[llvm-commits] [llvm] r77579 - in /llvm/trunk/lib: 'Twine' errors in Transforms/Utils/PromoteMemoryToRegister.cpp Transforms/Scalar/ScalarReplAggregates.cpp on Cygwin

Aaron Gray aaronngray.lists at googlemail.com
Thu Jul 30 08:57:24 PDT 2009


2009/7/30 Daniel Dunbar <daniel at zuster.org>

> Author: ddunbar
> Date: Wed Jul 29 23:20:37 2009
> New Revision: 77579
>
> URL: http://llvm.org/viewvc/llvm-project?rev=77579&view=rev
> Log:
> Switch obvious clients to Twine instead of utostr (when they were already
> using
> a Twine, e.g., for names).
>  - I am a little ambivalent about this; we don't want the string conversion
> of
>   utostr, but using overload '+' mixed with string and integer arguments is
>   sketchy. On the other hand, this particular usage is something of an
> idiom.


Daniel,

I am getting the following error on Cygwin using GCC 4.2.2 :-

~~~~~~~~~~~~~~~~~
llvm[3]: Compiling PromoteMemoryToRegister.cpp for Debug build
/home/ang/svn/llvm-coff/lib/Transforms/Utils/PromoteMemoryToRegister.cpp: In
mem
ber function 'bool<unnamed>::PromoteMem2Reg::QueuePhiNode(llvm::BasicBlock*,
uns
igned int, unsigned int&, llvm::SmallPtrSet<llvm::PHINode*, 16u>&)':
/home/ang/svn/llvm-coff/lib/Transforms/Utils/PromoteMemoryToRegister.cpp:870:
er
ror: conversion from 'unsigned int' to 'const llvm::Twine' is ambiguous
/home/ang/svn/llvm-coff/include/llvm/ADT/Twine.h:270: note: candidates are:
llvm
::Twine::Twine(const int64_t&)
/home/ang/svn/llvm-coff/include/llvm/ADT/Twine.h:265: note:
llvm::Twine::Twine(
const uint64_t&)
/home/ang/svn/llvm-coff/include/llvm/ADT/Twine.h:260: note:
llvm::Twine::Twine(
const int32_t&)
/home/ang/svn/llvm-coff/include/llvm/ADT/Twine.h:255: note:
llvm::Twine::Twine(
const uint32_t&)
make[3]: ***
[/home/ang/build/llvm-coff/lib/Transforms/Utils/Debug/PromoteMemory
ToRegister.o] Error 1
make[3]: Leaving directory `/home/ang/build/llvm-coff/lib/Transforms/Utils'
make[2]: *** [Utils/.makeall] Error 2
make[2]: Leaving directory `/home/ang/build/llvm-coff/lib/Transforms'
make[1]: *** [Transforms/.makeall] Error 2
make[1]: Leaving directory `/home/ang/build/llvm-coff/lib'
make: *** [all] Error 1
~~~~~~~~~~~~~~~~~~

Its working fine on MSVC 2008, but Cygwin GCC 4.2.2 is failing to resolve
the typing here.

Transforms/Utils/PromoteMemoryToRegister.cpp

I had to hack it with :-

  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
                       Allocas[AllocaNo]->getName() + "." +
Twine((uint32_t)Version++),
                       BB->begin());
       To get it to compile on Cygwin, maybe 'Version' should be a uint32_t
?

Transforms/Scalar/ScalarReplAggregates.cpp
Transforms/IPO/ArgumentPromotion.cpp
Transforms/IPO/GlobalOpt.cpp
    Twine constructors and uint32_t types or casts.

I have done a patch but its a bit insane tab wise it seems to be removing
all tabs from blank lines.

Also the actual logic I have used is a "just get it working logic", so
beware :)

Aaron
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20090730/d5e7d81e/attachment.html>
-------------- next part --------------
Index: lib/Transforms/Utils/PromoteMemoryToRegister.cpp
===================================================================
--- lib/Transforms/Utils/PromoteMemoryToRegister.cpp	(revision 77596)
+++ lib/Transforms/Utils/PromoteMemoryToRegister.cpp	(working copy)
@@ -104,21 +104,21 @@
   class VISIBILITY_HIDDEN RenamePassData {
   public:
     typedef std::vector<Value *> ValVector;
-
+
     RenamePassData() {}
     RenamePassData(BasicBlock *B, BasicBlock *P,
                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
     BasicBlock *BB;
     BasicBlock *Pred;
     ValVector Values;
-
+
     void swap(RenamePassData &RHS) {
       std::swap(BB, RHS.BB);
       std::swap(Pred, RHS.Pred);
       Values.swap(RHS.Values);
     }
   };
-
+
   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
   /// load/store instructions in the block that directly load or store an alloca.
   ///
@@ -130,23 +130,23 @@
     /// the start of the block.
     DenseMap<const Instruction *, unsigned> InstNumbers;
   public:
-
+
     /// isInterestingInstruction - This code only looks at accesses to allocas.
     static bool isInterestingInstruction(const Instruction *I) {
       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
     }
-
+
     /// getInstructionIndex - Get or calculate the index of the specified
     /// instruction.
     unsigned getInstructionIndex(const Instruction *I) {
       assert(isInterestingInstruction(I) &&
              "Not a load/store to/from an alloca?");
-
+
       // If we already have this instruction number, return it.
       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
       if (It != InstNumbers.end()) return It->second;
-
+
       // Scan the whole block to get the instruction.  This accumulates
       // information for every interesting instruction in the block, in order to
       // avoid gratuitus rescans.
@@ -157,15 +157,15 @@
         if (isInterestingInstruction(BBI))
           InstNumbers[BBI] = InstNo++;
       It = InstNumbers.find(I);
-
+
       assert(It != InstNumbers.end() && "Didn't insert instruction?");
       return It->second;
     }
-
+
     void deleteValue(const Instruction *I) {
       InstNumbers.erase(I);
     }
-
+
     void clear() {
       InstNumbers.clear();
     }
@@ -181,7 +181,7 @@
     /// AST - An AliasSetTracker object to update.  If null, don't update it.
     ///
     AliasSetTracker *AST;
-
+
     LLVMContext &Context;

     /// AllocaLookup - Reverse mapping of Allocas.
@@ -191,11 +191,11 @@
     /// NewPhiNodes - The PhiNodes we're adding.
     ///
     DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
-
+
     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
     /// it corresponds to.
     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
-
+
     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
     /// each alloca that is of pointer type, we keep track of what to copyValue
     /// to the inserted PHI nodes here.
@@ -227,7 +227,7 @@
         I1 = II->getNormalDest()->begin();
       return DT.properlyDominates(I1->getParent(), I2->getParent());
     }
-
+
     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
     ///
     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
@@ -250,33 +250,33 @@

     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
                                  AllocaInfo &Info);
-    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
+    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
-
+
     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
                                   LargeBlockInfo &LBI);
     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
                                   LargeBlockInfo &LBI);

-
+
     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
                     RenamePassData::ValVector &IncVals,
                     std::vector<RenamePassData> &Worklist);
     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
                       SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
   };
-
+
   struct AllocaInfo {
     std::vector<BasicBlock*> DefiningBlocks;
     std::vector<BasicBlock*> UsingBlocks;
-
+
     StoreInst  *OnlyStore;
     BasicBlock *OnlyBlock;
     bool OnlyUsedInOneBlock;
-
+
     Value *AllocaPointerVal;
-
+
     void clear() {
       DefiningBlocks.clear();
       UsingBlocks.clear();
@@ -285,7 +285,7 @@
       OnlyUsedInOneBlock = true;
       AllocaPointerVal = 0;
     }
-
+
     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
     /// ivars.
     void AnalyzeAlloca(AllocaInst *AI) {
@@ -305,7 +305,7 @@
           DI->eraseFromParent();
           BC->eraseFromParent();
           continue;
-        }
+        }
         else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
           // Remember the basic blocks which define new values for the alloca
           DefiningBlocks.push_back(SI->getParent());
@@ -318,7 +318,7 @@
           UsingBlocks.push_back(LI->getParent());
           AllocaPointerVal = LI;
         }
-
+
         if (OnlyUsedInOneBlock) {
           if (OnlyBlock == 0)
             OnlyBlock = User->getParent();
@@ -357,7 +357,7 @@
       ++NumDeadAlloca;
       continue;
     }
-
+
     // Calculate the set of read and write-locations for each alloca.  This is
     // analogous to finding the 'uses' and 'definitions' of each variable.
     Info.AnalyzeAlloca(AI);
@@ -376,43 +376,43 @@
         if (AST) AST->deleteValue(AI);
         AI->eraseFromParent();
         LBI.deleteValue(AI);
-
+
         // The alloca has been processed, move on.
         RemoveFromAllocasList(AllocaNum);
-
+
         ++NumSingleStore;
         continue;
       }
     }
-
+
     // If the alloca is only read and written in one basic block, just perform a
     // linear sweep over the block to eliminate it.
     if (Info.OnlyUsedInOneBlock) {
       PromoteSingleBlockAlloca(AI, Info, LBI);
-
+
       // Finally, after the scan, check to see if the stores are all that is
       // left.
       if (Info.UsingBlocks.empty()) {
-
+
         // Remove the (now dead) stores and alloca.
         while (!AI->use_empty()) {
           StoreInst *SI = cast<StoreInst>(AI->use_back());
           SI->eraseFromParent();
           LBI.deleteValue(SI);
         }
-
+
         if (AST) AST->deleteValue(AI);
         AI->eraseFromParent();
         LBI.deleteValue(AI);
-
+
         // The alloca has been processed, move on.
         RemoveFromAllocasList(AllocaNum);
-
+
         ++NumLocalPromoted;
         continue;
       }
     }
-
+
     // If we haven't computed a numbering for the BB's in the function, do so
     // now.
     if (BBNumbers.empty()) {
@@ -425,7 +425,7 @@
     // stored into the alloca.
     if (AST)
       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
-
+
     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;

@@ -440,8 +440,8 @@
     return; // All of the allocas must have been trivial!

   LBI.clear();
-
-
+
+
   // Set the incoming values for the basic block to be null values for all of
   // the alloca's.  We do this in case there is a load of a value that has not
   // been stored yet.  In this case, it will get this null value.
@@ -462,7 +462,7 @@
     // RenamePass may add new worklist entries.
     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
   }
-
+
   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
   Visited.clear();

@@ -480,7 +480,7 @@
     A->eraseFromParent();
   }

-
+
   // Loop over all of the PHI nodes and see if there are any that we can get
   // rid of because they merge all of the same incoming values.  This can
   // happen due to undef values coming into the PHI nodes.  This process is
@@ -488,11 +488,11 @@
   bool EliminatedAPHI = true;
   while (EliminatedAPHI) {
     EliminatedAPHI = false;
-
+
     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
       PHINode *PN = I->second;
-
+
       // If this PHI node merges one value and/or undefs, get the value.
       if (Value *V = PN->hasConstantValue(true)) {
         if (!isa<Instruction>(V) ||
@@ -509,7 +509,7 @@
       ++I;
     }
   }
-
+
   // At this point, the renamer has added entries to PHI nodes for all reachable
   // code.  Unfortunately, there may be unreachable blocks which the renamer
   // hasn't traversed.  If this is the case, the PHI nodes may not
@@ -533,12 +533,12 @@

     // Get the preds for BB.
     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
-
+
     // Ok, now we know that all of the PHI nodes are missing entries for some
     // basic blocks.  Start by sorting the incoming predecessors for efficient
     // access.
     std::sort(Preds.begin(), Preds.end());
-
+
     // Now we loop through all BB's which have entries in SomePHI and remove
     // them from the Preds list.
     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
@@ -566,7 +566,7 @@
         SomePHI->addIncoming(UndefVal, Preds[pred]);
     }
   }
-
+
   NewPhiNodes.clear();
 }

@@ -576,30 +576,30 @@
 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
 /// would be dead).
 void PromoteMem2Reg::
-ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
+ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
-
+
   // To determine liveness, we must iterate through the predecessors of blocks
   // where the def is live.  Blocks are added to the worklist if we need to
   // check their predecessors.  Start with all the using blocks.
   SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
-  LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
+  LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
                              Info.UsingBlocks.begin(), Info.UsingBlocks.end());
-
+
   // If any of the using blocks is also a definition block, check to see if the
   // definition occurs before or after the use.  If it happens before the use,
   // the value isn't really live-in.
   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
     BasicBlock *BB = LiveInBlockWorklist[i];
     if (!DefBlocks.count(BB)) continue;
-
+
     // Okay, this is a block that both uses and defines the value.  If the first
     // reference to the alloca is a def (store), then we know it isn't live-in.
     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
         if (SI->getOperand(1) != AI) continue;
-
+
         // We found a store to the alloca before a load.  The alloca is not
         // actually live-in here.
         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
@@ -608,34 +608,34 @@
         break;
       } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
         if (LI->getOperand(0) != AI) continue;
-
+
         // Okay, we found a load before a store to the alloca.  It is actually
         // live into this block.
         break;
       }
     }
   }
-
+
   // Now that we have a set of blocks where the phi is live-in, recursively add
   // their predecessors until we find the full region the value is live.
   while (!LiveInBlockWorklist.empty()) {
     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
-
+
     // The block really is live in here, insert it into the set.  If already in
     // the set, then it has already been processed.
     if (!LiveInBlocks.insert(BB))
       continue;
-
+
     // Since the value is live into BB, it is either defined in a predecessor or
     // live into it to.  Add the preds to the worklist unless they are a
     // defining block.
     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
       BasicBlock *P = *PI;
-
+
       // The value is not live into a predecessor if it defines the value.
       if (DefBlocks.count(P))
         continue;
-
+
       // Otherwise it is, add to the worklist.
       LiveInBlockWorklist.push_back(P);
     }
@@ -666,13 +666,13 @@
   while (!Info.DefiningBlocks.empty()) {
     BasicBlock *BB = Info.DefiningBlocks.back();
     Info.DefiningBlocks.pop_back();
-
+
     // Look up the DF for this write, add it to defining blocks.
     DominanceFrontier::const_iterator it = DF.find(BB);
     if (it == DF.end()) continue;
-
+
     const DominanceFrontier::DomSetType &S = it->second;
-
+
     // In theory we don't need the indirection through the DFBlocks vector.
     // In practice, the order of calling QueuePhiNode would depend on the
     // (unspecified) ordering of basic blocks in the dominance frontier,
@@ -684,14 +684,14 @@
       // bother processing it.
       if (!LiveInBlocks.count(*P))
         continue;
-
+
       DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
     }
-
+
     // Sort by which the block ordering in the function.
     if (DFBlocks.size() > 1)
       std::sort(DFBlocks.begin(), DFBlocks.end());
-
+
     for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
       BasicBlock *BB = DFBlocks[i].second;
       if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
@@ -714,7 +714,7 @@

   // Clear out UsingBlocks.  We will reconstruct it here if needed.
   Info.UsingBlocks.clear();
-
+
   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
     Instruction *UserInst = cast<Instruction>(*UI++);
     if (!isa<LoadInst>(UserInst)) {
@@ -722,7 +722,7 @@
       continue;
     }
     LoadInst *LI = cast<LoadInst>(UserInst);
-
+
     // Okay, if we have a load from the alloca, we want to replace it with the
     // only value stored to the alloca.  We can do this if the value is
     // dominated by the store.  If not, we use the rest of the mem2reg machinery
@@ -740,7 +740,7 @@
           Info.UsingBlocks.push_back(StoreBB);
           continue;
         }
-
+
       } else if (LI->getParent() != StoreBB &&
                  !dominates(StoreBB, LI->getParent())) {
         // If the load and store are in different blocks, use BB dominance to
@@ -750,7 +750,7 @@
         continue;
       }
     }
-
+
     // Otherwise, we *can* safely rewrite this load.
     LI->replaceAllUsesWith(OnlyStore->getOperand(0));
     if (AST && isa<PointerType>(LI->getType()))
@@ -790,22 +790,22 @@
   // this code is optimized assuming that large blocks happen.  This does not
   // significantly pessimize the small block case.  This uses LargeBlockInfo to
   // make it efficient to get the index of various operations in the block.
-
+
   // Clear out UsingBlocks.  We will reconstruct it here if needed.
   Info.UsingBlocks.clear();
-
+
   // Walk the use-def list of the alloca, getting the locations of all stores.
   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
   StoresByIndexTy StoresByIndex;
-
+
   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
-       UI != E; ++UI)
+       UI != E; ++UI)
     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));

   // If there are no stores to the alloca, just replace any loads with undef.
   if (StoresByIndex.empty()) {
-    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
+    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
         LI->replaceAllUsesWith(Context.getUndef(LI->getType()));
         if (AST && isa<PointerType>(LI->getType()))
@@ -815,32 +815,32 @@
       }
     return;
   }
-
+
   // Sort the stores by their index, making it efficient to do a lookup with a
   // binary search.
   std::sort(StoresByIndex.begin(), StoresByIndex.end());
-
+
   // Walk all of the loads from this alloca, replacing them with the nearest
   // store above them, if any.
   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
     if (!LI) continue;
-
+
     unsigned LoadIdx = LBI.getInstructionIndex(LI);
-
-    // Find the nearest store that has a lower than this load.
-    StoresByIndexTy::iterator I =
+
+    // Find the nearest store that has a lower than this load.
+    StoresByIndexTy::iterator I =
       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
                        std::pair<unsigned, StoreInst*>(LoadIdx, 0),
                        StoreIndexSearchPredicate());
-
+
     // If there is no store before this load, then we can't promote this load.
     if (I == StoresByIndex.begin()) {
       // Can't handle this load, bail out.
       Info.UsingBlocks.push_back(LI->getParent());
       continue;
     }
-
+
     // Otherwise, there was a store before this load, the load takes its value.
     --I;
     LI->replaceAllUsesWith(I->second->getOperand(0));
@@ -867,12 +867,12 @@
   // Create a PhiNode using the dereferenced type... and add the phi-node to the
   // BasicBlock.
   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
-                       Allocas[AllocaNo]->getName() + "." + Version++,
+                       Allocas[AllocaNo]->getName() + "." + Twine((uint32_t)Version++),
                        BB->begin());
   ++NumPHIInsert;
   PhiToAllocaMap[PN] = AllocaNo;
   PN->reserveOperandSpace(getNumPreds(BB));
-
+
   InsertedPHINodes.insert(PN);

   if (AST && isa<PointerType>(PN->getType()))
@@ -902,36 +902,36 @@
       // inserted by this pass of mem2reg will have the same number of incoming
       // operands so far.  Remember this count.
       unsigned NewPHINumOperands = APN->getNumOperands();
-
+
       unsigned NumEdges = 0;
       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
         if (*I == BB)
           ++NumEdges;
       assert(NumEdges && "Must be at least one edge from Pred to BB!");
-
+
       // Add entries for all the phis.
       BasicBlock::iterator PNI = BB->begin();
       do {
         unsigned AllocaNo = PhiToAllocaMap[APN];
-
+
         // Add N incoming values to the PHI node.
         for (unsigned i = 0; i != NumEdges; ++i)
           APN->addIncoming(IncomingVals[AllocaNo], Pred);
-
+
         // The currently active variable for this block is now the PHI.
         IncomingVals[AllocaNo] = APN;
-
+
         // Get the next phi node.
         ++PNI;
         APN = dyn_cast<PHINode>(PNI);
         if (APN == 0) break;
-
+
         // Verify that it is missing entries.  If not, it is not being inserted
         // by this mem2reg invocation so we want to ignore it.
       } while (APN->getNumOperands() == NewPHINumOperands);
     }
   }
-
+
   // Don't revisit blocks.
   if (!Visited.insert(BB)) return;

@@ -941,7 +941,7 @@
     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
       if (!Src) continue;
-
+
       std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
       if (AI == AllocaLookup.end()) continue;

@@ -957,11 +957,11 @@
       // value
       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
       if (!Dest) continue;
-
+
       std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
       if (ai == AllocaLookup.end())
         continue;
-
+
       // what value were we writing?
       IncomingVals[ai->second] = SI->getOperand(0);
       BB->getInstList().erase(SI);
Index: lib/Transforms/Scalar/ScalarReplAggregates.cpp
===================================================================
--- lib/Transforms/Scalar/ScalarReplAggregates.cpp	(revision 77596)
+++ lib/Transforms/Scalar/ScalarReplAggregates.cpp	(working copy)
@@ -74,18 +74,18 @@

   private:
     TargetData *TD;
-
+
     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
     /// information about the uses.  All these fields are initialized to false
     /// and set to true when something is learned.
     struct AllocaInfo {
       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
       bool isUnsafe : 1;
-
+
       /// needsCleanup - This is set to true if there is some use of the alloca
       /// that requires cleanup.
       bool needsCleanup : 1;
-
+
       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
       bool isMemCpySrc : 1;

@@ -93,10 +93,10 @@
       bool isMemCpyDst : 1;

       AllocaInfo()
-        : isUnsafe(false), needsCleanup(false),
+        : isUnsafe(false), needsCleanup(false),
           isMemCpySrc(false), isMemCpyDst(false) {}
     };
-
+
     unsigned SRThreshold;

     void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
@@ -111,16 +111,16 @@
                                         unsigned OpNo, AllocaInfo &Info);
     void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
                                         AllocaInfo &Info);
-
-    void DoScalarReplacement(AllocationInst *AI,
+
+    void DoScalarReplacement(AllocationInst *AI,
                              std::vector<AllocationInst*> &WorkList);
     void CleanupGEP(GetElementPtrInst *GEP);
     void CleanupAllocaUsers(AllocationInst *AI);
     AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
-
+
     void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
                                     SmallVector<AllocaInst*, 32> &NewElts);
-
+
     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
                                       AllocationInst *AI,
                                       SmallVector<AllocaInst*, 32> &NewElts);
@@ -128,7 +128,7 @@
                                        SmallVector<AllocaInst*, 32> &NewElts);
     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
                                       SmallVector<AllocaInst*, 32> &NewElts);
-
+
     bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
                             bool &SawVec, uint64_t Offset, unsigned AllocaSize);
     void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
@@ -144,14 +144,14 @@
 static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");

 // Public interface to the ScalarReplAggregates pass
-FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
+FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
   return new SROA(Threshold);
 }


 bool SROA::runOnFunction(Function &F) {
   TD = &getAnalysis<TargetData>();
-
+
   bool Changed = performPromotion(F);
   while (1) {
     bool LocalChange = performScalarRepl(F);
@@ -220,7 +220,7 @@
   while (!WorkList.empty()) {
     AllocationInst *AI = WorkList.back();
     WorkList.pop_back();
-
+
     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
     // with unused elements.
     if (AI->use_empty()) {
@@ -231,7 +231,7 @@
     // If this alloca is impossible for us to promote, reject it early.
     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
       continue;
-
+
     // Check to see if this allocation is only modified by a memcpy/memmove from
     // a constant global.  If this is the case, we can change all users to use
     // the constant global instead.  This is commonly produced by the CFE by
@@ -248,7 +248,7 @@
       Changed = true;
       continue;
     }
-
+
     // Check to see if we can perform the core SROA transformation.  We cannot
     // transform the allocation instruction if it is an array allocation
     // (allocations OF arrays are ok though), and an allocation of a scalar
@@ -257,7 +257,7 @@

     // Do not promote any struct whose size is too big.
     if (AllocaSize > SRThreshold) continue;
-
+
     if ((isa<StructType>(AI->getAllocatedType()) ||
          isa<ArrayType>(AI->getAllocatedType())) &&
         // Do not promote any struct into more than "32" separate vars.
@@ -287,7 +287,7 @@
     bool IsNotTrivial = false;
     const Type *VectorTy = 0;
     bool HadAVector = false;
-    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
+    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
                            0, unsigned(AllocaSize)) && IsNotTrivial) {
       AllocaInst *NewAI;
       // If we were able to find a vector type that can handle this with
@@ -298,13 +298,13 @@
       // involved, then we probably really do have a union of vector/array.
       if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
         DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
-
+
         // Create and insert the vector alloca.
         NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
         ConvertUsesToScalar(AI, NewAI, 0);
       } else {
         DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
-
+
         // Create and insert the integer alloca.
         const Type *NewTy = IntegerType::get(AllocaSize*8);
         NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
@@ -316,7 +316,7 @@
       Changed = true;
       continue;
     }
-
+
     // Otherwise, couldn't process this alloca.
   }

@@ -325,17 +325,17 @@

 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
 /// predicate, do SROA now.
-void SROA::DoScalarReplacement(AllocationInst *AI,
+void SROA::DoScalarReplacement(AllocationInst *AI,
                                std::vector<AllocationInst*> &WorkList) {
   DOUT << "Found inst to SROA: " << *AI;
   SmallVector<AllocaInst*, 32> ElementAllocas;
   LLVMContext &Context = AI->getContext();
   if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
     ElementAllocas.reserve(ST->getNumContainedTypes());
-    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
-      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
+    for (uint32_t i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
+      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
                                       AI->getAlignment(),
-                                      AI->getName() + "." + i, AI);
+                                      AI->getName() + "." + Twine(i), AI);
       ElementAllocas.push_back(NA);
       WorkList.push_back(NA);  // Add to worklist for recursive processing
     }
@@ -343,9 +343,9 @@
     const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
     ElementAllocas.reserve(AT->getNumElements());
     const Type *ElTy = AT->getElementType();
-    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+    for (uint32_t i = 0, e = AT->getNumElements(); i != e; ++i) {
       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
-                                      AI->getName() + "." + i, AI);
+                                      AI->getName() + "." + Twine(i), AI);
       ElementAllocas.push_back(NA);
       WorkList.push_back(NA);  // Add to worklist for recursive processing
     }
@@ -361,14 +361,14 @@
       BCInst->eraseFromParent();
       continue;
     }
-
+
     // Replace:
     //   %res = load { i32, i32 }* %alloc
     // with:
     //   %load.0 = load i32* %alloc.0
-    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
+    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
     //   %load.1 = load i32* %alloc.1
-    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
+    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
     // (Also works for arrays instead of structs)
     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
       Value *Insert = Context.getUndef(LI->getType());
@@ -384,9 +384,9 @@
     // Replace:
     //   store { i32, i32 } %val, { i32, i32 }* %alloc
     // with:
-    //   %val.0 = extractvalue { i32, i32 } %val, 0
+    //   %val.0 = extractvalue { i32, i32 } %val, 0
     //   store i32 %val.0, i32* %alloc.0
-    //   %val.1 = extractvalue { i32, i32 } %val, 1
+    //   %val.1 = extractvalue { i32, i32 } %val, 1
     //   store i32 %val.1, i32* %alloc.1
     // (Also works for arrays instead of structs)
     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
@@ -398,7 +398,7 @@
       SI->eraseFromParent();
       continue;
     }
-
+
     GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
     // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
     unsigned Idx =
@@ -424,7 +424,7 @@
                                            NewArgs.end(), "", GEPI);
       RepValue->takeName(GEPI);
     }
-
+
     // If this GEP is to the start of the aggregate, check for memcpys.
     if (Idx == 0 && GEPI->hasAllZeroIndices())
       RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
@@ -464,7 +464,7 @@
             !cast<ConstantInt>(GEP->getOperand(1))->isZero())
           // Using pointer arithmetic to navigate the array.
           return MarkUnsafe(Info);
-
+
         if (AreAllZeroIndices)
           AreAllZeroIndices = GEP->hasAllZeroIndices();
       }
@@ -523,7 +523,7 @@
   if (StoreInst *SI = dyn_cast<StoreInst>(User))
     if (!SI->isVolatile() && SI->getOperand(0) != AI)
       return;// Store is ok if storing INTO the pointer, not storing the pointer
-
+
   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
   if (GEPI == 0)
     return MarkUnsafe(Info);
@@ -540,14 +540,14 @@
   if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??

   bool IsAllZeroIndices = true;
-
+
   // If the first index is a non-constant index into an array, see if we can
   // handle it as a special case.
   if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
     if (!isa<ConstantInt>(I.getOperand())) {
       IsAllZeroIndices = 0;
       uint64_t NumElements = AT->getNumElements();
-
+
       // If this is an array index and the index is not constant, we cannot
       // promote... that is unless the array has exactly one or two elements in
       // it, in which case we CAN promote it, but we have to canonicalize this
@@ -560,26 +560,26 @@
       return MarkUnsafe(Info);
     }
   }
-
+
   // Walk through the GEP type indices, checking the types that this indexes
   // into.
   for (; I != E; ++I) {
     // Ignore struct elements, no extra checking needed for these.
     if (isa<StructType>(*I))
       continue;
-
+
     ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
     if (!IdxVal) return MarkUnsafe(Info);

     // Are all indices still zero?
     IsAllZeroIndices &= IdxVal->isZero();
-
+
     if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
       // This GEP indexes an array.  Verify that this is an in-range constant
       // integer. Specifically, consider A[0][i]. We cannot know that the user
       // isn't doing invalid things like allowing i to index an out-of-range
       // subscript that accesses A[1].  Because of this, we have to reject SROA
-      // of any accesses into structs where any of the components are variables.
+      // of any accesses into structs where any of the components are variables.
       if (IdxVal->getZExtValue() >= AT->getNumElements())
         return MarkUnsafe(Info);
     } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
@@ -587,7 +587,7 @@
         return MarkUnsafe(Info);
     }
   }
-
+
   // If there are any non-simple uses of this getelementptr, make sure to reject
   // them.
   return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
@@ -601,16 +601,16 @@
   // If not constant length, give up.
   ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   if (!Length) return MarkUnsafe(Info);
-
+
   // If not the whole aggregate, give up.
   if (Length->getZExtValue() !=
       TD->getTypeAllocSize(AI->getType()->getElementType()))
     return MarkUnsafe(Info);
-
+
   // We only know about memcpy/memset/memmove.
   if (!isa<MemIntrinsic>(MI))
     return MarkUnsafe(Info);
-
+
   // Otherwise, we can transform it.  Determine whether this is a memcpy/set
   // into or out of the aggregate.
   if (OpNo == 1)
@@ -622,7 +622,7 @@
 }

 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
-/// are
+/// are
 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
                                           AllocaInfo &Info) {
   for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
@@ -634,7 +634,7 @@
     } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
       if (SI->isVolatile())
         return MarkUnsafe(Info);
-
+
       // If storing the entire alloca in one chunk through a bitcasted pointer
       // to integer, we can transform it.  This happens (for example) when you
       // cast a {i32,i32}* to i64* and store through it.  This is similar to the
@@ -698,7 +698,7 @@
       RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
       continue;
     }
-
+
     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
       // If this is a store of the entire alloca from an integer, rewrite it.
       RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
@@ -710,7 +710,7 @@
       RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
       continue;
     }
-
+
     // Otherwise it must be some other user of a gep of the first pointer.  Just
     // leave these alone.
     continue;
@@ -722,7 +722,7 @@
 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
                                         AllocationInst *AI,
                                         SmallVector<AllocaInst*, 32> &NewElts) {
-
+
   // If this is a memcpy/memmove, construct the other pointer as the
   // appropriate type.  The "Other" pointer is the pointer that goes to memory
   // that doesn't have anything to do with the alloca that we are promoting. For
@@ -738,7 +738,7 @@
       OtherPtr = MTI->getRawDest();
     }
   }
-
+
   // If there is an other pointer, we want to convert it to the same pointer
   // type as AI has, so we can GEP through it safely.
   if (OtherPtr) {
@@ -749,35 +749,34 @@
     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
       if (GEP->hasAllZeroIndices())
         OtherPtr = GEP->getOperand(0);
-
+
     if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
       if (BCE->getOpcode() == Instruction::BitCast)
         OtherPtr = BCE->getOperand(0);
-
+
     // If the pointer is not the right type, insert a bitcast to the right
     // type.
     if (OtherPtr->getType() != AI->getType())
       OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
                                  MI);
   }
-
+
   // Process each element of the aggregate.
   Value *TheFn = MI->getOperand(0);
   const Type *BytePtrTy = MI->getRawDest()->getType();
   bool SROADest = MI->getRawDest() == BCInst;
-
+
   Constant *Zero = Context.getNullValue(Type::Int32Ty);

-  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+  for (uint32_t i = 0, e = NewElts.size(); i != e; ++i) {
     // If this is a memcpy/memmove, emit a GEP of the other element address.
     Value *OtherElt = 0;
     unsigned OtherEltAlign = MemAlignment;
-
+
     if (OtherPtr) {
       Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
       OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
-                                           OtherPtr->getNameStr()+"."+i,
-                                           MI);
+                          OtherPtr->getNameStr()+"."+Twine(i), MI);
       uint64_t EltOffset;
       const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
       if (const StructType *ST =
@@ -788,7 +787,7 @@
           cast<SequentialType>(OtherPtr->getType())->getElementType();
         EltOffset = TD->getTypeAllocSize(EltTy)*i;
       }
-
+
       // The alignment of the other pointer is the guaranteed alignment of the
       // element, which is affected by both the known alignment of the whole
       // mem intrinsic and the alignment of the element.  If the alignment of
@@ -796,10 +795,10 @@
       // known alignment is just 4 bytes.
       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
     }
-
+
     Value *EltPtr = NewElts[i];
     const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
-
+
     // If we got down to a scalar, insert a load or store as appropriate.
     if (EltTy->isSingleValueType()) {
       if (isa<MemTransferInst>(MI)) {
@@ -815,7 +814,7 @@
         continue;
       }
       assert(isa<MemSetInst>(MI));
-
+
       // If the stored element is zero (common case), just store a null
       // constant.
       Constant *StoreVal;
@@ -835,7 +834,7 @@
             TotalVal = TotalVal.shl(8);
             TotalVal |= OneVal;
           }
-
+
           // Convert the integer value to the appropriate type.
           StoreVal = ConstantInt::get(Context, TotalVal);
           if (isa<PointerType>(ValTy))
@@ -843,7 +842,7 @@
           else if (ValTy->isFloatingPoint())
             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
           assert(StoreVal->getType() == ValTy && "Type mismatch!");
-
+
           // If the requested value was a vector constant, create it.
           if (EltTy != ValTy) {
             unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
@@ -857,18 +856,18 @@
       // Otherwise, if we're storing a byte variable, use a memset call for
       // this element.
     }
-
+
     // Cast the element pointer to BytePtrTy.
     if (EltPtr->getType() != BytePtrTy)
       EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
-
-    // Cast the other pointer (if we have one) to BytePtrTy.
+
+    // Cast the other pointer (if we have one) to BytePtrTy.
     if (OtherElt && OtherElt->getType() != BytePtrTy)
       OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
                                  MI);
-
+
     unsigned EltSize = TD->getTypeAllocSize(EltTy);
-
+
     // Finally, insert the meminst for this element.
     if (isa<MemTransferInst>(MI)) {
       Value *Ops[] = {
@@ -902,7 +901,7 @@
   Value *SrcVal = SI->getOperand(0);
   const Type *AllocaEltTy = AI->getType()->getElementType();
   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
-
+
   // If this isn't a store of an integer to the whole alloca, it may be a store
   // to the first element.  Just ignore the store in this case and normal SROA
   // will handle it.
@@ -920,28 +919,28 @@
   // have different ways to compute the element offset.
   if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
     const StructLayout *Layout = TD->getStructLayout(EltSTy);
-
+
     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
       // Get the number of bits to shift SrcVal to get the value.
       const Type *FieldTy = EltSTy->getElementType(i);
       uint64_t Shift = Layout->getElementOffsetInBits(i);
-
+
       if (TD->isBigEndian())
         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
-
+
       Value *EltVal = SrcVal;
       if (Shift) {
         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
         EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
                                             "sroa.store.elt", SI);
       }
-
+
       // Truncate down to an integer of the right size.
       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
-
+
       // Ignore zero sized fields like {}, they obviously contain no data.
       if (FieldSizeBits == 0) continue;
-
+
       if (FieldSizeBits != AllocaSizeBits)
         EltVal = new TruncInst(EltVal,
                                IntegerType::get(FieldSizeBits), "", SI);
@@ -959,7 +958,7 @@
       }
       new StoreInst(EltVal, DestField, SI);
     }
-
+
   } else {
     const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
     const Type *ArrayEltTy = ATy->getElementType();
@@ -967,26 +966,26 @@
     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);

     uint64_t Shift;
-
+
     if (TD->isBigEndian())
       Shift = AllocaSizeBits-ElementOffset;
-    else
+    else
       Shift = 0;
-
+
     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
       // Ignore zero sized fields like {}, they obviously contain no data.
       if (ElementSizeBits == 0) continue;
-
+
       Value *EltVal = SrcVal;
       if (Shift) {
         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
         EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
                                             "sroa.store.elt", SI);
       }
-
+
       // Truncate down to an integer of the right size.
       if (ElementSizeBits != AllocaSizeBits)
-        EltVal = new TruncInst(EltVal,
+        EltVal = new TruncInst(EltVal,
                                IntegerType::get(ElementSizeBits),"",SI);
       Value *DestField = NewElts[i];
       if (EltVal->getType() == ArrayEltTy) {
@@ -1001,14 +1000,14 @@
                                     "", SI);
       }
       new StoreInst(EltVal, DestField, SI);
-
+
       if (TD->isBigEndian())
         Shift -= ElementOffset;
-      else
+      else
         Shift += ElementOffset;
     }
   }
-
+
   SI->eraseFromParent();
 }

@@ -1020,16 +1019,16 @@
   // and form the result value.
   const Type *AllocaEltTy = AI->getType()->getElementType();
   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
-
+
   // If this isn't a load of the whole alloca to an integer, it may be a load
   // of the first element.  Just ignore the load in this case and normal SROA
   // will handle it.
   if (!isa<IntegerType>(LI->getType()) ||
       TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
     return;
-
+
   DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
-
+
   // There are two forms here: AI could be an array or struct.  Both cases
   // have different ways to compute the element offset.
   const StructLayout *Layout = 0;
@@ -1039,13 +1038,13 @@
   } else {
     const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
-  }
-
+  }
+
   LLVMContext &Context = LI->getContext();
-
-  Value *ResultVal =
+
+  Value *ResultVal =
     Context.getNullValue(IntegerType::get(AllocaSizeBits));
-
+
   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
     // Load the value from the alloca.  If the NewElt is an aggregate, cast
     // the pointer to an integer of the same size before doing the load.
@@ -1053,10 +1052,10 @@
     const Type *FieldTy =
       cast<PointerType>(SrcField->getType())->getElementType();
     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
-
+
     // Ignore zero sized fields like {}, they obviously contain no data.
     if (FieldSizeBits == 0) continue;
-
+
     const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
     if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
         !isa<VectorType>(FieldTy))
@@ -1074,17 +1073,17 @@
     // we can shift and insert it.
     if (SrcField->getType() != ResultVal->getType())
       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
-
+
     // Determine the number of bits to shift SrcField.
     uint64_t Shift;
     if (Layout) // Struct case.
       Shift = Layout->getElementOffsetInBits(i);
     else  // Array case.
       Shift = i*ArrayEltBitOffset;
-
+
     if (TD->isBigEndian())
       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
-
+
     if (Shift) {
       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
@@ -1151,7 +1150,7 @@
   // Loop over the use list of the alloca.  We can only transform it if all of
   // the users are safe to transform.
   AllocaInfo Info;
-
+
   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
        I != E; ++I) {
     isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
@@ -1160,7 +1159,7 @@
       return 0;
     }
   }
-
+
   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
   // source and destination, we have to be careful.  In particular, the memcpy
   // could be moving around elements that live in structure padding of the LLVM
@@ -1179,13 +1178,13 @@
 void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
   gep_type_iterator I = gep_type_begin(GEPI);
   ++I;
-
+
   const ArrayType *AT = dyn_cast<ArrayType>(*I);
-  if (!AT)
+  if (!AT)
     return;

   uint64_t NumElements = AT->getNumElements();
-
+
   if (isa<ConstantInt>(I.getOperand()))
     return;

@@ -1194,12 +1193,12 @@
   if (NumElements == 1) {
     GEPI->setOperand(2, Context.getNullValue(Type::Int32Ty));
     return;
-  }
-
+  }
+
   assert(NumElements == 2 && "Unhandled case!");
   // All users of the GEP must be loads.  At each use of the GEP, insert
   // two loads of the appropriate indexed GEP and select between them.
-  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
+  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
                               Context.getNullValue(I.getOperand()->getType()),
                               "isone");
   // Insert the new GEP instructions, which are properly indexed.
@@ -1291,7 +1290,7 @@
       unsigned EltSize = In->getPrimitiveSizeInBits()/8;
       if (Offset % EltSize == 0 &&
           AllocaSize % EltSize == 0 &&
-          (VecTy == 0 ||
+          (VecTy == 0 ||
            cast<VectorType>(VecTy)->getElementType()
                  ->getPrimitiveSizeInBits()/8 == EltSize)) {
         if (VecTy == 0)
@@ -1300,7 +1299,7 @@
       }
     }
   }
-
+
   // Otherwise, we have a case that we can't handle with an optimized vector
   // form.  We can still turn this into a large integer.
   VecTy = Type::VoidTy;
@@ -1321,7 +1320,7 @@
                               unsigned AllocaSize) {
   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
     Instruction *User = cast<Instruction>(*UI);
-
+
     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
       // Don't break volatile loads.
       if (LI->isVolatile())
@@ -1331,7 +1330,7 @@
       SawVec |= isa<VectorType>(LI->getType());
       continue;
     }
-
+
     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
       // Storing the pointer, not into the value?
       if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
@@ -1340,7 +1339,7 @@
       SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
       continue;
     }
-
+
     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
       if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
                               AllocaSize))
@@ -1353,7 +1352,7 @@
       // If this is a GEP with a variable indices, we can't handle it.
       if (!GEP->hasAllConstantIndices())
         return false;
-
+
       // Compute the offset that this GEP adds to the pointer.
       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
       uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
@@ -1386,7 +1385,7 @@
           continue;
         }
     }
-
+
     // Ignore dbg intrinsic.
     if (isa<DbgInfoIntrinsic>(User))
       continue;
@@ -1394,7 +1393,7 @@
     // Otherwise, we cannot handle this!
     return false;
   }
-
+
   return true;
 }

@@ -1425,9 +1424,9 @@
       GEP->eraseFromParent();
       continue;
     }
-
+
     IRBuilder<> Builder(User->getParent(), User);
-
+
     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
       // The load is a bit extract from NewAI shifted right by Offset bits.
       Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
@@ -1437,7 +1436,7 @@
       LI->eraseFromParent();
       continue;
     }
-
+
     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
       assert(SI->getOperand(0) != Ptr && "Consistency error!");
       // FIXME: Remove once builder has Twine API.
@@ -1448,7 +1447,7 @@
       SI->eraseFromParent();
       continue;
     }
-
+
     // If this is a constant sized memset of a constant value (e.g. 0) we can
     // transform it into a store of the expanded constant value.
     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
@@ -1456,7 +1455,7 @@
       unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
       if (NumBytes != 0) {
         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
-
+
         // Compute the value replicated the right number of times.
         APInt APVal(NumBytes*8, Val);

@@ -1464,7 +1463,7 @@
         if (Val)
           for (unsigned i = 1; i != NumBytes; ++i)
             APVal |= APVal << 8;
-
+
         // FIXME: Remove once builder has Twine API.
         Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
         Value *New = ConvertScalar_InsertValue(
@@ -1480,19 +1479,19 @@
     // can handle it like a load or store of the scalar type.
     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
       assert(Offset == 0 && "must be store to start of alloca");
-
+
       // If the source and destination are both to the same alloca, then this is
       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
       // as appropriate.
       AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
-
+
       if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
         // Dest must be OrigAI, change this to be a load from the original
         // pointer (bitcasted), then a store to our new alloca.
         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
         Value *SrcPtr = MTI->getSource();
         SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
-
+
         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
         SrcVal->setAlignment(MTI->getAlignment());
         Builder.CreateStore(SrcVal, NewAI);
@@ -1508,12 +1507,12 @@
       } else {
         // Noop transfer. Src == Dst
       }
-

+
       MTI->eraseFromParent();
       continue;
     }
-
+
     // If user is a dbg info intrinsic then it is safe to remove it.
     if (isa<DbgInfoIntrinsic>(User)) {
       User->eraseFromParent();
@@ -1563,7 +1562,7 @@
       V = Builder.CreateBitCast(V, ToType, "tmp");
     return V;
   }
-
+
   // If ToType is a first class aggregate, extract out each of the pieces and
   // use insertvalue's to form the FCA.
   if (const StructType *ST = dyn_cast<StructType>(ToType)) {
@@ -1577,7 +1576,7 @@
     }
     return Res;
   }
-
+
   if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
     uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
     Value *Res = Context.getUndef(AT);
@@ -1613,7 +1612,7 @@
                                  ConstantInt::get(FromVal->getType(),
                                                            ShAmt), "tmp");
   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
-    FromVal = Builder.CreateShl(FromVal,
+    FromVal = Builder.CreateShl(FromVal,
                                 ConstantInt::get(FromVal->getType(),
                                                           -ShAmt), "tmp");

@@ -1661,7 +1660,7 @@
   if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
     uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
     uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
-
+
     // Changing the whole vector with memset or with an access of a different
     // vector type?
     if (ValSize == VecSize)
@@ -1671,28 +1670,28 @@

     // Must be an element insertion.
     unsigned Elt = Offset/EltSize;
-
+
     if (SV->getType() != VTy->getElementType())
       SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
-
-    SV = Builder.CreateInsertElement(Old, SV,
+
+    SV = Builder.CreateInsertElement(Old, SV,
                                    ConstantInt::get(Type::Int32Ty, Elt),
                                      "tmp");
     return SV;
   }
-
+
   // If SV is a first-class aggregate value, insert each value recursively.
   if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
     const StructLayout &Layout = *TD->getStructLayout(ST);
     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
       Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
-      Old = ConvertScalar_InsertValue(Elt, Old,
+      Old = ConvertScalar_InsertValue(Elt, Old,
                                       Offset+Layout.getElementOffsetInBits(i),
                                       Builder);
     }
     return Old;
   }
-
+
   if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
     uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
@@ -1772,7 +1771,7 @@
   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
     return GV->isConstant();
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
-    if (CE->getOpcode() == Instruction::BitCast ||
+    if (CE->getOpcode() == Instruction::BitCast ||
         CE->getOpcode() == Instruction::GetElementPtr)
       return PointsToConstantGlobal(CE->getOperand(0));
   return false;
@@ -1792,7 +1791,7 @@
       // Ignore non-volatile loads, they are always ok.
       if (!LI->isVolatile())
         continue;
-
+
     if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
       // If uses of the bitcast are ok, we are ok.
       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
@@ -1807,7 +1806,7 @@
         return false;
       continue;
     }
-
+
     // If this is isn't our memcpy/memmove, reject it as something we can't
     // handle.
     if (!isa<MemTransferInst>(*UI))
@@ -1815,20 +1814,20 @@

     // If we already have seen a copy, reject the second one.
     if (TheCopy) return false;
-
+
     // If the pointer has been offset from the start of the alloca, we can't
     // safely handle this.
     if (isOffset) return false;

     // If the memintrinsic isn't using the alloca as the dest, reject it.
     if (UI.getOperandNo() != 1) return false;
-
+
     MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
-
+
     // If the source of the memcpy/move is not a constant global, reject it.
     if (!PointsToConstantGlobal(MI->getOperand(2)))
       return false;
-
+
     // Otherwise, the transform is safe.  Remember the copy instruction.
     TheCopy = MI;
   }
Index: lib/Transforms/IPO/GlobalOpt.cpp
===================================================================
--- lib/Transforms/IPO/GlobalOpt.cpp	(revision 77596)
+++ lib/Transforms/IPO/GlobalOpt.cpp	(working copy)
@@ -130,7 +130,7 @@

   /// HasPHIUser - Set to true if this global has a user that is a PHI node.
   bool HasPHIUser;
-
+
   GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
                    AccessingFunction(0), HasMultipleAccessingFunctions(false),
                    HasNonInstructionUser(false), HasPHIUser(false) {}
@@ -306,7 +306,7 @@
         if (Init)
           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
         Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
-      } else if (CE->getOpcode() == Instruction::BitCast &&
+      } else if (CE->getOpcode() == Instruction::BitCast &&
                  isa<PointerType>(CE->getType())) {
         // Pointer cast, delete any stores and memsets to the global.
         Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
@@ -322,7 +322,7 @@
       // and will invalidate our notion of what Init is.
       Constant *SubInit = 0;
       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
-        ConstantExpr *CE =
+        ConstantExpr *CE =
           dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
@@ -359,7 +359,7 @@
   // We might have a dead and dangling constant hanging off of here.
   if (Constant *C = dyn_cast<Constant>(V))
     return SafeToDestroyConstant(C);
-
+
   Instruction *I = dyn_cast<Instruction>(V);
   if (!I) return false;

@@ -369,15 +369,15 @@
   // Stores *to* the pointer are ok.
   if (StoreInst *SI = dyn_cast<StoreInst>(I))
     return SI->getOperand(0) != V;
-
+
   // Otherwise, it must be a GEP.
   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
   if (GEPI == 0) return false;
-
+
   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
     return false;
-
+
   for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
        I != E; ++I)
     if (!isSafeSROAElementUse(*I))
@@ -391,11 +391,11 @@
 ///
 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
-  if (!isa<GetElementPtrInst>(U) &&
-      (!isa<ConstantExpr>(U) ||
+  if (!isa<GetElementPtrInst>(U) &&
+      (!isa<ConstantExpr>(U) ||
        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
     return false;
-
+
   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
   // don't like < 3 operand CE's, and we don't like non-constant integer
   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
@@ -407,18 +407,18 @@

   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
   ++GEPI;  // Skip over the pointer index.
-
+
   // If this is a use of an array allocation, do a bit more checking for sanity.
   if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
     uint64_t NumElements = AT->getNumElements();
     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
-
+
     // Check to make sure that index falls within the array.  If not,
     // something funny is going on, so we won't do the optimization.
     //
     if (Idx->getZExtValue() >= NumElements)
       return false;
-
+
     // We cannot scalar repl this level of the array unless any array
     // sub-indices are in-range constants.  In particular, consider:
     // A[0][i].  We cannot know that the user isn't doing invalid things like
@@ -434,7 +434,7 @@
         NumElements = SubArrayTy->getNumElements();
       else
         NumElements = cast<VectorType>(*GEPI)->getNumElements();
-
+
       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
         return false;
@@ -458,8 +458,8 @@
   }
   return true;
 }
-

+
 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
 /// variable.  This opens the door for other optimizations by exposing the
 /// behavior of the program in a more fine-grained way.  We have determined that
@@ -470,7 +470,7 @@
   // Make sure this global only has simple uses that we can SRA.
   if (!GlobalUsersSafeToSRA(GV))
     return 0;
-
+
   assert(GV->hasLocalLinkage() && !GV->isConstant());
   Constant *Init = GV->getInitializer();
   const Type *Ty = Init->getType();
@@ -482,11 +482,11 @@
   unsigned StartAlignment = GV->getAlignment();
   if (StartAlignment == 0)
     StartAlignment = TD.getABITypeAlignment(GV->getType());
-
+
   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
     NewGlobals.reserve(STy->getNumElements());
     const StructLayout &Layout = *TD.getStructLayout(STy);
-    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+    for (uint32_t i = 0, e = STy->getNumElements(); i != e; ++i) {
       Constant *In = getAggregateConstantElement(Init,
                                     ConstantInt::get(Type::Int32Ty, i),
                                     Context);
@@ -494,12 +494,12 @@
       GlobalVariable *NGV = new GlobalVariable(Context,
                                                STy->getElementType(i), false,
                                                GlobalVariable::InternalLinkage,
-                                               In, GV->getName()+"."+i,
+                                               In, GV->getName()+"."+ Twine(i),
                                                GV->isThreadLocal(),
                                               GV->getType()->getAddressSpace());
       Globals.insert(GV, NGV);
       NewGlobals.push_back(NGV);
-
+
       // Calculate the known alignment of the field.  If the original aggregate
       // had 256 byte alignment for example, something might depend on that:
       // propagate info to each field.
@@ -518,10 +518,10 @@
     if (NumElements > 16 && GV->hasNUsesOrMore(16))
       return 0; // It's not worth it.
     NewGlobals.reserve(NumElements);
-
+
     uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
     unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
-    for (unsigned i = 0, e = NumElements; i != e; ++i) {
+    for (uint32_t i = 0, e = NumElements; i != e; ++i) {
       Constant *In = getAggregateConstantElement(Init,
                                     ConstantInt::get(Type::Int32Ty, i),
                                     Context);
@@ -530,12 +530,12 @@
       GlobalVariable *NGV = new GlobalVariable(Context,
                                                STy->getElementType(), false,
                                                GlobalVariable::InternalLinkage,
-                                               In, GV->getName()+"."+i,
+                                               In, GV->getName()+"."+ Twine(i),
                                                GV->isThreadLocal(),
                                               GV->getType()->getAddressSpace());
       Globals.insert(GV, NGV);
       NewGlobals.push_back(NGV);
-
+
       // Calculate the known alignment of the field.  If the original aggregate
       // had 256 byte alignment for example, something might depend on that:
       // propagate info to each field.
@@ -584,7 +584,8 @@
         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
           Idxs.push_back(GEPI->getOperand(i));
         NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
-                                           GEPI->getName()+"."+Val, GEPI);
+                                           GEPI->getName()+"."+ Twine((uint32_t)Val),
+                                           GEPI);
       }
     }
     GEP->replaceAllUsesWith(NewPtr);
@@ -613,7 +614,7 @@
 }

 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
-/// value will trap if the value is dynamically null.  PHIs keeps track of any
+/// value will trap if the value is dynamically null.  PHIs keeps track of any
 /// phi nodes we've seen to avoid reprocessing them.
 static bool AllUsesOfValueWillTrapIfNull(Value *V,
                                          SmallPtrSet<PHINode*, 8> &PHIs) {
@@ -749,7 +750,7 @@
   // Keep track of whether we are able to remove all the uses of the global
   // other than the store that defines it.
   bool AllNonStoreUsesGone = true;
-
+
   // Replace all uses of loads with uses of uses of the stored value.
   for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
     User *GlobalUser = *GUI++;
@@ -845,19 +846,19 @@
   // could depend on malloc returning large alignment (on the mac, 16 bytes) but
   // this would only guarantee some lower alignment.
   Constant *Init = Context.getUndef(MI->getAllocatedType());
-  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
+  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
                                              MI->getAllocatedType(), false,
                                              GlobalValue::InternalLinkage, Init,
                                              GV->getName()+".body",
                                              GV,
                                              GV->isThreadLocal());
-
+
   // Anything that used the malloc now uses the global directly.
   MI->replaceAllUsesWith(NewGV);

   Constant *RepValue = NewGV;
   if (NewGV->getType() != GV->getType()->getElementType())
-    RepValue = ConstantExpr::getBitCast(RepValue,
+    RepValue = ConstantExpr::getBitCast(RepValue,
                                         GV->getType()->getElementType());

   // If there is a comparison against null, we will insert a global bool to
@@ -944,23 +945,23 @@
                                               SmallPtrSet<PHINode*, 8> &PHIs) {
   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
     Instruction *Inst = cast<Instruction>(*UI);
-
+
     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
       continue; // Fine, ignore.
     }
-
+
     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
         return false;  // Storing the pointer itself... bad.
       continue; // Otherwise, storing through it, or storing into GV... fine.
     }
-
+
     if (isa<GetElementPtrInst>(Inst)) {
       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
         return false;
       continue;
     }
-
+
     if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
       // cycles.
@@ -969,13 +970,13 @@
           return false;
       continue;
     }
-
+
     if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
         return false;
       continue;
     }
-
+
     return false;
   }
   return true;
@@ -984,9 +985,9 @@
 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
 /// somewhere.  Transform all uses of the allocation into loads from the
 /// global and uses of the resultant pointer.  Further, delete the store into
-/// GV.  This assumes that these value pass the
+/// GV.  This assumes that these value pass the
 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
-static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
+static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
                                           GlobalVariable *GV) {
   while (!Alloc->use_empty()) {
     Instruction *U = cast<Instruction>(*Alloc->use_begin());
@@ -1019,7 +1020,7 @@
             continue;
           }
     }
-
+
     // Insert a load from the global, and use it instead of the malloc.
     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
     U->replaceUsesOfWith(Alloc, NL);
@@ -1036,24 +1037,24 @@
   // pointer, and a getelementptr of a specific form.
   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
     Instruction *User = cast<Instruction>(*UI);
-
+
     // Comparison against null is ok.
     if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
         return false;
       continue;
     }
-
+
     // getelementptr is also ok, but only a simple form.
     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
       // Must index into the array and into the struct.
       if (GEPI->getNumOperands() < 3)
         return false;
-
+
       // Otherwise the GEP is ok.
       continue;
     }
-
+
     if (PHINode *PN = dyn_cast<PHINode>(User)) {
       if (!LoadUsingPHIsPerLoad.insert(PN))
         // This means some phi nodes are dependent on each other.
@@ -1062,19 +1063,19 @@
       if (!LoadUsingPHIs.insert(PN))
         // If we have already analyzed this PHI, then it is safe.
         continue;
-
+
       // Make sure all uses of the PHI are simple enough to transform.
       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
         return false;
-
+
       continue;
     }
-
+
     // Otherwise we don't know what this is, not ok.
     return false;
   }
-
+
   return true;
 }

@@ -1085,7 +1086,7 @@
                                                     MallocInst *MI) {
   SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
   SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
-  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
+  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
        ++UI)
     if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
@@ -1093,10 +1094,10 @@
         return false;
       LoadUsingPHIsPerLoad.clear();
     }
-
+
   // If we reach here, we know that all uses of the loads and transitive uses
   // (through PHI nodes) are simple enough to transform.  However, we don't know
-  // that all inputs the to the PHI nodes are in the same equivalence sets.
+  // that all inputs the to the PHI nodes are in the same equivalence sets.
   // Check to verify that all operands of the PHIs are either PHIS that can be
   // transformed, loads from GV, or MI itself.
   for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
@@ -1104,29 +1105,29 @@
     PHINode *PN = *I;
     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
       Value *InVal = PN->getIncomingValue(op);
-
+
       // PHI of the stored value itself is ok.
       if (InVal == MI) continue;
-
+
       if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
         // One of the PHIs in our set is (optimistically) ok.
         if (LoadUsingPHIs.count(InPN))
           continue;
         return false;
       }
-
+
       // Load from GV is ok.
       if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
         if (LI->getOperand(0) == GV)
           continue;
-
+
       // UNDEF? NULL?
-
+
       // Anything else is rejected.
       return false;
     }
   }
-
+
   return true;
 }

@@ -1135,15 +1136,15 @@
                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
                    LLVMContext &Context) {
   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
-
+
   if (FieldNo >= FieldVals.size())
     FieldVals.resize(FieldNo+1);
-
+
   // If we already have this value, just reuse the previously scalarized
   // version.
   if (Value *FieldVal = FieldVals[FieldNo])
     return FieldVal;
-
+
   // Depending on what instruction this is, we have several cases.
   Value *Result;
   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
@@ -1152,28 +1153,28 @@
     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
                                            InsertedScalarizedValues,
                                            PHIsToRewrite, Context),
-                          LI->getName()+".f" + FieldNo, LI);
+                          LI->getName()+".f" + Twine((uint32_t)FieldNo), LI);
   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
     // field.
-    const StructType *ST =
+    const StructType *ST =
       cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
-
+
     Result =
      PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
-                            PN->getName()+".f"+FieldNo, PN);
+                            PN->getName()+".f"+Twine((uint32_t)FieldNo), PN);
     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
   } else {
     llvm_unreachable("Unknown usable value");
     Result = 0;
   }
-
+
   return FieldVals[FieldNo] = Result;
 }

 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
 /// the load, rewrite the derived value to use the HeapSRoA'd load.
-static void RewriteHeapSROALoadUser(Instruction *LoadUser,
+static void RewriteHeapSROALoadUser(Instruction *LoadUser,
              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
                    LLVMContext &Context) {
@@ -1185,31 +1186,31 @@
     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
                                    InsertedScalarizedValues, PHIsToRewrite,
                                    Context);
-
+
     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
-                              Context.getNullValue(NPtr->getType()),
+                              Context.getNullValue(NPtr->getType()),
                               SCI->getName());
     SCI->replaceAllUsesWith(New);
     SCI->eraseFromParent();
     return;
   }
-
+
   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
            && "Unexpected GEPI!");
-
+
     // Load the pointer for this field.
     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
                                      InsertedScalarizedValues, PHIsToRewrite,
                                      Context);
-
+
     // Create the new GEP idx vector.
     SmallVector<Value*, 8> GEPIdx;
     GEPIdx.push_back(GEPI->getOperand(1));
     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
-
+
     Value *NGEPI = GetElementPtrInst::Create(NewPtr,
                                              GEPIdx.begin(), GEPIdx.end(),
                                              GEPI->getName(), GEPI);
@@ -1230,7 +1231,7 @@
   tie(InsertPos, Inserted) =
     InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
   if (!Inserted) return;
-
+
   // If this is the first time we've seen this PHI, recursively process all
   // users.
   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
@@ -1244,7 +1245,7 @@
 /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
 /// use FieldGlobals instead.  All uses of loaded values satisfy
 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
-static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
+static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
                    LLVMContext &Context) {
@@ -1254,7 +1255,7 @@
     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
                             Context);
   }
-
+
   if (Load->use_empty()) {
     Load->eraseFromParent();
     InsertedScalarizedValues.erase(Load);
@@ -1273,30 +1274,30 @@
   // the global to simplify later code.  This also deletes the store
   // into GV.
   ReplaceUsesOfMallocWithGlobal(MI, GV);
-
+
   // Okay, at this point, there are no users of the malloc.  Insert N
   // new mallocs at the same place as MI, and N globals.
   std::vector<Value*> FieldGlobals;
   std::vector<MallocInst*> FieldMallocs;
-
-  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
+
+  for (uint32_t FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
     const Type *FieldTy = STy->getElementType(FieldNo);
     const Type *PFieldTy = PointerType::getUnqual(FieldTy);
-
+
     GlobalVariable *NGV =
       new GlobalVariable(*GV->getParent(),
                          PFieldTy, false, GlobalValue::InternalLinkage,
                          Context.getNullValue(PFieldTy),
-                         GV->getName() + ".f" + FieldNo, GV,
+                         GV->getName() + ".f" + Twine(FieldNo), GV,
                          GV->isThreadLocal());
     FieldGlobals.push_back(NGV);
-
+
     MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
-                                     MI->getName() + ".f" + FieldNo,MI);
+                                     MI->getName() + ".f" + Twine(FieldNo),MI);
     FieldMallocs.push_back(NMI);
     new StoreInst(NMI, NGV, MI);
   }
-
+
   // The tricky aspect of this transformation is handling the case when malloc
   // fails.  In the original code, malloc failing would set the result pointer
   // of malloc to null.  In this case, some mallocs could succeed and others
@@ -1323,22 +1324,22 @@
   // Split the basic block at the old malloc.
   BasicBlock *OrigBB = MI->getParent();
   BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
-
+
   // Create the block to check the first condition.  Put all these blocks at the
   // end of the function as they are unlikely to be executed.
   BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
                                                 OrigBB->getParent());
-
+
   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
   // branch on RunningOr.
   OrigBB->getTerminator()->eraseFromParent();
   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
-
+
   // Within the NullPtrBlock, we need to emit a comparison and branch for each
   // pointer, because some may be null while others are not.
   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
-    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
+    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
                               Context.getNullValue(GVVal->getType()),
                               "tmp");
     BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
@@ -1350,12 +1351,12 @@
     new StoreInst(Context.getNullValue(GVVal->getType()), FieldGlobals[i],
                   FreeBlock);
     BranchInst::Create(NextBlock, FreeBlock);
-
+
     NullPtrBlock = NextBlock;
   }
-
+
   BranchInst::Create(ContBB, NullPtrBlock);
-
+
   // MI is no longer needed, remove it.
   MI->eraseFromParent();

@@ -1364,26 +1365,26 @@
   /// inserted for a given load.
   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
   InsertedScalarizedValues[GV] = FieldGlobals;
-
+
   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
-
+
   // Okay, the malloc site is completely handled.  All of the uses of GV are now
   // loads, and all uses of those loads are simple.  Rewrite them to use loads
   // of the per-field globals instead.
   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
     Instruction *User = cast<Instruction>(*UI++);
-
+
     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
                                    Context);
       continue;
     }
-
+
     // Must be a store of null.
     StoreInst *SI = cast<StoreInst>(User);
     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
            "Unexpected heap-sra user!");
-
+
     // Insert a store of null into each global.
     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
       const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
@@ -1410,7 +1411,7 @@
       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
     }
   }
-
+
   // Drop all inter-phi links and any loads that made it this far.
   for (DenseMap<Value*, std::vector<Value*> >::iterator
        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
@@ -1420,7 +1421,7 @@
     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
       LI->dropAllReferences();
   }
-
+
   // Delete all the phis and loads now that inter-references are dead.
   for (DenseMap<Value*, std::vector<Value*> >::iterator
        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
@@ -1430,7 +1431,7 @@
     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
       LI->eraseFromParent();
   }
-
+
   // The old global is now dead, remove it.
   GV->eraseFromParent();

@@ -1449,7 +1450,7 @@
   // If this is a malloc of an abstract type, don't touch it.
   if (!MI->getAllocatedType()->isSized())
     return false;
-
+
   // We can't optimize this global unless all uses of it are *known* to be
   // of the malloc value, not of the null initializer value (consider a use
   // that compares the global's value against zero to see if the malloc has
@@ -1458,7 +1459,7 @@
   // happen after the malloc.
   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
     return false;
-
+
   // We can't optimize this if the malloc itself is used in a complex way,
   // for example, being stored into multiple globals.  This allows the
   // malloc to be stored into the specified global, loaded setcc'd, and
@@ -1469,8 +1470,8 @@
     if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
       return false;
   }
-
-
+
+
   // If we have a global that is only initialized with a fixed size malloc,
   // transform the program to use global memory instead of malloc'd memory.
   // This eliminates dynamic allocation, avoids an indirection accessing the
@@ -1485,29 +1486,29 @@
       return true;
     }
   }
-
+
   // If the allocation is an array of structures, consider transforming this
   // into multiple malloc'd arrays, one for each field.  This is basically
   // SRoA for malloc'd memory.
   const Type *AllocTy = MI->getAllocatedType();
-
+
   // If this is an allocation of a fixed size array of structs, analyze as a
   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
   if (!MI->isArrayAllocation())
     if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
       AllocTy = AT->getElementType();
-
+
   if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
     // This the structure has an unreasonable number of fields, leave it
     // alone.
     if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
         AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
-
+
       // If this is a fixed size array, transform the Malloc to be an alloc of
       // structs.  malloc [100 x struct],1 -> malloc struct, 100
       if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
-        MallocInst *NewMI =
-          new MallocInst(AllocSTy,
+        MallocInst *NewMI =
+          new MallocInst(AllocSTy,
                   ConstantInt::get(Type::Int32Ty, AT->getNumElements()),
                          "", MI);
         NewMI->takeName(MI);
@@ -1516,14 +1517,14 @@
         MI->eraseFromParent();
         MI = NewMI;
       }
-
+
       GVI = PerformHeapAllocSRoA(GV, MI, Context);
       return true;
     }
   }
-
+
   return false;
-}
+}

 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
 // that only one value (besides its initializer) is ever stored to the global.
@@ -1541,7 +1542,7 @@
       GV->getInitializer()->isNullValue()) {
     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
       if (GV->getInitializer()->getType() != SOVC->getType())
-        SOVC =
+        SOVC =
          ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());

       // Optimize away any trapping uses of the loaded value.
@@ -1563,7 +1564,7 @@
 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
                                        LLVMContext &Context) {
   const Type *GVElType = GV->getType()->getElementType();
-
+
   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
   // an FP value, pointer or vector, don't do this optimization because a select
   // between them is very expensive and unlikely to lead to later
@@ -1572,15 +1573,15 @@
   if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
       isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
     return false;
-
+
   // Walk the use list of the global seeing if all the uses are load or store.
   // If there is anything else, bail out.
   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
     if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
       return false;
-
+
   DOUT << "   *** SHRINKING TO BOOL: " << *GV;
-
+
   // Create the new global, initializing it to false.
   GlobalVariable *NewGV = new GlobalVariable(Context, Type::Int1Ty, false,
          GlobalValue::InternalLinkage, Context.getFalse(),
@@ -1683,7 +1684,7 @@
     cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
     cerr << "\n";
 #endif
-
+
     // If this is a first class global and has only one accessing function
     // and this function is main (which we know is not recursive we can make
     // this global a local variable) we replace the global with a local alloca
@@ -1712,7 +1713,7 @@
       ++NumLocalized;
       return true;
     }
-
+
     // If the global is never loaded (but may be stored to), it is dead.
     // Delete it now.
     if (!GS.isLoaded) {
@@ -1720,7 +1721,7 @@

       // Delete any stores we can find to the global.  We may not be able to
       // make it completely dead though.
-      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
+      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
                                                 GV->getContext());

       // If the global is dead now, delete it.
@@ -1749,7 +1750,7 @@
       ++NumMarked;
       return true;
     } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
-      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
+      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
                                                  getAnalysis<TargetData>(),
                                                  GV->getContext())) {
         GVI = FirstNewGV;  // Don't skip the newly produced globals!
@@ -1766,7 +1767,7 @@
           GV->setInitializer(SOVConstant);

           // Clean up any obviously simplifiable users now.
-          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
+          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
                                      GV->getContext());

           if (GV->use_empty()) {
@@ -1900,7 +1901,7 @@
       if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
           FTy->getNumParams() != 0)
         return 0;
-
+
       // Verify that the initializer is simple enough for us to handle.
       if (!I->hasInitializer()) return 0;
       ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
@@ -1913,7 +1914,7 @@
           // Must have a function or null ptr.
           if (!isa<Function>(CS->getOperand(1)))
             return 0;
-
+
           // Init priority must be standard.
           ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
           if (!CI || CI->getZExtValue() != 65535)
@@ -1921,7 +1922,7 @@
         } else {
           return 0;
         }
-
+
       return I;
     }
   return 0;
@@ -1942,14 +1943,14 @@

 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
 /// specified array, returning the new global to use.
-static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
+static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
                                           const std::vector<Function*> &Ctors,
                                           LLVMContext &Context) {
   // If we made a change, reassemble the initializer list.
   std::vector<Constant*> CSVals;
   CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
   CSVals.push_back(0);
-
+
   // Create the new init list.
   std::vector<Constant*> CAList;
   for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
@@ -1963,27 +1964,27 @@
     }
     CAList.push_back(ConstantStruct::get(CSVals));
   }
-
+
   // Create the array initializer.
   const Type *StructTy =
     cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
-  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
+  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
                                            CAList.size()), CAList);
-
+
   // If we didn't change the number of elements, don't create a new GV.
   if (CA->getType() == GCL->getInitializer()->getType()) {
     GCL->setInitializer(CA);
     return GCL;
   }
-
+
   // Create the new global and insert it next to the existing list.
-  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
+  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
                                            GCL->isConstant(),
                                            GCL->getLinkage(), CA, "",
                                            GCL->isThreadLocal());
   GCL->getParent()->getGlobalList().insert(GCL, NGV);
   NGV->takeName(GCL);
-
+
   // Nuke the old list, replacing any uses with the new one.
   if (!GCL->use_empty()) {
     Constant *V = NGV;
@@ -1992,7 +1993,7 @@
     GCL->replaceAllUsesWith(V);
   }
   GCL->eraseFromParent();
-
+
   if (Ctors.size())
     return NGV;
   else
@@ -2043,7 +2044,7 @@
     assert(Val->getType() == Init->getType() && "Type mismatch!");
     return Val;
   }
-
+
   if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
     std::vector<Constant*> Elts;

@@ -2061,13 +2062,13 @@
       llvm_unreachable("This code is out of sync with "
              " ConstantFoldLoadThroughGEPConstantExpr");
     }
-
+
     // Replace the element that we are supposed to.
     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
     unsigned Idx = CU->getZExtValue();
     assert(Idx < STy->getNumElements() && "Struct index out of range!");
     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
-
+
     // Return the modified struct.
     return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
   } else {
@@ -2089,12 +2090,12 @@
       llvm_unreachable("This code is out of sync with "
              " ConstantFoldLoadThroughGEPConstantExpr");
     }
-
+
     assert(CI->getZExtValue() < ATy->getNumElements());
     Elts[CI->getZExtValue()] =
       EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
     return ConstantArray::get(ATy, Elts);
-  }
+  }
 }

 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
@@ -2106,10 +2107,10 @@
     GV->setInitializer(Val);
     return;
   }
-
+
   ConstantExpr *CE = cast<ConstantExpr>(Addr);
   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
-
+
   Constant *Init = GV->getInitializer();
   Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
   GV->setInitializer(Init);
@@ -2125,14 +2126,14 @@
   // is the most up-to-date.
   DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
   if (I != Memory.end()) return I->second;
-
+
   // Access it.
   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
     if (GV->hasInitializer())
       return GV->getInitializer();
     return 0;
   }
-
+
   // Handle a constantexpr getelementptr.
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
     if (CE->getOpcode() == Instruction::GetElementPtr &&
@@ -2158,14 +2159,14 @@
   // bail out.  TODO: we might want to accept limited recursion.
   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
     return false;
-
+
   LLVMContext &Context = F->getContext();
-
+
   CallStack.push_back(F);
-
+
   /// Values - As we compute SSA register values, we store their contents here.
   DenseMap<Value*, Constant*> Values;
-
+
   // Initialize arguments to the incoming values specified.
   unsigned ArgNo = 0;
   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
@@ -2176,14 +2177,14 @@
   /// we can only evaluate any one basic block at most once.  This set keeps
   /// track of what we have executed so we can detect recursive cases etc.
   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
-
+
   // CurInst - The current instruction we're evaluating.
   BasicBlock::iterator CurInst = F->begin()->begin();
-
+
   // This is the main evaluation loop.
   while (1) {
     Constant *InstResult = 0;
-
+
     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
       if (SI->isVolatile()) return false;  // no volatile accesses.
       Constant *Ptr = getVal(Values, SI->getOperand(1));
@@ -2229,7 +2230,7 @@
                                               GlobalValue::InternalLinkage,
                                               Context.getUndef(Ty),
                                               AI->getName()));
-      InstResult = AllocaTmps.back();
+      InstResult = AllocaTmps.back();
     } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {

       // Debug info can safely be ignored here.
@@ -2249,7 +2250,7 @@
       for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
            i != e; ++i)
         Formals.push_back(getVal(Values, *i));
-
+
       if (Callee->isDeclaration()) {
         // If this is a function we can constant fold, do it.
         if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
@@ -2261,7 +2262,7 @@
       } else {
         if (Callee->getFunctionType()->isVarArg())
           return false;
-
+
         Constant *RetVal;
         // Execute the call, if successful, use the return value.
         if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
@@ -2279,7 +2280,7 @@
             dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
           if (!Cond) return false;  // Cannot determine.

-          NewBB = BI->getSuccessor(!Cond->getZExtValue());
+          NewBB = BI->getSuccessor(!Cond->getZExtValue());
         }
       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
         ConstantInt *Val =
@@ -2289,20 +2290,20 @@
       } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
         if (RI->getNumOperands())
           RetVal = getVal(Values, RI->getOperand(0));
-
+
         CallStack.pop_back();  // return from fn.
         return true;  // We succeeded at evaluating this ctor!
       } else {
         // invoke, unwind, unreachable.
         return false;  // Cannot handle this terminator.
       }
-
+
       // Okay, we succeeded in evaluating this control flow.  See if we have
       // executed the new block before.  If so, we have a looping function,
       // which we cannot evaluate in reasonable time.
       if (!ExecutedBlocks.insert(NewBB))
         return false;  // looped!
-
+
       // Okay, we have never been in this block before.  Check to see if there
       // are any PHI nodes.  If so, evaluate them with information about where
       // we came from.
@@ -2318,10 +2319,10 @@
       // Did not know how to evaluate this!
       return false;
     }
-
+
     if (!CurInst->use_empty())
       Values[CurInst] = InstResult;
-
+
     // Advance program counter.
     ++CurInst;
   }
@@ -2339,7 +2340,7 @@
   /// to represent its body.  This vector is needed so we can delete the
   /// temporary globals when we are done.
   std::vector<GlobalVariable*> AllocaTmps;
-
+
   /// CallStack - This is used to detect recursion.  In pathological situations
   /// we could hit exponential behavior, but at least there is nothing
   /// unbounded.
@@ -2358,13 +2359,13 @@
          E = MutatedMemory.end(); I != E; ++I)
       CommitValueTo(I->second, I->first, F->getContext());
   }
-
+
   // At this point, we are done interpreting.  If we created any 'alloca'
   // temporaries, release them now.
   while (!AllocaTmps.empty()) {
     GlobalVariable *Tmp = AllocaTmps.back();
     AllocaTmps.pop_back();
-
+
     // If there are still users of the alloca, the program is doing something
     // silly, e.g. storing the address of the alloca somewhere and using it
     // later.  Since this is undefined, we'll just make it be null.
@@ -2372,7 +2373,7 @@
       Tmp->replaceAllUsesWith(F->getContext().getNullValue(Tmp->getType()));
     delete Tmp;
   }
-
+
   return EvalSuccess;
 }

@@ -2384,7 +2385,7 @@
   std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
   bool MadeChange = false;
   if (Ctors.empty()) return false;
-
+
   // Loop over global ctors, optimizing them when we can.
   for (unsigned i = 0; i != Ctors.size(); ++i) {
     Function *F = Ctors[i];
@@ -2397,10 +2398,10 @@
       }
       break;
     }
-
+
     // We cannot simplify external ctor functions.
     if (F->empty()) continue;
-
+
     // If we can evaluate the ctor at compile time, do.
     if (EvaluateStaticConstructor(F)) {
       Ctors.erase(Ctors.begin()+i);
@@ -2410,9 +2411,9 @@
       continue;
     }
   }
-
+
   if (!MadeChange) return false;
-
+
   GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
   return true;
 }
@@ -2477,21 +2478,21 @@

 bool GlobalOpt::runOnModule(Module &M) {
   bool Changed = false;
-
+
   // Try to find the llvm.globalctors list.
   GlobalVariable *GlobalCtors = FindGlobalCtors(M);

   bool LocalChange = true;
   while (LocalChange) {
     LocalChange = false;
-
+
     // Delete functions that are trivially dead, ccc -> fastcc
     LocalChange |= OptimizeFunctions(M);
-
+
     // Optimize global_ctors list.
     if (GlobalCtors)
       LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
-
+
     // Optimize non-address-taken globals.
     LocalChange |= OptimizeGlobalVars(M);

@@ -2499,9 +2500,9 @@
     LocalChange |= OptimizeGlobalAliases(M);
     Changed |= LocalChange;
   }
-
+
   // TODO: Move all global ctors functions to the end of the module for code
   // layout.
-
+
   return Changed;
 }
Index: lib/Transforms/IPO/ArgumentPromotion.cpp
===================================================================
--- lib/Transforms/IPO/ArgumentPromotion.cpp	(revision 77596)
+++ lib/Transforms/IPO/ArgumentPromotion.cpp	(working copy)
@@ -760,13 +760,13 @@
       const StructType *STy = cast<StructType>(AgTy);
       Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };

-      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+      for (uint32_t i = 0, e = STy->getNumElements(); i != e; ++i) {
         Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
-        Value *Idx =
+        Value *Idx =
           GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
-                                    TheAlloca->getName()+"."+i,
+                                    TheAlloca->getName()+"."+ Twine(i),
                                     InsertPt);
-        I2->setName(I->getName()+"."+i);
+        I2->setName(I->getName()+"."+ Twine(i));
         new StoreInst(I2++, Idx, InsertPt);
       }



More information about the llvm-commits mailing list