[llvm-commits] [llvm] r83489 - /llvm/trunk/lib/Transforms/Scalar/SimplifyLibCalls.cpp

Eric Christopher echristo at apple.com
Wed Oct 7 14:14:25 PDT 2009


Author: echristo
Date: Wed Oct  7 16:14:25 2009
New Revision: 83489

URL: http://llvm.org/viewvc/llvm-project?rev=83489&view=rev
Log:
80-column and whitespace fixes.

Modified:
    llvm/trunk/lib/Transforms/Scalar/SimplifyLibCalls.cpp

Modified: llvm/trunk/lib/Transforms/Scalar/SimplifyLibCalls.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/SimplifyLibCalls.cpp?rev=83489&r1=83488&r2=83489&view=diff

==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/SimplifyLibCalls.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/SimplifyLibCalls.cpp Wed Oct  7 16:14:25 2009
@@ -57,9 +57,9 @@
   /// performed.  If it returns CI, then it transformed the call and CI is to be
   /// deleted.  If it returns something else, replace CI with the new value and
   /// delete CI.
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) 
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
     =0;
-  
+
   Value *OptimizeCall(CallInst *CI, const TargetData *TD, IRBuilder<> &B) {
     Caller = CI->getParent()->getParent();
     this->TD = TD;
@@ -75,12 +75,12 @@
   /// specified pointer.  Ptr is required to be some pointer type, and the
   /// return value has 'intptr_t' type.
   Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
-  
+
   /// EmitMemCpy - Emit a call to the memcpy function to the builder.  This
   /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
-  Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len, 
+  Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
                     unsigned Align, IRBuilder<> &B);
-  
+
   /// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
   /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
   Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
@@ -97,27 +97,27 @@
   /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
   Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B,
                               const AttrListPtr &Attrs);
-  
+
   /// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
   /// is an integer.
   void EmitPutChar(Value *Char, IRBuilder<> &B);
-  
+
   /// EmitPutS - Emit a call to the puts function.  This assumes that Str is
   /// some pointer.
   void EmitPutS(Value *Str, IRBuilder<> &B);
-    
+
   /// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
   /// an i32, and File is a pointer to FILE.
   void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
-  
+
   /// EmitFPutS - Emit a call to the puts function.  Str is required to be a
   /// pointer and File is a pointer to FILE.
   void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
-  
+
   /// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
   /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
   void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
-  
+
 };
 } // End anonymous namespace.
 
@@ -138,7 +138,7 @@
 
   Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2),
                                            TD->getIntPtrType(*Context),
-                                    Type::getInt8PtrTy(*Context),
+					   Type::getInt8PtrTy(*Context),
                                            NULL);
   CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
   if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
@@ -169,9 +169,10 @@
   AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
 
   Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1),
-                                    Type::getInt8PtrTy(*Context),
-                                    Type::getInt8PtrTy(*Context),
-                                         Type::getInt32Ty(*Context), TD->getIntPtrType(*Context),
+					 Type::getInt8PtrTy(*Context),
+					 Type::getInt8PtrTy(*Context),
+                                         Type::getInt32Ty(*Context),
+					 TD->getIntPtrType(*Context),
                                          NULL);
   CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
 
@@ -256,7 +257,9 @@
   Value *PutChar = M->getOrInsertFunction("putchar", Type::getInt32Ty(*Context),
                                           Type::getInt32Ty(*Context), NULL);
   CallInst *CI = B.CreateCall(PutChar,
-                              B.CreateIntCast(Char, Type::getInt32Ty(*Context), "chari"),
+                              B.CreateIntCast(Char,
+					      Type::getInt32Ty(*Context),
+					      "chari"),
                               "putchar");
 
   if (const Function *F = dyn_cast<Function>(PutChar->stripPointerCasts()))
@@ -290,10 +293,14 @@
   AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
   Constant *F;
   if (isa<PointerType>(File->getType()))
-    F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2), Type::getInt32Ty(*Context),
-                               Type::getInt32Ty(*Context), File->getType(), NULL);
+    F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2),
+			       Type::getInt32Ty(*Context),
+                               Type::getInt32Ty(*Context), File->getType(),
+			       NULL);
   else
-    F = M->getOrInsertFunction("fputc", Type::getInt32Ty(*Context), Type::getInt32Ty(*Context),
+    F = M->getOrInsertFunction("fputc",
+			       Type::getInt32Ty(*Context),
+			       Type::getInt32Ty(*Context),
                                File->getType(), NULL);
   Char = B.CreateIntCast(Char, Type::getInt32Ty(*Context), "chari");
   CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
@@ -312,7 +319,8 @@
   AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
   Constant *F;
   if (isa<PointerType>(File->getType()))
-    F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3), Type::getInt32Ty(*Context),
+    F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3),
+			       Type::getInt32Ty(*Context),
                                Type::getInt8PtrTy(*Context),
                                File->getType(), NULL);
   else
@@ -339,12 +347,14 @@
     F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3),
                                TD->getIntPtrType(*Context),
                                Type::getInt8PtrTy(*Context),
-                               TD->getIntPtrType(*Context), TD->getIntPtrType(*Context),
+                               TD->getIntPtrType(*Context),
+			       TD->getIntPtrType(*Context),
                                File->getType(), NULL);
   else
     F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(*Context),
                                Type::getInt8PtrTy(*Context),
-                               TD->getIntPtrType(*Context), TD->getIntPtrType(*Context),
+                               TD->getIntPtrType(*Context),
+			       TD->getIntPtrType(*Context),
                                File->getType(), NULL);
   CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
                         ConstantInt::get(TD->getIntPtrType(*Context), 1), File);
@@ -363,30 +373,30 @@
   // Look through noop bitcast instructions.
   if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
     return GetStringLengthH(BCI->getOperand(0), PHIs);
-  
+
   // If this is a PHI node, there are two cases: either we have already seen it
   // or we haven't.
   if (PHINode *PN = dyn_cast<PHINode>(V)) {
     if (!PHIs.insert(PN))
       return ~0ULL;  // already in the set.
-    
+
     // If it was new, see if all the input strings are the same length.
     uint64_t LenSoFar = ~0ULL;
     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
       uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
       if (Len == 0) return 0; // Unknown length -> unknown.
-      
+
       if (Len == ~0ULL) continue;
-      
+
       if (Len != LenSoFar && LenSoFar != ~0ULL)
         return 0;    // Disagree -> unknown.
       LenSoFar = Len;
     }
-    
+
     // Success, all agree.
     return LenSoFar;
   }
-  
+
   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
@@ -398,7 +408,7 @@
     if (Len1 != Len2) return 0;
     return Len1;
   }
-  
+
   // If the value is not a GEP instruction nor a constant expression with a
   // GEP instruction, then return unknown.
   User *GEP = 0;
@@ -411,11 +421,11 @@
   } else {
     return 0;
   }
-  
+
   // Make sure the GEP has exactly three arguments.
   if (GEP->getNumOperands() != 3)
     return 0;
-  
+
   // Check to make sure that the first operand of the GEP is an integer and
   // has value 0 so that we are sure we're indexing into the initializer.
   if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
@@ -423,7 +433,7 @@
       return 0;
   } else
     return 0;
-  
+
   // If the second index isn't a ConstantInt, then this is a variable index
   // into the array.  If this occurs, we can't say anything meaningful about
   // the string.
@@ -432,7 +442,7 @@
     StartIdx = CI->getZExtValue();
   else
     return 0;
-  
+
   // The GEP instruction, constant or instruction, must reference a global
   // variable that is a constant and is initialized. The referenced constant
   // initializer is the array that we'll use for optimization.
@@ -441,21 +451,21 @@
       GV->mayBeOverridden())
     return 0;
   Constant *GlobalInit = GV->getInitializer();
-  
+
   // Handle the ConstantAggregateZero case, which is a degenerate case. The
   // initializer is constant zero so the length of the string must be zero.
   if (isa<ConstantAggregateZero>(GlobalInit))
     return 1;  // Len = 0 offset by 1.
-  
+
   // Must be a Constant Array
   ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
   if (!Array ||
       Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
     return false;
-  
+
   // Get the number of elements in the array
   uint64_t NumElts = Array->getType()->getNumElements();
-  
+
   // Traverse the constant array from StartIdx (derived above) which is
   // the place the GEP refers to in the array.
   for (unsigned i = StartIdx; i != NumElts; ++i) {
@@ -466,7 +476,7 @@
     if (CI->isZero())
       return i-StartIdx+1; // We found end of string, success!
   }
-  
+
   return 0; // The array isn't null terminated, conservatively return 'unknown'.
 }
 
@@ -474,7 +484,7 @@
 /// the specified pointer, return 'len+1'.  If we can't, return 0.
 static uint64_t GetStringLength(Value *V) {
   if (!isa<PointerType>(V->getType())) return 0;
-  
+
   SmallPtrSet<PHINode*, 32> PHIs;
   uint64_t Len = GetStringLengthH(V, PHIs);
   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
@@ -483,7 +493,7 @@
 }
 
 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
-/// value is equal or not-equal to zero. 
+/// value is equal or not-equal to zero.
 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
        UI != E; ++UI) {
@@ -514,16 +524,16 @@
         FT->getParamType(0) != FT->getReturnType() ||
         FT->getParamType(1) != FT->getReturnType())
       return 0;
-    
+
     // Extract some information from the instruction
     Value *Dst = CI->getOperand(1);
     Value *Src = CI->getOperand(2);
-    
+
     // See if we can get the length of the input string.
     uint64_t Len = GetStringLength(Src);
     if (Len == 0) return 0;
     --Len;  // Unbias length.
-    
+
     // Handle the simple, do-nothing case: strcat(x, "") -> x
     if (Len == 0)
       return Dst;
@@ -539,12 +549,12 @@
     // We need to find the end of the destination string.  That's where the
     // memory is to be moved to. We just generate a call to strlen.
     Value *DstLen = EmitStrLen(Dst, B);
-    
+
     // Now that we have the destination's length, we must index into the
     // destination's pointer to get the actual memcpy destination (end of
     // the string .. we're concatenating).
     Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
-    
+
     // We have enough information to now generate the memcpy call to do the
     // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
     EmitMemCpy(CpyDst, Src,
@@ -611,9 +621,9 @@
         FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
         FT->getParamType(0) != FT->getReturnType())
       return 0;
-    
+
     Value *SrcStr = CI->getOperand(1);
-    
+
     // If the second operand is non-constant, see if we can compute the length
     // of the input string and turn this into memchr.
     ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
@@ -625,7 +635,7 @@
       if (Len == 0 ||
           FT->getParamType(1) != Type::getInt32Ty(*Context)) // memchr needs i32.
         return 0;
-      
+
       return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
                         ConstantInt::get(TD->getIntPtrType(*Context), Len), B);
     }
@@ -635,11 +645,11 @@
     std::string Str;
     if (!GetConstantStringInfo(SrcStr, Str))
       return 0;
-    
+
     // strchr can find the nul character.
     Str += '\0';
     char CharValue = CharC->getSExtValue();
-    
+
     // Compute the offset.
     uint64_t i = 0;
     while (1) {
@@ -650,7 +660,7 @@
         break;
       ++i;
     }
-    
+
     // strchr(s+n,c)  -> gep(s+n+i,c)
     Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), i);
     return B.CreateGEP(SrcStr, Idx, "strchr");
@@ -664,28 +674,29 @@
   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
     // Verify the "strcmp" function prototype.
     const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 2 || FT->getReturnType() != Type::getInt32Ty(*Context) ||
+    if (FT->getNumParams() != 2 ||
+	FT->getReturnType() != Type::getInt32Ty(*Context) ||
         FT->getParamType(0) != FT->getParamType(1) ||
         FT->getParamType(0) != Type::getInt8PtrTy(*Context))
       return 0;
-    
+
     Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
     if (Str1P == Str2P)      // strcmp(x,x)  -> 0
       return ConstantInt::get(CI->getType(), 0);
-    
+
     std::string Str1, Str2;
     bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
     bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
-    
+
     if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
       return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
-    
+
     if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
       return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-    
+
     // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
     if (HasStr1 && HasStr2)
-      return ConstantInt::get(CI->getType(), 
+      return ConstantInt::get(CI->getType(),
                                      strcmp(Str1.c_str(),Str2.c_str()));
 
     // strcmp(P, "x") -> memcmp(P, "x", 2)
@@ -711,36 +722,37 @@
   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
     // Verify the "strncmp" function prototype.
     const FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 3 || FT->getReturnType() != Type::getInt32Ty(*Context) ||
+    if (FT->getNumParams() != 3 ||
+	FT->getReturnType() != Type::getInt32Ty(*Context) ||
         FT->getParamType(0) != FT->getParamType(1) ||
         FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
         !isa<IntegerType>(FT->getParamType(2)))
       return 0;
-    
+
     Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
     if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
       return ConstantInt::get(CI->getType(), 0);
-    
+
     // Get the length argument if it is constant.
     uint64_t Length;
     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
       Length = LengthArg->getZExtValue();
     else
       return 0;
-    
+
     if (Length == 0) // strncmp(x,y,0)   -> 0
       return ConstantInt::get(CI->getType(), 0);
-    
+
     std::string Str1, Str2;
     bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
     bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
-    
+
     if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> *x
       return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
-    
+
     if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
       return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-    
+
     // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
     if (HasStr1 && HasStr2)
       return ConstantInt::get(CI->getType(),
@@ -761,18 +773,18 @@
         FT->getParamType(0) != FT->getParamType(1) ||
         FT->getParamType(0) != Type::getInt8PtrTy(*Context))
       return 0;
-    
+
     Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
     if (Dst == Src)      // strcpy(x,x)  -> x
       return Src;
-    
+
     // These optimizations require TargetData.
     if (!TD) return 0;
 
     // See if we can get the length of the input string.
     uint64_t Len = GetStringLength(Src);
     if (Len == 0) return 0;
-    
+
     // We have enough information to now generate the memcpy call to do the
     // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
     EmitMemCpy(Dst, Src,
@@ -804,7 +816,8 @@
 
     if (SrcLen == 0) {
       // strncpy(x, "", y) -> memset(x, '\0', y, 1)
-      EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'), LenOp, B);
+      EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'), LenOp,
+		 B);
       return Dst;
     }
 
@@ -840,7 +853,7 @@
         FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
         !isa<IntegerType>(FT->getReturnType()))
       return 0;
-    
+
     Value *Src = CI->getOperand(1);
 
     // Constant folding: strlen("xyz") -> 3
@@ -992,7 +1005,8 @@
       return 0;
 
     // memset(p, v, n) -> llvm.memset(p, v, n, 1)
-    Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context), false);
+    Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context),
+				 false);
     EmitMemSet(CI->getOperand(1), Val,  CI->getOperand(3), B);
     return CI->getOperand(1);
   }
@@ -1014,7 +1028,7 @@
         FT->getParamType(0) != FT->getParamType(1) ||
         !FT->getParamType(0)->isFloatingPoint())
       return 0;
-    
+
     Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
     if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
       if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
@@ -1022,13 +1036,13 @@
       if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
         return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
     }
-    
+
     ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
     if (Op2C == 0) return 0;
-    
+
     if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
       return ConstantFP::get(CI->getType(), 1.0);
-    
+
     if (Op2C->isExactlyValue(0.5)) {
       // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
       // This is faster than calling pow, and still handles negative zero
@@ -1045,7 +1059,7 @@
       Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp");
       return Sel;
     }
-    
+
     if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
       return Op1;
     if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
@@ -1068,17 +1082,19 @@
     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
         !FT->getParamType(0)->isFloatingPoint())
       return 0;
-    
+
     Value *Op = CI->getOperand(1);
     // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
     // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
     Value *LdExpArg = 0;
     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
-        LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::getInt32Ty(*Context), "tmp");
+        LdExpArg = B.CreateSExt(OpC->getOperand(0),
+				Type::getInt32Ty(*Context), "tmp");
     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
-        LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::getInt32Ty(*Context), "tmp");
+        LdExpArg = B.CreateZExt(OpC->getOperand(0),
+				Type::getInt32Ty(*Context), "tmp");
     }
 
     if (LdExpArg) {
@@ -1096,7 +1112,8 @@
 
       Module *M = Caller->getParent();
       Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
-                                             Op->getType(), Type::getInt32Ty(*Context),NULL);
+                                             Op->getType(),
+					     Type::getInt32Ty(*Context),NULL);
       CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
         CI->setCallingConv(F->getCallingConv());
@@ -1142,12 +1159,13 @@
     const FunctionType *FT = Callee->getFunctionType();
     // Just make sure this has 2 arguments of the same FP type, which match the
     // result type.
-    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::getInt32Ty(*Context) ||
+    if (FT->getNumParams() != 1 ||
+	FT->getReturnType() != Type::getInt32Ty(*Context) ||
         !isa<IntegerType>(FT->getParamType(0)))
       return 0;
-    
+
     Value *Op = CI->getOperand(1);
-    
+
     // Constant fold.
     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
       if (CI->getValue() == 0)  // ffs(0) -> 0.
@@ -1155,7 +1173,7 @@
       return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1
                               CI->getValue().countTrailingZeros()+1);
     }
-    
+
     // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
     const Type *ArgType = Op->getType();
     Value *F = Intrinsic::getDeclaration(Callee->getParent(),
@@ -1163,9 +1181,10 @@
     Value *V = B.CreateCall(F, Op, "cttz");
     V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
     V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp");
-    
+
     Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
-    return B.CreateSelect(Cond, V, ConstantInt::get(Type::getInt32Ty(*Context), 0));
+    return B.CreateSelect(Cond, V,
+			  ConstantInt::get(Type::getInt32Ty(*Context), 0));
   }
 };
 
@@ -1179,12 +1198,12 @@
     if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
         FT->getParamType(0) != Type::getInt32Ty(*Context))
       return 0;
-    
+
     // isdigit(c) -> (c-'0') <u 10
     Value *Op = CI->getOperand(1);
-    Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'), 
+    Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'),
                      "isdigittmp");
-    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10), 
+    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10),
                          "isdigit");
     return B.CreateZExt(Op, CI->getType());
   }
@@ -1200,7 +1219,7 @@
     if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
         FT->getParamType(0) != Type::getInt32Ty(*Context))
       return 0;
-    
+
     // isascii(c) -> c <u 128
     Value *Op = CI->getOperand(1);
     Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128),
@@ -1208,7 +1227,7 @@
     return B.CreateZExt(Op, CI->getType());
   }
 };
-  
+
 //===---------------------------------------===//
 // 'abs', 'labs', 'llabs' Optimizations
 
@@ -1219,17 +1238,17 @@
     if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
         FT->getParamType(0) != FT->getReturnType())
       return 0;
-    
+
     // abs(x) -> x >s -1 ? x : -x
     Value *Op = CI->getOperand(1);
-    Value *Pos = B.CreateICmpSGT(Op, 
+    Value *Pos = B.CreateICmpSGT(Op,
                              Constant::getAllOnesValue(Op->getType()),
                                  "ispos");
     Value *Neg = B.CreateNeg(Op, "neg");
     return B.CreateSelect(Pos, Op, Neg);
   }
 };
-  
+
 
 //===---------------------------------------===//
 // 'toascii' Optimizations
@@ -1241,7 +1260,7 @@
     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
         FT->getParamType(0) != Type::getInt32Ty(*Context))
       return 0;
-    
+
     // isascii(c) -> c & 0x7f
     return B.CreateAnd(CI->getOperand(1),
                        ConstantInt::get(CI->getType(),0x7F));
@@ -1263,7 +1282,7 @@
         !(isa<IntegerType>(FT->getReturnType()) ||
           FT->getReturnType()->isVoidTy()))
       return 0;
-    
+
     // Check for a fixed format string.
     std::string FormatStr;
     if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
@@ -1271,16 +1290,16 @@
 
     // Empty format string -> noop.
     if (FormatStr.empty())  // Tolerate printf's declared void.
-      return CI->use_empty() ? (Value*)CI : 
+      return CI->use_empty() ? (Value*)CI :
                                ConstantInt::get(CI->getType(), 0);
-    
+
     // printf("x") -> putchar('x'), even for '%'.
     if (FormatStr.size() == 1) {
       EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context), FormatStr[0]), B);
-      return CI->use_empty() ? (Value*)CI : 
+      return CI->use_empty() ? (Value*)CI :
                                ConstantInt::get(CI->getType(), 1);
     }
-    
+
     // printf("foo\n") --> puts("foo")
     if (FormatStr[FormatStr.size()-1] == '\n' &&
         FormatStr.find('%') == std::string::npos) {  // no format characters.
@@ -1291,19 +1310,19 @@
       C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
                              GlobalVariable::InternalLinkage, C, "str");
       EmitPutS(C, B);
-      return CI->use_empty() ? (Value*)CI : 
+      return CI->use_empty() ? (Value*)CI :
                     ConstantInt::get(CI->getType(), FormatStr.size()+1);
     }
-    
+
     // Optimize specific format strings.
     // printf("%c", chr) --> putchar(*(i8*)dst)
     if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
         isa<IntegerType>(CI->getOperand(2)->getType())) {
       EmitPutChar(CI->getOperand(2), B);
-      return CI->use_empty() ? (Value*)CI : 
+      return CI->use_empty() ? (Value*)CI :
                                ConstantInt::get(CI->getType(), 1);
     }
-    
+
     // printf("%s\n", str) --> puts(str)
     if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
         isa<PointerType>(CI->getOperand(2)->getType()) &&
@@ -1331,7 +1350,7 @@
     std::string FormatStr;
     if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
       return 0;
-    
+
     // If we just have a format string (nothing else crazy) transform it.
     if (CI->getNumOperands() == 3) {
       // Make sure there's no % in the constant array.  We could try to handle
@@ -1348,25 +1367,27 @@
           ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
       return ConstantInt::get(CI->getType(), FormatStr.size());
     }
-    
+
     // The remaining optimizations require the format string to be "%s" or "%c"
     // and have an extra operand.
     if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
       return 0;
-    
+
     // Decode the second character of the format string.
     if (FormatStr[1] == 'c') {
       // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
       if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
-      Value *V = B.CreateTrunc(CI->getOperand(3), Type::getInt8Ty(*Context), "char");
+      Value *V = B.CreateTrunc(CI->getOperand(3),
+			       Type::getInt8Ty(*Context), "char");
       Value *Ptr = CastToCStr(CI->getOperand(1), B);
       B.CreateStore(V, Ptr);
-      Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1), "nul");
+      Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1),
+			"nul");
       B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr);
-      
+
       return ConstantInt::get(CI->getType(), 1);
     }
-    
+
     if (FormatStr[1] == 's') {
       // These optimizations require TargetData.
       if (!TD) return 0;
@@ -1379,7 +1400,7 @@
                                   ConstantInt::get(Len->getType(), 1),
                                   "leninc");
       EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
-      
+
       // The sprintf result is the unincremented number of bytes in the string.
       return B.CreateIntCast(Len, CI->getType(), false);
     }
@@ -1400,17 +1421,17 @@
         !isa<PointerType>(FT->getParamType(3)) ||
         !isa<IntegerType>(FT->getReturnType()))
       return 0;
-    
+
     // Get the element size and count.
     ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
     ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
     if (!SizeC || !CountC) return 0;
     uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
-    
+
     // If this is writing zero records, remove the call (it's a noop).
     if (Bytes == 0)
       return ConstantInt::get(CI->getType(), 0);
-    
+
     // If this is writing one byte, turn it into fputc.
     if (Bytes == 1) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
       Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
@@ -1436,7 +1457,7 @@
         !isa<PointerType>(FT->getParamType(1)) ||
         !CI->use_empty())
       return 0;
-    
+
     // fputs(s,F) --> fwrite(s,1,strlen(s),F)
     uint64_t Len = GetStringLength(CI->getOperand(1));
     if (!Len) return 0;
@@ -1458,7 +1479,7 @@
         !isa<PointerType>(FT->getParamType(1)) ||
         !isa<IntegerType>(FT->getReturnType()))
       return 0;
-    
+
     // All the optimizations depend on the format string.
     std::string FormatStr;
     if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
@@ -1478,12 +1499,12 @@
                  CI->getOperand(1), B);
       return ConstantInt::get(CI->getType(), FormatStr.size());
     }
-    
+
     // The remaining optimizations require the format string to be "%s" or "%c"
     // and have an extra operand.
     if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
       return 0;
-    
+
     // Decode the second character of the format string.
     if (FormatStr[1] == 'c') {
       // fprintf(F, "%c", chr) --> *(i8*)dst = chr
@@ -1491,7 +1512,7 @@
       EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
       return ConstantInt::get(CI->getType(), 1);
     }
-    
+
     if (FormatStr[1] == 's') {
       // fprintf(F, "%s", str) -> fputs(str, F)
       if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
@@ -1554,7 +1575,7 @@
 
 // Public interface to the Simplify LibCalls pass.
 FunctionPass *llvm::createSimplifyLibCallsPass() {
-  return new SimplifyLibCalls(); 
+  return new SimplifyLibCalls();
 }
 
 /// Optimizations - Populate the Optimizations map with all the optimizations
@@ -1580,7 +1601,7 @@
   Optimizations["memcpy"] = &MemCpy;
   Optimizations["memmove"] = &MemMove;
   Optimizations["memset"] = &MemSet;
-  
+
   // Math Library Optimizations
   Optimizations["powf"] = &Pow;
   Optimizations["pow"] = &Pow;
@@ -1598,7 +1619,7 @@
   Optimizations["llvm.exp2.f80"] = &Exp2;
   Optimizations["llvm.exp2.f64"] = &Exp2;
   Optimizations["llvm.exp2.f32"] = &Exp2;
-  
+
 #ifdef HAVE_FLOORF
   Optimizations["floor"] = &UnaryDoubleFP;
 #endif
@@ -1614,7 +1635,7 @@
 #ifdef HAVE_NEARBYINTF
   Optimizations["nearbyint"] = &UnaryDoubleFP;
 #endif
-  
+
   // Integer Optimizations
   Optimizations["ffs"] = &FFS;
   Optimizations["ffsl"] = &FFS;
@@ -1625,7 +1646,7 @@
   Optimizations["isdigit"] = &IsDigit;
   Optimizations["isascii"] = &IsAscii;
   Optimizations["toascii"] = &ToAscii;
-  
+
   // Formatting and IO Optimizations
   Optimizations["sprintf"] = &SPrintF;
   Optimizations["printf"] = &PrintF;
@@ -1640,9 +1661,9 @@
 bool SimplifyLibCalls::runOnFunction(Function &F) {
   if (Optimizations.empty())
     InitOptimizations();
-  
+
   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
-  
+
   IRBuilder<> Builder(F.getContext());
 
   bool Changed = false;
@@ -1651,35 +1672,35 @@
       // Ignore non-calls.
       CallInst *CI = dyn_cast<CallInst>(I++);
       if (!CI) continue;
-      
+
       // Ignore indirect calls and calls to non-external functions.
       Function *Callee = CI->getCalledFunction();
       if (Callee == 0 || !Callee->isDeclaration() ||
           !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
         continue;
-      
+
       // Ignore unknown calls.
       LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
       if (!LCO) continue;
-      
+
       // Set the builder to the instruction after the call.
       Builder.SetInsertPoint(BB, I);
-      
+
       // Try to optimize this call.
       Value *Result = LCO->OptimizeCall(CI, TD, Builder);
       if (Result == 0) continue;
 
       DEBUG(errs() << "SimplifyLibCalls simplified: " << *CI;
             errs() << "  into: " << *Result << "\n");
-      
+
       // Something changed!
       Changed = true;
       ++NumSimplified;
-      
+
       // Inspect the instruction after the call (which was potentially just
       // added) next.
       I = CI; ++I;
-      
+
       if (CI != Result && !CI->use_empty()) {
         CI->replaceAllUsesWith(Result);
         if (!Result->hasName())





More information about the llvm-commits mailing list