[llvm-commits] [llvm] r75252 - in /llvm/trunk: include/llvm/Analysis/ScalarEvolution.h include/llvm/Analysis/ScalarEvolutionExpressions.h lib/Analysis/ScalarEvolution.cpp test/Transforms/IndVarSimplify/iv-sext.ll

Nick Lewycky nicholas at mxc.ca
Sat Jul 11 13:38:47 PDT 2009


Dan Gohman wrote:
> Author: djg
> Date: Fri Jul 10 11:42:52 2009
> New Revision: 75252
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=75252&view=rev
> Log:
> Generalize ScalarEvolution's cast-folding code to support more kinds
> of loops. Add several new functions to for working with ScalarEvolution's
> add-hoc value-range analysis functionality.

Hi Dan,

Sorry but I had to revert this. Please see the testcases in PR4537 and 
PR4538.

Nick

> 
> Added:
>     llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll
> Modified:
>     llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
>     llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h
>     llvm/trunk/lib/Analysis/ScalarEvolution.cpp
> 
> Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolution.h?rev=75252&r1=75251&r2=75252&view=diff
> 
> ==============================================================================
> --- llvm/trunk/include/llvm/Analysis/ScalarEvolution.h (original)
> +++ llvm/trunk/include/llvm/Analysis/ScalarEvolution.h Fri Jul 10 11:42:52 2009
> @@ -26,6 +26,7 @@
>  #include "llvm/Support/DataTypes.h"
>  #include "llvm/Support/ValueHandle.h"
>  #include "llvm/Support/Allocator.h"
> +#include "llvm/Support/ConstantRange.h"
>  #include "llvm/ADT/FoldingSet.h"
>  #include "llvm/ADT/DenseMap.h"
>  #include <iosfwd>
> @@ -333,12 +334,20 @@
>      /// found.
>      BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
>  
> -    /// isNecessaryCond - Test whether the given CondValue value is a condition
> -    /// which is at least as strict as the one described by Pred, LHS, and RHS.
> +    /// isNecessaryCond - Test whether the condition described by Pred, LHS,
> +    /// and RHS is a necessary condition for the given Cond value to evaluate
> +    /// to true.
>      bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
>                           const SCEV *LHS, const SCEV *RHS,
>                           bool Inverse);
>  
> +    /// isNecessaryCondOperands - Test whether the condition described by Pred,
> +    /// LHS, and RHS is a necessary condition for the condition described by
> +    /// Pred, FoundLHS, and FoundRHS to evaluate to true.
> +    bool isNecessaryCondOperands(ICmpInst::Predicate Pred,
> +                                 const SCEV *LHS, const SCEV *RHS,
> +                                 const SCEV *FoundLHS, const SCEV *FoundRHS);
> +
>      /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
>      /// in the header of its containing loop, we know the loop executes a
>      /// constant number of times, and the PHI node is just a recurrence
> @@ -506,10 +515,16 @@
>  
>      /// isLoopGuardedByCond - Test whether entry to the loop is protected by
>      /// a conditional between LHS and RHS.  This is used to help avoid max
> -    /// expressions in loop trip counts.
> +    /// expressions in loop trip counts, and to eliminate casts.
>      bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
>                               const SCEV *LHS, const SCEV *RHS);
>  
> +    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
> +    /// protected by a conditional between LHS and RHS.  This is used to
> +    /// to eliminate casts.
> +    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
> +                                     const SCEV *LHS, const SCEV *RHS);
> +
>      /// getBackedgeTakenCount - If the specified loop has a predictable
>      /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
>      /// object. The backedge-taken count is the number of times the loop header
> @@ -545,13 +560,42 @@
>      /// bitwidth of S.
>      uint32_t GetMinTrailingZeros(const SCEV *S);
>  
> -    /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
> -    /// guaranteed to begin with (at every loop iteration).
> -    uint32_t GetMinLeadingZeros(const SCEV *S);
> -
> -    /// GetMinSignBits - Determine the minimum number of sign bits that S is
> -    /// guaranteed to begin with.
> -    uint32_t GetMinSignBits(const SCEV *S);
> +    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
> +    ///
> +    ConstantRange getUnsignedRange(const SCEV *S);
> +
> +    /// getSignedRange - Determine the signed range for a particular SCEV.
> +    ///
> +    ConstantRange getSignedRange(const SCEV *S);
> +
> +    /// isKnownNegative - Test if the given expression is known to be negative.
> +    ///
> +    bool isKnownNegative(const SCEV *S);
> +
> +    /// isKnownPositive - Test if the given expression is known to be positive.
> +    ///
> +    bool isKnownPositive(const SCEV *S);
> +
> +    /// isKnownNonNegative - Test if the given expression is known to be
> +    /// non-negative.
> +    ///
> +    bool isKnownNonNegative(const SCEV *S);
> +
> +    /// isKnownNonPositive - Test if the given expression is known to be
> +    /// non-positive.
> +    ///
> +    bool isKnownNonPositive(const SCEV *S);
> +
> +    /// isKnownNonZero - Test if the given expression is known to be
> +    /// non-zero.
> +    ///
> +    bool isKnownNonZero(const SCEV *S);
> +
> +    /// isKnownNonZero - Test if the given expression is known to satisfy
> +    /// the condition described by Pred, LHS, and RHS.
> +    ///
> +    bool isKnownPredicate(ICmpInst::Predicate Pred,
> +                          const SCEV *LHS, const SCEV *RHS);
>  
>      virtual bool runOnFunction(Function &F);
>      virtual void releaseMemory();
> 
> Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h?rev=75252&r1=75251&r2=75252&view=diff
> 
> ==============================================================================
> --- llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h (original)
> +++ llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h Fri Jul 10 11:42:52 2009
> @@ -453,6 +453,12 @@
>                                                   const SCEV *Conc,
>                                                   ScalarEvolution &SE) const;
>  
> +    /// getPostIncExpr - Return an expression representing the value of
> +    /// this expression one iteration of the loop ahead.
> +    const SCEV *getPostIncExpr(ScalarEvolution &SE) const {
> +      return SE.getAddExpr(this, getStepRecurrence(SE));
> +    }
> +
>      virtual void print(raw_ostream &OS) const;
>  
>      /// Methods for support type inquiry through isa, cast, and dyn_cast:
> 
> Modified: llvm/trunk/lib/Analysis/ScalarEvolution.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ScalarEvolution.cpp?rev=75252&r1=75251&r2=75252&view=diff
> 
> ==============================================================================
> --- llvm/trunk/lib/Analysis/ScalarEvolution.cpp (original)
> +++ llvm/trunk/lib/Analysis/ScalarEvolution.cpp Fri Jul 10 11:42:52 2009
> @@ -811,6 +811,11 @@
>    // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
>    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
>      if (AR->isAffine()) {
> +      const SCEV *Start = AR->getStart();
> +      const SCEV *Step = AR->getStepRecurrence(*this);
> +      unsigned BitWidth = getTypeSizeInBits(AR->getType());
> +      const Loop *L = AR->getLoop();
> +
>        // Check whether the backedge-taken count is SCEVCouldNotCompute.
>        // Note that this serves two purposes: It filters out loops that are
>        // simply not analyzable, and it covers the case where this code is
> @@ -819,12 +824,10 @@
>        // in infinite recursion. In the later case, the analysis code will
>        // cope with a conservative value, and it will take care to purge
>        // that value once it has finished.
> -      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
> +      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
>        if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
>          // Manually compute the final value for AR, checking for
>          // overflow.
> -        const SCEV *Start = AR->getStart();
> -        const SCEV *Step = AR->getStepRecurrence(*this);
>  
>          // Check whether the backedge-taken count can be losslessly casted to
>          // the addrec's type. The count is always unsigned.
> @@ -833,8 +836,7 @@
>          const SCEV *RecastedMaxBECount =
>            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
>          if (MaxBECount == RecastedMaxBECount) {
> -          const Type *WideTy =
> -            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
> +          const Type *WideTy = IntegerType::get(BitWidth * 2);
>            // Check whether Start+Step*MaxBECount has no unsigned overflow.
>            const SCEV *ZMul =
>              getMulExpr(CastedMaxBECount,
> @@ -848,7 +850,7 @@
>              // Return the expression with the addrec on the outside.
>              return getAddRecExpr(getZeroExtendExpr(Start, Ty),
>                                   getZeroExtendExpr(Step, Ty),
> -                                 AR->getLoop());
> +                                 L);
>  
>            // Similar to above, only this time treat the step value as signed.
>            // This covers loops that count down.
> @@ -864,7 +866,35 @@
>              // Return the expression with the addrec on the outside.
>              return getAddRecExpr(getZeroExtendExpr(Start, Ty),
>                                   getSignExtendExpr(Step, Ty),
> -                                 AR->getLoop());
> +                                 L);
> +        }
> +
> +        // If the backedge is guarded by a comparison with the pre-inc value
> +        // the addrec is safe. Also, if the entry is guarded by a comparison
> +        // with the start value and the backedge is guarded by a comparison
> +        // with the post-inc value, the addrec is safe.
> +        if (isKnownPositive(Step)) {
> +          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
> +                                      getUnsignedRange(Step).getUnsignedMax());
> +          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
> +              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
> +               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
> +                                           AR->getPostIncExpr(*this), N)))
> +            // Return the expression with the addrec on the outside.
> +            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
> +                                 getZeroExtendExpr(Step, Ty),
> +                                 L);
> +        } else if (isKnownNegative(Step)) {
> +          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
> +                                      getSignedRange(Step).getSignedMin());
> +          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
> +              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
> +               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
> +                                           AR->getPostIncExpr(*this), N)))
> +            // Return the expression with the addrec on the outside.
> +            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
> +                                 getSignExtendExpr(Step, Ty),
> +                                 L);
>          }
>        }
>      }
> @@ -907,6 +937,11 @@
>    // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
>    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
>      if (AR->isAffine()) {
> +      const SCEV *Start = AR->getStart();
> +      const SCEV *Step = AR->getStepRecurrence(*this);
> +      unsigned BitWidth = getTypeSizeInBits(AR->getType());
> +      const Loop *L = AR->getLoop();
> +
>        // Check whether the backedge-taken count is SCEVCouldNotCompute.
>        // Note that this serves two purposes: It filters out loops that are
>        // simply not analyzable, and it covers the case where this code is
> @@ -915,12 +950,10 @@
>        // in infinite recursion. In the later case, the analysis code will
>        // cope with a conservative value, and it will take care to purge
>        // that value once it has finished.
> -      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
> +      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
>        if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
>          // Manually compute the final value for AR, checking for
>          // overflow.
> -        const SCEV *Start = AR->getStart();
> -        const SCEV *Step = AR->getStepRecurrence(*this);
>  
>          // Check whether the backedge-taken count can be losslessly casted to
>          // the addrec's type. The count is always unsigned.
> @@ -929,8 +962,7 @@
>          const SCEV *RecastedMaxBECount =
>            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
>          if (MaxBECount == RecastedMaxBECount) {
> -          const Type *WideTy =
> -            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
> +          const Type *WideTy = IntegerType::get(BitWidth * 2);
>            // Check whether Start+Step*MaxBECount has no signed overflow.
>            const SCEV *SMul =
>              getMulExpr(CastedMaxBECount,
> @@ -944,7 +976,35 @@
>              // Return the expression with the addrec on the outside.
>              return getAddRecExpr(getSignExtendExpr(Start, Ty),
>                                   getSignExtendExpr(Step, Ty),
> -                                 AR->getLoop());
> +                                 L);
> +        }
> +
> +        // If the backedge is guarded by a comparison with the pre-inc value
> +        // the addrec is safe. Also, if the entry is guarded by a comparison
> +        // with the start value and the backedge is guarded by a comparison
> +        // with the post-inc value, the addrec is safe.
> +        if (isKnownPositive(Step)) {
> +          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
> +                                      getSignedRange(Step).getSignedMax());
> +          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
> +              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
> +               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
> +                                           AR->getPostIncExpr(*this), N)))
> +            // Return the expression with the addrec on the outside.
> +            return getAddRecExpr(getSignExtendExpr(Start, Ty),
> +                                 getSignExtendExpr(Step, Ty),
> +                                 L);
> +        } else if (isKnownNegative(Step)) {
> +          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
> +                                      getSignedRange(Step).getSignedMin());
> +          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
> +              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
> +               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
> +                                           AR->getPostIncExpr(*this), N)))
> +            // Return the expression with the addrec on the outside.
> +            return getAddRecExpr(getSignExtendExpr(Start, Ty),
> +                                 getSignExtendExpr(Step, Ty),
> +                                 L);
>          }
>        }
>      }
> @@ -2391,19 +2451,16 @@
>        const StructLayout &SL = *TD->getStructLayout(STy);
>        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
>        uint64_t Offset = SL.getElementOffset(FieldNo);
> -      TotalOffset = getAddExpr(TotalOffset,
> -                                  getIntegerSCEV(Offset, IntPtrTy));
> +      TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
>      } else {
>        // For an array, add the element offset, explicitly scaled.
>        const SCEV *LocalOffset = getSCEV(Index);
>        if (!isa<PointerType>(LocalOffset->getType()))
>          // Getelementptr indicies are signed.
> -        LocalOffset = getTruncateOrSignExtend(LocalOffset,
> -                                              IntPtrTy);
> +        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
>        LocalOffset =
>          getMulExpr(LocalOffset,
> -                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
> -                                  IntPtrTy));
> +                   getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
>        TotalOffset = getAddExpr(TotalOffset, LocalOffset);
>      }
>    }
> @@ -2491,18 +2548,95 @@
>    return 0;
>  }
>  
> -uint32_t
> -ScalarEvolution::GetMinLeadingZeros(const SCEV *S) {
> -  // TODO: Handle other SCEV expression types here.
> +/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
> +///
> +ConstantRange
> +ScalarEvolution::getUnsignedRange(const SCEV *S) {
>  
>    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
> -    return C->getValue()->getValue().countLeadingZeros();
> +    return ConstantRange(C->getValue()->getValue());
> +
> +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(Add->getOperand(0));
> +    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
> +      X = X.add(getUnsignedRange(Add->getOperand(i)));
> +    return X;
> +  }
> +
> +  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
> +    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
> +      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
> +    return X;
> +  }
> +
> +  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
> +    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
> +      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
> +    return X;
> +  }
> +
> +  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
> +    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
> +      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
> +    return X;
> +  }
>  
> -  if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
> -    // A zero-extension cast adds zero bits.
> -    return GetMinLeadingZeros(C->getOperand()) +
> -           (getTypeSizeInBits(C->getType()) -
> -            getTypeSizeInBits(C->getOperand()->getType()));
> +  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(UDiv->getLHS());
> +    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
> +    return X.udiv(Y);
> +  }
> +
> +  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(ZExt->getOperand());
> +    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
> +  }
> +
> +  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(SExt->getOperand());
> +    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
> +  }
> +
> +  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
> +    ConstantRange X = getUnsignedRange(Trunc->getOperand());
> +    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
> +  }
> +
> +  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
> +
> +  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
> +    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
> +    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
> +    if (!Trip) return FullSet;
> +
> +    // TODO: non-affine addrec
> +    if (AddRec->isAffine()) {
> +      const Type *Ty = AddRec->getType();
> +      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
> +      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
> +        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
> +
> +        const SCEV *Start = AddRec->getStart();
> +        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
> +
> +        // Check for overflow.
> +        if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
> +          return FullSet;
> +
> +        ConstantRange StartRange = getUnsignedRange(Start);
> +        ConstantRange EndRange = getUnsignedRange(End);
> +        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
> +                                   EndRange.getUnsignedMin());
> +        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
> +                                   EndRange.getUnsignedMax());
> +        if (Min.isMinValue() && Max.isMaxValue())
> +          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
> +        return ConstantRange(Min, Max+1);
> +      }
> +    }
>    }
>  
>    if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
> @@ -2511,67 +2645,119 @@
>      APInt Mask = APInt::getAllOnesValue(BitWidth);
>      APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
>      ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
> -    return Zeros.countLeadingOnes();
> +    return ConstantRange(Ones, ~Zeros);
>    }
>  
> -  return 1;
> +  return FullSet;
>  }
>  
> -uint32_t
> -ScalarEvolution::GetMinSignBits(const SCEV *S) {
> -  // TODO: Handle other SCEV expression types here.
> +/// getSignedRange - Determine the signed range for a particular SCEV.
> +///
> +ConstantRange
> +ScalarEvolution::getSignedRange(const SCEV *S) {
> +
> +  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
> +    return ConstantRange(C->getValue()->getValue());
>  
> -  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
> -    const APInt &A = C->getValue()->getValue();
> -    return A.isNegative() ? A.countLeadingOnes() :
> -                            A.countLeadingZeros();
> +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
> +    ConstantRange X = getSignedRange(Add->getOperand(0));
> +    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
> +      X = X.add(getSignedRange(Add->getOperand(i)));
> +    return X;
>    }
>  
> -  if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
> -    // A sign-extension cast adds sign bits.
> -    return GetMinSignBits(C->getOperand()) +
> -           (getTypeSizeInBits(C->getType()) -
> -            getTypeSizeInBits(C->getOperand()->getType()));
> +  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
> +    ConstantRange X = getSignedRange(Mul->getOperand(0));
> +    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
> +      X = X.multiply(getSignedRange(Mul->getOperand(i)));
> +    return X;
>    }
>  
> -  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
> -    unsigned BitWidth = getTypeSizeInBits(A->getType());
> +  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
> +    ConstantRange X = getSignedRange(SMax->getOperand(0));
> +    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
> +      X = X.smax(getSignedRange(SMax->getOperand(i)));
> +    return X;
> +  }
> +
> +  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
> +    ConstantRange X = getSignedRange(UMax->getOperand(0));
> +    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
> +      X = X.umax(getSignedRange(UMax->getOperand(i)));
> +    return X;
> +  }
> +
> +  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
> +    ConstantRange X = getSignedRange(UDiv->getLHS());
> +    ConstantRange Y = getSignedRange(UDiv->getRHS());
> +    return X.udiv(Y);
> +  }
> +
> +  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
> +    ConstantRange X = getSignedRange(ZExt->getOperand());
> +    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
> +  }
>  
> -    // Special case decrementing a value (ADD X, -1):
> -    if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
> -      if (CRHS->isAllOnesValue()) {
> -        SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
> -        const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
> -        unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
> -
> -        // If the input is known to be 0 or 1, the output is 0/-1, which is all
> -        // sign bits set.
> -        if (LZ == BitWidth - 1)
> -          return BitWidth;
> -
> -        // If we are subtracting one from a positive number, there is no carry
> -        // out of the result.
> -        if (LZ > 0)
> -          return GetMinSignBits(OtherOpsAdd);
> -      }
> -
> -    // Add can have at most one carry bit.  Thus we know that the output
> -    // is, at worst, one more bit than the inputs.
> -    unsigned Min = BitWidth;
> -    for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
> -      unsigned N = GetMinSignBits(A->getOperand(i));
> -      Min = std::min(Min, N) - 1;
> -      if (Min == 0) return 1;
> +  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
> +    ConstantRange X = getSignedRange(SExt->getOperand());
> +    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
> +  }
> +
> +  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
> +    ConstantRange X = getSignedRange(Trunc->getOperand());
> +    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
> +  }
> +
> +  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
> +
> +  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
> +    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
> +    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
> +    if (!Trip) return FullSet;
> +
> +    // TODO: non-affine addrec
> +    if (AddRec->isAffine()) {
> +      const Type *Ty = AddRec->getType();
> +      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
> +      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
> +        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
> +
> +        const SCEV *Start = AddRec->getStart();
> +        const SCEV *Step = AddRec->getStepRecurrence(*this);
> +        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
> +
> +        // Check for overflow.
> +        if (!(isKnownPositive(Step) &&
> +              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
> +            !(isKnownNegative(Step) &&
> +              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
> +          return FullSet;
> +
> +        ConstantRange StartRange = getSignedRange(Start);
> +        ConstantRange EndRange = getSignedRange(End);
> +        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
> +                                   EndRange.getSignedMin());
> +        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
> +                                   EndRange.getSignedMax());
> +        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
> +          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
> +        return ConstantRange(Min, Max+1);
> +      }
>      }
> -    return 1;
>    }
>  
>    if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
>      // For a SCEVUnknown, ask ValueTracking.
> -    return ComputeNumSignBits(U->getValue(), TD);
> +    unsigned BitWidth = getTypeSizeInBits(U->getType());
> +    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
> +    if (NS == 1)
> +      return FullSet;
> +    return
> +      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
> +                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
>    }
>  
> -  return 1;
> +  return FullSet;
>  }
>  
>  /// createSCEV - We know that there is no SCEV for the specified value.
> @@ -3651,7 +3837,7 @@
>              if (!isSCEVable(Op->getType()))
>                return V;
>  
> -            const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L);
> +            const SCEV* OpV = getSCEVAtScope(Op, L);
>              if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
>                Constant *C = SC->getValue();
>                if (C->getType() != Op->getType())
> @@ -4052,12 +4238,176 @@
>    return false;
>  }
>  
> -/// isLoopGuardedByCond - Test whether entry to the loop is protected by
> -/// a conditional between LHS and RHS.  This is used to help avoid max
> -/// expressions in loop trip counts.
> -bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
> -                                          ICmpInst::Predicate Pred,
> -                                          const SCEV *LHS, const SCEV *RHS) {
> +bool ScalarEvolution::isKnownNegative(const SCEV *S) {
> +  return getSignedRange(S).getSignedMax().isNegative();
> +}
> +
> +bool ScalarEvolution::isKnownPositive(const SCEV *S) {
> +  return getSignedRange(S).getSignedMin().isStrictlyPositive();
> +}
> +
> +bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
> +  return !getSignedRange(S).getSignedMin().isNegative();
> +}
> +
> +bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
> +  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
> +}
> +
> +bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
> +  return isKnownNegative(S) || isKnownPositive(S);
> +}
> +
> +bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
> +                                       const SCEV *LHS, const SCEV *RHS) {
> +
> +  if (HasSameValue(LHS, RHS))
> +    return ICmpInst::isTrueWhenEqual(Pred);
> +
> +  switch (Pred) {
> +  default:
> +    assert(0 && "Unexpected ICmpInst::Predicate value!");
> +    break;
> +  case ICmpInst::ICMP_SGT:
> +    Pred = ICmpInst::ICMP_SLT;
> +    std::swap(LHS, RHS);
> +  case ICmpInst::ICMP_SLT: {
> +    ConstantRange LHSRange = getSignedRange(LHS);
> +    ConstantRange RHSRange = getSignedRange(RHS);
> +    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
> +      return true;
> +    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
> +      return false;
> +
> +    const SCEV *Diff = getMinusSCEV(LHS, RHS);
> +    ConstantRange DiffRange = getUnsignedRange(Diff);
> +    if (isKnownNegative(Diff)) {
> +      if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
> +        return true;
> +      if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
> +        return false;
> +    } else if (isKnownPositive(Diff)) {
> +      if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
> +        return true;
> +      if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
> +        return false;
> +    }
> +    break;
> +  }
> +  case ICmpInst::ICMP_SGE:
> +    Pred = ICmpInst::ICMP_SLE;
> +    std::swap(LHS, RHS);
> +  case ICmpInst::ICMP_SLE: {
> +    ConstantRange LHSRange = getSignedRange(LHS);
> +    ConstantRange RHSRange = getSignedRange(RHS);
> +    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
> +      return true;
> +    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
> +      return false;
> +
> +    const SCEV *Diff = getMinusSCEV(LHS, RHS);
> +    ConstantRange DiffRange = getUnsignedRange(Diff);
> +    if (isKnownNonPositive(Diff)) {
> +      if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
> +        return true;
> +      if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
> +        return false;
> +    } else if (isKnownNonNegative(Diff)) {
> +      if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
> +        return true;
> +      if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
> +        return false;
> +    }
> +    break;
> +  }
> +  case ICmpInst::ICMP_UGT:
> +    Pred = ICmpInst::ICMP_ULT;
> +    std::swap(LHS, RHS);
> +  case ICmpInst::ICMP_ULT: {
> +    ConstantRange LHSRange = getUnsignedRange(LHS);
> +    ConstantRange RHSRange = getUnsignedRange(RHS);
> +    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
> +      return true;
> +    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
> +      return false;
> +
> +    const SCEV *Diff = getMinusSCEV(LHS, RHS);
> +    ConstantRange DiffRange = getUnsignedRange(Diff);
> +    if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
> +      return true;
> +    if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
> +      return false;
> +    break;
> +  }
> +  case ICmpInst::ICMP_UGE:
> +    Pred = ICmpInst::ICMP_ULE;
> +    std::swap(LHS, RHS);
> +  case ICmpInst::ICMP_ULE: {
> +    ConstantRange LHSRange = getUnsignedRange(LHS);
> +    ConstantRange RHSRange = getUnsignedRange(RHS);
> +    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
> +      return true;
> +    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
> +      return false;
> +
> +    const SCEV *Diff = getMinusSCEV(LHS, RHS);
> +    ConstantRange DiffRange = getUnsignedRange(Diff);
> +    if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
> +      return true;
> +    if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
> +      return false;
> +    break;
> +  }
> +  case ICmpInst::ICMP_NE: {
> +    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
> +      return true;
> +    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
> +      return true;
> +
> +    const SCEV *Diff = getMinusSCEV(LHS, RHS);
> +    if (isKnownNonZero(Diff))
> +      return true;
> +    break;
> +  }
> +  case ICmpInst::ICMP_EQ:
> +    break;
> +  }
> +  return false;
> +}
> +
> +/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
> +/// protected by a conditional between LHS and RHS.  This is used to
> +/// to eliminate casts.
> +bool
> +ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
> +                                             ICmpInst::Predicate Pred,
> +                                             const SCEV *LHS, const SCEV *RHS) {
> +  // Interpret a null as meaning no loop, where there is obviously no guard
> +  // (interprocedural conditions notwithstanding).
> +  if (!L) return true;
> +
> +  BasicBlock *Latch = L->getLoopLatch();
> +  if (!Latch)
> +    return false;
> +
> +  BranchInst *LoopContinuePredicate =
> +    dyn_cast<BranchInst>(Latch->getTerminator());
> +  if (!LoopContinuePredicate ||
> +      LoopContinuePredicate->isUnconditional())
> +    return false;
> +
> +  return
> +    isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
> +                    LoopContinuePredicate->getSuccessor(0) != L->getHeader());
> +}
> +
> +/// isLoopGuardedByCond - Test whether entry to the loop is protected
> +/// by a conditional between LHS and RHS.  This is used to help avoid max
> +/// expressions in loop trip counts, and to eliminate casts.
> +bool
> +ScalarEvolution::isLoopGuardedByCond(const Loop *L,
> +                                     ICmpInst::Predicate Pred,
> +                                     const SCEV *LHS, const SCEV *RHS) {
>    // Interpret a null as meaning no loop, where there is obviously no guard
>    // (interprocedural conditions notwithstanding).
>    if (!L) return false;
> @@ -4086,8 +4436,9 @@
>    return false;
>  }
>  
> -/// isNecessaryCond - Test whether the given CondValue value is a condition
> -/// which is at least as strict as the one described by Pred, LHS, and RHS.
> +/// isNecessaryCond - Test whether the condition described by Pred, LHS,
> +/// and RHS is a necessary condition for the given Cond value to evaluate
> +/// to true.
>  bool ScalarEvolution::isNecessaryCond(Value *CondValue,
>                                        ICmpInst::Predicate Pred,
>                                        const SCEV *LHS, const SCEV *RHS,
> @@ -4112,30 +4463,35 @@
>    // see if it is the comparison we are looking for.
>    Value *PreCondLHS = ICI->getOperand(0);
>    Value *PreCondRHS = ICI->getOperand(1);
> -  ICmpInst::Predicate Cond;
> +  ICmpInst::Predicate FoundPred;
>    if (Inverse)
> -    Cond = ICI->getInversePredicate();
> +    FoundPred = ICI->getInversePredicate();
>    else
> -    Cond = ICI->getPredicate();
> +    FoundPred = ICI->getPredicate();
>  
> -  if (Cond == Pred)
> +  if (FoundPred == Pred)
>      ; // An exact match.
> -  else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
> -    ; // The actual condition is beyond sufficient.
> -  else
> +  else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
> +    // The actual condition is beyond sufficient.
> +    FoundPred = ICmpInst::ICMP_NE;
> +    // NE is symmetric but the original comparison may not be. Swap
> +    // the operands if necessary so that they match below.
> +    if (isa<SCEVConstant>(LHS))
> +      std::swap(PreCondLHS, PreCondRHS);
> +  } else
>      // Check a few special cases.
> -    switch (Cond) {
> +    switch (FoundPred) {
>      case ICmpInst::ICMP_UGT:
>        if (Pred == ICmpInst::ICMP_ULT) {
>          std::swap(PreCondLHS, PreCondRHS);
> -        Cond = ICmpInst::ICMP_ULT;
> +        FoundPred = ICmpInst::ICMP_ULT;
>          break;
>        }
>        return false;
>      case ICmpInst::ICMP_SGT:
>        if (Pred == ICmpInst::ICMP_SLT) {
>          std::swap(PreCondLHS, PreCondRHS);
> -        Cond = ICmpInst::ICMP_SLT;
> +        FoundPred = ICmpInst::ICMP_SLT;
>          break;
>        }
>        return false;
> @@ -4144,8 +4500,8 @@
>        // so check for this case by checking if the NE is comparing against
>        // a minimum or maximum constant.
>        if (!ICmpInst::isTrueWhenEqual(Pred))
> -        if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
> -          const APInt &A = CI->getValue();
> +        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
> +          const APInt &A = C->getValue()->getValue();
>            switch (Pred) {
>            case ICmpInst::ICMP_SLT:
>              if (A.isMaxSignedValue()) break;
> @@ -4162,7 +4518,7 @@
>            default:
>              return false;
>            }
> -          Cond = ICmpInst::ICMP_NE;
> +          FoundPred = Pred;
>            // NE is symmetric but the original comparison may not be. Swap
>            // the operands if necessary so that they match below.
>            if (isa<SCEVConstant>(LHS))
> @@ -4175,14 +4531,70 @@
>        return false;
>      }
>  
> -  if (!PreCondLHS->getType()->isInteger()) return false;
> +  assert(Pred == FoundPred && "Conditions were not reconciled!");
> +
> +  const SCEV *FoundLHS = getSCEV(PreCondLHS);
> +  const SCEV *FoundRHS = getSCEV(PreCondRHS);
> +
> +  // Balance the types.
> +  if (getTypeSizeInBits(LHS->getType()) >
> +      getTypeSizeInBits(FoundLHS->getType())) {
> +    if (CmpInst::isSigned(Pred)) {
> +      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
> +      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
> +    } else {
> +      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
> +      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
> +    }
> +  } else if (getTypeSizeInBits(LHS->getType()) <
> +             getTypeSizeInBits(FoundLHS->getType())) {
> +    // TODO: Cast LHS and RHS to FoundLHS' type. Currently this can
> +    // result in infinite recursion since the code to construct
> +    // cast expressions may want to know things about the loop
> +    // iteration in order to do simplifications.
> +    return false;
> +  }
> +
> +  return isNecessaryCondOperands(Pred, LHS, RHS,
> +                                 FoundLHS, FoundRHS) ||
> +         // ~x < ~y --> x > y
> +         isNecessaryCondOperands(Pred, LHS, RHS,
> +                                 getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
> +}
> +
> +/// isNecessaryCondOperands - Test whether the condition described by Pred,
> +/// LHS, and RHS is a necessary condition for the condition described by
> +/// Pred, FoundLHS, and FoundRHS to evaluate to true.
> +bool
> +ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
> +                                         const SCEV *LHS, const SCEV *RHS,
> +                                         const SCEV *FoundLHS,
> +                                         const SCEV *FoundRHS) {
> +  switch (Pred) {
> +  default: break;
> +  case ICmpInst::ICMP_SLT:
> +    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
> +        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
> +      return true;
> +    break;
> +  case ICmpInst::ICMP_SGT:
> +    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
> +        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
> +      return true;
> +    break;
> +  case ICmpInst::ICMP_ULT:
> +    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
> +        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
> +      return true;
> +    break;
> +  case ICmpInst::ICMP_UGT:
> +    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
> +        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
> +      return true;
> +    break;
> +  }
>  
> -  const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
> -  const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
> -  return (HasSameValue(LHS, PreCondLHSSCEV) &&
> -          HasSameValue(RHS, PreCondRHSSCEV)) ||
> -         (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
> -          HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
> +  return false;
>  }
>  
>  /// getBECount - Subtract the end and start values and divide by the step,
> @@ -4267,9 +4679,9 @@
>      const SCEV *Start = AddRec->getOperand(0);
>  
>      // Determine the minimum constant start value.
> -    const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
> -      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
> -                             APInt::getMinValue(BitWidth));
> +    const SCEV *MinStart = getConstant(isSigned ?
> +      getSignedRange(Start).getSignedMin() :
> +      getUnsignedRange(Start).getUnsignedMin());
>  
>      // If we know that the condition is true in order to enter the loop,
>      // then we know that it will run exactly (m-n)/s times. Otherwise, we
> @@ -4277,18 +4689,16 @@
>      // the division must round up.
>      const SCEV *End = RHS;
>      if (!isLoopGuardedByCond(L,
> -                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
> +                             isSigned ? ICmpInst::ICMP_SLT :
> +                                        ICmpInst::ICMP_ULT,
>                               getMinusSCEV(Start, Step), RHS))
>        End = isSigned ? getSMaxExpr(RHS, Start)
>                       : getUMaxExpr(RHS, Start);
>  
>      // Determine the maximum constant end value.
> -    const SCEV *MaxEnd =
> -      isa<SCEVConstant>(End) ? End :
> -      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
> -                               .ashr(GetMinSignBits(End) - 1) :
> -                             APInt::getMaxValue(BitWidth)
> -                               .lshr(GetMinLeadingZeros(End)));
> +    const SCEV *MaxEnd = getConstant(isSigned ?
> +      getSignedRange(End).getSignedMax() :
> +      getUnsignedRange(End).getUnsignedMax());
>  
>      // Finally, we subtract these two values and divide, rounding up, to get
>      // the number of times the backedge is executed.
> 
> Added: llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll?rev=75252&view=auto
> 
> ==============================================================================
> --- llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll (added)
> +++ llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll Fri Jul 10 11:42:52 2009
> @@ -0,0 +1,143 @@
> +; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
> +; RUN: grep {= sext} %t | count 4
> +; RUN: grep {phi i64} %t | count 2
> +
> +; Indvars should be able to promote the hiPart induction variable in the
> +; inner loop to i64.
> +; TODO: it should promote hiPart to i64 in the outer loop too.
> +
> +target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
> +
> +define void @t(float* %pTmp1, float* %peakWeight, float* %nrgReducePeakrate, i32 %bandEdgeIndex, float %tmp1) nounwind {
> +entry:
> +	%tmp = load float* %peakWeight, align 4		; <float> [#uses=1]
> +	%tmp2 = icmp sgt i32 %bandEdgeIndex, 0		; <i1> [#uses=1]
> +	br i1 %tmp2, label %bb.nph22, label %return
> +
> +bb.nph22:		; preds = %entry
> +	%tmp3 = add i32 %bandEdgeIndex, -1		; <i32> [#uses=2]
> +	br label %bb
> +
> +bb:		; preds = %bb8, %bb.nph22
> +	%distERBhi.121 = phi float [ %distERBhi.2.lcssa, %bb8 ], [ 0.000000e+00, %bb.nph22 ]		; <float> [#uses=2]
> +	%distERBlo.120 = phi float [ %distERBlo.0.lcssa, %bb8 ], [ 0.000000e+00, %bb.nph22 ]		; <float> [#uses=2]
> +	%hiPart.119 = phi i32 [ %hiPart.0.lcssa, %bb8 ], [ 0, %bb.nph22 ]		; <i32> [#uses=3]
> +	%loPart.118 = phi i32 [ %loPart.0.lcssa, %bb8 ], [ 0, %bb.nph22 ]		; <i32> [#uses=2]
> +	%peakCount.117 = phi float [ %peakCount.2.lcssa, %bb8 ], [ %tmp, %bb.nph22 ]		; <float> [#uses=2]
> +	%part.016 = phi i32 [ %tmp46, %bb8 ], [ 0, %bb.nph22 ]		; <i32> [#uses=5]
> +	%tmp4 = icmp sgt i32 %part.016, 0		; <i1> [#uses=1]
> +	br i1 %tmp4, label %bb1, label %bb3.preheader
> +
> +bb1:		; preds = %bb
> +	%tmp5 = add i32 %part.016, -1		; <i32> [#uses=1]
> +	%tmp6 = sext i32 %tmp5 to i64		; <i64> [#uses=1]
> +	%tmp7 = getelementptr float* %pTmp1, i64 %tmp6		; <float*> [#uses=1]
> +	%tmp8 = load float* %tmp7, align 4		; <float> [#uses=1]
> +	%tmp9 = fadd float %tmp8, %distERBlo.120		; <float> [#uses=1]
> +	%tmp10 = add i32 %part.016, -1		; <i32> [#uses=1]
> +	%tmp11 = sext i32 %tmp10 to i64		; <i64> [#uses=1]
> +	%tmp12 = getelementptr float* %pTmp1, i64 %tmp11		; <float*> [#uses=1]
> +	%tmp13 = load float* %tmp12, align 4		; <float> [#uses=1]
> +	%tmp14 = fsub float %distERBhi.121, %tmp13		; <float> [#uses=1]
> +	br label %bb3.preheader
> +
> +bb3.preheader:		; preds = %bb1, %bb
> +	%distERBlo.0.ph = phi float [ %distERBlo.120, %bb ], [ %tmp9, %bb1 ]		; <float> [#uses=3]
> +	%distERBhi.0.ph = phi float [ %distERBhi.121, %bb ], [ %tmp14, %bb1 ]		; <float> [#uses=3]
> +	%tmp15 = fcmp ogt float %distERBlo.0.ph, 2.500000e+00		; <i1> [#uses=1]
> +	br i1 %tmp15, label %bb.nph, label %bb5.preheader
> +
> +bb.nph:		; preds = %bb3.preheader
> +	br label %bb2
> +
> +bb2:		; preds = %bb3, %bb.nph
> +	%distERBlo.03 = phi float [ %tmp19, %bb3 ], [ %distERBlo.0.ph, %bb.nph ]		; <float> [#uses=1]
> +	%loPart.02 = phi i32 [ %tmp24, %bb3 ], [ %loPart.118, %bb.nph ]		; <i32> [#uses=3]
> +	%peakCount.01 = phi float [ %tmp23, %bb3 ], [ %peakCount.117, %bb.nph ]		; <float> [#uses=1]
> +	%tmp16 = sext i32 %loPart.02 to i64		; <i64> [#uses=1]
> +	%tmp17 = getelementptr float* %pTmp1, i64 %tmp16		; <float*> [#uses=1]
> +	%tmp18 = load float* %tmp17, align 4		; <float> [#uses=1]
> +	%tmp19 = fsub float %distERBlo.03, %tmp18		; <float> [#uses=3]
> +	%tmp20 = sext i32 %loPart.02 to i64		; <i64> [#uses=1]
> +	%tmp21 = getelementptr float* %peakWeight, i64 %tmp20		; <float*> [#uses=1]
> +	%tmp22 = load float* %tmp21, align 4		; <float> [#uses=1]
> +	%tmp23 = fsub float %peakCount.01, %tmp22		; <float> [#uses=2]
> +	%tmp24 = add i32 %loPart.02, 1		; <i32> [#uses=2]
> +	br label %bb3
> +
> +bb3:		; preds = %bb2
> +	%tmp25 = fcmp ogt float %tmp19, 2.500000e+00		; <i1> [#uses=1]
> +	br i1 %tmp25, label %bb2, label %bb3.bb5.preheader_crit_edge
> +
> +bb3.bb5.preheader_crit_edge:		; preds = %bb3
> +	%tmp24.lcssa = phi i32 [ %tmp24, %bb3 ]		; <i32> [#uses=1]
> +	%tmp23.lcssa = phi float [ %tmp23, %bb3 ]		; <float> [#uses=1]
> +	%tmp19.lcssa = phi float [ %tmp19, %bb3 ]		; <float> [#uses=1]
> +	br label %bb5.preheader
> +
> +bb5.preheader:		; preds = %bb3.bb5.preheader_crit_edge, %bb3.preheader
> +	%distERBlo.0.lcssa = phi float [ %tmp19.lcssa, %bb3.bb5.preheader_crit_edge ], [ %distERBlo.0.ph, %bb3.preheader ]		; <float> [#uses=2]
> +	%loPart.0.lcssa = phi i32 [ %tmp24.lcssa, %bb3.bb5.preheader_crit_edge ], [ %loPart.118, %bb3.preheader ]		; <i32> [#uses=1]
> +	%peakCount.0.lcssa = phi float [ %tmp23.lcssa, %bb3.bb5.preheader_crit_edge ], [ %peakCount.117, %bb3.preheader ]		; <float> [#uses=2]
> +	%.not10 = fcmp olt float %distERBhi.0.ph, 2.500000e+00		; <i1> [#uses=1]
> +	%tmp26 = icmp sgt i32 %tmp3, %hiPart.119		; <i1> [#uses=1]
> +	%or.cond11 = and i1 %tmp26, %.not10		; <i1> [#uses=1]
> +	br i1 %or.cond11, label %bb.nph12, label %bb7
> +
> +bb.nph12:		; preds = %bb5.preheader
> +	br label %bb4
> +
> +bb4:		; preds = %bb5, %bb.nph12
> +	%distERBhi.29 = phi float [ %tmp30, %bb5 ], [ %distERBhi.0.ph, %bb.nph12 ]		; <float> [#uses=1]
> +	%hiPart.08 = phi i32 [ %tmp31, %bb5 ], [ %hiPart.119, %bb.nph12 ]		; <i32> [#uses=2]
> +	%peakCount.27 = phi float [ %tmp35, %bb5 ], [ %peakCount.0.lcssa, %bb.nph12 ]		; <float> [#uses=1]
> +	%tmp27 = sext i32 %hiPart.08 to i64		; <i64> [#uses=1]
> +	%tmp28 = getelementptr float* %pTmp1, i64 %tmp27		; <float*> [#uses=1]
> +	%tmp29 = load float* %tmp28, align 4		; <float> [#uses=1]
> +	%tmp30 = fadd float %tmp29, %distERBhi.29		; <float> [#uses=3]
> +	%tmp31 = add i32 %hiPart.08, 1		; <i32> [#uses=4]
> +	%tmp32 = sext i32 %tmp31 to i64		; <i64> [#uses=1]
> +	%tmp33 = getelementptr float* %peakWeight, i64 %tmp32		; <float*> [#uses=1]
> +	%tmp34 = load float* %tmp33, align 4		; <float> [#uses=1]
> +	%tmp35 = fadd float %tmp34, %peakCount.27		; <float> [#uses=2]
> +	br label %bb5
> +
> +bb5:		; preds = %bb4
> +	%.not = fcmp olt float %tmp30, 2.500000e+00		; <i1> [#uses=1]
> +	%tmp36 = icmp sgt i32 %tmp3, %tmp31		; <i1> [#uses=1]
> +	%or.cond = and i1 %tmp36, %.not		; <i1> [#uses=1]
> +	br i1 %or.cond, label %bb4, label %bb5.bb7_crit_edge
> +
> +bb5.bb7_crit_edge:		; preds = %bb5
> +	%tmp35.lcssa = phi float [ %tmp35, %bb5 ]		; <float> [#uses=1]
> +	%tmp31.lcssa = phi i32 [ %tmp31, %bb5 ]		; <i32> [#uses=1]
> +	%tmp30.lcssa = phi float [ %tmp30, %bb5 ]		; <float> [#uses=1]
> +	br label %bb7
> +
> +bb7:		; preds = %bb5.bb7_crit_edge, %bb5.preheader
> +	%distERBhi.2.lcssa = phi float [ %tmp30.lcssa, %bb5.bb7_crit_edge ], [ %distERBhi.0.ph, %bb5.preheader ]		; <float> [#uses=2]
> +	%hiPart.0.lcssa = phi i32 [ %tmp31.lcssa, %bb5.bb7_crit_edge ], [ %hiPart.119, %bb5.preheader ]		; <i32> [#uses=1]
> +	%peakCount.2.lcssa = phi float [ %tmp35.lcssa, %bb5.bb7_crit_edge ], [ %peakCount.0.lcssa, %bb5.preheader ]		; <float> [#uses=2]
> +	%tmp37 = fadd float %distERBlo.0.lcssa, %distERBhi.2.lcssa		; <float> [#uses=1]
> +	%tmp38 = fdiv float %peakCount.2.lcssa, %tmp37		; <float> [#uses=1]
> +	%tmp39 = fmul float %tmp38, %tmp1		; <float> [#uses=2]
> +	%tmp40 = fmul float %tmp39, %tmp39		; <float> [#uses=2]
> +	%tmp41 = fmul float %tmp40, %tmp40		; <float> [#uses=1]
> +	%tmp42 = fadd float %tmp41, 1.000000e+00		; <float> [#uses=1]
> +	%tmp43 = fdiv float 1.000000e+00, %tmp42		; <float> [#uses=1]
> +	%tmp44 = sext i32 %part.016 to i64		; <i64> [#uses=1]
> +	%tmp45 = getelementptr float* %nrgReducePeakrate, i64 %tmp44		; <float*> [#uses=1]
> +	store float %tmp43, float* %tmp45, align 4
> +	%tmp46 = add i32 %part.016, 1		; <i32> [#uses=2]
> +	br label %bb8
> +
> +bb8:		; preds = %bb7
> +	%tmp47 = icmp slt i32 %tmp46, %bandEdgeIndex		; <i1> [#uses=1]
> +	br i1 %tmp47, label %bb, label %bb8.return_crit_edge
> +
> +bb8.return_crit_edge:		; preds = %bb8
> +	br label %return
> +
> +return:		; preds = %bb8.return_crit_edge, %entry
> +	ret void
> +}
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
> 




More information about the llvm-commits mailing list