[llvm-commits] [llvm] r75252 - in /llvm/trunk: include/llvm/Analysis/ScalarEvolution.h include/llvm/Analysis/ScalarEvolutionExpressions.h lib/Analysis/ScalarEvolution.cpp test/Transforms/IndVarSimplify/iv-sext.ll
Nick Lewycky
nicholas at mxc.ca
Sat Jul 11 13:38:47 PDT 2009
Dan Gohman wrote:
> Author: djg
> Date: Fri Jul 10 11:42:52 2009
> New Revision: 75252
>
> URL: http://llvm.org/viewvc/llvm-project?rev=75252&view=rev
> Log:
> Generalize ScalarEvolution's cast-folding code to support more kinds
> of loops. Add several new functions to for working with ScalarEvolution's
> add-hoc value-range analysis functionality.
Hi Dan,
Sorry but I had to revert this. Please see the testcases in PR4537 and
PR4538.
Nick
>
> Added:
> llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll
> Modified:
> llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
> llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h
> llvm/trunk/lib/Analysis/ScalarEvolution.cpp
>
> Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolution.h?rev=75252&r1=75251&r2=75252&view=diff
>
> ==============================================================================
> --- llvm/trunk/include/llvm/Analysis/ScalarEvolution.h (original)
> +++ llvm/trunk/include/llvm/Analysis/ScalarEvolution.h Fri Jul 10 11:42:52 2009
> @@ -26,6 +26,7 @@
> #include "llvm/Support/DataTypes.h"
> #include "llvm/Support/ValueHandle.h"
> #include "llvm/Support/Allocator.h"
> +#include "llvm/Support/ConstantRange.h"
> #include "llvm/ADT/FoldingSet.h"
> #include "llvm/ADT/DenseMap.h"
> #include <iosfwd>
> @@ -333,12 +334,20 @@
> /// found.
> BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
>
> - /// isNecessaryCond - Test whether the given CondValue value is a condition
> - /// which is at least as strict as the one described by Pred, LHS, and RHS.
> + /// isNecessaryCond - Test whether the condition described by Pred, LHS,
> + /// and RHS is a necessary condition for the given Cond value to evaluate
> + /// to true.
> bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
> const SCEV *LHS, const SCEV *RHS,
> bool Inverse);
>
> + /// isNecessaryCondOperands - Test whether the condition described by Pred,
> + /// LHS, and RHS is a necessary condition for the condition described by
> + /// Pred, FoundLHS, and FoundRHS to evaluate to true.
> + bool isNecessaryCondOperands(ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS,
> + const SCEV *FoundLHS, const SCEV *FoundRHS);
> +
> /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
> /// in the header of its containing loop, we know the loop executes a
> /// constant number of times, and the PHI node is just a recurrence
> @@ -506,10 +515,16 @@
>
> /// isLoopGuardedByCond - Test whether entry to the loop is protected by
> /// a conditional between LHS and RHS. This is used to help avoid max
> - /// expressions in loop trip counts.
> + /// expressions in loop trip counts, and to eliminate casts.
> bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
> const SCEV *LHS, const SCEV *RHS);
>
> + /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
> + /// protected by a conditional between LHS and RHS. This is used to
> + /// to eliminate casts.
> + bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS);
> +
> /// getBackedgeTakenCount - If the specified loop has a predictable
> /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
> /// object. The backedge-taken count is the number of times the loop header
> @@ -545,13 +560,42 @@
> /// bitwidth of S.
> uint32_t GetMinTrailingZeros(const SCEV *S);
>
> - /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
> - /// guaranteed to begin with (at every loop iteration).
> - uint32_t GetMinLeadingZeros(const SCEV *S);
> -
> - /// GetMinSignBits - Determine the minimum number of sign bits that S is
> - /// guaranteed to begin with.
> - uint32_t GetMinSignBits(const SCEV *S);
> + /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
> + ///
> + ConstantRange getUnsignedRange(const SCEV *S);
> +
> + /// getSignedRange - Determine the signed range for a particular SCEV.
> + ///
> + ConstantRange getSignedRange(const SCEV *S);
> +
> + /// isKnownNegative - Test if the given expression is known to be negative.
> + ///
> + bool isKnownNegative(const SCEV *S);
> +
> + /// isKnownPositive - Test if the given expression is known to be positive.
> + ///
> + bool isKnownPositive(const SCEV *S);
> +
> + /// isKnownNonNegative - Test if the given expression is known to be
> + /// non-negative.
> + ///
> + bool isKnownNonNegative(const SCEV *S);
> +
> + /// isKnownNonPositive - Test if the given expression is known to be
> + /// non-positive.
> + ///
> + bool isKnownNonPositive(const SCEV *S);
> +
> + /// isKnownNonZero - Test if the given expression is known to be
> + /// non-zero.
> + ///
> + bool isKnownNonZero(const SCEV *S);
> +
> + /// isKnownNonZero - Test if the given expression is known to satisfy
> + /// the condition described by Pred, LHS, and RHS.
> + ///
> + bool isKnownPredicate(ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS);
>
> virtual bool runOnFunction(Function &F);
> virtual void releaseMemory();
>
> Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h?rev=75252&r1=75251&r2=75252&view=diff
>
> ==============================================================================
> --- llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h (original)
> +++ llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h Fri Jul 10 11:42:52 2009
> @@ -453,6 +453,12 @@
> const SCEV *Conc,
> ScalarEvolution &SE) const;
>
> + /// getPostIncExpr - Return an expression representing the value of
> + /// this expression one iteration of the loop ahead.
> + const SCEV *getPostIncExpr(ScalarEvolution &SE) const {
> + return SE.getAddExpr(this, getStepRecurrence(SE));
> + }
> +
> virtual void print(raw_ostream &OS) const;
>
> /// Methods for support type inquiry through isa, cast, and dyn_cast:
>
> Modified: llvm/trunk/lib/Analysis/ScalarEvolution.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ScalarEvolution.cpp?rev=75252&r1=75251&r2=75252&view=diff
>
> ==============================================================================
> --- llvm/trunk/lib/Analysis/ScalarEvolution.cpp (original)
> +++ llvm/trunk/lib/Analysis/ScalarEvolution.cpp Fri Jul 10 11:42:52 2009
> @@ -811,6 +811,11 @@
> // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
> if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
> if (AR->isAffine()) {
> + const SCEV *Start = AR->getStart();
> + const SCEV *Step = AR->getStepRecurrence(*this);
> + unsigned BitWidth = getTypeSizeInBits(AR->getType());
> + const Loop *L = AR->getLoop();
> +
> // Check whether the backedge-taken count is SCEVCouldNotCompute.
> // Note that this serves two purposes: It filters out loops that are
> // simply not analyzable, and it covers the case where this code is
> @@ -819,12 +824,10 @@
> // in infinite recursion. In the later case, the analysis code will
> // cope with a conservative value, and it will take care to purge
> // that value once it has finished.
> - const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
> + const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
> if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
> // Manually compute the final value for AR, checking for
> // overflow.
> - const SCEV *Start = AR->getStart();
> - const SCEV *Step = AR->getStepRecurrence(*this);
>
> // Check whether the backedge-taken count can be losslessly casted to
> // the addrec's type. The count is always unsigned.
> @@ -833,8 +836,7 @@
> const SCEV *RecastedMaxBECount =
> getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
> if (MaxBECount == RecastedMaxBECount) {
> - const Type *WideTy =
> - IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
> + const Type *WideTy = IntegerType::get(BitWidth * 2);
> // Check whether Start+Step*MaxBECount has no unsigned overflow.
> const SCEV *ZMul =
> getMulExpr(CastedMaxBECount,
> @@ -848,7 +850,7 @@
> // Return the expression with the addrec on the outside.
> return getAddRecExpr(getZeroExtendExpr(Start, Ty),
> getZeroExtendExpr(Step, Ty),
> - AR->getLoop());
> + L);
>
> // Similar to above, only this time treat the step value as signed.
> // This covers loops that count down.
> @@ -864,7 +866,35 @@
> // Return the expression with the addrec on the outside.
> return getAddRecExpr(getZeroExtendExpr(Start, Ty),
> getSignExtendExpr(Step, Ty),
> - AR->getLoop());
> + L);
> + }
> +
> + // If the backedge is guarded by a comparison with the pre-inc value
> + // the addrec is safe. Also, if the entry is guarded by a comparison
> + // with the start value and the backedge is guarded by a comparison
> + // with the post-inc value, the addrec is safe.
> + if (isKnownPositive(Step)) {
> + const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
> + getUnsignedRange(Step).getUnsignedMax());
> + if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
> + (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
> + isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
> + AR->getPostIncExpr(*this), N)))
> + // Return the expression with the addrec on the outside.
> + return getAddRecExpr(getZeroExtendExpr(Start, Ty),
> + getZeroExtendExpr(Step, Ty),
> + L);
> + } else if (isKnownNegative(Step)) {
> + const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
> + getSignedRange(Step).getSignedMin());
> + if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
> + (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
> + isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
> + AR->getPostIncExpr(*this), N)))
> + // Return the expression with the addrec on the outside.
> + return getAddRecExpr(getZeroExtendExpr(Start, Ty),
> + getSignExtendExpr(Step, Ty),
> + L);
> }
> }
> }
> @@ -907,6 +937,11 @@
> // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
> if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
> if (AR->isAffine()) {
> + const SCEV *Start = AR->getStart();
> + const SCEV *Step = AR->getStepRecurrence(*this);
> + unsigned BitWidth = getTypeSizeInBits(AR->getType());
> + const Loop *L = AR->getLoop();
> +
> // Check whether the backedge-taken count is SCEVCouldNotCompute.
> // Note that this serves two purposes: It filters out loops that are
> // simply not analyzable, and it covers the case where this code is
> @@ -915,12 +950,10 @@
> // in infinite recursion. In the later case, the analysis code will
> // cope with a conservative value, and it will take care to purge
> // that value once it has finished.
> - const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
> + const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
> if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
> // Manually compute the final value for AR, checking for
> // overflow.
> - const SCEV *Start = AR->getStart();
> - const SCEV *Step = AR->getStepRecurrence(*this);
>
> // Check whether the backedge-taken count can be losslessly casted to
> // the addrec's type. The count is always unsigned.
> @@ -929,8 +962,7 @@
> const SCEV *RecastedMaxBECount =
> getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
> if (MaxBECount == RecastedMaxBECount) {
> - const Type *WideTy =
> - IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
> + const Type *WideTy = IntegerType::get(BitWidth * 2);
> // Check whether Start+Step*MaxBECount has no signed overflow.
> const SCEV *SMul =
> getMulExpr(CastedMaxBECount,
> @@ -944,7 +976,35 @@
> // Return the expression with the addrec on the outside.
> return getAddRecExpr(getSignExtendExpr(Start, Ty),
> getSignExtendExpr(Step, Ty),
> - AR->getLoop());
> + L);
> + }
> +
> + // If the backedge is guarded by a comparison with the pre-inc value
> + // the addrec is safe. Also, if the entry is guarded by a comparison
> + // with the start value and the backedge is guarded by a comparison
> + // with the post-inc value, the addrec is safe.
> + if (isKnownPositive(Step)) {
> + const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
> + getSignedRange(Step).getSignedMax());
> + if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
> + (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
> + isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
> + AR->getPostIncExpr(*this), N)))
> + // Return the expression with the addrec on the outside.
> + return getAddRecExpr(getSignExtendExpr(Start, Ty),
> + getSignExtendExpr(Step, Ty),
> + L);
> + } else if (isKnownNegative(Step)) {
> + const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
> + getSignedRange(Step).getSignedMin());
> + if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
> + (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
> + isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
> + AR->getPostIncExpr(*this), N)))
> + // Return the expression with the addrec on the outside.
> + return getAddRecExpr(getSignExtendExpr(Start, Ty),
> + getSignExtendExpr(Step, Ty),
> + L);
> }
> }
> }
> @@ -2391,19 +2451,16 @@
> const StructLayout &SL = *TD->getStructLayout(STy);
> unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
> uint64_t Offset = SL.getElementOffset(FieldNo);
> - TotalOffset = getAddExpr(TotalOffset,
> - getIntegerSCEV(Offset, IntPtrTy));
> + TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
> } else {
> // For an array, add the element offset, explicitly scaled.
> const SCEV *LocalOffset = getSCEV(Index);
> if (!isa<PointerType>(LocalOffset->getType()))
> // Getelementptr indicies are signed.
> - LocalOffset = getTruncateOrSignExtend(LocalOffset,
> - IntPtrTy);
> + LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
> LocalOffset =
> getMulExpr(LocalOffset,
> - getIntegerSCEV(TD->getTypeAllocSize(*GTI),
> - IntPtrTy));
> + getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
> TotalOffset = getAddExpr(TotalOffset, LocalOffset);
> }
> }
> @@ -2491,18 +2548,95 @@
> return 0;
> }
>
> -uint32_t
> -ScalarEvolution::GetMinLeadingZeros(const SCEV *S) {
> - // TODO: Handle other SCEV expression types here.
> +/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
> +///
> +ConstantRange
> +ScalarEvolution::getUnsignedRange(const SCEV *S) {
>
> if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
> - return C->getValue()->getValue().countLeadingZeros();
> + return ConstantRange(C->getValue()->getValue());
> +
> + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
> + ConstantRange X = getUnsignedRange(Add->getOperand(0));
> + for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
> + X = X.add(getUnsignedRange(Add->getOperand(i)));
> + return X;
> + }
> +
> + if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
> + ConstantRange X = getUnsignedRange(Mul->getOperand(0));
> + for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
> + X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
> + return X;
> + }
> +
> + if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
> + ConstantRange X = getUnsignedRange(SMax->getOperand(0));
> + for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
> + X = X.smax(getUnsignedRange(SMax->getOperand(i)));
> + return X;
> + }
> +
> + if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
> + ConstantRange X = getUnsignedRange(UMax->getOperand(0));
> + for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
> + X = X.umax(getUnsignedRange(UMax->getOperand(i)));
> + return X;
> + }
>
> - if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
> - // A zero-extension cast adds zero bits.
> - return GetMinLeadingZeros(C->getOperand()) +
> - (getTypeSizeInBits(C->getType()) -
> - getTypeSizeInBits(C->getOperand()->getType()));
> + if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
> + ConstantRange X = getUnsignedRange(UDiv->getLHS());
> + ConstantRange Y = getUnsignedRange(UDiv->getRHS());
> + return X.udiv(Y);
> + }
> +
> + if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
> + ConstantRange X = getUnsignedRange(ZExt->getOperand());
> + return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
> + }
> +
> + if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
> + ConstantRange X = getUnsignedRange(SExt->getOperand());
> + return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
> + }
> +
> + if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
> + ConstantRange X = getUnsignedRange(Trunc->getOperand());
> + return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
> + }
> +
> + ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
> +
> + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
> + const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
> + const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
> + if (!Trip) return FullSet;
> +
> + // TODO: non-affine addrec
> + if (AddRec->isAffine()) {
> + const Type *Ty = AddRec->getType();
> + const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
> + if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
> + MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
> +
> + const SCEV *Start = AddRec->getStart();
> + const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
> +
> + // Check for overflow.
> + if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
> + return FullSet;
> +
> + ConstantRange StartRange = getUnsignedRange(Start);
> + ConstantRange EndRange = getUnsignedRange(End);
> + APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
> + EndRange.getUnsignedMin());
> + APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
> + EndRange.getUnsignedMax());
> + if (Min.isMinValue() && Max.isMaxValue())
> + return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
> + return ConstantRange(Min, Max+1);
> + }
> + }
> }
>
> if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
> @@ -2511,67 +2645,119 @@
> APInt Mask = APInt::getAllOnesValue(BitWidth);
> APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
> ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
> - return Zeros.countLeadingOnes();
> + return ConstantRange(Ones, ~Zeros);
> }
>
> - return 1;
> + return FullSet;
> }
>
> -uint32_t
> -ScalarEvolution::GetMinSignBits(const SCEV *S) {
> - // TODO: Handle other SCEV expression types here.
> +/// getSignedRange - Determine the signed range for a particular SCEV.
> +///
> +ConstantRange
> +ScalarEvolution::getSignedRange(const SCEV *S) {
> +
> + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
> + return ConstantRange(C->getValue()->getValue());
>
> - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
> - const APInt &A = C->getValue()->getValue();
> - return A.isNegative() ? A.countLeadingOnes() :
> - A.countLeadingZeros();
> + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
> + ConstantRange X = getSignedRange(Add->getOperand(0));
> + for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
> + X = X.add(getSignedRange(Add->getOperand(i)));
> + return X;
> }
>
> - if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
> - // A sign-extension cast adds sign bits.
> - return GetMinSignBits(C->getOperand()) +
> - (getTypeSizeInBits(C->getType()) -
> - getTypeSizeInBits(C->getOperand()->getType()));
> + if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
> + ConstantRange X = getSignedRange(Mul->getOperand(0));
> + for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
> + X = X.multiply(getSignedRange(Mul->getOperand(i)));
> + return X;
> }
>
> - if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
> - unsigned BitWidth = getTypeSizeInBits(A->getType());
> + if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
> + ConstantRange X = getSignedRange(SMax->getOperand(0));
> + for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
> + X = X.smax(getSignedRange(SMax->getOperand(i)));
> + return X;
> + }
> +
> + if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
> + ConstantRange X = getSignedRange(UMax->getOperand(0));
> + for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
> + X = X.umax(getSignedRange(UMax->getOperand(i)));
> + return X;
> + }
> +
> + if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
> + ConstantRange X = getSignedRange(UDiv->getLHS());
> + ConstantRange Y = getSignedRange(UDiv->getRHS());
> + return X.udiv(Y);
> + }
> +
> + if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
> + ConstantRange X = getSignedRange(ZExt->getOperand());
> + return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
> + }
>
> - // Special case decrementing a value (ADD X, -1):
> - if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
> - if (CRHS->isAllOnesValue()) {
> - SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
> - const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
> - unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
> -
> - // If the input is known to be 0 or 1, the output is 0/-1, which is all
> - // sign bits set.
> - if (LZ == BitWidth - 1)
> - return BitWidth;
> -
> - // If we are subtracting one from a positive number, there is no carry
> - // out of the result.
> - if (LZ > 0)
> - return GetMinSignBits(OtherOpsAdd);
> - }
> -
> - // Add can have at most one carry bit. Thus we know that the output
> - // is, at worst, one more bit than the inputs.
> - unsigned Min = BitWidth;
> - for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
> - unsigned N = GetMinSignBits(A->getOperand(i));
> - Min = std::min(Min, N) - 1;
> - if (Min == 0) return 1;
> + if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
> + ConstantRange X = getSignedRange(SExt->getOperand());
> + return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
> + }
> +
> + if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
> + ConstantRange X = getSignedRange(Trunc->getOperand());
> + return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
> + }
> +
> + ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
> +
> + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
> + const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
> + const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
> + if (!Trip) return FullSet;
> +
> + // TODO: non-affine addrec
> + if (AddRec->isAffine()) {
> + const Type *Ty = AddRec->getType();
> + const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
> + if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
> + MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
> +
> + const SCEV *Start = AddRec->getStart();
> + const SCEV *Step = AddRec->getStepRecurrence(*this);
> + const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
> +
> + // Check for overflow.
> + if (!(isKnownPositive(Step) &&
> + isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
> + !(isKnownNegative(Step) &&
> + isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
> + return FullSet;
> +
> + ConstantRange StartRange = getSignedRange(Start);
> + ConstantRange EndRange = getSignedRange(End);
> + APInt Min = APIntOps::smin(StartRange.getSignedMin(),
> + EndRange.getSignedMin());
> + APInt Max = APIntOps::smax(StartRange.getSignedMax(),
> + EndRange.getSignedMax());
> + if (Min.isMinSignedValue() && Max.isMaxSignedValue())
> + return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
> + return ConstantRange(Min, Max+1);
> + }
> }
> - return 1;
> }
>
> if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
> // For a SCEVUnknown, ask ValueTracking.
> - return ComputeNumSignBits(U->getValue(), TD);
> + unsigned BitWidth = getTypeSizeInBits(U->getType());
> + unsigned NS = ComputeNumSignBits(U->getValue(), TD);
> + if (NS == 1)
> + return FullSet;
> + return
> + ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
> + APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
> }
>
> - return 1;
> + return FullSet;
> }
>
> /// createSCEV - We know that there is no SCEV for the specified value.
> @@ -3651,7 +3837,7 @@
> if (!isSCEVable(Op->getType()))
> return V;
>
> - const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L);
> + const SCEV* OpV = getSCEVAtScope(Op, L);
> if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
> Constant *C = SC->getValue();
> if (C->getType() != Op->getType())
> @@ -4052,12 +4238,176 @@
> return false;
> }
>
> -/// isLoopGuardedByCond - Test whether entry to the loop is protected by
> -/// a conditional between LHS and RHS. This is used to help avoid max
> -/// expressions in loop trip counts.
> -bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
> - ICmpInst::Predicate Pred,
> - const SCEV *LHS, const SCEV *RHS) {
> +bool ScalarEvolution::isKnownNegative(const SCEV *S) {
> + return getSignedRange(S).getSignedMax().isNegative();
> +}
> +
> +bool ScalarEvolution::isKnownPositive(const SCEV *S) {
> + return getSignedRange(S).getSignedMin().isStrictlyPositive();
> +}
> +
> +bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
> + return !getSignedRange(S).getSignedMin().isNegative();
> +}
> +
> +bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
> + return !getSignedRange(S).getSignedMax().isStrictlyPositive();
> +}
> +
> +bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
> + return isKnownNegative(S) || isKnownPositive(S);
> +}
> +
> +bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS) {
> +
> + if (HasSameValue(LHS, RHS))
> + return ICmpInst::isTrueWhenEqual(Pred);
> +
> + switch (Pred) {
> + default:
> + assert(0 && "Unexpected ICmpInst::Predicate value!");
> + break;
> + case ICmpInst::ICMP_SGT:
> + Pred = ICmpInst::ICMP_SLT;
> + std::swap(LHS, RHS);
> + case ICmpInst::ICMP_SLT: {
> + ConstantRange LHSRange = getSignedRange(LHS);
> + ConstantRange RHSRange = getSignedRange(RHS);
> + if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
> + return true;
> + if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
> + return false;
> +
> + const SCEV *Diff = getMinusSCEV(LHS, RHS);
> + ConstantRange DiffRange = getUnsignedRange(Diff);
> + if (isKnownNegative(Diff)) {
> + if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
> + return true;
> + if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
> + return false;
> + } else if (isKnownPositive(Diff)) {
> + if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
> + return true;
> + if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
> + return false;
> + }
> + break;
> + }
> + case ICmpInst::ICMP_SGE:
> + Pred = ICmpInst::ICMP_SLE;
> + std::swap(LHS, RHS);
> + case ICmpInst::ICMP_SLE: {
> + ConstantRange LHSRange = getSignedRange(LHS);
> + ConstantRange RHSRange = getSignedRange(RHS);
> + if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
> + return true;
> + if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
> + return false;
> +
> + const SCEV *Diff = getMinusSCEV(LHS, RHS);
> + ConstantRange DiffRange = getUnsignedRange(Diff);
> + if (isKnownNonPositive(Diff)) {
> + if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
> + return true;
> + if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
> + return false;
> + } else if (isKnownNonNegative(Diff)) {
> + if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
> + return true;
> + if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
> + return false;
> + }
> + break;
> + }
> + case ICmpInst::ICMP_UGT:
> + Pred = ICmpInst::ICMP_ULT;
> + std::swap(LHS, RHS);
> + case ICmpInst::ICMP_ULT: {
> + ConstantRange LHSRange = getUnsignedRange(LHS);
> + ConstantRange RHSRange = getUnsignedRange(RHS);
> + if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
> + return true;
> + if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
> + return false;
> +
> + const SCEV *Diff = getMinusSCEV(LHS, RHS);
> + ConstantRange DiffRange = getUnsignedRange(Diff);
> + if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
> + return true;
> + if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
> + return false;
> + break;
> + }
> + case ICmpInst::ICMP_UGE:
> + Pred = ICmpInst::ICMP_ULE;
> + std::swap(LHS, RHS);
> + case ICmpInst::ICMP_ULE: {
> + ConstantRange LHSRange = getUnsignedRange(LHS);
> + ConstantRange RHSRange = getUnsignedRange(RHS);
> + if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
> + return true;
> + if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
> + return false;
> +
> + const SCEV *Diff = getMinusSCEV(LHS, RHS);
> + ConstantRange DiffRange = getUnsignedRange(Diff);
> + if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
> + return true;
> + if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
> + return false;
> + break;
> + }
> + case ICmpInst::ICMP_NE: {
> + if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
> + return true;
> + if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
> + return true;
> +
> + const SCEV *Diff = getMinusSCEV(LHS, RHS);
> + if (isKnownNonZero(Diff))
> + return true;
> + break;
> + }
> + case ICmpInst::ICMP_EQ:
> + break;
> + }
> + return false;
> +}
> +
> +/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
> +/// protected by a conditional between LHS and RHS. This is used to
> +/// to eliminate casts.
> +bool
> +ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
> + ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS) {
> + // Interpret a null as meaning no loop, where there is obviously no guard
> + // (interprocedural conditions notwithstanding).
> + if (!L) return true;
> +
> + BasicBlock *Latch = L->getLoopLatch();
> + if (!Latch)
> + return false;
> +
> + BranchInst *LoopContinuePredicate =
> + dyn_cast<BranchInst>(Latch->getTerminator());
> + if (!LoopContinuePredicate ||
> + LoopContinuePredicate->isUnconditional())
> + return false;
> +
> + return
> + isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
> + LoopContinuePredicate->getSuccessor(0) != L->getHeader());
> +}
> +
> +/// isLoopGuardedByCond - Test whether entry to the loop is protected
> +/// by a conditional between LHS and RHS. This is used to help avoid max
> +/// expressions in loop trip counts, and to eliminate casts.
> +bool
> +ScalarEvolution::isLoopGuardedByCond(const Loop *L,
> + ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS) {
> // Interpret a null as meaning no loop, where there is obviously no guard
> // (interprocedural conditions notwithstanding).
> if (!L) return false;
> @@ -4086,8 +4436,9 @@
> return false;
> }
>
> -/// isNecessaryCond - Test whether the given CondValue value is a condition
> -/// which is at least as strict as the one described by Pred, LHS, and RHS.
> +/// isNecessaryCond - Test whether the condition described by Pred, LHS,
> +/// and RHS is a necessary condition for the given Cond value to evaluate
> +/// to true.
> bool ScalarEvolution::isNecessaryCond(Value *CondValue,
> ICmpInst::Predicate Pred,
> const SCEV *LHS, const SCEV *RHS,
> @@ -4112,30 +4463,35 @@
> // see if it is the comparison we are looking for.
> Value *PreCondLHS = ICI->getOperand(0);
> Value *PreCondRHS = ICI->getOperand(1);
> - ICmpInst::Predicate Cond;
> + ICmpInst::Predicate FoundPred;
> if (Inverse)
> - Cond = ICI->getInversePredicate();
> + FoundPred = ICI->getInversePredicate();
> else
> - Cond = ICI->getPredicate();
> + FoundPred = ICI->getPredicate();
>
> - if (Cond == Pred)
> + if (FoundPred == Pred)
> ; // An exact match.
> - else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
> - ; // The actual condition is beyond sufficient.
> - else
> + else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
> + // The actual condition is beyond sufficient.
> + FoundPred = ICmpInst::ICMP_NE;
> + // NE is symmetric but the original comparison may not be. Swap
> + // the operands if necessary so that they match below.
> + if (isa<SCEVConstant>(LHS))
> + std::swap(PreCondLHS, PreCondRHS);
> + } else
> // Check a few special cases.
> - switch (Cond) {
> + switch (FoundPred) {
> case ICmpInst::ICMP_UGT:
> if (Pred == ICmpInst::ICMP_ULT) {
> std::swap(PreCondLHS, PreCondRHS);
> - Cond = ICmpInst::ICMP_ULT;
> + FoundPred = ICmpInst::ICMP_ULT;
> break;
> }
> return false;
> case ICmpInst::ICMP_SGT:
> if (Pred == ICmpInst::ICMP_SLT) {
> std::swap(PreCondLHS, PreCondRHS);
> - Cond = ICmpInst::ICMP_SLT;
> + FoundPred = ICmpInst::ICMP_SLT;
> break;
> }
> return false;
> @@ -4144,8 +4500,8 @@
> // so check for this case by checking if the NE is comparing against
> // a minimum or maximum constant.
> if (!ICmpInst::isTrueWhenEqual(Pred))
> - if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
> - const APInt &A = CI->getValue();
> + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
> + const APInt &A = C->getValue()->getValue();
> switch (Pred) {
> case ICmpInst::ICMP_SLT:
> if (A.isMaxSignedValue()) break;
> @@ -4162,7 +4518,7 @@
> default:
> return false;
> }
> - Cond = ICmpInst::ICMP_NE;
> + FoundPred = Pred;
> // NE is symmetric but the original comparison may not be. Swap
> // the operands if necessary so that they match below.
> if (isa<SCEVConstant>(LHS))
> @@ -4175,14 +4531,70 @@
> return false;
> }
>
> - if (!PreCondLHS->getType()->isInteger()) return false;
> + assert(Pred == FoundPred && "Conditions were not reconciled!");
> +
> + const SCEV *FoundLHS = getSCEV(PreCondLHS);
> + const SCEV *FoundRHS = getSCEV(PreCondRHS);
> +
> + // Balance the types.
> + if (getTypeSizeInBits(LHS->getType()) >
> + getTypeSizeInBits(FoundLHS->getType())) {
> + if (CmpInst::isSigned(Pred)) {
> + FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
> + FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
> + } else {
> + FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
> + FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
> + }
> + } else if (getTypeSizeInBits(LHS->getType()) <
> + getTypeSizeInBits(FoundLHS->getType())) {
> + // TODO: Cast LHS and RHS to FoundLHS' type. Currently this can
> + // result in infinite recursion since the code to construct
> + // cast expressions may want to know things about the loop
> + // iteration in order to do simplifications.
> + return false;
> + }
> +
> + return isNecessaryCondOperands(Pred, LHS, RHS,
> + FoundLHS, FoundRHS) ||
> + // ~x < ~y --> x > y
> + isNecessaryCondOperands(Pred, LHS, RHS,
> + getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
> +}
> +
> +/// isNecessaryCondOperands - Test whether the condition described by Pred,
> +/// LHS, and RHS is a necessary condition for the condition described by
> +/// Pred, FoundLHS, and FoundRHS to evaluate to true.
> +bool
> +ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
> + const SCEV *LHS, const SCEV *RHS,
> + const SCEV *FoundLHS,
> + const SCEV *FoundRHS) {
> + switch (Pred) {
> + default: break;
> + case ICmpInst::ICMP_SLT:
> + if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
> + isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
> + return true;
> + break;
> + case ICmpInst::ICMP_SGT:
> + if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
> + isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
> + return true;
> + break;
> + case ICmpInst::ICMP_ULT:
> + if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
> + isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
> + return true;
> + break;
> + case ICmpInst::ICMP_UGT:
> + if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
> + isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
> + return true;
> + break;
> + }
>
> - const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
> - const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
> - return (HasSameValue(LHS, PreCondLHSSCEV) &&
> - HasSameValue(RHS, PreCondRHSSCEV)) ||
> - (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
> - HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
> + return false;
> }
>
> /// getBECount - Subtract the end and start values and divide by the step,
> @@ -4267,9 +4679,9 @@
> const SCEV *Start = AddRec->getOperand(0);
>
> // Determine the minimum constant start value.
> - const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
> - getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
> - APInt::getMinValue(BitWidth));
> + const SCEV *MinStart = getConstant(isSigned ?
> + getSignedRange(Start).getSignedMin() :
> + getUnsignedRange(Start).getUnsignedMin());
>
> // If we know that the condition is true in order to enter the loop,
> // then we know that it will run exactly (m-n)/s times. Otherwise, we
> @@ -4277,18 +4689,16 @@
> // the division must round up.
> const SCEV *End = RHS;
> if (!isLoopGuardedByCond(L,
> - isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
> + isSigned ? ICmpInst::ICMP_SLT :
> + ICmpInst::ICMP_ULT,
> getMinusSCEV(Start, Step), RHS))
> End = isSigned ? getSMaxExpr(RHS, Start)
> : getUMaxExpr(RHS, Start);
>
> // Determine the maximum constant end value.
> - const SCEV *MaxEnd =
> - isa<SCEVConstant>(End) ? End :
> - getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
> - .ashr(GetMinSignBits(End) - 1) :
> - APInt::getMaxValue(BitWidth)
> - .lshr(GetMinLeadingZeros(End)));
> + const SCEV *MaxEnd = getConstant(isSigned ?
> + getSignedRange(End).getSignedMax() :
> + getUnsignedRange(End).getUnsignedMax());
>
> // Finally, we subtract these two values and divide, rounding up, to get
> // the number of times the backedge is executed.
>
> Added: llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll?rev=75252&view=auto
>
> ==============================================================================
> --- llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll (added)
> +++ llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll Fri Jul 10 11:42:52 2009
> @@ -0,0 +1,143 @@
> +; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
> +; RUN: grep {= sext} %t | count 4
> +; RUN: grep {phi i64} %t | count 2
> +
> +; Indvars should be able to promote the hiPart induction variable in the
> +; inner loop to i64.
> +; TODO: it should promote hiPart to i64 in the outer loop too.
> +
> +target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
> +
> +define void @t(float* %pTmp1, float* %peakWeight, float* %nrgReducePeakrate, i32 %bandEdgeIndex, float %tmp1) nounwind {
> +entry:
> + %tmp = load float* %peakWeight, align 4 ; <float> [#uses=1]
> + %tmp2 = icmp sgt i32 %bandEdgeIndex, 0 ; <i1> [#uses=1]
> + br i1 %tmp2, label %bb.nph22, label %return
> +
> +bb.nph22: ; preds = %entry
> + %tmp3 = add i32 %bandEdgeIndex, -1 ; <i32> [#uses=2]
> + br label %bb
> +
> +bb: ; preds = %bb8, %bb.nph22
> + %distERBhi.121 = phi float [ %distERBhi.2.lcssa, %bb8 ], [ 0.000000e+00, %bb.nph22 ] ; <float> [#uses=2]
> + %distERBlo.120 = phi float [ %distERBlo.0.lcssa, %bb8 ], [ 0.000000e+00, %bb.nph22 ] ; <float> [#uses=2]
> + %hiPart.119 = phi i32 [ %hiPart.0.lcssa, %bb8 ], [ 0, %bb.nph22 ] ; <i32> [#uses=3]
> + %loPart.118 = phi i32 [ %loPart.0.lcssa, %bb8 ], [ 0, %bb.nph22 ] ; <i32> [#uses=2]
> + %peakCount.117 = phi float [ %peakCount.2.lcssa, %bb8 ], [ %tmp, %bb.nph22 ] ; <float> [#uses=2]
> + %part.016 = phi i32 [ %tmp46, %bb8 ], [ 0, %bb.nph22 ] ; <i32> [#uses=5]
> + %tmp4 = icmp sgt i32 %part.016, 0 ; <i1> [#uses=1]
> + br i1 %tmp4, label %bb1, label %bb3.preheader
> +
> +bb1: ; preds = %bb
> + %tmp5 = add i32 %part.016, -1 ; <i32> [#uses=1]
> + %tmp6 = sext i32 %tmp5 to i64 ; <i64> [#uses=1]
> + %tmp7 = getelementptr float* %pTmp1, i64 %tmp6 ; <float*> [#uses=1]
> + %tmp8 = load float* %tmp7, align 4 ; <float> [#uses=1]
> + %tmp9 = fadd float %tmp8, %distERBlo.120 ; <float> [#uses=1]
> + %tmp10 = add i32 %part.016, -1 ; <i32> [#uses=1]
> + %tmp11 = sext i32 %tmp10 to i64 ; <i64> [#uses=1]
> + %tmp12 = getelementptr float* %pTmp1, i64 %tmp11 ; <float*> [#uses=1]
> + %tmp13 = load float* %tmp12, align 4 ; <float> [#uses=1]
> + %tmp14 = fsub float %distERBhi.121, %tmp13 ; <float> [#uses=1]
> + br label %bb3.preheader
> +
> +bb3.preheader: ; preds = %bb1, %bb
> + %distERBlo.0.ph = phi float [ %distERBlo.120, %bb ], [ %tmp9, %bb1 ] ; <float> [#uses=3]
> + %distERBhi.0.ph = phi float [ %distERBhi.121, %bb ], [ %tmp14, %bb1 ] ; <float> [#uses=3]
> + %tmp15 = fcmp ogt float %distERBlo.0.ph, 2.500000e+00 ; <i1> [#uses=1]
> + br i1 %tmp15, label %bb.nph, label %bb5.preheader
> +
> +bb.nph: ; preds = %bb3.preheader
> + br label %bb2
> +
> +bb2: ; preds = %bb3, %bb.nph
> + %distERBlo.03 = phi float [ %tmp19, %bb3 ], [ %distERBlo.0.ph, %bb.nph ] ; <float> [#uses=1]
> + %loPart.02 = phi i32 [ %tmp24, %bb3 ], [ %loPart.118, %bb.nph ] ; <i32> [#uses=3]
> + %peakCount.01 = phi float [ %tmp23, %bb3 ], [ %peakCount.117, %bb.nph ] ; <float> [#uses=1]
> + %tmp16 = sext i32 %loPart.02 to i64 ; <i64> [#uses=1]
> + %tmp17 = getelementptr float* %pTmp1, i64 %tmp16 ; <float*> [#uses=1]
> + %tmp18 = load float* %tmp17, align 4 ; <float> [#uses=1]
> + %tmp19 = fsub float %distERBlo.03, %tmp18 ; <float> [#uses=3]
> + %tmp20 = sext i32 %loPart.02 to i64 ; <i64> [#uses=1]
> + %tmp21 = getelementptr float* %peakWeight, i64 %tmp20 ; <float*> [#uses=1]
> + %tmp22 = load float* %tmp21, align 4 ; <float> [#uses=1]
> + %tmp23 = fsub float %peakCount.01, %tmp22 ; <float> [#uses=2]
> + %tmp24 = add i32 %loPart.02, 1 ; <i32> [#uses=2]
> + br label %bb3
> +
> +bb3: ; preds = %bb2
> + %tmp25 = fcmp ogt float %tmp19, 2.500000e+00 ; <i1> [#uses=1]
> + br i1 %tmp25, label %bb2, label %bb3.bb5.preheader_crit_edge
> +
> +bb3.bb5.preheader_crit_edge: ; preds = %bb3
> + %tmp24.lcssa = phi i32 [ %tmp24, %bb3 ] ; <i32> [#uses=1]
> + %tmp23.lcssa = phi float [ %tmp23, %bb3 ] ; <float> [#uses=1]
> + %tmp19.lcssa = phi float [ %tmp19, %bb3 ] ; <float> [#uses=1]
> + br label %bb5.preheader
> +
> +bb5.preheader: ; preds = %bb3.bb5.preheader_crit_edge, %bb3.preheader
> + %distERBlo.0.lcssa = phi float [ %tmp19.lcssa, %bb3.bb5.preheader_crit_edge ], [ %distERBlo.0.ph, %bb3.preheader ] ; <float> [#uses=2]
> + %loPart.0.lcssa = phi i32 [ %tmp24.lcssa, %bb3.bb5.preheader_crit_edge ], [ %loPart.118, %bb3.preheader ] ; <i32> [#uses=1]
> + %peakCount.0.lcssa = phi float [ %tmp23.lcssa, %bb3.bb5.preheader_crit_edge ], [ %peakCount.117, %bb3.preheader ] ; <float> [#uses=2]
> + %.not10 = fcmp olt float %distERBhi.0.ph, 2.500000e+00 ; <i1> [#uses=1]
> + %tmp26 = icmp sgt i32 %tmp3, %hiPart.119 ; <i1> [#uses=1]
> + %or.cond11 = and i1 %tmp26, %.not10 ; <i1> [#uses=1]
> + br i1 %or.cond11, label %bb.nph12, label %bb7
> +
> +bb.nph12: ; preds = %bb5.preheader
> + br label %bb4
> +
> +bb4: ; preds = %bb5, %bb.nph12
> + %distERBhi.29 = phi float [ %tmp30, %bb5 ], [ %distERBhi.0.ph, %bb.nph12 ] ; <float> [#uses=1]
> + %hiPart.08 = phi i32 [ %tmp31, %bb5 ], [ %hiPart.119, %bb.nph12 ] ; <i32> [#uses=2]
> + %peakCount.27 = phi float [ %tmp35, %bb5 ], [ %peakCount.0.lcssa, %bb.nph12 ] ; <float> [#uses=1]
> + %tmp27 = sext i32 %hiPart.08 to i64 ; <i64> [#uses=1]
> + %tmp28 = getelementptr float* %pTmp1, i64 %tmp27 ; <float*> [#uses=1]
> + %tmp29 = load float* %tmp28, align 4 ; <float> [#uses=1]
> + %tmp30 = fadd float %tmp29, %distERBhi.29 ; <float> [#uses=3]
> + %tmp31 = add i32 %hiPart.08, 1 ; <i32> [#uses=4]
> + %tmp32 = sext i32 %tmp31 to i64 ; <i64> [#uses=1]
> + %tmp33 = getelementptr float* %peakWeight, i64 %tmp32 ; <float*> [#uses=1]
> + %tmp34 = load float* %tmp33, align 4 ; <float> [#uses=1]
> + %tmp35 = fadd float %tmp34, %peakCount.27 ; <float> [#uses=2]
> + br label %bb5
> +
> +bb5: ; preds = %bb4
> + %.not = fcmp olt float %tmp30, 2.500000e+00 ; <i1> [#uses=1]
> + %tmp36 = icmp sgt i32 %tmp3, %tmp31 ; <i1> [#uses=1]
> + %or.cond = and i1 %tmp36, %.not ; <i1> [#uses=1]
> + br i1 %or.cond, label %bb4, label %bb5.bb7_crit_edge
> +
> +bb5.bb7_crit_edge: ; preds = %bb5
> + %tmp35.lcssa = phi float [ %tmp35, %bb5 ] ; <float> [#uses=1]
> + %tmp31.lcssa = phi i32 [ %tmp31, %bb5 ] ; <i32> [#uses=1]
> + %tmp30.lcssa = phi float [ %tmp30, %bb5 ] ; <float> [#uses=1]
> + br label %bb7
> +
> +bb7: ; preds = %bb5.bb7_crit_edge, %bb5.preheader
> + %distERBhi.2.lcssa = phi float [ %tmp30.lcssa, %bb5.bb7_crit_edge ], [ %distERBhi.0.ph, %bb5.preheader ] ; <float> [#uses=2]
> + %hiPart.0.lcssa = phi i32 [ %tmp31.lcssa, %bb5.bb7_crit_edge ], [ %hiPart.119, %bb5.preheader ] ; <i32> [#uses=1]
> + %peakCount.2.lcssa = phi float [ %tmp35.lcssa, %bb5.bb7_crit_edge ], [ %peakCount.0.lcssa, %bb5.preheader ] ; <float> [#uses=2]
> + %tmp37 = fadd float %distERBlo.0.lcssa, %distERBhi.2.lcssa ; <float> [#uses=1]
> + %tmp38 = fdiv float %peakCount.2.lcssa, %tmp37 ; <float> [#uses=1]
> + %tmp39 = fmul float %tmp38, %tmp1 ; <float> [#uses=2]
> + %tmp40 = fmul float %tmp39, %tmp39 ; <float> [#uses=2]
> + %tmp41 = fmul float %tmp40, %tmp40 ; <float> [#uses=1]
> + %tmp42 = fadd float %tmp41, 1.000000e+00 ; <float> [#uses=1]
> + %tmp43 = fdiv float 1.000000e+00, %tmp42 ; <float> [#uses=1]
> + %tmp44 = sext i32 %part.016 to i64 ; <i64> [#uses=1]
> + %tmp45 = getelementptr float* %nrgReducePeakrate, i64 %tmp44 ; <float*> [#uses=1]
> + store float %tmp43, float* %tmp45, align 4
> + %tmp46 = add i32 %part.016, 1 ; <i32> [#uses=2]
> + br label %bb8
> +
> +bb8: ; preds = %bb7
> + %tmp47 = icmp slt i32 %tmp46, %bandEdgeIndex ; <i1> [#uses=1]
> + br i1 %tmp47, label %bb, label %bb8.return_crit_edge
> +
> +bb8.return_crit_edge: ; preds = %bb8
> + br label %return
> +
> +return: ; preds = %bb8.return_crit_edge, %entry
> + ret void
> +}
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
More information about the llvm-commits
mailing list