SelectionDAGLowering::visitFPExt(User &I){
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitFPToUI(User &I) {
- // FPToUI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitFPToSI(User &I) {
- // FPToSI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitUIToFP(User &I) {
- // UIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitSIToFP(User &I){
- // SIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
-}
-
-void SelectionDAGLowering::visitPtrToInt(User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT SrcVT = N.getValueType();
- EVT DestVT = TLI.getValueType(I.getType());
- SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
- setValue(&I, Result);
-}
-
-void SelectionDAGLowering::visitIntToPtr(User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT SrcVT = N.getValueType();
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
-}
-
-void SelectionDAGLowering::visitBitCast(User &I) {
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
-
- // BitCast assures us that source and destination are the same size so this
- // is either a BIT_CONVERT or a no-op.
- if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- DestVT, N)); // convert types
- else
- setValue(&I, N); // noop cast.
-}
-
-void SelectionDAGLowering::visitInsertElement(User &I) {
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InVal = getValue(I.getOperand(1));
- SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(),
- getValue(I.getOperand(2)));
-
- setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
- TLI.getValueType(I.getType()),
- InVec, InVal, InIdx));
-}
-
-void SelectionDAGLowering::visitExtractElement(User &I) {
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(),
- getValue(I.getOperand(1)));
- setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- TLI.getValueType(I.getType()), InVec, InIdx));
-}
-
-
-// Utility for visitShuffleVector - Returns true if the mask is mask starting
-// from SIndx and increasing to the element length (undefs are allowed).
-static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
- unsigned MaskNumElts = Mask.size();
- for (unsigned i = 0; i != MaskNumElts; ++i)
- if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
- return false;
- return true;
-}
-
-void SelectionDAGLowering::visitShuffleVector(User &I) {
- SmallVector<int, 8> Mask;
- SDValue Src1 = getValue(I.getOperand(0));
- SDValue Src2 = getValue(I.getOperand(1));
-
- // Convert the ConstantVector mask operand into an array of ints, with -1
- // representing undef values.
- SmallVector<Constant*, 8> MaskElts;
- cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
- MaskElts);
- unsigned MaskNumElts = MaskElts.size();
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- if (isa<UndefValue>(MaskElts[i]))
- Mask.push_back(-1);
- else
- Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
- }
-
- EVT VT = TLI.getValueType(I.getType());
- EVT SrcVT = Src1.getValueType();
- unsigned SrcNumElts = SrcVT.getVectorNumElements();
-
- if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &Mask[0]));
- return;
- }
-
- // Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
- // Mask is longer than the source vectors and is a multiple of the source
- // vectors. We can use concatenate vector to make the mask and vectors
- // lengths match.
- if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
- VT, Src1, Src2));
- return;
- }
-
- // Pad both vectors with undefs to make them the same length as the mask.
- unsigned NumConcat = MaskNumElts / SrcNumElts;
- bool Src1U = Src1.getOpcode() == ISD::UNDEF;
- bool Src2U = Src2.getOpcode() == ISD::UNDEF;
- SDValue UndefVal = DAG.getUNDEF(SrcVT);
-
- SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
- SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
- MOps1[0] = Src1;
- MOps2[0] = Src2;
-
- Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurDebugLoc(), VT,
- &MOps1[0], NumConcat);
- Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurDebugLoc(), VT,
- &MOps2[0], NumConcat);
-
- // Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx < (int)SrcNumElts)
- MappedOps.push_back(Idx);
- else
- MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
-
- if (SrcNumElts > MaskNumElts) {
- // Analyze the access pattern of the vector to see if we can extract
- // two subvectors and do the shuffle. The analysis is done by calculating
- // the range of elements the mask access on both vectors.
- int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
- int MaxRange[2] = {-1, -1};
-
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- int Input = 0;
- if (Idx < 0)
- continue;
-
- if (Idx >= (int)SrcNumElts) {
- Input = 1;
- Idx -= SrcNumElts;
- }
- if (Idx > MaxRange[Input])
- MaxRange[Input] = Idx;
- if (Idx < MinRange[Input])
- MinRange[Input] = Idx;
- }
-
- // Check if the access is smaller than the vector size and can we find
- // a reasonable extract index.
- int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
- int StartIdx[2]; // StartIdx to extract from
- for (int Input=0; Input < 2; ++Input) {
- if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
- RangeUse[Input] = 0; // Unused
- StartIdx[Input] = 0;
- } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
- // Fits within range but we should see if we can find a good
- // start index that is a multiple of the mask length.
- if (MaxRange[Input] < (int)MaskNumElts) {
- RangeUse[Input] = 1; // Extract from beginning of the vector
- StartIdx[Input] = 0;
- } else {
- StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
- if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
- StartIdx[Input] + MaskNumElts < SrcNumElts)
- RangeUse[Input] = 1; // Extract from a multiple of the mask length.
- }
- }
- }
-
- if (RangeUse[0] == 0 && RangeUse[1] == 0) {
- setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
- return;
- }
- else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
- // Extract appropriate subvector and generate a vector shuffle
- for (int Input=0; Input < 2; ++Input) {
- SDValue& Src = Input == 0 ? Src1 : Src2;
- if (RangeUse[Input] == 0) {
- Src = DAG.getUNDEF(VT);
- } else {
- Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
- Src, DAG.getIntPtrConstant(StartIdx[Input]));
- }
- }
- // Calculate new mask.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx < 0)
- MappedOps.push_back(Idx);
- else if (Idx < (int)SrcNumElts)
- MappedOps.push_back(Idx - StartIdx[0]);
- else
- MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- }
-
- // We can't use either concat vectors or extract subvectors so fall back to
- // replacing the shuffle with extract and build vector.
- // to insert and build vector.
- EVT EltVT = VT.getVectorElementType();
- EVT PtrVT = TLI.getPointerTy();
- SmallVector<SDValue,8> Ops;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- if (Mask[i] < 0) {
- Ops.push_back(DAG.getUNDEF(EltVT));
- } else {
- int Idx = Mask[i];
- if (Idx < (int)SrcNumElts)
- Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- EltVT, Src1, DAG.getConstant(Idx, PtrVT)));
- else
- Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- EltVT, Src2,
- DAG.getConstant(Idx - SrcNumElts, PtrVT)));
- }
- }
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size()));
-}
-
-void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Value *Op1 = I.getOperand(1);
- const Type *AggTy = I.getType();
- const Type *ValTy = Op1->getType();
- bool IntoUndef = isa<UndefValue>(Op0);
- bool FromUndef = isa<UndefValue>(Op1);
-
- unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
- I.idx_begin(), I.idx_end());
-
- SmallVector<EVT, 4> AggValueVTs;
- ComputeValueVTs(TLI, AggTy, AggValueVTs);
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, ValTy, ValValueVTs);
-
- unsigned NumAggValues = AggValueVTs.size();
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumAggValues);
-
- SDValue Agg = getValue(Op0);
- SDValue Val = getValue(Op1);
- unsigned i = 0;
- // Copy the beginning value(s) from the original aggregate.
- for (; i != LinearIndex; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- // Copy values from the inserted value(s).
- for (; i != LinearIndex + NumValValues; ++i)
- Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
- // Copy remaining value(s) from the original aggregate.
- for (; i != NumAggValues; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
-
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&AggValueVTs[0], NumAggValues),
- &Values[0], NumAggValues));
-}
-
-void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Type *AggTy = Op0->getType();
- const Type *ValTy = I.getType();
- bool OutOfUndef = isa<UndefValue>(Op0);
-
- unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
- I.idx_begin(), I.idx_end());
-
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, ValTy, ValValueVTs);
-
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumValValues);
-
- SDValue Agg = getValue(Op0);
- // Copy out the selected value(s).
- for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
- Values[i - LinearIndex] =
- OutOfUndef ?
- DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
-
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValValueVTs[0], NumValValues),
- &Values[0], NumValValues));
-}
-
-
-void SelectionDAGLowering::visitGetElementPtr(User &I) {
- SDValue N = getValue(I.getOperand(0));
- const Type *Ty = I.getOperand(0)->getType();
-
- for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
- OI != E; ++OI) {
- Value *Idx = *OI;
- if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
- unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
- if (Field) {
- // N = N + Offset
- uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
- DAG.getIntPtrConstant(Offset));
- }
- Ty = StTy->getElementType(Field);
- } else {
- Ty = cast<SequentialType>(Ty)->getElementType();
-
- // If this is a constant subscript, handle it quickly.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
- if (CI->getZExtValue() == 0) continue;
- uint64_t Offs =
- TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
- SDValue OffsVal;
- EVT PTy = TLI.getPointerTy();
- unsigned PtrBits = PTy.getSizeInBits();
- if (PtrBits < 64) {
- OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(),
- DAG.getConstant(Offs, MVT::i64));
- } else
- OffsVal = DAG.getIntPtrConstant(Offs);
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
- OffsVal);
- continue;
- }
-
- // N = N + Idx * ElementSize;
- APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
- TD->getTypeAllocSize(Ty));
- SDValue IdxN = getValue(Idx);
-
- // If the index is smaller or larger than intptr_t, truncate or extend
- // it.
- IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
-
- // If this is a multiply by a power of two, turn it into a shl
- // immediately. This is a very common case.
- if (ElementSize != 1) {
- if (ElementSize.isPowerOf2()) {
- unsigned Amt = ElementSize.logBase2();
- IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
- N.getValueType(), IdxN,
- DAG.getConstant(Amt, TLI.getPointerTy()));
- } else {
- SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
- IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
- N.getValueType(), IdxN, Scale);
- }
- }
-
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- N.getValueType(), N, IdxN);
- }
- }
- setValue(&I, N);
-}
-
-void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
- // If this is a fixed sized alloca in the entry block of the function,
- // allocate it statically on the stack.
- if (FuncInfo.StaticAllocaMap.count(&I))
- return; // getValue will auto-populate this.
-
- const Type *Ty = I.getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
- I.getAlignment());
-
- SDValue AllocSize = getValue(I.getArraySize());
-
- AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
- AllocSize,
- DAG.getConstant(TySize, AllocSize.getValueType()));
-
-
-
- EVT IntPtr = TLI.getPointerTy();
- AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
-
- // Handle alignment. If the requested alignment is less than or equal to
- // the stack alignment, ignore it. If the size is greater than or equal to
- // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- unsigned StackAlign =
- TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
- if (Align <= StackAlign)
- Align = 0;
-
- // Round the size of the allocation up to the stack alignment size
- // by add SA-1 to the size.
- AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(StackAlign-1));
- // Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
-
- SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
- SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
- VTs, Ops, 3);
- setValue(&I, DSA);
- DAG.setRoot(DSA.getValue(1));
-
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
-}
-
-void SelectionDAGLowering::visitLoad(LoadInst &I) {
- const Value *SV = I.getOperand(0);
- SDValue Ptr = getValue(SV);
-
- const Type *Ty = I.getType();
- bool isVolatile = I.isVolatile();
- unsigned Alignment = I.getAlignment();
-
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
-
- SDValue Root;
- bool ConstantMemory = false;
- if (I.isVolatile())
- // Serialize volatile loads with other side effects.
- Root = getRoot();
- else if (AA->pointsToConstantMemory(SV)) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = DAG.getRoot();
- }
-
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
- EVT PtrVT = Ptr.getValueType();
- for (unsigned i = 0; i != NumValues; ++i) {
- SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
- DAG.getNode(ISD::ADD, getCurDebugLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT)),
- SV, Offsets[i], isVolatile, Alignment);
- Values[i] = L;
- Chains[i] = L.getValue(1);
- }
-
- if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other,
- &Chains[0], NumValues);
- if (isVolatile)
- DAG.setRoot(Chain);
- else
- PendingLoads.push_back(Chain);
- }
-
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
-}
-
-
-void SelectionDAGLowering::visitStore(StoreInst &I) {
- Value *SrcV = I.getOperand(0);
- Value *PtrV = I.getOperand(1);
-
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
-
- // Get the lowered operands. Note that we do this after
- // checking if NumResults is zero, because with zero results
- // the operands won't have values in the map.
- SDValue Src = getValue(SrcV);
- SDValue Ptr = getValue(PtrV);
-
- SDValue Root = getRoot();
- SmallVector<SDValue, 4> Chains(NumValues);
- EVT PtrVT = Ptr.getValueType();
- bool isVolatile = I.isVolatile();
- unsigned Alignment = I.getAlignment();
- for (unsigned i = 0; i != NumValues; ++i)
- Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
- SDValue(Src.getNode(), Src.getResNo() + i),
- DAG.getNode(ISD::ADD, getCurDebugLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT)),
- PtrV, Offsets[i], isVolatile, Alignment);
-
- DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], NumValues));
-}
-
-/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
-/// node.
-void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
- unsigned Intrinsic) {
- bool HasChain = !I.doesNotAccessMemory();
- bool OnlyLoad = HasChain && I.onlyReadsMemory();
-
- // Build the operand list.
- SmallVector<SDValue, 8> Ops;
- if (HasChain) { // If this intrinsic has side-effects, chainify it.
- if (OnlyLoad) {
- // We don't need to serialize loads against other loads.
- Ops.push_back(DAG.getRoot());
- } else {
- Ops.push_back(getRoot());
- }
- }
-
- // Info is set by getTgtMemInstrinsic
- TargetLowering::IntrinsicInfo Info;
- bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
-
- // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
- if (!IsTgtIntrinsic)
- Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
-
- // Add all operands of the call to the operand list.
- for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
- SDValue Op = getValue(I.getOperand(i));
- assert(TLI.isTypeLegal(Op.getValueType()) &&
- "Intrinsic uses a non-legal type?");
- Ops.push_back(Op);
- }
-
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getType(), ValueVTs);
-#ifndef NDEBUG
- for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
- assert(TLI.isTypeLegal(ValueVTs[Val]) &&
- "Intrinsic uses a non-legal type?");
- }
-#endif // NDEBUG
- if (HasChain)
- ValueVTs.push_back(MVT::Other);
-
- SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
-
- // Create the node.
- SDValue Result;
- if (IsTgtIntrinsic) {
- // This is target intrinsic that touches memory
- Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size(),
- Info.memVT, Info.ptrVal, Info.offset,
- Info.align, Info.vol,
- Info.readMem, Info.writeMem);
- }
- else if (!HasChain)
- Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- else if (I.getType() != Type::getVoidTy(*DAG.getContext()))
- Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- else
- Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
-
- if (HasChain) {
- SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
- if (OnlyLoad)
- PendingLoads.push_back(Chain);
- else
- DAG.setRoot(Chain);
- }
- if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
- if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- EVT VT = TLI.getValueType(PTy);
- Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
- }
- setValue(&I, Result);
- }
-}
-
-/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
-static GlobalVariable *ExtractTypeInfo(Value *V) {
- V = V->stripPointerCasts();
- GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
- assert ((GV || isa<ConstantPointerNull>(V)) &&
- "TypeInfo must be a global variable or NULL");
- return GV;
-}
-
-namespace llvm {
-
-/// AddCatchInfo - Extract the personality and type infos from an eh.selector
-/// call, and add them to the specified machine basic block.
-void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
- MachineBasicBlock *MBB) {
- // Inform the MachineModuleInfo of the personality for this landing pad.
- ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
- assert(CE->getOpcode() == Instruction::BitCast &&
- isa<Function>(CE->getOperand(0)) &&
- "Personality should be a function");
- MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
-
- // Gather all the type infos for this landing pad and pass them along to
- // MachineModuleInfo.
- std::vector<GlobalVariable *> TyInfo;
- unsigned N = I.getNumOperands();
-
- for (unsigned i = N - 1; i > 2; --i) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
- unsigned FilterLength = CI->getZExtValue();
- unsigned FirstCatch = i + FilterLength + !FilterLength;
- assert (FirstCatch <= N && "Invalid filter length");
-
- if (FirstCatch < N) {
- TyInfo.reserve(N - FirstCatch);
- for (unsigned j = FirstCatch; j < N; ++j)
- TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
- MMI->addCatchTypeInfo(MBB, TyInfo);
- TyInfo.clear();
- }
-
- if (!FilterLength) {
- // Cleanup.
- MMI->addCleanup(MBB);
- } else {
- // Filter.
- TyInfo.reserve(FilterLength - 1);
- for (unsigned j = i + 1; j < FirstCatch; ++j)
- TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
- MMI->addFilterTypeInfo(MBB, TyInfo);
- TyInfo.clear();
- }
-
- N = i;
- }
- }
-
- if (N > 3) {
- TyInfo.reserve(N - 3);
- for (unsigned j = 3; j < N; ++j)
- TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
- MMI->addCatchTypeInfo(MBB, TyInfo);
- }
-}
-
-}
-
-/// GetSignificand - Get the significand and build it into a floating-point
-/// number with exponent of 1:
-///
-/// Op = (Op & 0x007fffff) | 0x3f800000;
-///
-/// where Op is the hexidecimal representation of floating point value.
-static SDValue
-GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
- SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, MVT::i32));
- SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, MVT::i32));
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
-}
-
-/// GetExponent - Get the exponent:
-///
-/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
-///
-/// where Op is the hexidecimal representation of floating point value.
-static SDValue
-GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
- DebugLoc dl) {
- SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, MVT::i32));
- SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, MVT::i32));
- return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
-}
-
-/// getF32Constant - Get 32-bit floating point constant.
-static SDValue
-getF32Constant(SelectionDAG &DAG, unsigned Flt) {
- return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
-}
-
-/// Inlined utility function to implement binary input atomic intrinsics for
-/// visitIntrinsicCall: I is a call instruction
-/// Op is the associated NodeType for I
-const char *
-SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
- SDValue Root = getRoot();
- SDValue L =
- DAG.getAtomic(Op, getCurDebugLoc(),
- getValue(I.getOperand(2)).getValueType().getSimpleVT(),
- Root,
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)),
- I.getOperand(1));
- setValue(&I, L);
- DAG.setRoot(L.getValue(1));
- return 0;
-}
-
-// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
-const char *
-SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
-
- SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
- SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
-
- setValue(&I, Result);
- return 0;
-}
-
-/// visitExp - Lower an exp intrinsic. Handles the special sequences for
-/// limited-precision mode.
-void
-SelectionDAGLowering::visitExp(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
-
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
-
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OFe 1.4426950f
- // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x3fb8aa3b));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
-
- // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
-
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
-
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
-
- // Add the exponent into the result in integer domain.
- SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- TwoToFracPartOfX, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // 0.000107046256 error, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
-
- // Add the exponent into the result in integer domain.
- SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- TwoToFracPartOfX, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- //
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::i32, t13);
-
- // Add the exponent into the result in integer domain.
- SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- TwoToFracPartOfX, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FEXP, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
-
- setValue(&I, result);
-}
-
-/// visitLog - Lower a log intrinsic. Handles the special sequences for
-/// limited-precision mode.
-void
-SelectionDAGLowering::visitLog(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
-
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
-
- // Scale the exponent by log(2) [0.69314718f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3f317218));
-
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
-
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // LogofMantissa =
- // -1.1609546f +
- // (1.4034025f - 0.23903021f * x) * x;
- //
- // error 0.0034276066, which is better than 8 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, LogOfMantissa);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // LogOfMantissa =
- // -1.7417939f +
- // (2.8212026f +
- // (-1.4699568f +
- // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
- //
- // error 0.000061011436, which is 14 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, LogOfMantissa);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // LogOfMantissa =
- // -2.1072184f +
- // (4.2372794f +
- // (-3.7029485f +
- // (2.2781945f +
- // (-0.87823314f +
- // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
- //
- // error 0.0000023660568, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, LogOfMantissa);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FLOG, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
-
- setValue(&I, result);
-}
-
-/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
-/// limited-precision mode.
-void
-SelectionDAGLowering::visitLog2(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
-
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
-
- // Get the exponent.
- SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
-
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
-
- // Different possible minimax approximations of significand in
- // floating-point for various degrees of accuracy over [1,2].
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
- //
- // error 0.0049451742, which is more than 7 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log2ofMantissa);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log2ofMantissa =
- // -2.51285454f +
- // (4.07009056f +
- // (-2.12067489f +
- // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
- //
- // error 0.0000876136000, which is better than 13 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log2ofMantissa);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log2ofMantissa =
- // -3.0400495f +
- // (6.1129976f +
- // (-5.3420409f +
- // (3.2865683f +
- // (-1.2669343f +
- // (0.27515199f -
- // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
- //
- // error 0.0000018516, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log2ofMantissa);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FLOG2, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
-
- setValue(&I, result);
-}
-
-/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
-/// limited-precision mode.
-void
-SelectionDAGLowering::visitLog10(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
-
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
-
- // Scale the exponent by log10(2) [0.30102999f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a));
-
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
-
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log10ofMantissa =
- // -0.50419619f +
- // (0.60948995f - 0.10380950f * x) * x;
- //
- // error 0.0014886165, which is 6 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log10ofMantissa);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log10ofMantissa =
- // -0.64831180f +
- // (0.91751397f +
- // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
- //
- // error 0.00019228036, which is better than 12 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log10ofMantissa);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log10ofMantissa =
- // -0.84299375f +
- // (1.5327582f +
- // (-1.0688956f +
- // (0.49102474f +
- // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
- //
- // error 0.0000037995730, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70));
-
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log10ofMantissa);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FLOG10, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
-
- setValue(&I, result);
-}
-
-/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
-/// limited-precision mode.
-void
-SelectionDAGLowering::visitExp2(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
-
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
-
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
-
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
-
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
-
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FEXP2, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
-
- setValue(&I, result);
-}
-
-/// visitPow - Lower a pow intrinsic. Handles the special sequences for
-/// limited-precision mode with x == 10.0f.
-void
-SelectionDAGLowering::visitPow(CallInst &I) {
- SDValue result;
- Value *Val = I.getOperand(1);
- DebugLoc dl = getCurDebugLoc();
- bool IsExp10 = false;
-
- if (getValue(Val).getValueType() == MVT::f32 &&
- getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- APFloat Ten(10.0f);
- IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
- }
- }
- }
-
- if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(2));
-
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OF10 3.3219281f
- // IntegerPartOfX = (int32_t)(x * LOG2OF10);
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x40549a78));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
-
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
-
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
-
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // twoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
-
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FPOW, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)));
- }
-
- setValue(&I, result);
-}
-
-/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
-/// we want to emit this as a call to a named external function, return the name
-/// otherwise lower it and return null.
-const char *
-SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
- DebugLoc dl = getCurDebugLoc();
- switch (Intrinsic) {
- default:
- // By default, turn this into a target intrinsic node.
- visitTargetIntrinsic(I, Intrinsic);
- return 0;
- case Intrinsic::vastart: visitVAStart(I); return 0;
- case Intrinsic::vaend: visitVAEnd(I); return 0;
- case Intrinsic::vacopy: visitVACopy(I); return 0;
- case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::setjmp:
- return "_setjmp"+!TLI.usesUnderscoreSetJmp();
- break;
- case Intrinsic::longjmp:
- return "_longjmp"+!TLI.usesUnderscoreLongJmp();
- break;
- case Intrinsic::memcpy: {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDValue Op3 = getValue(I.getOperand(3));
- unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
- I.getOperand(1), 0, I.getOperand(2), 0));
- return 0;
- }
- case Intrinsic::memset: {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDValue Op3 = getValue(I.getOperand(3));
- unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
- I.getOperand(1), 0));
- return 0;
- }
- case Intrinsic::memmove: {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDValue Op3 = getValue(I.getOperand(3));
- unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
-
- // If the source and destination are known to not be aliases, we can
- // lower memmove as memcpy.
- uint64_t Size = -1ULL;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
- Size = C->getZExtValue();
- if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
- AliasAnalysis::NoAlias) {
- DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
- I.getOperand(1), 0, I.getOperand(2), 0));
- return 0;
- }
-
- DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
- I.getOperand(1), 0, I.getOperand(2), 0));
- return 0;
- }
- case Intrinsic::dbg_stoppoint:
- case Intrinsic::dbg_region_start:
- case Intrinsic::dbg_region_end:
- case Intrinsic::dbg_func_start:
- // FIXME - Remove this instructions once the dust settles.
- return 0;
- case Intrinsic::dbg_declare: {
- if (OptLevel != CodeGenOpt::None)
- // FIXME: Variable debug info is not supported here.
- return 0;
- DwarfWriter *DW = DAG.getDwarfWriter();
- if (!DW)
- return 0;
- DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
- if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
- return 0;
-
- MDNode *Variable = DI.getVariable();
- Value *Address = DI.getAddress();
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
- AllocaInst *AI = dyn_cast<AllocaInst>(Address);
- // Don't handle byval struct arguments or VLAs, for example.
- if (!AI)
- return 0;
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI == FuncInfo.StaticAllocaMap.end())
- return 0; // VLAs.
- int FI = SI->second;
-
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- if (MMI) {
- MetadataContext &TheMetadata =
- DI.getParent()->getContext().getMetadata();
- unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
- MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI);
- MMI->setVariableDbgInfo(Variable, FI, Dbg);
- }
- return 0;
- }
- case Intrinsic::eh_exception: {
- // Insert the EXCEPTIONADDR instruction.
- assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
- SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
- SDValue Ops[1];
- Ops[0] = DAG.getRoot();
- SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
- setValue(&I, Op);
- DAG.setRoot(Op.getValue(1));
- return 0;
- }
-
- case Intrinsic::eh_selector: {
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
-
- if (CurMBB->isLandingPad())
- AddCatchInfo(I, MMI, CurMBB);
- else {
-#ifndef NDEBUG
- FuncInfo.CatchInfoLost.insert(&I);
-#endif
- // FIXME: Mark exception selector register as live in. Hack for PR1508.
- unsigned Reg = TLI.getExceptionSelectorRegister();
- if (Reg) CurMBB->addLiveIn(Reg);
- }
-
- // Insert the EHSELECTION instruction.
- SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
- SDValue Ops[2];
- Ops[0] = getValue(I.getOperand(1));
- Ops[1] = getRoot();
- SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
-
- DAG.setRoot(Op.getValue(1));
-
- setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
- return 0;
- }
-
- case Intrinsic::eh_typeid_for: {
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
-
- if (MMI) {
- // Find the type id for the given typeinfo.
- GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
-
- unsigned TypeID = MMI->getTypeIDFor(GV);
- setValue(&I, DAG.getConstant(TypeID, MVT::i32));
- } else {
- // Return something different to eh_selector.
- setValue(&I, DAG.getConstant(1, MVT::i32));
- }
-
- return 0;
- }
-
- case Intrinsic::eh_return_i32:
- case Intrinsic::eh_return_i64:
- if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
- MMI->setCallsEHReturn(true);
- DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
- MVT::Other,
- getControlRoot(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2))));
- } else {
- setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
- }
-
- return 0;
- case Intrinsic::eh_unwind_init:
- if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
- MMI->setCallsUnwindInit(true);
- }
-
- return 0;
-
- case Intrinsic::eh_dwarf_cfa: {
- EVT VT = getValue(I.getOperand(1)).getValueType();
- SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
- TLI.getPointerTy());
-
- SDValue Offset = DAG.getNode(ISD::ADD, dl,
- TLI.getPointerTy(),
- DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
- TLI.getPointerTy()),
- CfaArg);
- setValue(&I, DAG.getNode(ISD::ADD, dl,
- TLI.getPointerTy(),
- DAG.getNode(ISD::FRAMEADDR, dl,
- TLI.getPointerTy(),
- DAG.getConstant(0,
- TLI.getPointerTy())),
- Offset));
- return 0;
- }
- case Intrinsic::convertff:
- case Intrinsic::convertfsi:
- case Intrinsic::convertfui:
- case Intrinsic::convertsif:
- case Intrinsic::convertuif:
- case Intrinsic::convertss:
- case Intrinsic::convertsu:
- case Intrinsic::convertus:
- case Intrinsic::convertuu: {
- ISD::CvtCode Code = ISD::CVT_INVALID;
- switch (Intrinsic) {
- case Intrinsic::convertff: Code = ISD::CVT_FF; break;
- case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
- case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
- case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
- case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
- case Intrinsic::convertss: Code = ISD::CVT_SS; break;
- case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
- case Intrinsic::convertus: Code = ISD::CVT_US; break;
- case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
- }
- EVT DestVT = TLI.getValueType(I.getType());
- Value* Op1 = I.getOperand(1);
- setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
- DAG.getValueType(DestVT),
- DAG.getValueType(getValue(Op1).getValueType()),
- getValue(I.getOperand(2)),
- getValue(I.getOperand(3)),
- Code));
- return 0;
- }
-
- case Intrinsic::sqrt:
- setValue(&I, DAG.getNode(ISD::FSQRT, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::powi:
- setValue(&I, DAG.getNode(ISD::FPOWI, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2))));
- return 0;
- case Intrinsic::sin:
- setValue(&I, DAG.getNode(ISD::FSIN, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::cos:
- setValue(&I, DAG.getNode(ISD::FCOS, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::log:
- visitLog(I);
- return 0;
- case Intrinsic::log2:
- visitLog2(I);
- return 0;
- case Intrinsic::log10:
- visitLog10(I);
- return 0;
- case Intrinsic::exp:
- visitExp(I);
- return 0;
- case Intrinsic::exp2:
- visitExp2(I);
- return 0;
- case Intrinsic::pow:
- visitPow(I);
- return 0;
- case Intrinsic::pcmarker: {
- SDValue Tmp = getValue(I.getOperand(1));
- DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
- return 0;
- }
- case Intrinsic::readcyclecounter: {
- SDValue Op = getRoot();
- SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl,
- DAG.getVTList(MVT::i64, MVT::Other),
- &Op, 1);
- setValue(&I, Tmp);
- DAG.setRoot(Tmp.getValue(1));
- return 0;
- }
- case Intrinsic::bswap:
- setValue(&I, DAG.getNode(ISD::BSWAP, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::cttz: {
- SDValue Arg = getValue(I.getOperand(1));
- EVT Ty = Arg.getValueType();
- SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
- setValue(&I, result);
- return 0;
- }
- case Intrinsic::ctlz: {
- SDValue Arg = getValue(I.getOperand(1));
- EVT Ty = Arg.getValueType();
- SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
- setValue(&I, result);
- return 0;
- }
- case Intrinsic::ctpop: {
- SDValue Arg = getValue(I.getOperand(1));
- EVT Ty = Arg.getValueType();
- SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
- setValue(&I, result);
- return 0;
- }
- case Intrinsic::stacksave: {
- SDValue Op = getRoot();
- SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl,
- DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
- setValue(&I, Tmp);
- DAG.setRoot(Tmp.getValue(1));
- return 0;
- }
- case Intrinsic::stackrestore: {
- SDValue Tmp = getValue(I.getOperand(1));
- DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp));
- return 0;
- }
- case Intrinsic::stackprotector: {
- // Emit code into the DAG to store the stack guard onto the stack.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- EVT PtrTy = TLI.getPointerTy();
-
- SDValue Src = getValue(I.getOperand(1)); // The guard's value.
- AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
-
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI->setStackProtectorIndex(FI);
-
- SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
-
- // Store the stack protector onto the stack.
- SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
- PseudoSourceValue::getFixedStack(FI),
- 0, true);
- setValue(&I, Result);
- DAG.setRoot(Result);
- return 0;
- }
- case Intrinsic::objectsize: {
- // If we don't know by now, we're never going to know.
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
-
- assert(CI && "Non-constant type in __builtin_object_size?");
-
- SDValue Arg = getValue(I.getOperand(0));
- EVT Ty = Arg.getValueType();
-
- if (CI->getZExtValue() < 2)
- setValue(&I, DAG.getConstant(-1ULL, Ty));
- else
- setValue(&I, DAG.getConstant(0, Ty));
- return 0;
- }
- case Intrinsic::var_annotation:
- // Discard annotate attributes
- return 0;
-
- case Intrinsic::init_trampoline: {
- const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
-
- SDValue Ops[6];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getOperand(1));
- Ops[2] = getValue(I.getOperand(2));
- Ops[3] = getValue(I.getOperand(3));
- Ops[4] = DAG.getSrcValue(I.getOperand(1));
- Ops[5] = DAG.getSrcValue(F);
-
- SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl,
- DAG.getVTList(TLI.getPointerTy(), MVT::Other),
- Ops, 6);
-
- setValue(&I, Tmp);
- DAG.setRoot(Tmp.getValue(1));
- return 0;
- }
-
- case Intrinsic::gcroot:
- if (GFI) {
- Value *Alloca = I.getOperand(1);
- Constant *TypeMap = cast<Constant>(I.getOperand(2));
-
- FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
- GFI->addStackRoot(FI->getIndex(), TypeMap);
- }
- return 0;
-
- case Intrinsic::gcread:
- case Intrinsic::gcwrite:
- llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
- return 0;
-
- case Intrinsic::flt_rounds: {
- setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
- return 0;
- }
-
- case Intrinsic::trap: {
- DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
- return 0;
- }
-
- case Intrinsic::uadd_with_overflow:
- return implVisitAluOverflow(I, ISD::UADDO);
- case Intrinsic::sadd_with_overflow:
- return implVisitAluOverflow(I, ISD::SADDO);
- case Intrinsic::usub_with_overflow:
- return implVisitAluOverflow(I, ISD::USUBO);
- case Intrinsic::ssub_with_overflow:
- return implVisitAluOverflow(I, ISD::SSUBO);
- case Intrinsic::umul_with_overflow:
- return implVisitAluOverflow(I, ISD::UMULO);
- case Intrinsic::smul_with_overflow:
- return implVisitAluOverflow(I, ISD::SMULO);
-
- case Intrinsic::prefetch: {
- SDValue Ops[4];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getOperand(1));
- Ops[2] = getValue(I.getOperand(2));
- Ops[3] = getValue(I.getOperand(3));
- DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
- return 0;
- }
-
- case Intrinsic::memory_barrier: {
- SDValue Ops[6];
- Ops[0] = getRoot();
- for (int x = 1; x < 6; ++x)
- Ops[x] = getValue(I.getOperand(x));
-
- DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
- return 0;
- }
- case Intrinsic::atomic_cmp_swap: {
- SDValue Root = getRoot();
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
- getValue(I.getOperand(2)).getValueType().getSimpleVT(),
- Root,
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)),
- getValue(I.getOperand(3)),
- I.getOperand(1));
- setValue(&I, L);
- DAG.setRoot(L.getValue(1));
- return 0;
- }
- case Intrinsic::atomic_load_add:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
- case Intrinsic::atomic_load_sub:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
- case Intrinsic::atomic_load_or:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
- case Intrinsic::atomic_load_xor:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
- case Intrinsic::atomic_load_and:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
- case Intrinsic::atomic_load_nand:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
- case Intrinsic::atomic_load_max:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
- case Intrinsic::atomic_load_min:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
- case Intrinsic::atomic_load_umin:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
- case Intrinsic::atomic_load_umax:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
- case Intrinsic::atomic_swap:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
-
- case Intrinsic::invariant_start:
- case Intrinsic::lifetime_start:
- // Discard region information.
- setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
- return 0;
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_end:
- // Discard region information.
- return 0;
- }
-}
-
-/// Test if the given instruction is in a position to be optimized
-/// with a tail-call. This roughly means that it's in a block with
-/// a return and there's nothing that needs to be scheduled
-/// between it and the return.
-///
-/// This function only tests target-independent requirements.
-/// For target-dependent requirements, a target should override
-/// TargetLowering::IsEligibleForTailCallOptimization.
-///
-static bool
-isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
- const TargetLowering &TLI) {
- const BasicBlock *ExitBB = I->getParent();
- const TerminatorInst *Term = ExitBB->getTerminator();
- const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
- const Function *F = ExitBB->getParent();
-
- // The block must end in a return statement or an unreachable.
- if (!Ret && !isa<UnreachableInst>(Term)) return false;
-
- // If I will have a chain, make sure no other instruction that will have a
- // chain interposes between I and the return.
- if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
- !I->isSafeToSpeculativelyExecute())
- for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
- --BBI) {
- if (&*BBI == I)
- break;
- if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
- !BBI->isSafeToSpeculativelyExecute())
- return false;
- }
-
- // If the block ends with a void return or unreachable, it doesn't matter
- // what the call's return type is.
- if (!Ret || Ret->getNumOperands() == 0) return true;
-
- // If the return value is undef, it doesn't matter what the call's
- // return type is.
- if (isa<UndefValue>(Ret->getOperand(0))) return true;
-
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore noalias because it doesn't affect the call sequence.
- unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
- if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
- return false;
-
- // Otherwise, make sure the unmodified return value of I is the return value.
- for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
- U = dyn_cast<Instruction>(U->getOperand(0))) {
- if (!U)
- return false;
- if (!U->hasOneUse())
- return false;
- if (U == I)
- break;
- // Check for a truly no-op truncate.
- if (isa<TruncInst>(U) &&
- TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
- continue;
- // Check for a truly no-op bitcast.
- if (isa<BitCastInst>(U) &&
- (U->getOperand(0)->getType() == U->getType() ||
- (isa<PointerType>(U->getOperand(0)->getType()) &&
- isa<PointerType>(U->getType()))))
- continue;
- // Otherwise it's not a true no-op.
- return false;
- }
-
- return true;
-}
-
-void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
- bool isTailCall,
- MachineBasicBlock *LandingPad) {
- const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- const Type *RetTy = FTy->getReturnType();
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- unsigned BeginLabel = 0, EndLabel = 0;
-
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Args.reserve(CS.arg_size());
-
- // Check whether the function can return without sret-demotion.
- SmallVector<EVT, 4> OutVTs;
- SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
- SmallVector<uint64_t, 4> Offsets;
- getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
- OutVTs, OutsFlags, TLI, &Offsets);
-
-
- bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
- FTy->isVarArg(), OutVTs, OutsFlags, DAG);
-
- SDValue DemoteStackSlot;
-
- if (!CanLowerReturn) {
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
- FTy->getReturnType());
- unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
- FTy->getReturnType());
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
-
- DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
- Entry.Node = DemoteStackSlot;
- Entry.Ty = StackSlotPtrType;
- Entry.isSExt = false;
- Entry.isZExt = false;
- Entry.isInReg = false;
- Entry.isSRet = true;
- Entry.isNest = false;
- Entry.isByVal = false;
- Entry.Alignment = Align;
- Args.push_back(Entry);
- RetTy = Type::getVoidTy(FTy->getContext());
- }
-
- for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- SDValue ArgNode = getValue(*i);
- Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
-
- unsigned attrInd = i - CS.arg_begin() + 1;
- Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
- Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
- Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
- Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
- Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
- Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
- Entry.Alignment = CS.getParamAlignment(attrInd);
- Args.push_back(Entry);
- }
-
- if (LandingPad && MMI) {
- // Insert a label before the invoke call to mark the try range. This can be
- // used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI->NextLabelID();
-
- // Both PendingLoads and PendingExports must be flushed here;
- // this call might not return.
- (void)getRoot();
- DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
- getControlRoot(), BeginLabel));
- }
-
- // Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within TLI.LowerCallTo.
- if (isTailCall &&
- !isInTailCallPosition(CS.getInstruction(),
- CS.getAttributes().getRetAttributes(),
- TLI))
- isTailCall = false;
-
- std::pair<SDValue,SDValue> Result =
- TLI.LowerCallTo(getRoot(), RetTy,
- CS.paramHasAttr(0, Attribute::SExt),
- CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
- CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
- CS.getCallingConv(),
- isTailCall,
- !CS.getInstruction()->use_empty(),
- Callee, Args, DAG, getCurDebugLoc());
- assert((isTailCall || Result.second.getNode()) &&
- "Non-null chain expected with non-tail call!");
- assert((Result.second.getNode() || !Result.first.getNode()) &&
- "Null value expected with tail call!");
- if (Result.first.getNode())
- setValue(CS.getInstruction(), Result.first);
- else if (!CanLowerReturn && Result.second.getNode()) {
- // The instruction result is the result of loading from the
- // hidden sret parameter.
- SmallVector<EVT, 1> PVTs;
- const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
-
- ComputeValueVTs(TLI, PtrRetTy, PVTs);
- assert(PVTs.size() == 1 && "Pointers should fit in one register");
- EVT PtrVT = PVTs[0];
- unsigned NumValues = OutVTs.size();
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
-
- for (unsigned i = 0; i < NumValues; ++i) {
- SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
- DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot,
- DAG.getConstant(Offsets[i], PtrVT)),
- NULL, Offsets[i], false, 1);
- Values[i] = L;
- Chains[i] = L.getValue(1);
- }
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], NumValues);
- PendingLoads.push_back(Chain);
-
- setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES,
- getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues),
- &Values[0], NumValues));
- }
- // As a special case, a null chain means that a tail call has
- // been emitted and the DAG root is already updated.
- if (Result.second.getNode())
- DAG.setRoot(Result.second);
- else
- HasTailCall = true;
-
- if (LandingPad && MMI) {
- // Insert a label at the end of the invoke call to mark the try range. This
- // can be used to detect deletion of the invoke via the MachineModuleInfo.
- EndLabel = MMI->NextLabelID();
- DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
- getRoot(), EndLabel));
-
- // Inform MachineModuleInfo of range.
- MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
- }
-}
-
-
-void SelectionDAGLowering::visitCall(CallInst &I) {
- const char *RenameFn = 0;
- if (Function *F = I.getCalledFunction()) {
- if (F->isDeclaration()) {
- const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
- if (II) {
- if (unsigned IID = II->getIntrinsicID(F)) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- if (unsigned IID = F->getIntrinsicID()) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
-
- // Check for well-known libc/libm calls. If the function is internal, it
- // can't be a library call.
- if (!F->hasLocalLinkage() && F->hasName()) {
- StringRef Name = F->getName();
- if (Name == "copysign" || Name == "copysignf") {
- if (I.getNumOperands() == 3 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType() &&
- I.getType() == I.getOperand(2)->getType()) {
- SDValue LHS = getValue(I.getOperand(1));
- SDValue RHS = getValue(I.getOperand(2));
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
- LHS.getValueType(), LHS, RHS));
- return;
- }
- } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType() &&
- I.onlyReadsMemory()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType() &&
- I.onlyReadsMemory()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType() &&
- I.onlyReadsMemory()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- }
- }
- } else if (isa<InlineAsm>(I.getOperand(0))) {
- visitInlineAsm(&I);
- return;
- }
-
- SDValue Callee;
- if (!RenameFn)
- Callee = getValue(I.getOperand(0));
- else
- Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
-
- // Check if we can potentially perform a tail call. More detailed
- // checking is be done within LowerCallTo, after more information
- // about the call is known.
- bool isTailCall = PerformTailCallOpt && I.isTailCall();
-
- LowerCallTo(&I, Callee, isTailCall);
-}
-
-
-/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
-/// this value and returns the result as a ValueVT value. This uses
-/// Chain/Flag as the input and updates them for the output Chain/Flag.
-/// If the Flag pointer is NULL, no flag is used.
-SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain,
- SDValue *Flag) const {
- // Assemble the legal parts into the final values.
- SmallVector<SDValue, 4> Values(ValueVTs.size());
- SmallVector<SDValue, 8> Parts;
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- // Copy the legal parts from the registers.
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
- EVT RegisterVT = RegVTs[Value];
-
- Parts.resize(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue P;
- if (Flag == 0)
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
- else {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
- *Flag = P.getValue(2);
- }
- Chain = P.getValue(1);
-
- // If the source register was virtual and if we know something about it,
- // add an assert node.
- if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
- RegisterVT.isInteger() && !RegisterVT.isVector()) {
- unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
- FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
- if (FLI.LiveOutRegInfo.size() > SlotNo) {
- FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
-
- unsigned RegSize = RegisterVT.getSizeInBits();
- unsigned NumSignBits = LOI.NumSignBits;
- unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
-
- // FIXME: We capture more information than the dag can represent. For
- // now, just use the tightest assertzext/assertsext possible.
- bool isSExt = true;
- EVT FromVT(MVT::Other);
- if (NumSignBits == RegSize)
- isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
- else if (NumZeroBits >= RegSize-1)
- isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
- else if (NumSignBits > RegSize-8)
- isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
- else if (NumZeroBits >= RegSize-8)
- isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
- else if (NumSignBits > RegSize-16)
- isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
- else if (NumZeroBits >= RegSize-16)
- isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
- else if (NumSignBits > RegSize-32)
- isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
- else if (NumZeroBits >= RegSize-32)
- isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
-
- if (FromVT != MVT::Other) {
- P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
- RegisterVT, P, DAG.getValueType(FromVT));
-
- }
- }
- }
-
- Parts[i] = P;
- }
-
- Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
- NumRegs, RegisterVT, ValueVT);
- Part += NumRegs;
- Parts.clear();
- }
-
- return DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
- &Values[0], ValueVTs.size());
-}
-
-/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
-/// specified value into the registers specified by this object. This uses
-/// Chain/Flag as the input and updates them for the output Chain/Flag.
-/// If the Flag pointer is NULL, no flag is used.
-void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag) const {
- // Get the list of the values's legal parts.
- unsigned NumRegs = Regs.size();
- SmallVector<SDValue, 8> Parts(NumRegs);
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
- EVT RegisterVT = RegVTs[Value];
-
- getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
- &Parts[Part], NumParts, RegisterVT);
- Part += NumParts;
- }
-
- // Copy the parts into the registers.
- SmallVector<SDValue, 8> Chains(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue Part;
- if (Flag == 0)
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
- else {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
- *Flag = Part.getValue(1);
- }
- Chains[i] = Part.getValue(0);
- }
-
- if (NumRegs == 1 || Flag)
- // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
- // flagged to it. That is the CopyToReg nodes and the user are considered
- // a single scheduling unit. If we create a TokenFactor and return it as
- // chain, then the TokenFactor is both a predecessor (operand) of the
- // user as well as a successor (the TF operands are flagged to the user).
- // c1, f1 = CopyToReg
- // c2, f2 = CopyToReg
- // c3 = TokenFactor c1, c2
- // ...
- // = op c3, ..., f2
- Chain = Chains[NumRegs-1];
- else
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
-}
-
-/// AddInlineAsmOperands - Add this value to the specified inlineasm node
-/// operand list. This adds the code marker and includes the number of
-/// values added into it.
-void RegsForValue::AddInlineAsmOperands(unsigned Code,
- bool HasMatching,unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const {
- EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
- assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
- unsigned Flag = Code | (Regs.size() << 3);
- if (HasMatching)
- Flag |= 0x80000000 | (MatchingIdx << 16);
- Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
- for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
- EVT RegisterVT = RegVTs[Value];
- for (unsigned i = 0; i != NumRegs; ++i) {
- assert(Reg < Regs.size() && "Mismatch in # registers expected");
- Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
- }
- }
-}
-
-/// isAllocatableRegister - If the specified register is safe to allocate,
-/// i.e. it isn't a stack pointer or some other special register, return the
-/// register class for the register. Otherwise, return null.
-static const TargetRegisterClass *
-isAllocatableRegister(unsigned Reg, MachineFunction &MF,
- const TargetLowering &TLI,
- const TargetRegisterInfo *TRI) {
- EVT FoundVT = MVT::Other;
- const TargetRegisterClass *FoundRC = 0;
- for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
- E = TRI->regclass_end(); RCI != E; ++RCI) {
- EVT ThisVT = MVT::Other;
-
- const TargetRegisterClass *RC = *RCI;
- // If none of the the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (TLI.isTypeLegal(*I)) {
- // If we have already found this register in a different register class,
- // choose the one with the largest VT specified. For example, on
- // PowerPC, we favor f64 register classes over f32.
- if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
- ThisVT = *I;
- break;
- }
- }
- }
-
- if (ThisVT == MVT::Other) continue;
-
- // NOTE: This isn't ideal. In particular, this might allocate the
- // frame pointer in functions that need it (due to them not being taken
- // out of allocation, because a variable sized allocation hasn't been seen
- // yet). This is a slight code pessimization, but should still work.
- for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
- E = RC->allocation_order_end(MF); I != E; ++I)
- if (*I == Reg) {
- // We found a matching register class. Keep looking at others in case
- // we find one with larger registers that this physreg is also in.
- FoundRC = RC;
- FoundVT = ThisVT;
- break;
- }
- }
- return FoundRC;
-}
-
-
-namespace llvm {
-/// AsmOperandInfo - This contains information for each constraint that we are
-/// lowering.
-class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
- public TargetLowering::AsmOperandInfo {
-public:
- /// CallOperand - If this is the result output operand or a clobber
- /// this is null, otherwise it is the incoming operand to the CallInst.
- /// This gets modified as the asm is processed.
- SDValue CallOperand;
-
- /// AssignedRegs - If this is a register or register class operand, this
- /// contains the set of register corresponding to the operand.
- RegsForValue AssignedRegs;
-
- explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
- : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
- }
-
- /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
- /// busy in OutputRegs/InputRegs.
- void MarkAllocatedRegs(bool isOutReg, bool isInReg,
- std::set<unsigned> &OutputRegs,
- std::set<unsigned> &InputRegs,
- const TargetRegisterInfo &TRI) const {
- if (isOutReg) {
- for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
- MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
- }
- if (isInReg) {
- for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
- MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
- }
- }
-
- /// getCallOperandValEVT - Return the EVT of the Value* that this operand
- /// corresponds to. If there is no Value* for this operand, it returns
- /// MVT::Other.
- EVT getCallOperandValEVT(LLVMContext &Context,
- const TargetLowering &TLI,
- const TargetData *TD) const {
- if (CallOperandVal == 0) return MVT::Other;
-
- if (isa<BasicBlock>(CallOperandVal))
- return TLI.getPointerTy();
-
- const llvm::Type *OpTy = CallOperandVal->getType();
-
- // If this is an indirect operand, the operand is a pointer to the
- // accessed type.
- if (isIndirect)
- OpTy = cast<PointerType>(OpTy)->getElementType();
-
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = TD->getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpTy = IntegerType::get(Context, BitSize);
- break;
- }
- }
-
- return TLI.getValueType(OpTy, true);
- }
-
-private:
- /// MarkRegAndAliases - Mark the specified register and all aliases in the
- /// specified set.
- static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
- const TargetRegisterInfo &TRI) {
- assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
- Regs.insert(Reg);
- if (const unsigned *Aliases = TRI.getAliasSet(Reg))
- for (; *Aliases; ++Aliases)
- Regs.insert(*Aliases);
- }
-};
-} // end llvm namespace.
-
-
-/// GetRegistersForValue - Assign registers (virtual or physical) for the
-/// specified operand. We prefer to assign virtual registers, to allow the
-/// register allocator handle the assignment process. However, if the asm uses
-/// features that we can't model on machineinstrs, we have SDISel do the
-/// allocation. This produces generally horrible, but correct, code.
-///
-/// OpInfo describes the operand.
-/// Input and OutputRegs are the set of already allocated physical registers.
-///
-void SelectionDAGLowering::
-GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
- std::set<unsigned> &OutputRegs,
- std::set<unsigned> &InputRegs) {
- LLVMContext &Context = FuncInfo.Fn->getContext();
-
- // Compute whether this value requires an input register, an output register,
- // or both.
- bool isOutReg = false;
- bool isInReg = false;
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- isOutReg = true;
-
- // If there is an input constraint that matches this, we need to reserve
- // the input register so no other inputs allocate to it.
- isInReg = OpInfo.hasMatchingInput();
- break;
- case InlineAsm::isInput:
- isInReg = true;
- isOutReg = false;
- break;
- case InlineAsm::isClobber:
- isOutReg = true;
- isInReg = true;
- break;
- }
-
-
- MachineFunction &MF = DAG.getMachineFunction();
- SmallVector<unsigned, 4> Regs;
-
- // If this is a constraint for a single physreg, or a constraint for a
- // register class, find it.
- std::pair<unsigned, const TargetRegisterClass*> PhysReg =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
-
- unsigned NumRegs = 1;
- if (OpInfo.ConstraintVT != MVT::Other) {
- // If this is a FP input in an integer register (or visa versa) insert a bit
- // cast of the input value. More generally, handle any case where the input
- // value disagrees with the register class we plan to stick this in.
- if (OpInfo.Type == InlineAsm::isInput &&
- PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
- // Try to convert to the first EVT that the reg class contains. If the
- // types are identical size, use a bitcast to convert (e.g. two differing
- // vector types).
- EVT RegVT = *PhysReg.second->vt_begin();
- if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
- OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
- // If the input is a FP value and we want it in FP registers, do a
- // bitcast to the corresponding integer type. This turns an f64 value
- // into i64, which can be passed with two i32 values on a 32-bit
- // machine.
- RegVT = EVT::getIntegerVT(Context,
- OpInfo.ConstraintVT.getSizeInBits());
- OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- }
- }
-
- NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
- }
-
- EVT RegVT;
- EVT ValueVT = OpInfo.ConstraintVT;
-
- // If this is a constraint for a specific physical register, like {r17},
- // assign it now.
- if (unsigned AssignedReg = PhysReg.first) {
- const TargetRegisterClass *RC = PhysReg.second;
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = *RC->vt_begin();
-
- // Get the actual register value type. This is important, because the user
- // may have asked for (e.g.) the AX register in i32 type. We need to
- // remember that AX is actually i16 to get the right extension.
- RegVT = *RC->vt_begin();
-
- // This is a explicit reference to a physical register.
- Regs.push_back(AssignedReg);
-
- // If this is an expanded reference, add the rest of the regs to Regs.
- if (NumRegs != 1) {
- TargetRegisterClass::iterator I = RC->begin();
- for (; *I != AssignedReg; ++I)
- assert(I != RC->end() && "Didn't find reg!");
-
- // Already added the first reg.
- --NumRegs; ++I;
- for (; NumRegs; --NumRegs, ++I) {
- assert(I != RC->end() && "Ran out of registers to allocate!");
- Regs.push_back(*I);
- }
- }
- OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
- OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
- return;
- }
-
- // Otherwise, if this was a reference to an LLVM register class, create vregs
- // for this reference.
- if (const TargetRegisterClass *RC = PhysReg.second) {
- RegVT = *RC->vt_begin();
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = RegVT;
-
- // Create the appropriate number of virtual registers.
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- for (; NumRegs; --NumRegs)
- Regs.push_back(RegInfo.createVirtualRegister(RC));
-
- OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
- return;
- }
-
- // This is a reference to a register class that doesn't directly correspond
- // to an LLVM register class. Allocate NumRegs consecutive, available,
- // registers from the class.
- std::vector<unsigned> RegClassRegs
- = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
-
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
- unsigned NumAllocated = 0;
- for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
- unsigned Reg = RegClassRegs[i];
- // See if this register is available.
- if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
- (isInReg && InputRegs.count(Reg))) { // Already used.
- // Make sure we find consecutive registers.
- NumAllocated = 0;
- continue;
- }
-
- // Check to see if this register is allocatable (i.e. don't give out the
- // stack pointer).
- const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
- if (!RC) { // Couldn't allocate this register.
- // Reset NumAllocated to make sure we return consecutive registers.
- NumAllocated = 0;
- continue;
- }
-
- // Okay, this register is good, we can use it.
- ++NumAllocated;
-
- // If we allocated enough consecutive registers, succeed.
- if (NumAllocated == NumRegs) {
- unsigned RegStart = (i-NumAllocated)+1;
- unsigned RegEnd = i+1;
- // Mark all of the allocated registers used.
- for (unsigned i = RegStart; i != RegEnd; ++i)
- Regs.push_back(RegClassRegs[i]);
-
- OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
- OpInfo.ConstraintVT);
- OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
- return;
- }
- }
-
- // Otherwise, we couldn't allocate enough registers for this.
-}
-
-/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
-/// processed uses a memory 'm' constraint.
-static bool
-hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
- const TargetLowering &TLI) {
- for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
- InlineAsm::ConstraintInfo &CI = CInfos[i];
- for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
- if (CType == TargetLowering::C_Memory)
- return true;
- }
-
- // Indirect operand accesses access memory.
- if (CI.isIndirect)
- return true;
- }
-
- return false;
-}
-
-/// visitInlineAsm - Handle a call to an InlineAsm object.
-///
-void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
- InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
-
- /// ConstraintOperands - Information about all of the constraints.
- std::vector<SDISelAsmOperandInfo> ConstraintOperands;
-
- std::set<unsigned> OutputRegs, InputRegs;
-
- // Do a prepass over the constraints, canonicalizing them, and building up the
- // ConstraintOperands list.
- std::vector<InlineAsm::ConstraintInfo>
- ConstraintInfos = IA->ParseConstraints();
-
- bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
-
- SDValue Chain, Flag;
-
- // We won't need to flush pending loads if this asm doesn't touch
- // memory and is nonvolatile.
- if (hasMemory || IA->hasSideEffects())
- Chain = getRoot();
- else
- Chain = DAG.getRoot();
-
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
-
- EVT OpVT = MVT::Other;
-
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
- break;
- }
-
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
- "Bad inline asm!");
- if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpVT = TLI.getValueType(STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpVT = TLI.getValueType(CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
-
- // If this is an input or an indirect output, process the call argument.
- // BasicBlocks are labels, currently appearing only in asm's.
- if (OpInfo.CallOperandVal) {
- // Strip bitcasts, if any. This mostly comes up for functions.
- OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
-
- if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
- OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- } else {
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- }
-
- OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
- }
-
- OpInfo.ConstraintVT = OpVT;
- }
-
- // Second pass over the constraints: compute which constraint option to use
- // and assign registers to constraints that want a specific physreg.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
-
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (OpInfo.ConstraintVT.getSizeInBits() !=
- Input.ConstraintVT.getSizeInBits())) {
- llvm_report_error("Unsupported asm: input constraint"
- " with a matching output constraint of incompatible"
- " type!");
- }
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
- }
-
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
-
- // If this is a memory input, and if the operand is not indirect, do what we
- // need to to provide an address for the memory input.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- !OpInfo.isIndirect) {
- assert(OpInfo.Type == InlineAsm::isInput &&
- "Can only indirectify direct input operands!");
-
- // Memory operands really want the address of the value. If we don't have
- // an indirect input, put it in the constpool if we can, otherwise spill
- // it to a stack slot.
-
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
- TLI.getPointerTy());
- } else {
- // Otherwise, create a stack slot and emit a store to it before the
- // asm.
- const Type *Ty = OpVal->getType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
- unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
- Chain = DAG.getStore(Chain, getCurDebugLoc(),
- OpInfo.CallOperand, StackSlot, NULL, 0);
- OpInfo.CallOperand = StackSlot;
- }
-
- // There is no longer a Value* corresponding to this operand.
- OpInfo.CallOperandVal = 0;
- // It is now an indirect operand.
- OpInfo.isIndirect = true;
- }
-
- // If this constraint is for a specific register, allocate it before
- // anything else.
- if (OpInfo.ConstraintType == TargetLowering::C_Register)
- GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
- }
- ConstraintInfos.clear();
-
-
- // Second pass - Loop over all of the operands, assigning virtual or physregs
- // to register class operands.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
-
- // C_Register operands have already been allocated, Other/Memory don't need
- // to be.
- if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
- GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
- }
-
- // AsmNodeOperands - The operands for the ISD::INLINEASM node.
- std::vector<SDValue> AsmNodeOperands;
- AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
- AsmNodeOperands.push_back(
- DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
-
-
- // Loop over all of the inputs, copying the operand values into the
- // appropriate registers and processing the output regs.
- RegsForValue RetValRegs;
-
- // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
- std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
-
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
-
- switch (OpInfo.Type) {
- case InlineAsm::isOutput: {
- if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
- OpInfo.ConstraintType != TargetLowering::C_Register) {
- // Memory output, or 'other' output (e.g. 'X' constraint).
- assert(OpInfo.isIndirect && "Memory output must be indirect operand");
-
- // Add information to the INLINEASM node to know about this output.
- unsigned ResOpType = 4/*MEM*/ | (1<<3);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(OpInfo.CallOperand);
- break;
- }
-
- // Otherwise, this is a register or register class output.
-
- // Copy the output from the appropriate register. Find a register that
- // we can use.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- llvm_report_error("Couldn't allocate output reg for"
- " constraint '" + OpInfo.ConstraintCode + "'!");
- }
-
- // If this is an indirect operand, store through the pointer after the
- // asm.
- if (OpInfo.isIndirect) {
- IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
- OpInfo.CallOperandVal));
- } else {
- // This is the result value of the call.
- assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
- "Bad inline asm!");
- // Concatenate this output onto the outputs list.
- RetValRegs.append(OpInfo.AssignedRegs);
- }
-
- // Add information to the INLINEASM node to know that this register is
- // set.
- OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
- 6 /* EARLYCLOBBER REGDEF */ :
- 2 /* REGDEF */ ,
- false,
- 0,
- DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isInput: {
- SDValue InOperandVal = OpInfo.CallOperand;
-
- if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
- // If this is required to match an output register we have already set,
- // just use its register.
- unsigned OperandNo = OpInfo.getMatchedOperand();
-
- // Scan until we find the definition we already emitted of this operand.
- // When we find it, create a RegsForValue operand.
- unsigned CurOp = 2; // The first operand.
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
- (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
- (OpFlag & 7) == 4 /*MEM*/) &&
- "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
- }
-
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- if ((OpFlag & 7) == 2 /*REGDEF*/
- || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
- // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
- if (OpInfo.isIndirect) {
- llvm_report_error("Don't know how to handle tied indirect "
- "register inputs yet!");
- }
- RegsForValue MatchedRegs;
- MatchedRegs.TLI = &TLI;
- MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
- EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
- MatchedRegs.RegVTs.push_back(RegVT);
- MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
- for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
- i != e; ++i)
- MatchedRegs.Regs.
- push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
-
- // Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
- Chain, &Flag);
- MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
- true, OpInfo.getMatchedOperand(),
- DAG, AsmNodeOperands);
- break;
- } else {
- assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
- assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
- "Unexpected number of operands");
- // Add information to the INLINEASM node to know about this input.
- // See InlineAsm.h isUseOperandTiedToDef.
- OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
- break;
- }
- }
-
- if (OpInfo.ConstraintType == TargetLowering::C_Other) {
- assert(!OpInfo.isIndirect &&
- "Don't know how to handle indirect other inputs yet!");
-
- std::vector<SDValue> Ops;
- TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
- hasMemory, Ops, DAG);
- if (Ops.empty()) {
- llvm_report_error("Invalid operand for inline asm"
- " constraint '" + OpInfo.ConstraintCode + "'!");
- }
-
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
- break;
- } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
- "Memory operands expect pointer values");
-
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = 4/*MEM*/ | (1<<3);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(InOperandVal);
- break;
- }
-
- assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
- OpInfo.ConstraintType == TargetLowering::C_Register) &&
- "Unknown constraint type!");
- assert(!OpInfo.isIndirect &&
- "Don't know how to handle indirect register inputs yet!");
-
- // Copy the input into the appropriate registers.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- llvm_report_error("Couldn't allocate input reg for"
- " constraint '"+ OpInfo.ConstraintCode +"'!");
- }
-
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
- Chain, &Flag);
-
- OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
- DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isClobber: {
- // Add the clobbered value to the operand list, so that the register
- // allocator is aware that the physreg got clobbered.
- if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
- false, 0, DAG,AsmNodeOperands);
- break;
- }
- }
- }
-
- // Finish up input operands.
- AsmNodeOperands[0] = Chain;
- if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
-
- Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
- DAG.getVTList(MVT::Other, MVT::Flag),
- &AsmNodeOperands[0], AsmNodeOperands.size());
- Flag = Chain.getValue(1);
-
- // If this asm returns a register value, copy the result from that register
- // and set it as the value of the call.
- if (!RetValRegs.Regs.empty()) {
- SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
- Chain, &Flag);
-
- // FIXME: Why don't we do this for inline asms with MRVs?
- if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- EVT ResultType = TLI.getValueType(CS.getType());
-
- // If any of the results of the inline asm is a vector, it may have the
- // wrong width/num elts. This can happen for register classes that can
- // contain multiple different value types. The preg or vreg allocated may
- // not have the same VT as was expected. Convert it to the right type
- // with bit_convert.
- if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
- Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- ResultType, Val);
-
- } else if (ResultType != Val.getValueType() &&
- ResultType.isInteger() && Val.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result may
- // have a wider width than the expected result. Extract the relevant
- // portion.
- Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
- }
-
- assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
- }
-
- setValue(CS.getInstruction(), Val);
- // Don't need to use this as a chain in this case.
- if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
- return;
- }
-
- std::vector<std::pair<SDValue, Value*> > StoresToEmit;
-
- // Process indirect outputs, first output all of the flagged copies out of
- // physregs.
- for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
- RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
- Value *Ptr = IndirectStoresToEmit[i].second;
- SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
- Chain, &Flag);
- StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
-
- }
-
- // Emit the non-flagged stores from the physregs.
- SmallVector<SDValue, 8> OutChains;
- for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
- OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(),
- StoresToEmit[i].first,
- getValue(StoresToEmit[i].second),
- StoresToEmit[i].second, 0));
- if (!OutChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &OutChains[0], OutChains.size());
- DAG.setRoot(Chain);
-}
-
-void SelectionDAGLowering::visitVAStart(CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getOperand(1)),
- DAG.getSrcValue(I.getOperand(1))));
-}
-
-void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
- SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
- getRoot(), getValue(I.getOperand(0)),
- DAG.getSrcValue(I.getOperand(0)));
- setValue(&I, V);
- DAG.setRoot(V.getValue(1));
-}
-
-void SelectionDAGLowering::visitVAEnd(CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getOperand(1)),
- DAG.getSrcValue(I.getOperand(1))));
-}
-
-void SelectionDAGLowering::visitVACopy(CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)),
- DAG.getSrcValue(I.getOperand(1)),
- DAG.getSrcValue(I.getOperand(2))));
-}
-
-/// TargetLowering::LowerCallTo - This is the default LowerCallTo
-/// implementation, which just calls LowerCall.
-/// FIXME: When all targets are
-/// migrated to using LowerCall, this hook should be integrated into SDISel.
-std::pair<SDValue, SDValue>
-TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
- bool RetSExt, bool RetZExt, bool isVarArg,
- bool isInreg, unsigned NumFixedArgs,
- CallingConv::ID CallConv, bool isTailCall,
- bool isReturnValueUsed,
- SDValue Callee,
- ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
-
- assert((!isTailCall || PerformTailCallOpt) &&
- "isTailCall set when tail-call optimizations are disabled!");
-
- // Handle all of the outgoing arguments.
- SmallVector<ISD::OutputArg, 32> Outs;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- getTargetData()->getABITypeAlignment(ArgTy);
-
- if (Args[i].isZExt)
- Flags.setZExt();
- if (Args[i].isSExt)
- Flags.setSExt();
- if (Args[i].isInReg)
- Flags.setInReg();
- if (Args[i].isSRet)
- Flags.setSRet();
- if (Args[i].isByVal) {
- Flags.setByVal();
- const PointerType *Ty = cast<PointerType>(Args[i].Ty);
- const Type *ElementTy = Ty->getElementType();
- unsigned FrameAlign = getByValTypeAlignment(ElementTy);
- unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy);
- // For ByVal, alignment should come from FE. BE will guess if this
- // info is not there but there are cases it cannot get right.
- if (Args[i].Alignment)
- FrameAlign = Args[i].Alignment;
- Flags.setByValAlign(FrameAlign);
- Flags.setByValSize(FrameSize);
- }
- if (Args[i].isNest)
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
-
- EVT PartVT = getRegisterType(RetTy->getContext(), VT);
- unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
-
- if (Args[i].isSExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (Args[i].isZExt)
- ExtendKind = ISD::ZERO_EXTEND;
-
- getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
-
- for (unsigned j = 0; j != NumParts; ++j) {
- // if it isn't first piece, alignment must be 1
- ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
- if (NumParts > 1 && j == 0)
- MyFlags.Flags.setSplit();
- else if (j != 0)
- MyFlags.Flags.setOrigAlign(1);
-
- Outs.push_back(MyFlags);
- }
- }
- }
-
- // Handle the incoming return values from the call.
- SmallVector<ISD::InputArg, 32> Ins;
- SmallVector<EVT, 4> RetTys;
- ComputeValueVTs(*this, RetTy, RetTys);
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags;
- MyFlags.VT = RegisterVT;
- MyFlags.Used = isReturnValueUsed;
- if (RetSExt)
- MyFlags.Flags.setSExt();
- if (RetZExt)
- MyFlags.Flags.setZExt();
- if (isInreg)
- MyFlags.Flags.setInReg();
- Ins.push_back(MyFlags);
- }
- }
-
- // Check if target-dependent constraints permit a tail call here.
- // Target-independent constraints should be checked by the caller.
- if (isTailCall &&
- !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
- isTailCall = false;
-
- SmallVector<SDValue, 4> InVals;
- Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
- Outs, Ins, dl, DAG, InVals);
-
- // Verify that the target's LowerCall behaved as expected.
- assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
- "LowerCall didn't return a valid chain!");
- assert((!isTailCall || InVals.empty()) &&
- "LowerCall emitted a return value for a tail call!");
- assert((isTailCall || InVals.size() == Ins.size()) &&
- "LowerCall didn't emit the correct number of values!");
- DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerCall emitted a null value!");
- assert(Ins[i].VT == InVals[i].getValueType() &&
- "LowerCall emitted a value with the wrong type!");
- });
-
- // For a tail call, the return value is merely live-out and there aren't
- // any nodes in the DAG representing it. Return a special value to
- // indicate that a tail call has been emitted and no more Instructions
- // should be processed in the current block.
- if (isTailCall) {
- DAG.setRoot(Chain);
- return std::make_pair(SDValue(), SDValue());
- }
-
- // Collect the legal value parts into potentially illegal values
- // that correspond to the original function's return values.
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (RetSExt)
- AssertOp = ISD::AssertSext;
- else if (RetZExt)
- AssertOp = ISD::AssertZext;
- SmallVector<SDValue, 4> ReturnValues;
- unsigned CurReg = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
-
- SDValue ReturnValue =
- getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT,
- AssertOp);
- ReturnValues.push_back(ReturnValue);
- CurReg += NumRegs;
- }
-
- // For a function returning void, there is no return value. We can't create
- // such a node, so we just return a null return value in that case. In
- // that case, nothing will actualy look at the value.
- if (ReturnValues.empty())
- return std::make_pair(SDValue(), Chain);
-
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&RetTys[0], RetTys.size()),
- &ReturnValues[0], ReturnValues.size());
-
- return std::make_pair(Res, Chain);
-}
-
-void TargetLowering::LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) {
- SDValue Res = LowerOperation(SDValue(N, 0), DAG);
- if (Res.getNode())
- Results.push_back(Res);
-}
-
-SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
- llvm_unreachable("LowerOperation not implemented for this target!");
- return SDValue();
-}
-
-
-void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
- SDValue Op = getValue(V);
- assert((Op.getOpcode() != ISD::CopyFromReg ||
- cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
- "Copy from a reg to the same reg!");
- assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
-
- RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
- PendingExports.push_back(Chain);
-}
-
-#include "llvm/CodeGen/SelectionDAGISel.h"
-
-void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
- // If this is the entry block, emit arguments.
- Function &F = *LLVMBB->getParent();
- SelectionDAG &DAG = SDL->DAG;
- SDValue OldRoot = DAG.getRoot();
- DebugLoc dl = SDL->getCurDebugLoc();
- const TargetData *TD = TLI.getTargetData();
- SmallVector<ISD::InputArg, 16> Ins;
-
- // Check whether the function can return without sret-demotion.
- SmallVector<EVT, 4> OutVTs;
- SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
- getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
- OutVTs, OutsFlags, TLI);
- FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
-
- FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
- OutVTs, OutsFlags, DAG);
- if (!FLI.CanLowerReturn) {
- // Put in an sret pointer parameter before all the other parameters.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
-
- // NOTE: Assuming that a pointer will never break down to more than one VT
- // or one register.
- ISD::ArgFlagsTy Flags;
- Flags.setSRet();
- EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
- ISD::InputArg RetArg(Flags, RegisterVT, true);
- Ins.push_back(RetArg);
- }
-
- // Set up the incoming argument description vector.
- unsigned Idx = 1;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++Idx) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I->getType(), ValueVTs);
- bool isArgValueUsed = !I->use_empty();
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- TD->getABITypeAlignment(ArgTy);
-
- if (F.paramHasAttr(Idx, Attribute::ZExt))
- Flags.setZExt();
- if (F.paramHasAttr(Idx, Attribute::SExt))
- Flags.setSExt();
- if (F.paramHasAttr(Idx, Attribute::InReg))
- Flags.setInReg();
- if (F.paramHasAttr(Idx, Attribute::StructRet))
- Flags.setSRet();
- if (F.paramHasAttr(Idx, Attribute::ByVal)) {
- Flags.setByVal();
- const PointerType *Ty = cast<PointerType>(I->getType());
- const Type *ElementTy = Ty->getElementType();
- unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
- unsigned FrameSize = TD->getTypeAllocSize(ElementTy);
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- if (F.getParamAlignment(Idx))
- FrameAlign = F.getParamAlignment(Idx);
- Flags.setByValAlign(FrameAlign);
- Flags.setByValSize(FrameSize);
- }
- if (F.paramHasAttr(Idx, Attribute::Nest))
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
-
- EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
- if (NumRegs > 1 && i == 0)
- MyFlags.Flags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0)
- MyFlags.Flags.setOrigAlign(1);
- Ins.push_back(MyFlags);
- }
- }
- }
-
- // Call the target to set up the argument values.
- SmallVector<SDValue, 8> InVals;
- SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
- F.isVarArg(), Ins,
- dl, DAG, InVals);
-
- // Verify that the target's LowerFormalArguments behaved as expected.
- assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
- "LowerFormalArguments didn't return a valid chain!");
- assert(InVals.size() == Ins.size() &&
- "LowerFormalArguments didn't emit the correct number of values!");
- DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerFormalArguments emitted a null value!");
- assert(Ins[i].VT == InVals[i].getValueType() &&
- "LowerFormalArguments emitted a value with the wrong type!");
- });
-
- // Update the DAG with the new chain value resulting from argument lowering.
- DAG.setRoot(NewRoot);
-
- // Set up the argument values.
- unsigned i = 0;
- Idx = 1;
- if (!FLI.CanLowerReturn) {
- // Create a virtual register for the sret pointer, and put in a copy
- // from the sret argument into it.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
- EVT VT = ValueVTs[0];
- EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT,
- VT, AssertOp);
-
- MachineFunction& MF = SDL->DAG.getMachineFunction();
- MachineRegisterInfo& RegInfo = MF.getRegInfo();
- unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
- FLI.DemoteRegister = SRetReg;
- NewRoot = SDL->DAG.getCopyToReg(NewRoot, SDL->getCurDebugLoc(), SRetReg, ArgValue);
- DAG.setRoot(NewRoot);
-
- // i indexes lowered arguments. Bump it past the hidden sret argument.
- // Idx indexes LLVM arguments. Don't touch it.
- ++i;
- }
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++Idx) {
- SmallVector<SDValue, 4> ArgValues;
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- for (unsigned Value = 0; Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
-
- if (!I->use_empty()) {
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (F.paramHasAttr(Idx, Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (F.paramHasAttr(Idx, Attribute::ZExt))
- AssertOp = ISD::AssertZext;
-
- ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
- PartVT, VT, AssertOp));
- }
- i += NumParts;
- }
- if (!I->use_empty()) {
- SDL->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues,
- SDL->getCurDebugLoc()));
- // If this argument is live outside of the entry block, insert a copy from
- // whereever we got it to the vreg that other BB's will reference it as.
- SDL->CopyToExportRegsIfNeeded(I);
- }
- }
- assert(i == InVals.size() && "Argument register count mismatch!");
-
- // Finally, if the target has anything special to do, allow it to do so.
- // FIXME: this should insert code into the DAG!
- EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
-}
-
-/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
-/// ensure constants are generated when needed. Remember the virtual registers
-/// that need to be added to the Machine PHI nodes as input. We cannot just
-/// directly add them, because expansion might result in multiple MBB's for one
-/// BB. As such, the start of the BB might correspond to a different MBB than
-/// the end.
-///
-void
-SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
- TerminatorInst *TI = LLVMBB->getTerminator();
-
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
-
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
-
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
-
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- PHINode *PN;
-
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::iterator I = SuccBB->begin();
- (PN = dyn_cast<PHINode>(I)); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
-
- unsigned Reg;
- Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
-
- if (Constant *C = dyn_cast<Constant>(PHIOp)) {
- unsigned &RegOut = SDL->ConstantsOut[C];
- if (RegOut == 0) {
- RegOut = FuncInfo->CreateRegForValue(C);
- SDL->CopyValueToVirtualRegister(C, RegOut);
- }
- Reg = RegOut;
- } else {
- Reg = FuncInfo->ValueMap[PHIOp];
- if (Reg == 0) {
- assert(isa<AllocaInst>(PHIOp) &&
- FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
- "Didn't codegen value into a register!??");
- Reg = FuncInfo->CreateRegForValue(PHIOp);
- SDL->CopyValueToVirtualRegister(PHIOp, Reg);
- }
- }
-
- // Remember that this register needs to added to the machine PHI node as
- // the input for this MBB.
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
- for (unsigned i = 0, e = NumRegisters; i != e; ++i)
- SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
- Reg += NumRegisters;
- }
- }
- }
- SDL->ConstantsOut.clear();
-}
-
-/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
-/// supports legal types, and it emits MachineInstrs directly instead of
-/// creating SelectionDAG nodes.
-///
-bool
-SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
- FastISel *F) {
- TerminatorInst *TI = LLVMBB->getTerminator();
-
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
-
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
-
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
-
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- PHINode *PN;
-
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::iterator I = SuccBB->begin();
- (PN = dyn_cast<PHINode>(I)); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
-
- // Only handle legal types. Two interesting things to note here. First,
- // by bailing out early, we may leave behind some dead instructions,
- // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
- // own moves. Second, this check is necessary becuase FastISel doesn't
- // use CreateRegForValue to create registers, so it always creates
- // exactly one register for each non-void instruction.
- EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
- if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
- // Promote MVT::i1.
- if (VT == MVT::i1)
- VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
- else {
- SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
- return false;
- }
- }
-
- Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
-
- unsigned Reg = F->getRegForValue(PHIOp);
- if (Reg == 0) {
- SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
- return false;
- }
- SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
- }
- }
-
- return true;
-}
Copied: llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h (from r88738, llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h?p2=llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h&p1=llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h&r1=88738&r2=89667&rev=89667&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h Mon Nov 23 11:16:22 2009
@@ -1,4 +1,4 @@
-//===-- SelectionDAGBuild.h - Selection-DAG building ----------------------===//
+//===-- FunctionLoweringInfo.h - Lower functions from LLVM IR to CodeGen --===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,77 +7,33 @@
//
//===----------------------------------------------------------------------===//
//
-// This implements routines for translating from LLVM IR into SelectionDAG IR.
+// This implements routines for translating functions from LLVM IR into
+// Machine IR.
//
//===----------------------------------------------------------------------===//
-#ifndef SELECTIONDAGBUILD_H
-#define SELECTIONDAGBUILD_H
+#ifndef FUNCTIONLOWERINGINFO_H
+#define FUNCTIONLOWERINGINFO_H
-#include "llvm/Constants.h"
-#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#ifndef NDEBUG
#include "llvm/ADT/SmallSet.h"
#endif
-#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Target/TargetMachine.h"
#include <vector>
-#include <set>
namespace llvm {
-class AliasAnalysis;
class AllocaInst;
class BasicBlock;
-class BitCastInst;
-class BranchInst;
-class CallInst;
-class ExtractElementInst;
-class ExtractValueInst;
-class FCmpInst;
-class FPExtInst;
-class FPToSIInst;
-class FPToUIInst;
-class FPTruncInst;
class Function;
-class GetElementPtrInst;
-class GCFunctionInfo;
-class ICmpInst;
-class IntToPtrInst;
-class IndirectBrInst;
-class InvokeInst;
-class InsertElementInst;
-class InsertValueInst;
class Instruction;
-class LoadInst;
class MachineBasicBlock;
class MachineFunction;
-class MachineInstr;
-class MachineModuleInfo;
class MachineRegisterInfo;
-class PHINode;
-class PtrToIntInst;
-class ReturnInst;
-class SDISelAsmOperandInfo;
-class SExtInst;
-class SelectInst;
-class ShuffleVectorInst;
-class SIToFPInst;
-class StoreInst;
-class SwitchInst;
-class TargetData;
class TargetLowering;
-class TruncInst;
-class UIToFPInst;
-class UnreachableInst;
-class UnwindInst;
-class VAArgInst;
-class ZExtInst;
+class Value;
//===--------------------------------------------------------------------===//
/// FunctionLoweringInfo - This contains information that is global to a
@@ -103,8 +59,7 @@
/// set - Initialize this FunctionLoweringInfo with the given Function
/// and its associated MachineFunction.
///
- void set(Function &Fn, MachineFunction &MF, SelectionDAG &DAG,
- bool EnableFastISel);
+ void set(Function &Fn, MachineFunction &MF, bool EnableFastISel);
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
@@ -153,426 +108,29 @@
/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.
- void clear() {
- MBBMap.clear();
- ValueMap.clear();
- StaticAllocaMap.clear();
-#ifndef NDEBUG
- CatchInfoLost.clear();
- CatchInfoFound.clear();
-#endif
- LiveOutRegInfo.clear();
- }
-};
-
-//===----------------------------------------------------------------------===//
-/// SelectionDAGLowering - This is the common target-independent lowering
-/// implementation that is parameterized by a TargetLowering object.
-/// Also, targets can overload any lowering method.
-///
-class SelectionDAGLowering {
- MachineBasicBlock *CurMBB;
-
- /// CurDebugLoc - current file + line number. Changes as we build the DAG.
- DebugLoc CurDebugLoc;
-
- DenseMap<const Value*, SDValue> NodeMap;
-
- /// PendingLoads - Loads are not emitted to the program immediately. We bunch
- /// them up and then emit token factor nodes when possible. This allows us to
- /// get simple disambiguation between loads without worrying about alias
- /// analysis.
- SmallVector<SDValue, 8> PendingLoads;
-
- /// PendingExports - CopyToReg nodes that copy values to virtual registers
- /// for export to other blocks need to be emitted before any terminator
- /// instruction, but they have no other ordering requirements. We bunch them
- /// up and the emit a single tokenfactor for them just before terminator
- /// instructions.
- SmallVector<SDValue, 8> PendingExports;
-
- /// Case - A struct to record the Value for a switch case, and the
- /// case's target basic block.
- struct Case {
- Constant* Low;
- Constant* High;
- MachineBasicBlock* BB;
-
- Case() : Low(0), High(0), BB(0) { }
- Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
- Low(low), High(high), BB(bb) { }
- APInt size() const {
- const APInt &rHigh = cast<ConstantInt>(High)->getValue();
- const APInt &rLow = cast<ConstantInt>(Low)->getValue();
- return (rHigh - rLow + 1ULL);
- }
- };
-
- struct CaseBits {
- uint64_t Mask;
- MachineBasicBlock* BB;
- unsigned Bits;
-
- CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
- Mask(mask), BB(bb), Bits(bits) { }
- };
-
- typedef std::vector<Case> CaseVector;
- typedef std::vector<CaseBits> CaseBitsVector;
- typedef CaseVector::iterator CaseItr;
- typedef std::pair<CaseItr, CaseItr> CaseRange;
-
- /// CaseRec - A struct with ctor used in lowering switches to a binary tree
- /// of conditional branches.
- struct CaseRec {
- CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
- CaseBB(bb), LT(lt), GE(ge), Range(r) {}
-
- /// CaseBB - The MBB in which to emit the compare and branch
- MachineBasicBlock *CaseBB;
- /// LT, GE - If nonzero, we know the current case value must be less-than or
- /// greater-than-or-equal-to these Constants.
- Constant *LT;
- Constant *GE;
- /// Range - A pair of iterators representing the range of case values to be
- /// processed at this point in the binary search tree.
- CaseRange Range;
- };
-
- typedef std::vector<CaseRec> CaseRecVector;
-
- /// The comparison function for sorting the switch case values in the vector.
- /// WARNING: Case ranges should be disjoint!
- struct CaseCmp {
- bool operator () (const Case& C1, const Case& C2) {
- assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
- const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
- const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
- return CI1->getValue().slt(CI2->getValue());
- }
- };
-
- struct CaseBitsCmp {
- bool operator () (const CaseBits& C1, const CaseBits& C2) {
- return C1.Bits > C2.Bits;
- }
- };
-
- size_t Clusterify(CaseVector& Cases, const SwitchInst &SI);
-
- /// CaseBlock - This structure is used to communicate between SDLowering and
- /// SDISel for the code generation of additional basic blocks needed by multi-
- /// case switch statements.
- struct CaseBlock {
- CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
- MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
- MachineBasicBlock *me)
- : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
- TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
- // CC - the condition code to use for the case block's setcc node
- ISD::CondCode CC;
- // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
- // Emit by default LHS op RHS. MHS is used for range comparisons:
- // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
- Value *CmpLHS, *CmpMHS, *CmpRHS;
- // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
- MachineBasicBlock *TrueBB, *FalseBB;
- // ThisBB - the block into which to emit the code for the setcc and branches
- MachineBasicBlock *ThisBB;
- };
- struct JumpTable {
- JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
- MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
-
- /// Reg - the virtual register containing the index of the jump table entry
- //. to jump to.
- unsigned Reg;
- /// JTI - the JumpTableIndex for this jump table in the function.
- unsigned JTI;
- /// MBB - the MBB into which to emit the code for the indirect jump.
- MachineBasicBlock *MBB;
- /// Default - the MBB of the default bb, which is a successor of the range
- /// check MBB. This is when updating PHI nodes in successors.
- MachineBasicBlock *Default;
- };
- struct JumpTableHeader {
- JumpTableHeader(APInt F, APInt L, Value* SV, MachineBasicBlock* H,
- bool E = false):
- First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
- APInt First;
- APInt Last;
- Value *SValue;
- MachineBasicBlock *HeaderBB;
- bool Emitted;
- };
- typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
-
- struct BitTestCase {
- BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
- Mask(M), ThisBB(T), TargetBB(Tr) { }
- uint64_t Mask;
- MachineBasicBlock* ThisBB;
- MachineBasicBlock* TargetBB;
- };
-
- typedef SmallVector<BitTestCase, 3> BitTestInfo;
-
- struct BitTestBlock {
- BitTestBlock(APInt F, APInt R, Value* SV,
- unsigned Rg, bool E,
- MachineBasicBlock* P, MachineBasicBlock* D,
- const BitTestInfo& C):
- First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
- Parent(P), Default(D), Cases(C) { }
- APInt First;
- APInt Range;
- Value *SValue;
- unsigned Reg;
- bool Emitted;
- MachineBasicBlock *Parent;
- MachineBasicBlock *Default;
- BitTestInfo Cases;
- };
-
-public:
- // TLI - This is information that describes the available target features we
- // need for lowering. This indicates when operations are unavailable,
- // implemented with a libcall, etc.
- TargetLowering &TLI;
- SelectionDAG &DAG;
- const TargetData *TD;
- AliasAnalysis *AA;
-
- /// SwitchCases - Vector of CaseBlock structures used to communicate
- /// SwitchInst code generation information.
- std::vector<CaseBlock> SwitchCases;
- /// JTCases - Vector of JumpTable structures used to communicate
- /// SwitchInst code generation information.
- std::vector<JumpTableBlock> JTCases;
- /// BitTestCases - Vector of BitTestBlock structures used to communicate
- /// SwitchInst code generation information.
- std::vector<BitTestBlock> BitTestCases;
-
- /// PHINodesToUpdate - A list of phi instructions whose operand list will
- /// be updated after processing the current basic block.
- std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
-
- /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to
- /// scheduler custom lowering), track the change here.
- DenseMap<MachineBasicBlock*, MachineBasicBlock*> EdgeMapping;
-
- // Emit PHI-node-operand constants only once even if used by multiple
- // PHI nodes.
- DenseMap<Constant*, unsigned> ConstantsOut;
-
- /// FuncInfo - Information about the function as a whole.
- ///
- FunctionLoweringInfo &FuncInfo;
-
- /// OptLevel - What optimization level we're generating code for.
- ///
- CodeGenOpt::Level OptLevel;
-
- /// GFI - Garbage collection metadata for the function.
- GCFunctionInfo *GFI;
-
- /// HasTailCall - This is set to true if a call in the current
- /// block has been translated as a tail call. In this case,
- /// no subsequent DAG nodes should be created.
- ///
- bool HasTailCall;
-
- LLVMContext *Context;
-
- SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
- FunctionLoweringInfo &funcinfo,
- CodeGenOpt::Level ol)
- : CurDebugLoc(DebugLoc::getUnknownLoc()),
- TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
- HasTailCall(false),
- Context(dag.getContext()) {
- }
-
- void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
-
- /// clear - Clear out the curret SelectionDAG and the associated
- /// state and prepare this SelectionDAGLowering object to be used
- /// for a new block. This doesn't clear out information about
- /// additional blocks that are needed to complete switch lowering
- /// or PHI node updating; that information is cleared out as it is
- /// consumed.
void clear();
-
- /// getRoot - Return the current virtual root of the Selection DAG,
- /// flushing any PendingLoad items. This must be done before emitting
- /// a store or any other node that may need to be ordered after any
- /// prior load instructions.
- ///
- SDValue getRoot();
-
- /// getControlRoot - Similar to getRoot, but instead of flushing all the
- /// PendingLoad items, flush all the PendingExports items. It is necessary
- /// to do this before emitting a terminator instruction.
- ///
- SDValue getControlRoot();
-
- DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
- void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; }
-
- void CopyValueToVirtualRegister(Value *V, unsigned Reg);
-
- void visit(Instruction &I);
-
- void visit(unsigned Opcode, User &I);
-
- void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
-
- SDValue getValue(const Value *V);
-
- void setValue(const Value *V, SDValue NewN) {
- SDValue &N = NodeMap[V];
- assert(N.getNode() == 0 && "Already set a value for this node!");
- N = NewN;
- }
-
- void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
- std::set<unsigned> &OutputRegs,
- std::set<unsigned> &InputRegs);
-
- void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
- unsigned Opc);
- void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB);
- bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
- bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
- void CopyToExportRegsIfNeeded(Value *V);
- void ExportFromCurrentBlock(Value *V);
- void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
- MachineBasicBlock *LandingPad = NULL);
-
-private:
- // Terminator instructions.
- void visitRet(ReturnInst &I);
- void visitBr(BranchInst &I);
- void visitSwitch(SwitchInst &I);
- void visitIndirectBr(IndirectBrInst &I);
- void visitUnreachable(UnreachableInst &I) { /* noop */ }
-
- // Helpers for visitSwitch
- bool handleSmallSwitchRange(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default);
- bool handleJTSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default);
- bool handleBTSplitSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default);
- bool handleBitTestsSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default);
-public:
- void visitSwitchCase(CaseBlock &CB);
- void visitBitTestHeader(BitTestBlock &B);
- void visitBitTestCase(MachineBasicBlock* NextMBB,
- unsigned Reg,
- BitTestCase &B);
- void visitJumpTable(JumpTable &JT);
- void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
-
-private:
- // These all get lowered before this pass.
- void visitInvoke(InvokeInst &I);
- void visitUnwind(UnwindInst &I);
-
- void visitBinary(User &I, unsigned OpCode);
- void visitShift(User &I, unsigned Opcode);
- void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
- void visitFAdd(User &I) { visitBinary(I, ISD::FADD); }
- void visitSub(User &I) { visitBinary(I, ISD::SUB); }
- void visitFSub(User &I);
- void visitMul(User &I) { visitBinary(I, ISD::MUL); }
- void visitFMul(User &I) { visitBinary(I, ISD::FMUL); }
- void visitURem(User &I) { visitBinary(I, ISD::UREM); }
- void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
- void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
- void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
- void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
- void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
- void visitAnd (User &I) { visitBinary(I, ISD::AND); }
- void visitOr (User &I) { visitBinary(I, ISD::OR); }
- void visitXor (User &I) { visitBinary(I, ISD::XOR); }
- void visitShl (User &I) { visitShift(I, ISD::SHL); }
- void visitLShr(User &I) { visitShift(I, ISD::SRL); }
- void visitAShr(User &I) { visitShift(I, ISD::SRA); }
- void visitICmp(User &I);
- void visitFCmp(User &I);
- // Visit the conversion instructions
- void visitTrunc(User &I);
- void visitZExt(User &I);
- void visitSExt(User &I);
- void visitFPTrunc(User &I);
- void visitFPExt(User &I);
- void visitFPToUI(User &I);
- void visitFPToSI(User &I);
- void visitUIToFP(User &I);
- void visitSIToFP(User &I);
- void visitPtrToInt(User &I);
- void visitIntToPtr(User &I);
- void visitBitCast(User &I);
-
- void visitExtractElement(User &I);
- void visitInsertElement(User &I);
- void visitShuffleVector(User &I);
-
- void visitExtractValue(ExtractValueInst &I);
- void visitInsertValue(InsertValueInst &I);
-
- void visitGetElementPtr(User &I);
- void visitSelect(User &I);
-
- void visitAlloca(AllocaInst &I);
- void visitLoad(LoadInst &I);
- void visitStore(StoreInst &I);
- void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
- void visitCall(CallInst &I);
- void visitInlineAsm(CallSite CS);
- const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
- void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
-
- void visitPow(CallInst &I);
- void visitExp2(CallInst &I);
- void visitExp(CallInst &I);
- void visitLog(CallInst &I);
- void visitLog2(CallInst &I);
- void visitLog10(CallInst &I);
-
- void visitVAStart(CallInst &I);
- void visitVAArg(VAArgInst &I);
- void visitVAEnd(CallInst &I);
- void visitVACopy(CallInst &I);
-
- void visitUserOp1(Instruction &I) {
- llvm_unreachable("UserOp1 should not exist at instruction selection time!");
- }
- void visitUserOp2(Instruction &I) {
- llvm_unreachable("UserOp2 should not exist at instruction selection time!");
- }
-
- const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
- const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op);
};
-/// AddCatchInfo - Extract the personality and type infos from an eh.selector
-/// call, and add them to the specified machine basic block.
-void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
- MachineBasicBlock *MBB);
+/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
+/// of insertvalue or extractvalue indices that identify a member, return
+/// the linearized index of the start of the member.
+///
+unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+ const unsigned *Indices,
+ const unsigned *IndicesEnd,
+ unsigned CurIndex = 0);
+
+/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
+/// EVTs that represent all the individual underlying
+/// non-aggregate types that comprise it.
+///
+/// If Offsets is non-null, it points to a vector to be filled in
+/// with the in-memory offsets of each of the individual values.
+///
+void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+ SmallVectorImpl<EVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets = 0,
+ uint64_t StartingOffset = 0);
} // end namespace llvm
Modified: llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp?rev=89667&r1=89666&r2=89667&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp Mon Nov 23 11:16:22 2009
@@ -13,11 +13,11 @@
#define DEBUG_TYPE "isel"
#include "SelectionDAGBuild.h"
+#include "FunctionLoweringInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Constants.h"
-#include "llvm/Constants.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
@@ -68,84 +68,6 @@
cl::location(LimitFloatPrecision),
cl::init(0));
-/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
-/// of insertvalue or extractvalue indices that identify a member, return
-/// the linearized index of the start of the member.
-///
-static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex = 0) {
- // Base case: We're done.
- if (Indices && Indices == IndicesEnd)
- return CurIndex;
-
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI) {
- if (Indices && *Indices == unsigned(EI - EB))
- return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // Given an array type, recursively traverse the elements.
- else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
- if (Indices && *Indices == i)
- return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // We haven't found the type we're looking for, so keep searching.
- return CurIndex + 1;
-}
-
-/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
-/// EVTs that represent all the individual underlying
-/// non-aggregate types that comprise it.
-///
-/// If Offsets is non-null, it points to a vector to be filled in
-/// with the in-memory offsets of each of the individual values.
-///
-static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets = 0,
- uint64_t StartingOffset = 0) {
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI)
- ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
- StartingOffset + SL->getElementOffset(EI - EB));
- return;
- }
- // Given an array type, recursively traverse the elements.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
- StartingOffset + i * EltSize);
- return;
- }
- // Interpret void as zero return values.
- if (Ty == Type::getVoidTy(Ty->getContext()))
- return;
- // Base case: we can get an EVT for this LLVM IR type.
- ValueVTs.push_back(TLI.getValueType(Ty));
- if (Offsets)
- Offsets->push_back(StartingOffset);
-}
-
namespace llvm {
/// RegsForValue - This struct represents the registers (physical or virtual)
/// that a particular set of values is assigned, and the type information about
@@ -241,150 +163,6 @@
};
}
-/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
-/// PHI nodes or outside of the basic block that defines it, or used by a
-/// switch or atomic instruction, which may expand to multiple basic blocks.
-static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
- if (isa<PHINode>(I)) return true;
- BasicBlock *BB = I->getParent();
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
- return true;
- return false;
-}
-
-/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
-/// entry block, return true. This includes arguments used by switches, since
-/// the switch may expand into multiple basic blocks.
-static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- // Don't force virtual registers for byval arguments though, because
- // fast-isel can't handle those in all cases.
- if (EnableFastISel && !A->hasByValAttr())
- return A->use_empty();
-
- BasicBlock *Entry = A->getParent()->begin();
- for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
- return false; // Use not in entry block.
- return true;
-}
-
-FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
- : TLI(tli) {
-}
-
-void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
- SelectionDAG &DAG,
- bool EnableFastISel) {
- Fn = &fn;
- MF = &mf;
- RegInfo = &MF->getRegInfo();
-
- // Create a vreg for each argument register that is not dead and is used
- // outside of the entry block for the function.
- for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
- AI != E; ++AI)
- if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
- InitializeRegForValue(AI);
-
- // Initialize the mapping of values to registers. This is only set up for
- // instruction values that are used outside of the block that defines
- // them.
- Function::iterator BB = Fn->begin(), EB = Fn->end();
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
- if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
- const Type *Ty = AI->getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
- AI->getAlignment());
-
- TySize *= CUI->getZExtValue(); // Get total allocated size.
- if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
- StaticAllocaMap[AI] =
- MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
- }
-
- for (; BB != EB; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
- if (!isa<AllocaInst>(I) ||
- !StaticAllocaMap.count(cast<AllocaInst>(I)))
- InitializeRegForValue(I);
-
- // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
- // also creates the initial PHI MachineInstrs, though none of the input
- // operands are populated.
- for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
- MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
- MBBMap[BB] = MBB;
- MF->push_back(MBB);
-
- // Transfer the address-taken flag. This is necessary because there could
- // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
- // the first one should be marked.
- if (BB->hasAddressTaken())
- MBB->setHasAddressTaken();
-
- // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
- // appropriate.
- PHINode *PN;
- DebugLoc DL;
- for (BasicBlock::iterator
- I = BB->begin(), E = BB->end(); I != E; ++I) {
-
- PN = dyn_cast<PHINode>(I);
- if (!PN || PN->use_empty()) continue;
-
- unsigned PHIReg = ValueMap[PN];
- assert(PHIReg && "PHI node does not have an assigned virtual register!");
-
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
- for (unsigned i = 0; i != NumRegisters; ++i)
- BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
- PHIReg += NumRegisters;
- }
- }
- }
-}
-
-unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
- return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
-}
-
-/// CreateRegForValue - Allocate the appropriate number of virtual registers of
-/// the correctly promoted or expanded types. Assign these registers
-/// consecutive vreg numbers and return the first assigned number.
-///
-/// In the case that the given value has struct or array type, this function
-/// will assign registers for each member or element.
-///
-unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, V->getType(), ValueVTs);
-
- unsigned FirstReg = 0;
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
-
- unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- unsigned R = MakeReg(RegisterVT);
- if (!FirstReg) FirstReg = R;
- }
- }
- return FirstReg;
-}
-
/// getCopyFromParts - Create a value that contains the specified legal parts
/// combined into the value they represent. If the parts combine to a type
/// larger then ValueVT then AssertOp can be used to specify whether the extra
Modified: llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h?rev=89667&r1=89666&r2=89667&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h Mon Nov 23 11:16:22 2009
@@ -45,6 +45,7 @@
class FPToUIInst;
class FPTruncInst;
class Function;
+class FunctionLoweringInfo;
class GetElementPtrInst;
class GCFunctionInfo;
class ICmpInst;
@@ -79,92 +80,6 @@
class VAArgInst;
class ZExtInst;
-//===--------------------------------------------------------------------===//
-/// FunctionLoweringInfo - This contains information that is global to a
-/// function that is used when lowering a region of the function.
-///
-class FunctionLoweringInfo {
-public:
- TargetLowering &TLI;
- Function *Fn;
- MachineFunction *MF;
- MachineRegisterInfo *RegInfo;
-
- /// CanLowerReturn - true iff the function's return value can be lowered to
- /// registers.
- bool CanLowerReturn;
-
- /// DemoteRegister - if CanLowerReturn is false, DemoteRegister is a vreg
- /// allocated to hold a pointer to the hidden sret parameter.
- unsigned DemoteRegister;
-
- explicit FunctionLoweringInfo(TargetLowering &TLI);
-
- /// set - Initialize this FunctionLoweringInfo with the given Function
- /// and its associated MachineFunction.
- ///
- void set(Function &Fn, MachineFunction &MF, SelectionDAG &DAG,
- bool EnableFastISel);
-
- /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
- DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
-
- /// ValueMap - Since we emit code for the function a basic block at a time,
- /// we must remember which virtual registers hold the values for
- /// cross-basic-block values.
- DenseMap<const Value*, unsigned> ValueMap;
-
- /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
- /// the entry block. This allows the allocas to be efficiently referenced
- /// anywhere in the function.
- DenseMap<const AllocaInst*, int> StaticAllocaMap;
-
-#ifndef NDEBUG
- SmallSet<Instruction*, 8> CatchInfoLost;
- SmallSet<Instruction*, 8> CatchInfoFound;
-#endif
-
- unsigned MakeReg(EVT VT);
-
- /// isExportedInst - Return true if the specified value is an instruction
- /// exported from its block.
- bool isExportedInst(const Value *V) {
- return ValueMap.count(V);
- }
-
- unsigned CreateRegForValue(const Value *V);
-
- unsigned InitializeRegForValue(const Value *V) {
- unsigned &R = ValueMap[V];
- assert(R == 0 && "Already initialized this value register!");
- return R = CreateRegForValue(V);
- }
-
- struct LiveOutInfo {
- unsigned NumSignBits;
- APInt KnownOne, KnownZero;
- LiveOutInfo() : NumSignBits(0), KnownOne(1, 0), KnownZero(1, 0) {}
- };
-
- /// LiveOutRegInfo - Information about live out vregs, indexed by their
- /// register number offset by 'FirstVirtualRegister'.
- std::vector<LiveOutInfo> LiveOutRegInfo;
-
- /// clear - Clear out all the function-specific state. This returns this
- /// FunctionLoweringInfo to an empty state, ready to be used for a
- /// different function.
- void clear() {
- MBBMap.clear();
- ValueMap.clear();
- StaticAllocaMap.clear();
-#ifndef NDEBUG
- CatchInfoLost.clear();
- CatchInfoFound.clear();
-#endif
- LiveOutRegInfo.clear();
- }
-};
-
//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
Modified: llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp?rev=89667&r1=89666&r2=89667&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp Mon Nov 23 11:16:22 2009
@@ -14,6 +14,7 @@
#define DEBUG_TYPE "isel"
#include "ScheduleDAGSDNodes.h"
#include "SelectionDAGBuild.h"
+#include "FunctionLoweringInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DebugInfo.h"
@@ -331,7 +332,7 @@
MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
CurDAG->init(*MF, MMI, DW);
- FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
+ FuncInfo->set(Fn, *MF, EnableFastISel);
SDL->init(GFI, *AA);
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
More information about the llvm-commits
mailing list