[llvm-commits] [llvm] r77640 - in /llvm/trunk: include/llvm/CodeGen/LinkAllCodegenComponents.h include/llvm/CodeGen/Passes.h lib/CodeGen/RegAllocBigBlock.cpp

Lang Hames lhames at gmail.com
Thu Jul 30 16:18:44 PDT 2009


Author: lhames
Date: Thu Jul 30 18:18:43 2009
New Revision: 77640

URL: http://llvm.org/viewvc/llvm-project?rev=77640&view=rev
Log:
Removed the BigBlock register allocator.

Removed:
    llvm/trunk/lib/CodeGen/RegAllocBigBlock.cpp
Modified:
    llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h
    llvm/trunk/include/llvm/CodeGen/Passes.h

Modified: llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h?rev=77640&r1=77639&r2=77640&view=diff

==============================================================================
--- llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h (original)
+++ llvm/trunk/include/llvm/CodeGen/LinkAllCodegenComponents.h Thu Jul 30 18:18:43 2009
@@ -34,7 +34,6 @@
 
       (void) llvm::createSimpleRegisterAllocator();
       (void) llvm::createLocalRegisterAllocator();
-      (void) llvm::createBigBlockRegisterAllocator();
       (void) llvm::createLinearScanRegisterAllocator();
       (void) llvm::createPBQPRegisterAllocator();
 

Modified: llvm/trunk/include/llvm/CodeGen/Passes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/Passes.h?rev=77640&r1=77639&r2=77640&view=diff

==============================================================================
--- llvm/trunk/include/llvm/CodeGen/Passes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/Passes.h Thu Jul 30 18:18:43 2009
@@ -99,15 +99,6 @@
   ///
   FunctionPass *createLocalRegisterAllocator();
 
-  /// BigBlockRegisterAllocation Pass - The BigBlock register allocator
-  /// munches single basic blocks at a time, like the local register
-  /// allocator.  While the BigBlock allocator is a little slower, and uses
-  /// somewhat more memory than the local register allocator, it tends to
-  /// yield the best allocations (of any of the allocators) for blocks that
-  /// have hundreds or thousands of instructions in sequence.
-  ///
-  FunctionPass *createBigBlockRegisterAllocator();
-
   /// LinearScanRegisterAllocation Pass - This pass implements the linear scan
   /// register allocation algorithm, a global register allocator.
   ///

Removed: llvm/trunk/lib/CodeGen/RegAllocBigBlock.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/RegAllocBigBlock.cpp?rev=77639&view=auto

==============================================================================
--- llvm/trunk/lib/CodeGen/RegAllocBigBlock.cpp (original)
+++ llvm/trunk/lib/CodeGen/RegAllocBigBlock.cpp (removed)
@@ -1,892 +0,0 @@
-//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the RABigBlock class
-//
-//===----------------------------------------------------------------------===//
-
-// This register allocator is derived from RegAllocLocal.cpp. Like it, this
-// allocator works on one basic block at a time, oblivious to others.
-// However, the algorithm used here is suited for long blocks of
-// instructions - registers are spilled by greedily choosing those holding
-// values that will not be needed for the longest amount of time. This works
-// particularly well for blocks with 10 or more times as many instructions
-// as machine registers, but can be used for general code.
-//
-//===----------------------------------------------------------------------===//
-//
-// TODO: - automagically invoke linearscan for (groups of) small BBs?
-//       - break ties when picking regs? (probably not worth it in a
-//         JIT context)
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "regalloc"
-#include "llvm/BasicBlock.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/LiveVariables.h"
-#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/IndexedMap.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include <algorithm>
-using namespace llvm;
-
-STATISTIC(NumStores, "Number of stores added");
-STATISTIC(NumLoads , "Number of loads added");
-STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
-
-static RegisterRegAlloc
-  bigBlockRegAlloc("bigblock", "Big-block register allocator",
-                createBigBlockRegisterAllocator);
-
-namespace {
-/// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap
-/// keys.
-  struct VRegKeyInfo {
-    static inline unsigned getEmptyKey() { return -1U; }
-    static inline unsigned getTombstoneKey() { return -2U; }
-    static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
-    static unsigned getHashValue(const unsigned &Key) { return Key; }
-  };
-
-
-/// This register allocator is derived from RegAllocLocal.cpp. Like it, this
-/// allocator works on one basic block at a time, oblivious to others.
-/// However, the algorithm used here is suited for long blocks of
-/// instructions - registers are spilled by greedily choosing those holding
-/// values that will not be needed for the longest amount of time. This works
-/// particularly well for blocks with 10 or more times as many instructions
-/// as machine registers, but can be used for general code.
-///
-/// TODO: - automagically invoke linearscan for (groups of) small BBs?
-///       - break ties when picking regs? (probably not worth it in a
-///         JIT context)
-///
-  class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
-  public:
-    static char ID;
-    RABigBlock() : MachineFunctionPass(&ID) {}
-  private:
-    /// TM - For getting at TargetMachine info 
-    ///
-    const TargetMachine *TM;
-    
-    /// MF - Our generic MachineFunction pointer
-    ///
-    MachineFunction *MF;
-    
-    /// RegInfo - For dealing with machine register info (aliases, folds
-    /// etc)
-    const TargetRegisterInfo *RegInfo;
-
-    typedef SmallVector<unsigned, 2> VRegTimes;
-
-    /// VRegReadTable - maps VRegs in a BB to the set of times they are read
-    ///
-    DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable;
-
-    /// VRegReadIdx - keeps track of the "current time" in terms of
-    /// positions in VRegReadTable
-    DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx;
-
-    /// StackSlotForVirtReg - Maps virtual regs to the frame index where these
-    /// values are spilled.
-    IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg;
-
-    /// Virt2PhysRegMap - This map contains entries for each virtual register
-    /// that is currently available in a physical register.
-    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
-
-    /// PhysRegsUsed - This array is effectively a map, containing entries for
-    /// each physical register that currently has a value (ie, it is in
-    /// Virt2PhysRegMap).  The value mapped to is the virtual register
-    /// corresponding to the physical register (the inverse of the
-    /// Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
-    /// because it is used by a future instruction, and to -2 if it is not
-    /// allocatable.  If the entry for a physical register is -1, then the
-    /// physical register is "not in the map".
-    ///
-    std::vector<int> PhysRegsUsed;
-
-    /// VirtRegModified - This bitset contains information about which virtual
-    /// registers need to be spilled back to memory when their registers are
-    /// scavenged.  If a virtual register has simply been rematerialized, there
-    /// is no reason to spill it to memory when we need the register back.
-    ///
-    std::vector<int> VirtRegModified;
-
-    /// MBBLastInsnTime - the number of the the last instruction in MBB
-    ///
-    int MBBLastInsnTime;
-
-    /// MBBCurTime - the number of the the instruction being currently processed
-    ///
-    int MBBCurTime;
-
-    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
-      return Virt2PhysRegMap[VirtReg];
-    }
-
-    unsigned &getVirt2StackSlot(unsigned VirtReg) {
-      return StackSlotForVirtReg[VirtReg];
-    }
-
-    /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset
-    ///
-    void markVirtRegModified(unsigned Reg, bool Val = true) {
-      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
-      Reg -= TargetRegisterInfo::FirstVirtualRegister;
-      if (VirtRegModified.size() <= Reg)
-        VirtRegModified.resize(Reg+1);
-      VirtRegModified[Reg] = Val;
-    }
-    
-    /// isVirtRegModified - Lets us query the VirtRegModified bitset
-    ///
-    bool isVirtRegModified(unsigned Reg) const {
-      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
-      assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
-             && "Illegal virtual register!");
-      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
-    }
-
-  public:
-    /// getPassName - returns the BigBlock allocator's name
-    ///
-    virtual const char *getPassName() const {
-      return "BigBlock Register Allocator";
-    }
-
-    /// getAnalaysisUsage - declares the required analyses
-    ///
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addRequiredID(PHIEliminationID);
-      AU.addRequiredID(TwoAddressInstructionPassID);
-      MachineFunctionPass::getAnalysisUsage(AU);
-    }
-
-  private:
-    /// runOnMachineFunction - Register allocate the whole function
-    ///
-    bool runOnMachineFunction(MachineFunction &Fn);
-
-    /// AllocateBasicBlock - Register allocate the specified basic block.
-    ///
-    void AllocateBasicBlock(MachineBasicBlock &MBB);
-
-    /// FillVRegReadTable - Fill out the table of vreg read times given a BB
-    ///
-    void FillVRegReadTable(MachineBasicBlock &MBB);
-    
-    /// areRegsEqual - This method returns true if the specified registers are
-    /// related to each other.  To do this, it checks to see if they are equal
-    /// or if the first register is in the alias set of the second register.
-    ///
-    bool areRegsEqual(unsigned R1, unsigned R2) const {
-      if (R1 == R2) return true;
-      for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
-           *AliasSet; ++AliasSet) {
-        if (*AliasSet == R1) return true;
-      }
-      return false;
-    }
-
-    /// getStackSpaceFor - This returns the frame index of the specified virtual
-    /// register on the stack, allocating space if necessary.
-    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
-
-    /// removePhysReg - This method marks the specified physical register as no
-    /// longer being in use.
-    ///
-    void removePhysReg(unsigned PhysReg);
-
-    /// spillVirtReg - This method spills the value specified by PhysReg into
-    /// the virtual register slot specified by VirtReg.  It then updates the RA
-    /// data structures to indicate the fact that PhysReg is now available.
-    ///
-    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
-                      unsigned VirtReg, unsigned PhysReg);
-
-    /// spillPhysReg - This method spills the specified physical register into
-    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
-    /// true, then the request is ignored if the physical register does not
-    /// contain a virtual register.
-    ///
-    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
-                      unsigned PhysReg, bool OnlyVirtRegs = false);
-
-    /// assignVirtToPhysReg - This method updates local state so that we know
-    /// that PhysReg is the proper container for VirtReg now.  The physical
-    /// register must not be used for anything else when this is called.
-    ///
-    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
-
-    /// isPhysRegAvailable - Return true if the specified physical register is
-    /// free and available for use.  This also includes checking to see if
-    /// aliased registers are all free...
-    ///
-    bool isPhysRegAvailable(unsigned PhysReg) const;
-
-    /// getFreeReg - Look to see if there is a free register available in the
-    /// specified register class.  If not, return 0.
-    ///
-    unsigned getFreeReg(const TargetRegisterClass *RC);
-
-    /// chooseReg - Pick a physical register to hold the specified
-    /// virtual register by choosing the one which will be read furthest
-    /// in the future.
-    ///
-    unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
-                    unsigned VirtReg);
-
-    /// reloadVirtReg - This method transforms the specified specified virtual
-    /// register use to refer to a physical register.  This method may do this
-    /// in one of several ways: if the register is available in a physical
-    /// register already, it uses that physical register.  If the value is not
-    /// in a physical register, and if there are physical registers available,
-    /// it loads it into a register.  If register pressure is high, and it is
-    /// possible, it tries to fold the load of the virtual register into the
-    /// instruction itself.  It avoids doing this if register pressure is low to
-    /// improve the chance that subsequent instructions can use the reloaded
-    /// value.  This method returns the modified instruction.
-    ///
-    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
-                                unsigned OpNum);
-
-  };
-  char RABigBlock::ID = 0;
-}
-
-/// getStackSpaceFor - This allocates space for the specified virtual register
-/// to be held on the stack.
-int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
-  // Find the location Reg would belong...
-  int FrameIdx = getVirt2StackSlot(VirtReg);
-
-  if (FrameIdx)
-    return FrameIdx - 1;          // Already has space allocated?
-
-  // Allocate a new stack object for this spill location...
-  FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
-                                                       RC->getAlignment());
-
-  // Assign the slot...
-  getVirt2StackSlot(VirtReg) = FrameIdx + 1;
-  return FrameIdx;
-}
-
-
-/// removePhysReg - This method marks the specified physical register as no
-/// longer being in use.
-///
-void RABigBlock::removePhysReg(unsigned PhysReg) {
-  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
-}
-
-
-/// spillVirtReg - This method spills the value specified by PhysReg into the
-/// virtual register slot specified by VirtReg.  It then updates the RA data
-/// structures to indicate the fact that PhysReg is now available.
-///
-void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
-                           MachineBasicBlock::iterator I,
-                           unsigned VirtReg, unsigned PhysReg) {
-  assert(VirtReg && "Spilling a physical register is illegal!"
-         " Must not have appropriate kill for the register or use exists beyond"
-         " the intended one.");
-  DOUT << "  Spilling register " << RegInfo->getName(PhysReg)
-       << " containing %reg" << VirtReg;
-  
-  const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
-  
-  if (!isVirtRegModified(VirtReg))
-    DOUT << " which has not been modified, so no store necessary!";
-
-  // Otherwise, there is a virtual register corresponding to this physical
-  // register.  We only need to spill it into its stack slot if it has been
-  // modified.
-  if (isVirtRegModified(VirtReg)) {
-    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
-    int FrameIndex = getStackSpaceFor(VirtReg, RC);
-    DOUT << " to stack slot #" << FrameIndex;
-    TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC);
-    ++NumStores;   // Update statistics
-  }
-
-  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
-
-  DOUT << "\n";
-  removePhysReg(PhysReg);
-}
-
-
-/// spillPhysReg - This method spills the specified physical register into the
-/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
-/// then the request is ignored if the physical register does not contain a
-/// virtual register.
-///
-void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
-                           unsigned PhysReg, bool OnlyVirtRegs) {
-  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
-    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
-    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
-      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
-  } else {
-    // If the selected register aliases any other registers, we must make
-    // sure that one of the aliases isn't alive.
-    for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
-         *AliasSet; ++AliasSet)
-      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
-          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
-        if (PhysRegsUsed[*AliasSet])
-          spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
-  }
-}
-
-
-/// assignVirtToPhysReg - This method updates local state so that we know
-/// that PhysReg is the proper container for VirtReg now.  The physical
-/// register must not be used for anything else when this is called.
-///
-void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
-  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
-  // Update information to note the fact that this register was just used, and
-  // it holds VirtReg.
-  PhysRegsUsed[PhysReg] = VirtReg;
-  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
-}
-
-
-/// isPhysRegAvailable - Return true if the specified physical register is free
-/// and available for use.  This also includes checking to see if aliased
-/// registers are all free...
-///
-bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
-  if (PhysRegsUsed[PhysReg] != -1) return false;
-
-  // If the selected register aliases any other allocated registers, it is
-  // not free!
-  for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
-       *AliasSet; ++AliasSet)
-    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
-      return false;                    // Can't use this reg then.
-  return true;
-}
-
-  
-/// getFreeReg - Look to see if there is a free register available in the
-/// specified register class.  If not, return 0.
-///
-unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
-  // Get iterators defining the range of registers that are valid to allocate in
-  // this class, which also specifies the preferred allocation order.
-  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
-  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
-
-  for (; RI != RE; ++RI)
-    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
-      assert(*RI != 0 && "Cannot use register!");
-      return *RI; // Found an unused register!
-    }
-  return 0;
-}
-
-
-/// chooseReg - Pick a physical register to hold the specified
-/// virtual register by choosing the one whose value will be read
-/// furthest in the future.
-///
-unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
-                         unsigned VirtReg) {
-  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
-  // First check to see if we have a free register of the requested type...
-  unsigned PhysReg = getFreeReg(RC);
-
-  // If we didn't find an unused register, find the one which will be
-  // read at the most distant point in time.
-  if (PhysReg == 0) {
-    unsigned delay=0, longest_delay=0;
-    VRegTimes* ReadTimes;
-
-    unsigned curTime = MBBCurTime;
-
-    // for all physical regs in the RC,
-    for(TargetRegisterClass::iterator pReg = RC->begin(); 
-                                      pReg != RC->end();  ++pReg) {
-      // how long until they're read?
-      if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
-        ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
-        if(ReadTimes && !ReadTimes->empty()) {
-            unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]];
-            while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) {
-                ++pt;
-            }
-
-            if(pt < ReadTimes->size())
-                delay = (*ReadTimes)[pt] - curTime;
-            else
-                delay = MBBLastInsnTime + 1 - curTime;
-        } else {
-            // This register is only defined, but never
-            // read in this MBB. Therefore the next read
-            // happens after the end of this MBB
-            delay = MBBLastInsnTime + 1 - curTime;
-        }
-
-        
-        if(delay > longest_delay) {
-          longest_delay = delay;
-          PhysReg = *pReg;
-        }
-      }
-    }
-
-    if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose
-                       // a register to spill by looking through the
-                       // read timetable, so now we just spill the
-                       // first allocatable register we find.
-                       
-      // for all physical regs in the RC,
-      for(TargetRegisterClass::iterator pReg = RC->begin(); 
-                                        pReg != RC->end();  ++pReg) {
-        // if we find a register we can spill
-        if(PhysRegsUsed[*pReg]>=-1)
-          PhysReg = *pReg; // choose it to be spilled
-      }
-    }
-    
-    assert(PhysReg && "couldn't choose a register to spill :( ");
-    // TODO: assert that RC->contains(PhysReg) / handle aliased registers?
-
-    // since we needed to look in the table we need to spill this register.
-    spillPhysReg(MBB, I, PhysReg);
-  }
-
-  // assign the vreg to our chosen physical register
-  assignVirtToPhysReg(VirtReg, PhysReg);
-  return PhysReg; // and return it
-}
-
-
-/// reloadVirtReg - This method transforms an instruction with a virtual
-/// register use to one that references a physical register. It does this as
-/// follows:
-///
-///   1) If the register is already in a physical register, it uses it.
-///   2) Otherwise, if there is a free physical register, it uses that.
-///   3) Otherwise, it calls chooseReg() to get the physical register
-///      holding the most distantly needed value, generating a spill in
-///      the process.
-///
-/// This method returns the modified instruction.
-MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
-                                     unsigned OpNum) {
-  unsigned VirtReg = MI->getOperand(OpNum).getReg();
-  const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
-
-  // If the virtual register is already available in a physical register,
-  // just update the instruction and return.
-  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
-    MI->getOperand(OpNum).setReg(PR);
-    return MI;
-  }
-
-  // Otherwise, if we have free physical registers available to hold the
-  // value, use them.
-  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
-  unsigned PhysReg = getFreeReg(RC);
-  int FrameIndex = getStackSpaceFor(VirtReg, RC);
-
-  if (PhysReg) {   // we have a free register, so use it.
-    assignVirtToPhysReg(VirtReg, PhysReg);
-  } else {  // no free registers available.
-    // try to fold the spill into the instruction
-    SmallVector<unsigned, 1> Ops;
-    Ops.push_back(OpNum);
-    if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) {
-      ++NumFolded;
-      FMI->copyKillDeadInfo(MI);
-      return MBB.insert(MBB.erase(MI), FMI);
-    }
-    
-    // determine which of the physical registers we'll kill off, since we
-    // couldn't fold.
-    PhysReg = chooseReg(MBB, MI, VirtReg);
-  }
-
-  // this virtual register is now unmodified (since we just reloaded it)
-  markVirtRegModified(VirtReg, false);
-
-  DOUT << "  Reloading %reg" << VirtReg << " into "
-       << RegInfo->getName(PhysReg) << "\n";
-
-  // Add move instruction(s)
-  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
-  ++NumLoads;    // Update statistics
-
-  MF->getRegInfo().setPhysRegUsed(PhysReg);
-  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
-  return MI;
-}
-
-/// Fill out the vreg read timetable. Since ReadTime increases
-/// monotonically, the individual readtime sets will be sorted
-/// in ascending order.
-void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
-  // loop over each instruction
-  MachineBasicBlock::iterator MII;
-  unsigned ReadTime;
-  
-  for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
-    MachineInstr *MI = MII;
-    
-    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
-      MachineOperand& MO = MI->getOperand(i);
-      // look for vreg reads..
-      if (MO.isReg() && !MO.isDef() && MO.getReg() &&
-          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
-          // ..and add them to the read table.
-          VRegTimes* &Times = VRegReadTable[MO.getReg()];
-          if(!VRegReadTable[MO.getReg()]) {
-              Times = new VRegTimes;
-              VRegReadIdx[MO.getReg()] = 0;
-          }
-        Times->push_back(ReadTime);
-      }
-    }
-
-  }  
-
-  MBBLastInsnTime = ReadTime;
-
-  for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin();
-      Reads != VRegReadTable.end(); ++Reads) {
-      if(Reads->second) {
-          DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n";
-      }
-  }
-}
-
-/// isReadModWriteImplicitKill - True if this is an implicit kill for a
-/// read/mod/write register, i.e. update partial register.
-static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
-  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-    MachineOperand& MO = MI->getOperand(i);
-    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
-        MO.isDef() && !MO.isDead())
-      return true;
-  }
-  return false;
-}
-
-/// isReadModWriteImplicitDef - True if this is an implicit def for a
-/// read/mod/write register, i.e. update partial register.
-static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
-  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-    MachineOperand& MO = MI->getOperand(i);
-    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
-        !MO.isDef() && MO.isKill())
-      return true;
-  }
-  return false;
-}
-
-
-void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
-  // loop over each instruction
-  MachineBasicBlock::iterator MII = MBB.begin();
-  const TargetInstrInfo &TII = *TM->getInstrInfo();
-  
-  DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
-        if (LBB) errs() << "\nStarting RegAlloc of BB: " << LBB->getName());
-
-  // If this is the first basic block in the machine function, add live-in
-  // registers as active.
-  if (&MBB == &*MF->begin()) {
-    for (MachineRegisterInfo::livein_iterator
-         I = MF->getRegInfo().livein_begin(),
-         E = MF->getRegInfo().livein_end(); I != E; ++I) {
-      unsigned Reg = I->first;
-      MF->getRegInfo().setPhysRegUsed(Reg);
-      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
-      for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
-           *AliasSet; ++AliasSet) {
-        if (PhysRegsUsed[*AliasSet] != -2) {
-          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
-          MF->getRegInfo().setPhysRegUsed(*AliasSet);
-        }
-      }
-    }    
-  }
-  
-  // Otherwise, sequentially allocate each instruction in the MBB.
-  MBBCurTime = -1;
-  while (MII != MBB.end()) {
-    MachineInstr *MI = MII++;
-    MBBCurTime++;
-    const TargetInstrDesc &TID = MI->getDesc();
-    DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI;
-          DOUT << "  Regs have values: ";
-          for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
-            if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
-               DOUT << "[" << RegInfo->getName(i)
-                    << ",%reg" << PhysRegsUsed[i] << "] ";
-          DOUT << "\n");
-
-    SmallVector<unsigned, 8> Kills;
-    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-      MachineOperand& MO = MI->getOperand(i);
-      if (MO.isReg() && MO.isKill()) {
-        if (!MO.isImplicit())
-          Kills.push_back(MO.getReg());
-        else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
-          // These are extra physical register kills when a sub-register
-          // is defined (def of a sub-register is a read/mod/write of the
-          // larger registers). Ignore.
-          Kills.push_back(MO.getReg());
-      }
-    }
-
-    // Get the used operands into registers.  This has the potential to spill
-    // incoming values if we are out of registers.  Note that we completely
-    // ignore physical register uses here.  We assume that if an explicit
-    // physical register is referenced by the instruction, that it is guaranteed
-    // to be live-in, or the input is badly hosed.
-    //
-    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
-      MachineOperand& MO = MI->getOperand(i);
-      // here we are looking for only used operands (never def&use)
-      if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
-          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
-        MI = reloadVirtReg(MBB, MI, i);
-    }
-
-    // If this instruction is the last user of this register, kill the
-    // value, freeing the register being used, so it doesn't need to be
-    // spilled to memory.
-    //
-    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
-      unsigned VirtReg = Kills[i];
-      unsigned PhysReg = VirtReg;
-      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
-        // If the virtual register was never materialized into a register, it
-        // might not be in the map, but it won't hurt to zero it out anyway.
-        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
-        PhysReg = PhysRegSlot;
-        PhysRegSlot = 0;
-      } else if (PhysRegsUsed[PhysReg] == -2) {
-        // Unallocatable register dead, ignore.
-        continue;
-      } else {
-        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
-               "Silently clearing a virtual register?");
-      }
-
-      if (PhysReg) {
-        DOUT << "  Last use of " << RegInfo->getName(PhysReg)
-             << "[%reg" << VirtReg <<"], removing it from live set\n";
-        removePhysReg(PhysReg);
-        for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg);
-             *AliasSet; ++AliasSet) {
-          if (PhysRegsUsed[*AliasSet] != -2) {
-            DOUT  << "  Last use of "
-                  << RegInfo->getName(*AliasSet)
-                  << "[%reg" << VirtReg <<"], removing it from live set\n";
-            removePhysReg(*AliasSet);
-          }
-        }
-      }
-    }
-
-    // Loop over all of the operands of the instruction, spilling registers that
-    // are defined, and marking explicit destinations in the PhysRegsUsed map.
-    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-      MachineOperand& MO = MI->getOperand(i);
-      if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
-          TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
-        unsigned Reg = MO.getReg();
-        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
-        // These are extra physical register defs when a sub-register
-        // is defined (def of a sub-register is a read/mod/write of the
-        // larger registers). Ignore.
-        if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
-
-        MF->getRegInfo().setPhysRegUsed(Reg);
-        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
-        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
-        for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
-             *AliasSet; ++AliasSet) {
-          if (PhysRegsUsed[*AliasSet] != -2) {
-            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
-            MF->getRegInfo().setPhysRegUsed(*AliasSet);
-          }
-        }
-      }
-    }
-
-    // Loop over the implicit defs, spilling them as well.
-    if (TID.getImplicitDefs()) {
-      for (const unsigned *ImplicitDefs = TID.getImplicitDefs();
-           *ImplicitDefs; ++ImplicitDefs) {
-        unsigned Reg = *ImplicitDefs;
-        if (PhysRegsUsed[Reg] != -2) {
-          spillPhysReg(MBB, MI, Reg, true);
-          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
-        }
-        MF->getRegInfo().setPhysRegUsed(Reg);
-        for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
-             *AliasSet; ++AliasSet) {
-          if (PhysRegsUsed[*AliasSet] != -2) {
-            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
-            MF->getRegInfo().setPhysRegUsed(*AliasSet);
-          }
-        }
-      }
-    }
-
-    SmallVector<unsigned, 8> DeadDefs;
-    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-      MachineOperand& MO = MI->getOperand(i);
-      if (MO.isReg() && MO.isDead())
-        DeadDefs.push_back(MO.getReg());
-    }
-
-    // Okay, we have allocated all of the source operands and spilled any values
-    // that would be destroyed by defs of this instruction.  Loop over the
-    // explicit defs and assign them to a register, spilling incoming values if
-    // we need to scavenge a register.
-    //
-    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-      MachineOperand& MO = MI->getOperand(i);
-      if (MO.isReg() && MO.isDef() && MO.getReg() &&
-          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
-        unsigned DestVirtReg = MO.getReg();
-        unsigned DestPhysReg;
-
-        // If DestVirtReg already has a value, use it.
-        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
-          DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
-        MF->getRegInfo().setPhysRegUsed(DestPhysReg);
-        markVirtRegModified(DestVirtReg);
-        MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register
-      }
-    }
-
-    // If this instruction defines any registers that are immediately dead,
-    // kill them now.
-    //
-    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
-      unsigned VirtReg = DeadDefs[i];
-      unsigned PhysReg = VirtReg;
-      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
-        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
-        PhysReg = PhysRegSlot;
-        assert(PhysReg != 0);
-        PhysRegSlot = 0;
-      } else if (PhysRegsUsed[PhysReg] == -2) {
-        // Unallocatable register dead, ignore.
-        continue;
-      }
-
-      if (PhysReg) {
-        DOUT  << "  Register " << RegInfo->getName(PhysReg)
-              << " [%reg" << VirtReg
-              << "] is never used, removing it from live set\n";
-        removePhysReg(PhysReg);
-        for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
-             *AliasSet; ++AliasSet) {
-          if (PhysRegsUsed[*AliasSet] != -2) {
-            DOUT  << "  Register " << RegInfo->getName(*AliasSet)
-                  << " [%reg" << *AliasSet
-                  << "] is never used, removing it from live set\n";
-            removePhysReg(*AliasSet);
-          }
-        }
-      }
-    }
-    
-    // Finally, if this is a noop copy instruction, zap it.
-    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
-    if (TII.isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
-        SrcReg == DstReg)
-      MBB.erase(MI);
-  }
-
-  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
-
-  // Spill all physical registers holding virtual registers now.
-  for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
-    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
-      if (unsigned VirtReg = PhysRegsUsed[i])
-        spillVirtReg(MBB, MI, VirtReg, i);
-      else
-        removePhysReg(i);
-    }
-}
-
-/// runOnMachineFunction - Register allocate the whole function
-///
-bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
-  DOUT << "Machine Function " << "\n";
-  MF = &Fn;
-  TM = &Fn.getTarget();
-  RegInfo = TM->getRegisterInfo();
-
-  PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
-  
-  // At various places we want to efficiently check to see whether a register
-  // is allocatable.  To handle this, we mark all unallocatable registers as
-  // being pinned down, permanently.
-  {
-    BitVector Allocable = RegInfo->getAllocatableSet(Fn);
-    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
-      if (!Allocable[i])
-        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
-  }
-
-  // initialize the virtual->physical register map to have a 'null'
-  // mapping for all virtual registers
-  Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg());
-  StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg());
-  VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() - 
-                         TargetRegisterInfo::FirstVirtualRegister + 1, 0);
-
-  // Loop over all of the basic blocks, eliminating virtual register references
-  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
-       MBB != MBBe; ++MBB) {
-    // fill out the read timetable 
-    FillVRegReadTable(*MBB);
-    // use it to allocate the BB
-    AllocateBasicBlock(*MBB);
-    // clear it
-    VRegReadTable.clear();
-  }
-  
-  StackSlotForVirtReg.clear();
-  PhysRegsUsed.clear();
-  VirtRegModified.clear();
-  Virt2PhysRegMap.clear();
-  return true;
-}
-
-FunctionPass *llvm::createBigBlockRegisterAllocator() {
-  return new RABigBlock();
-}
-





More information about the llvm-commits mailing list