[llvm-commits] [llvm] r86355 - in /llvm/trunk: lib/Transforms/Scalar/JumpThreading.cpp test/Transforms/JumpThreading/basic.ll test/Transforms/JumpThreading/crash.ll

Chris Lattner sabre at nondot.org
Sat Nov 7 00:05:03 PST 2009


Author: lattner
Date: Sat Nov  7 02:05:03 2009
New Revision: 86355

URL: http://llvm.org/viewvc/llvm-project?rev=86355&view=rev
Log:
reapply 86289, 86278, 86270, 86267, 86266 & 86264 plus a fix
(making pred factoring only happen if threading is guaranteed
to be successful).

This now survives an X86-64 bootstrap of llvm-gcc.


Modified:
    llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp
    llvm/trunk/test/Transforms/JumpThreading/basic.ll
    llvm/trunk/test/Transforms/JumpThreading/crash.ll

Modified: llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp?rev=86355&r1=86354&r2=86355&view=diff

==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/JumpThreading.cpp Sat Nov  7 02:05:03 2009
@@ -72,17 +72,23 @@
     void FindLoopHeaders(Function &F);
     
     bool ProcessBlock(BasicBlock *BB);
-    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
+    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
+                    BasicBlock *SuccBB);
     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
                                           BasicBlock *PredBB);
-
-    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
+    
+    typedef SmallVectorImpl<std::pair<ConstantInt*,
+                                      BasicBlock*> > PredValueInfo;
+    
+    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
+                                         PredValueInfo &Result);
+    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
+    
+    
     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 
     bool ProcessJumpOnPHI(PHINode *PN);
-    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
-    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
     
     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
   };
@@ -198,28 +204,133 @@
     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
 }
 
-/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
-/// value for the PHI, factor them together so we get one block to thread for
-/// the whole group.
-/// This is important for things like "phi i1 [true, true, false, true, x]"
-/// where we only need to clone the block for the true blocks once.
-///
-BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
-  SmallVector<BasicBlock*, 16> CommonPreds;
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
-    if (PN->getIncomingValue(i) == Val)
-      CommonPreds.push_back(PN->getIncomingBlock(i));
-  
-  if (CommonPreds.size() == 1)
-    return CommonPreds[0];
-    
-  DEBUG(errs() << "  Factoring out " << CommonPreds.size()
-        << " common predecessors.\n");
-  return SplitBlockPredecessors(PN->getParent(),
-                                &CommonPreds[0], CommonPreds.size(),
-                                ".thr_comm", this);
+/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
+/// hand sides of the compare instruction, try to determine the result. If the
+/// result can not be determined, a null pointer is returned.
+static Constant *GetResultOfComparison(CmpInst::Predicate pred,
+                                       Value *LHS, Value *RHS) {
+  if (Constant *CLHS = dyn_cast<Constant>(LHS))
+    if (Constant *CRHS = dyn_cast<Constant>(RHS))
+      return ConstantExpr::getCompare(pred, CLHS, CRHS);
+  
+  if (LHS == RHS)
+    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
+      if (ICmpInst::isTrueWhenEqual(pred))
+        return ConstantInt::getTrue(LHS->getContext());
+      else
+        return ConstantInt::getFalse(LHS->getContext());
+    }
+  return 0;
 }
+
+
+/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
+/// if we can infer that the value is a known ConstantInt in any of our
+/// predecessors.  If so, return the known the list of value and pred BB in the
+/// result vector.  If a value is known to be undef, it is returned as null.
+///
+/// The BB basic block is known to start with a PHI node.
+///
+/// This returns true if there were any known values.
+///
+///
+/// TODO: Per PR2563, we could infer value range information about a predecessor
+/// based on its terminator.
+bool JumpThreading::
+ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
+  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
+  
+  // If V is a constantint, then it is known in all predecessors.
+  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
+    ConstantInt *CI = dyn_cast<ConstantInt>(V);
+    Result.resize(TheFirstPHI->getNumIncomingValues());
+    for (unsigned i = 0, e = Result.size(); i != e; ++i)
+      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
+    return true;
+  }
+  
+  // If V is a non-instruction value, or an instruction in a different block,
+  // then it can't be derived from a PHI.
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (I == 0 || I->getParent() != BB)
+    return false;
+  
+  /// If I is a PHI node, then we know the incoming values for any constants.
+  if (PHINode *PN = dyn_cast<PHINode>(I)) {
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+      Value *InVal = PN->getIncomingValue(i);
+      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
+        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
+        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
+      }
+    }
+    return !Result.empty();
+  }
   
+  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
+
+  // Handle some boolean conditions.
+  if (I->getType()->getPrimitiveSizeInBits() == 1) { 
+    // X | true -> true
+    // X & false -> false
+    if (I->getOpcode() == Instruction::Or ||
+        I->getOpcode() == Instruction::And) {
+      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
+      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
+      
+      if (LHSVals.empty() && RHSVals.empty())
+        return false;
+      
+      ConstantInt *InterestingVal;
+      if (I->getOpcode() == Instruction::Or)
+        InterestingVal = ConstantInt::getTrue(I->getContext());
+      else
+        InterestingVal = ConstantInt::getFalse(I->getContext());
+      
+      // Scan for the sentinel.
+      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
+        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
+          Result.push_back(LHSVals[i]);
+      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
+        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
+          Result.push_back(RHSVals[i]);
+      return !Result.empty();
+    }
+    
+    // TODO: Should handle the NOT form of XOR.
+    
+  }
+  
+  // Handle compare with phi operand, where the PHI is defined in this block.
+  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
+    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
+    if (PN && PN->getParent() == BB) {
+      // We can do this simplification if any comparisons fold to true or false.
+      // See if any do.
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+        BasicBlock *PredBB = PN->getIncomingBlock(i);
+        Value *LHS = PN->getIncomingValue(i);
+        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
+        
+        Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
+        if (Res == 0) continue;
+        
+        if (isa<UndefValue>(Res))
+          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
+        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
+          Result.push_back(std::make_pair(CI, PredBB));
+      }
+      
+      return !Result.empty();
+    }
+    
+    // TODO: We could also recurse to see if we can determine constants another
+    // way.
+  }
+  return false;
+}
+
+
 
 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
 /// in an undefined jump, decide which block is best to revector to.
@@ -250,7 +361,7 @@
   // successor, merge the blocks.  This encourages recursive jump threading
   // because now the condition in this block can be threaded through
   // predecessors of our predecessor block.
-  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
+  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
         SinglePred != BB) {
       // If SinglePred was a loop header, BB becomes one.
@@ -266,10 +377,10 @@
         BB->moveBefore(&BB->getParent()->getEntryBlock());
       return true;
     }
-  
-  // See if this block ends with a branch or switch.  If so, see if the
-  // condition is a phi node.  If so, and if an entry of the phi node is a
-  // constant, we can thread the block.
+  }
+
+  // Look to see if the terminator is a branch of switch, if not we can't thread
+  // it.
   Value *Condition;
   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
     // Can't thread an unconditional jump.
@@ -345,44 +456,26 @@
     if (PN->getParent() == BB)
       return ProcessJumpOnPHI(PN);
   
-  // If this is a conditional branch whose condition is and/or of a phi, try to
-  // simplify it.
-  if ((CondInst->getOpcode() == Instruction::And || 
-       CondInst->getOpcode() == Instruction::Or) &&
-      isa<BranchInst>(BB->getTerminator()) &&
-      ProcessBranchOnLogical(CondInst, BB,
-                             CondInst->getOpcode() == Instruction::And))
-    return true;
-  
   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
-    if (isa<PHINode>(CondCmp->getOperand(0))) {
-      // If we have "br (phi != 42)" and the phi node has any constant values
-      // as operands, we can thread through this block.
-      // 
-      // If we have "br (cmp phi, x)" and the phi node contains x such that the
-      // comparison uniquely identifies the branch target, we can thread
-      // through this block.
-
-      if (ProcessBranchOnCompare(CondCmp, BB))
-        return true;      
-    }
-    
-    // If we have a comparison, loop over the predecessors to see if there is
-    // a condition with the same value.
-    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
-    for (; PI != E; ++PI)
-      if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
-        if (PBI->isConditional() && *PI != BB) {
-          if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
-            if (CI->getOperand(0) == CondCmp->getOperand(0) &&
-                CI->getOperand(1) == CondCmp->getOperand(1) &&
-                CI->getPredicate() == CondCmp->getPredicate()) {
-              // TODO: Could handle things like (x != 4) --> (x == 17)
-              if (ProcessBranchOnDuplicateCond(*PI, BB))
-                return true;
+    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
+        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
+      // If we have a comparison, loop over the predecessors to see if there is
+      // a condition with a lexically identical value.
+      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
+      for (; PI != E; ++PI)
+        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+          if (PBI->isConditional() && *PI != BB) {
+            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
+              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
+                  CI->getOperand(1) == CondCmp->getOperand(1) &&
+                  CI->getPredicate() == CondCmp->getPredicate()) {
+                // TODO: Could handle things like (x != 4) --> (x == 17)
+                if (ProcessBranchOnDuplicateCond(*PI, BB))
+                  return true;
+              }
             }
           }
-        }
+    }
   }
 
   // Check for some cases that are worth simplifying.  Right now we want to look
@@ -401,6 +494,19 @@
     if (SimplifyPartiallyRedundantLoad(LI))
       return true;
   
+  
+  // Handle a variety of cases where we are branching on something derived from
+  // a PHI node in the current block.  If we can prove that any predecessors
+  // compute a predictable value based on a PHI node, thread those predecessors.
+  //
+  // We only bother doing this if the current block has a PHI node and if the
+  // conditional instruction lives in the current block.  If either condition
+  // fail, this won't be a computable value anyway.
+  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
+    if (ProcessThreadableEdges(CondInst, BB))
+      return true;
+  
+  
   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
   // "(X == 4)" thread through this block.
   
@@ -458,8 +564,11 @@
   // Next, figure out which successor we are threading to.
   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
   
+  SmallVector<BasicBlock*, 2> Preds;
+  Preds.push_back(PredBB);
+  
   // Ok, try to thread it!
-  return ThreadEdge(BB, PredBB, SuccBB);
+  return ThreadEdge(BB, Preds, SuccBB);
 }
 
 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
@@ -689,55 +798,186 @@
   return true;
 }
 
+/// FindMostPopularDest - The specified list contains multiple possible
+/// threadable destinations.  Pick the one that occurs the most frequently in
+/// the list.
+static BasicBlock *
+FindMostPopularDest(BasicBlock *BB,
+                    const SmallVectorImpl<std::pair<BasicBlock*,
+                                  BasicBlock*> > &PredToDestList) {
+  assert(!PredToDestList.empty());
+  
+  // Determine popularity.  If there are multiple possible destinations, we
+  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
+  // blocks with known and real destinations to threading undef.  We'll handle
+  // them later if interesting.
+  DenseMap<BasicBlock*, unsigned> DestPopularity;
+  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
+    if (PredToDestList[i].second)
+      DestPopularity[PredToDestList[i].second]++;
+  
+  // Find the most popular dest.
+  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
+  BasicBlock *MostPopularDest = DPI->first;
+  unsigned Popularity = DPI->second;
+  SmallVector<BasicBlock*, 4> SamePopularity;
+  
+  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
+    // If the popularity of this entry isn't higher than the popularity we've
+    // seen so far, ignore it.
+    if (DPI->second < Popularity)
+      ; // ignore.
+    else if (DPI->second == Popularity) {
+      // If it is the same as what we've seen so far, keep track of it.
+      SamePopularity.push_back(DPI->first);
+    } else {
+      // If it is more popular, remember it.
+      SamePopularity.clear();
+      MostPopularDest = DPI->first;
+      Popularity = DPI->second;
+    }      
+  }
+  
+  // Okay, now we know the most popular destination.  If there is more than
+  // destination, we need to determine one.  This is arbitrary, but we need
+  // to make a deterministic decision.  Pick the first one that appears in the
+  // successor list.
+  if (!SamePopularity.empty()) {
+    SamePopularity.push_back(MostPopularDest);
+    TerminatorInst *TI = BB->getTerminator();
+    for (unsigned i = 0; ; ++i) {
+      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
+      
+      if (std::find(SamePopularity.begin(), SamePopularity.end(),
+                    TI->getSuccessor(i)) == SamePopularity.end())
+        continue;
+      
+      MostPopularDest = TI->getSuccessor(i);
+      break;
+    }
+  }
+  
+  // Okay, we have finally picked the most popular destination.
+  return MostPopularDest;
+}
 
-/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
-/// the current block.  See if there are any simplifications we can do based on
-/// inputs to the phi node.
-/// 
-bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
-  BasicBlock *BB = PN->getParent();
+bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
+                                           BasicBlock *BB) {
+  // If threading this would thread across a loop header, don't even try to
+  // thread the edge.
+  if (LoopHeaders.count(BB))
+    return false;
   
-  // See if the phi node has any constant integer or undef values.  If so, we
-  // can determine where the corresponding predecessor will branch.
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-    Value *PredVal = PN->getIncomingValue(i);
+  
+  
+  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
+  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
+    return false;
+  assert(!PredValues.empty() &&
+         "ComputeValueKnownInPredecessors returned true with no values");
+
+  DEBUG(errs() << "IN BB: " << *BB;
+        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
+          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
+          if (PredValues[i].first)
+            errs() << *PredValues[i].first;
+          else
+            errs() << "UNDEF";
+          errs() << " for pred '" << PredValues[i].second->getName()
+          << "'.\n";
+        });
+  
+  // Decide what we want to thread through.  Convert our list of known values to
+  // a list of known destinations for each pred.  This also discards duplicate
+  // predecessors and keeps track of the undefined inputs (which are represented
+  // as a null dest in the PredToDestList.
+  SmallPtrSet<BasicBlock*, 16> SeenPreds;
+  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
+  
+  BasicBlock *OnlyDest = 0;
+  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
+  
+  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
+    BasicBlock *Pred = PredValues[i].second;
+    if (!SeenPreds.insert(Pred))
+      continue;  // Duplicate predecessor entry.
+    
+    // If the predecessor ends with an indirect goto, we can't change its
+    // destination.
+    if (isa<IndirectBrInst>(Pred->getTerminator()))
+      continue;
     
-    // Check to see if this input is a constant integer.  If so, the direction
-    // of the branch is predictable.
-    if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
-      // Merge any common predecessors that will act the same.
-      BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
-      
-      BasicBlock *SuccBB;
-      if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
-        SuccBB = BI->getSuccessor(CI->isZero());
-      else {
-        SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
-        SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
-      }
-      
-      // Ok, try to thread it!
-      return ThreadEdge(BB, PredBB, SuccBB);
+    ConstantInt *Val = PredValues[i].first;
+    
+    BasicBlock *DestBB;
+    if (Val == 0)      // Undef.
+      DestBB = 0;
+    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
+      DestBB = BI->getSuccessor(Val->isZero());
+    else {
+      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
+      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
     }
+
+    // If we have exactly one destination, remember it for efficiency below.
+    if (i == 0)
+      OnlyDest = DestBB;
+    else if (OnlyDest != DestBB)
+      OnlyDest = MultipleDestSentinel;
     
-    // If the input is an undef, then it doesn't matter which way it will go.
-    // Pick an arbitrary dest and thread the edge.
-    if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
-      // Merge any common predecessors that will act the same.
-      BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
-      BasicBlock *SuccBB =
-        BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
+    PredToDestList.push_back(std::make_pair(Pred, DestBB));
+  }
+  
+  // If all edges were unthreadable, we fail.
+  if (PredToDestList.empty())
+    return false;
+  
+  // Determine which is the most common successor.  If we have many inputs and
+  // this block is a switch, we want to start by threading the batch that goes
+  // to the most popular destination first.  If we only know about one
+  // threadable destination (the common case) we can avoid this.
+  BasicBlock *MostPopularDest = OnlyDest;
+  
+  if (MostPopularDest == MultipleDestSentinel)
+    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
+  
+  // Now that we know what the most popular destination is, factor all
+  // predecessors that will jump to it into a single predecessor.
+  SmallVector<BasicBlock*, 16> PredsToFactor;
+  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
+    if (PredToDestList[i].second == MostPopularDest) {
+      BasicBlock *Pred = PredToDestList[i].first;
       
-      // Ok, try to thread it!
-      return ThreadEdge(BB, PredBB, SuccBB);
+      // This predecessor may be a switch or something else that has multiple
+      // edges to the block.  Factor each of these edges by listing them
+      // according to # occurrences in PredsToFactor.
+      TerminatorInst *PredTI = Pred->getTerminator();
+      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
+        if (PredTI->getSuccessor(i) == BB)
+          PredsToFactor.push_back(Pred);
     }
-  }
+
+  // If the threadable edges are branching on an undefined value, we get to pick
+  // the destination that these predecessors should get to.
+  if (MostPopularDest == 0)
+    MostPopularDest = BB->getTerminator()->
+                            getSuccessor(GetBestDestForJumpOnUndef(BB));
+        
+  // Ok, try to thread it!
+  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
+}
+
+/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
+/// the current block.  See if there are any simplifications we can do based on
+/// inputs to the phi node.
+/// 
+bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
+  BasicBlock *BB = PN->getParent();
   
-  // If the incoming values are all variables, we don't know the destination of
-  // any predecessors.  However, if any of the predecessor blocks end in an
-  // unconditional branch, we can *duplicate* the jump into that block in order
-  // to further encourage jump threading and to eliminate cases where we have
-  // branch on a phi of an icmp (branch on icmp is much better).
+  // If any of the predecessor blocks end in an unconditional branch, we can
+  // *duplicate* the jump into that block in order to further encourage jump
+  // threading and to eliminate cases where we have branch on a phi of an icmp
+  // (branch on icmp is much better).
 
   // We don't want to do this tranformation for switches, because we don't
   // really want to duplicate a switch.
@@ -758,137 +998,6 @@
 }
 
 
-/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
-/// whose condition is an AND/OR where one side is PN.  If PN has constant
-/// operands that permit us to evaluate the condition for some operand, thread
-/// through the block.  For example with:
-///   br (and X, phi(Y, Z, false))
-/// the predecessor corresponding to the 'false' will always jump to the false
-/// destination of the branch.
-///
-bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
-                                           bool isAnd) {
-  // If this is a binary operator tree of the same AND/OR opcode, check the
-  // LHS/RHS.
-  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
-    if ((isAnd && BO->getOpcode() == Instruction::And) ||
-        (!isAnd && BO->getOpcode() == Instruction::Or)) {
-      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
-        return true;
-      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
-        return true;
-    }
-      
-  // If this isn't a PHI node, we can't handle it.
-  PHINode *PN = dyn_cast<PHINode>(V);
-  if (!PN || PN->getParent() != BB) return false;
-                                             
-  // We can only do the simplification for phi nodes of 'false' with AND or
-  // 'true' with OR.  See if we have any entries in the phi for this.
-  unsigned PredNo = ~0U;
-  ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
-                                          !isAnd);
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-    if (PN->getIncomingValue(i) == PredCst) {
-      PredNo = i;
-      break;
-    }
-  }
-  
-  // If no match, bail out.
-  if (PredNo == ~0U)
-    return false;
-  
-  // If so, we can actually do this threading.  Merge any common predecessors
-  // that will act the same.
-  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
-  
-  // Next, figure out which successor we are threading to.  If this was an AND,
-  // the constant must be FALSE, and we must be targeting the 'false' block.
-  // If this is an OR, the constant must be TRUE, and we must be targeting the
-  // 'true' block.
-  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
-  
-  // Ok, try to thread it!
-  return ThreadEdge(BB, PredBB, SuccBB);
-}
-
-/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
-/// hand sides of the compare instruction, try to determine the result. If the
-/// result can not be determined, a null pointer is returned.
-static Constant *GetResultOfComparison(CmpInst::Predicate pred,
-                                       Value *LHS, Value *RHS,
-                                       LLVMContext &Context) {
-  if (Constant *CLHS = dyn_cast<Constant>(LHS))
-    if (Constant *CRHS = dyn_cast<Constant>(RHS))
-      return ConstantExpr::getCompare(pred, CLHS, CRHS);
-
-  if (LHS == RHS)
-    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
-      return ICmpInst::isTrueWhenEqual(pred) ? 
-                 ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
-
-  return 0;
-}
-
-/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
-/// node and a value.  If we can identify when the comparison is true between
-/// the phi inputs and the value, we can fold the compare for that edge and
-/// thread through it.
-bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
-  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
-  Value *RHS = Cmp->getOperand(1);
-  
-  // If the phi isn't in the current block, an incoming edge to this block
-  // doesn't control the destination.
-  if (PN->getParent() != BB)
-    return false;
-  
-  // We can do this simplification if any comparisons fold to true or false.
-  // See if any do.
-  Value *PredVal = 0;
-  bool TrueDirection = false;
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-    PredVal = PN->getIncomingValue(i);
-    
-    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
-                                          RHS, Cmp->getContext());
-    if (!Res) {
-      PredVal = 0;
-      continue;
-    }
-    
-    // If this folded to a constant expr, we can't do anything.
-    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
-      TrueDirection = ResC->getZExtValue();
-      break;
-    }
-    // If this folded to undef, just go the false way.
-    if (isa<UndefValue>(Res)) {
-      TrueDirection = false;
-      break;
-    }
-    
-    // Otherwise, we can't fold this input.
-    PredVal = 0;
-  }
-  
-  // If no match, bail out.
-  if (PredVal == 0)
-    return false;
-  
-  // If so, we can actually do this threading.  Merge any common predecessors
-  // that will act the same.
-  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
-  
-  // Next, get our successor.
-  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
-  
-  // Ok, try to thread it!
-  return ThreadEdge(BB, PredBB, SuccBB);
-}
-
-
 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
 /// NewPred using the entries from OldPred (suitably mapped).
@@ -913,10 +1022,11 @@
   }
 }
 
-/// ThreadEdge - We have decided that it is safe and profitable to thread an
-/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
-/// change.
-bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, 
+/// ThreadEdge - We have decided that it is safe and profitable to factor the
+/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
+/// across BB.  Transform the IR to reflect this change.
+bool JumpThreading::ThreadEdge(BasicBlock *BB, 
+                               const SmallVectorImpl<BasicBlock*> &PredBBs, 
                                BasicBlock *SuccBB) {
   // If threading to the same block as we come from, we would infinite loop.
   if (SuccBB == BB) {
@@ -928,8 +1038,7 @@
   // If threading this would thread across a loop header, don't thread the edge.
   // See the comments above FindLoopHeaders for justifications and caveats.
   if (LoopHeaders.count(BB)) {
-    DEBUG(errs() << "  Not threading from '" << PredBB->getName()
-          << "' across loop header BB '" << BB->getName()
+    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
           << "' to dest BB '" << SuccBB->getName()
           << "' - it might create an irreducible loop!\n");
     return false;
@@ -942,6 +1051,17 @@
     return false;
   }
   
+  // And finally, do it!  Start by factoring the predecessors is needed.
+  BasicBlock *PredBB;
+  if (PredBBs.size() == 1)
+    PredBB = PredBBs[0];
+  else {
+    DEBUG(errs() << "  Factoring out " << PredBBs.size()
+          << " common predecessors.\n");
+    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
+                                    ".thr_comm", this);
+  }
+  
   // And finally, do it!
   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
         << SuccBB->getName() << "' with cost: " << JumpThreadCost

Modified: llvm/trunk/test/Transforms/JumpThreading/basic.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/JumpThreading/basic.ll?rev=86355&r1=86354&r2=86355&view=diff

==============================================================================
--- llvm/trunk/test/Transforms/JumpThreading/basic.ll (original)
+++ llvm/trunk/test/Transforms/JumpThreading/basic.ll Sat Nov  7 02:05:03 2009
@@ -170,5 +170,36 @@
 }
 
 
+;; This tests that the branch in 'merge' can be cloned up into T1.
+;; rdar://7367025
+define i32 @test7(i1 %cond, i1 %cond2) {
+Entry:
+; CHECK: @test7
+	%v1 = call i32 @f1()
+	br i1 %cond, label %Merge, label %F1
 
+F1:
+	%v2 = call i32 @f2()
+	br label %Merge
+
+Merge:
+	%B = phi i32 [%v1, %Entry], [%v2, %F1]
+        %M = icmp ne i32 %B, %v1
+        %N = icmp eq i32 %B, 47
+        %O = and i1 %M, %N
+	br i1 %O, label %T2, label %F2
+
+; CHECK: Merge:
+; CHECK-NOT: phi
+; CHECK-NEXT:   %v2 = call i32 @f2()
+
+T2:
+	call void @f3()
+	ret i32 %B
+
+F2:
+	ret i32 %B
+; CHECK: F2:
+; CHECK-NEXT: phi i32
+}
 

Modified: llvm/trunk/test/Transforms/JumpThreading/crash.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/JumpThreading/crash.ll?rev=86355&r1=86354&r2=86355&view=diff

==============================================================================
--- llvm/trunk/test/Transforms/JumpThreading/crash.ll (original)
+++ llvm/trunk/test/Transforms/JumpThreading/crash.ll Sat Nov  7 02:05:03 2009
@@ -170,3 +170,25 @@
         ret i32 1
 }
 
+
+define fastcc void @test5(i1 %tmp, i32 %tmp1) nounwind ssp {
+entry:
+  br i1 %tmp, label %bb12, label %bb13
+
+
+bb12:                                            
+  br label %bb13
+
+bb13:                                            
+  %.lcssa31 = phi i32 [ undef, %bb12 ], [ %tmp1, %entry ]
+  %A = and i1 undef, undef
+  br i1 %A, label %bb15, label %bb61
+
+bb15:                                            
+  ret void
+
+
+bb61:                                            
+  ret void
+}
+





More information about the llvm-commits mailing list