[llvm-commits] [llvm] r59066 - /llvm/trunk/docs/WritingAnLLVMBackend.html

Chris Lattner sabre at nondot.org
Tue Nov 11 11:30:41 PST 2008


Author: lattner
Date: Tue Nov 11 13:30:41 2008
New Revision: 59066

URL: http://llvm.org/viewvc/llvm-project?rev=59066&view=rev
Log:
Make this document *substantially* better and cover a lot more territory.
Document written by Mason Woo (http://www.woo.com)!

Modified:
    llvm/trunk/docs/WritingAnLLVMBackend.html

Modified: llvm/trunk/docs/WritingAnLLVMBackend.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/WritingAnLLVMBackend.html?rev=59066&r1=59065&r2=59066&view=diff

==============================================================================
--- llvm/trunk/docs/WritingAnLLVMBackend.html (original)
+++ llvm/trunk/docs/WritingAnLLVMBackend.html Tue Nov 11 13:30:41 2008
@@ -2,32 +2,58 @@
                       "http://www.w3.org/TR/html4/strict.dtd">
 <html>
 <head>
-  <title>Writing an LLVM backend</title>
+  <title>Writing an LLVM Compiler Backend</title>
   <link rel="stylesheet" href="llvm.css" type="text/css">
 </head>
 
 <body>
 
-<div class="doc_title">
-  Writing an LLVM backend
+<div class="doc_title"><p>
+  Writing an LLVM Compiler Backend
 </div>
 
 <ol>
   <li><a href="#intro">Introduction</a>
-  <li><a href="#backends">Writing a backend</a>
-  <ol>
-    <li><a href="#machine">Machine backends</a>
-    <ol>
-      <li><a href="#machineTOC">Outline</a></li>
-      <li><a href="#machineDetails">Implementation details</a></li>
-    </ol></li>  
-    <li><a href="#lang">Language backends</a></li>
-  </ol></li>
-  <li><a href="#related">Related reading material</a>
+  <ul>
+    <li><a href="#Audience">Audience</a></li>
+    <li><a href="#Prerequisite">Prerequisite Reading</a></li>
+    <li><a href="#Basic">Basic Steps</a></li>
+    <li><a href="#Preliminaries">Preliminaries</a></li>
+  </ul>
+  <li><a href="#TargetMachine">Target Machine</a></li>
+  <li><a href="#RegisterSet">Register Set and Register Classes</a></li>  
+  <ul>
+    <li><a href="#RegisterDef">Defining a Register</a></li>
+    <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
+    <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
+  </ul>
+  <li><a href="#InstructionSet">Instruction Set</a></li>  
+  <ul>  
+    <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
+    <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
+  </ul>      
+  <li><a href="#InstructionSelector">Instruction Selector</a></li> 
+  <ul>
+    <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a></li>   
+    <ul>
+      <li><a href="#promote">Promote</a></li> 
+      <li><a href="#expand">Expand</a></li> 
+      <li><a href="#custom">Custom</a></li> 
+      <li><a href="#legal">Legal</a></li>       
+    </ul>    
+    <li><a href="#callingConventions">Calling Conventions</a></li>     
+  </ul>  
+  <li><a href="#assemblyPrinter">Assembly Printer</a></li> 
+  <li><a href="#subtargetSupport">Subtarget Support</a></li> 
+  <li><a href="#jitSupport">JIT Support</a></li>   
+  <ul>  
+    <li><a href="#mce">Machine Code Emitter</a></li>   
+    <li><a href="#targetJITInfo">Target JIT Info</a></li>   
+  </ul>  
 </ol>
 
 <div class="doc_author">    
-  <p>Written by <a href="http://misha.brukman.net">Misha Brukman</a></p>
+  <p>Written by <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a></p>
 </div>
 
 <!-- *********************************************************************** -->
@@ -37,258 +63,2001 @@
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
+<p>This document describes techniques for writing compiler backends
+that convert the LLVM IR (intermediate representation) to code for a specified
+machine or other languages. Code intended for a specific machine can take the
+form of either assembly code or binary code (usable for a JIT compiler). </p>
+
+<p>The backend of LLVM features a target-independent code generator
+that may create output for several types of target CPUs, including X86,
+PowerPC, Alpha, and SPARC. The backend may also be used to generate code
+targeted at SPUs of the Cell processor or GPUs to support the execution of
+compute kernels.</p>
+
+<p>The document focuses on existing examples found in subdirectories
+of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this document
+focuses on the example of creating a static compiler (one that emits text
+assembly) for a SPARC target, because SPARC has fairly standard
+characteristics, such as a RISC instruction set and straightforward calling
+conventions.</p>
+</div>
 
-<p>This document describes techniques for writing backends for LLVM which
-convert the LLVM representation to machine assembly code or other languages.</p>
+<div class="doc_subsection">
+  <a name="Audience">Audience</a>
+</div>  
 
+<div class="doc_text">
+<p>The audience for this document is anyone who needs to write an
+LLVM backend to generate code for a specific hardware or software target.</p>  
 </div>
 
-<!-- *********************************************************************** -->
-<div class="doc_section">
-  <a name="backends">Writing a backend</a>
+<div class="doc_subsection">
+  <a name="Prerequisite">Prerequisite Reading</a>
+</div>  
+
+<div class="doc_text">  
+These essential documents must be read before reading this document:  
+<ul>
+<li>
+<it><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference Manual</a></it> - 
+a reference manual for the LLVM assembly language
+</li>
+<li>
+<it><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM Target-Independent Code Generator </a></it> - 
+a guide to the components (classes and code generation algorithms) for translating 
+the LLVM internal representation to the machine code for a specified target. 
+Pay particular attention to the descriptions of code generation stages: 
+Instruction Selection, Scheduling and Formation, SSA-based Optimization, 
+Register Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations, 
+and Code Emission. 
+</li>
+<li>
+<it><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen Fundamentals</a></it> - 
+a document that describes the TableGen (tblgen) application that manages domain-specific 
+information to support LLVM code generation. TableGen processes input from a 
+target description file (.td suffix) and generates C++ code that can be used 
+for code generation.
+</li>
+<li>
+<it><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM Pass</a></it> - 
+The assembly printer is a FunctionPass, as are several SelectionDAG processing steps.
+</li>
+</ul>
+To follow the SPARC examples in this document, have a copy of 
+<it><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture Manual, Version 8</a></it> 
+for reference. For details about the ARM instruction set, refer to the 
+<it><a href="http://infocenter.arm.com/">ARM Architecture Reference Manual</a></it>
+For more about the GNU Assembler format (GAS), see 
+<it><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></it>
+especially for the assembly printer. <it>Using As</it> contains lists of target machine dependent features. 
 </div>
-<!-- *********************************************************************** -->
 
-<!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="machine">Machine backends</a>
+  <a name="Basic">Basic Steps</a>
 </div>
-    
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="machineTOC">Outline</a>
+<div class="doc_text">
+<p>To write a compiler
+backend for LLVM that converts the LLVM IR (intermediate representation)
+to code for a specified target (machine or other language), follow these steps:</p>
+
+<ul>
+<li>
+Create a subclass of the TargetMachine class that describes
+characteristics of your target machine. Copy existing examples of specific
+TargetMachine class and header files; for example, start with <tt>SparcTargetMachine.cpp</tt>
+and <tt>SparcTargetMachine.h</tt>, but change the file names for your target. Similarly,
+change code that references "Sparc" to reference your target. </li>
+
+<li>Describe the register set of the target. Use TableGen to generate
+code for register definition, register aliases, and register classes from a
+target-specific <tt>RegisterInfo.td</tt> input file. You should also write additional
+code for a subclass of TargetRegisterInfo class that represents the class
+register file data used for register allocation and also describes the
+interactions between registers.</li>
+
+<li>Describe the instruction set of the target. Use TableGen to
+generate code for target-specific instructions from target-specific versions of
+<tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should write additional code
+for a subclass of the TargetInstrInfo
+class to represent machine
+instructions supported by the target machine. </li>
+
+<li>Describe the selection and conversion of the LLVM IR from a DAG (directed
+acyclic graph) representation of instructions to native target-specific
+instructions. Use TableGen to generate code that matches patterns and selects
+instructions based on additional information in a target-specific version of
+<tt>TargetInstrInfo.td</tt>. Write code for <tt>XXXISelDAGToDAG.cpp</tt> 
+(where XXX identifies the specific target) to perform pattern
+matching and DAG-to-DAG instruction selection. Also write code in <tt>XXXISelLowering.cpp</tt>
+to replace or remove operations and data types that are not supported natively
+in a SelectionDAG. </li>
+
+<li>Write code for an
+assembly printer that converts LLVM IR to a GAS format for your target machine.
+You should add assembly strings to the instructions defined in your
+target-specific version of <tt>TargetInstrInfo.td</tt>. You should also write code for a
+subclass of AsmPrinter that performs the LLVM-to-assembly conversion and a
+trivial subclass of TargetAsmInfo.</li>
+
+<li>Optionally, add support for subtargets (that is, variants with
+different capabilities). You should also write code for a subclass of the
+TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt> 
+and <tt>-mattr=</tt> command-line options.</li>
+
+<li>Optionally, add JIT support and create a machine code emitter (subclass
+of TargetJITInfo) that is used to emit binary code directly into memory. </li>
+</ul>
+
+<p>In the .cpp and .h files, initially stub up these methods and
+then implement them later. Initially, you may not know which private members
+that the class will need and which components will need to be subclassed.</p>
+</div>
+
+<div class="doc_subsection">
+  <a name="Preliminaries">Preliminaries</a>
+</div>
+<div class="doc_text">
+<p>To actually create
+your compiler backend, you need to create and modify a few files. The absolute
+minimum is discussed here, but to actually use the LLVM target-independent code
+generator, you must perform the steps described in the <a
+href="http://www.llvm.org/docs/CodeGenerator.html">LLVM
+Target-Independent Code Generator</a> document.</p>
+
+<p>First, you should
+create a subdirectory under <tt>lib/Target</tt> to hold all the files related to your
+target. If your target is called "Dummy", create the directory
+<tt>lib/Target/Dummy</tt>.</p>
+
+<p>In this new
+directory, create a <tt>Makefile</tt>. It is easiest to copy a <tt>Makefile</tt> of another
+target and modify it. It should at least contain the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and
+<tt>TARGET</tt> variables, and then include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
+named LLVMDummy (for example, see the MIPS target). Alternatively, you can
+split the library into LLVMDummyCodeGen and LLVMDummyAsmPrinter, the latter of
+which should be implemented in a subdirectory below <tt>lib/Target/Dummy</tt> (for
+example, see the PowerPC target).</p>
+
+<p>Note that these two
+naming schemes are hardcoded into <tt>llvm-config</tt>. Using any other naming scheme
+will confuse <tt>llvm-config</tt> and produce lots of (seemingly unrelated) linker
+errors when linking <tt>llc</tt>.</p>
+
+<p>To make your target
+actually do something, you need to implement a subclass of TargetMachine. This
+implementation should typically be in the file
+<tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in the <tt>lib/Target</tt> directory will
+be built and should work. To use LLVM's target
+independent code generator, you should do what all current machine backends do: create a subclass
+of LLVMTargetMachine. (To create a target from scratch, create a subclass of
+TargetMachine.)</p>
+
+<p>To get LLVM to
+actually build and link your target, you need to add it to the <tt>TARGETS_TO_BUILD</tt>
+variable. To do this, you modify the configure script to know about your target
+when parsing the <tt>--enable-targets</tt> option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>,
+add your target to the lists there (some creativity required) and then
+reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
+regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt></p>
 </div>
 
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="TargetMachine">Target Machine</a>
+</div>
+<!-- *********************************************************************** -->
 <div class="doc_text">
+<p>LLVMTargetMachine is designed as a base class for targets
+implemented with the LLVM target-independent code generator. The
+LLVMTargetMachine class should be specialized by a concrete target class that
+implements the various virtual methods. LLVMTargetMachine is defined as a
+subclass of TargetMachine in <tt>include/llvm/Target/TargetMachine.h</tt>. The
+TargetMachine class implementation (<tt>TargetMachine.cpp</tt>) also processes numerous
+command-line options.  </p>
+
+<p>To create a concrete target-specific subclass of
+LLVMTargetMachine, start by copying an existing TargetMachine class and header.
+You should name the files that you create to reflect your specific target. For
+instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
+<tt>SparcTargetMachine.cpp</tt></p>
+
+<p>For a target machine XXX, the implementation of XXXTargetMachine
+must have access methods to obtain objects that represent target components.
+These methods are named <tt>get*Info</tt> and are intended to obtain the instruction set
+(<tt>getInstrInfo</tt>), register set (<tt>getRegisterInfo</tt>), stack frame layout
+(<tt>getFrameInfo</tt>), and similar information. XXXTargetMachine must also implement
+the <tt>getTargetData</tt> method to access an object with target-specific data
+characteristics, such as data type size and alignment requirements. </p>
+
+<p>For instance, for the SPARC target, the header file <tt>SparcTargetMachine.h</tt>
+declares prototypes for several <tt>get*Info</tt> and <tt>getTargetData</tt> methods that simply
+return a class member.  </p>
+</div>
 
-<p>In general, you want to follow the format of SPARC, X86 or PowerPC (in
-<tt>lib/Target</tt>).  SPARC is the simplest backend, and is RISC, so if
-you're working on a RISC target, it is a good one to start with.</p>
+<div class="doc_code">
+<pre>namespace llvm {
 
-<p>To create a static compiler (one that emits text assembly), you need to
-implement the following:</p>
+class Module;
 
+class SparcTargetMachine : public LLVMTargetMachine {
+  const TargetData DataLayout;       // Calculates type size & alignment
+  SparcSubtarget Subtarget;
+  SparcInstrInfo InstrInfo;
+  TargetFrameInfo FrameInfo;
+  
+protected:
+  virtual const TargetAsmInfo *createTargetAsmInfo()
+const;
+  
+public:
+  SparcTargetMachine(const Module &M, const std::string &FS);
+
+  virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
+  virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
+  virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
+  virtual const TargetRegisterInfo *getRegisterInfo() const {
+    return &InstrInfo.getRegisterInfo();
+  }
+  virtual const TargetData *getTargetData() const { return &DataLayout; }
+  static unsigned getModuleMatchQuality(const Module &M);
+
+  // Pass Pipeline Configuration
+  virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
+  virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
+  virtual bool addAssemblyEmitter(PassManagerBase &PM, bool Fast, 
+                                  std::ostream &Out);
+};
+
+} // end namespace llvm
+</pre>
+</div>
+
+<div class="doc_text">
 <ul>
-<li>Describe the register set.
-  <ul>
-  <li>Create a <a href="TableGenFundamentals.html">TableGen</a> description of
-      the register set and register classes</li>
-  <li>Implement a subclass of <tt><a
-      href="CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a></tt></li>
-  </ul></li>
-<li>Describe the instruction set.
-  <ul>
-  <li>Create a <a href="TableGenFundamentals.html">TableGen</a> description of
-      the instruction set</li>
-  <li>Implement a subclass of <tt><a
-      href="CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a></tt></li>
-  </ul></li>
-<li>Describe the target machine.
-  <ul>
-  <li>Create a <a href="TableGenFundamentals.html">TableGen</a> description of
-      the target that describes the pointer size and references the instruction
-      set</li>
-  <li>Implement a subclass of <tt><a
-      href="CodeGenerator.html#targetmachine">TargetMachine</a></tt>, which
-      configures <tt><a href="CodeGenerator.html#targetdata">TargetData</a></tt>
-      correctly</li>
-  <li>Register your new target using the <tt>RegisterTarget</tt>
-  template:<br><br>
-<div class="doc_code"><pre>
-RegisterTarget<<em>MyTargetMachine</em>> M("short_name", "  Target name");
-</pre></div>
-      <br>Here, <em>MyTargetMachine</em> is the name of your implemented
-      subclass of <tt><a
-      href="CodeGenerator.html#targetmachine">TargetMachine</a></tt>,
-      <em>short_name</em> is the option that will be active following
-      <tt>-march=</tt> to select a target in llc and lli, and the last string
-      is the description of your target to appear in <tt>-help</tt>
-      listing.</li>
-  </ul></li>
-<li>Implement the assembly printer for the architecture.
-  <ul>
-  <li>Define all of the assembly strings for your target, adding them to the
-      instructions in your *InstrInfo.td file.</li>
-  <li>Implement the <tt>llvm::AsmPrinter</tt> interface.</li>
-  </ul>
-</li>
-<li>Implement an instruction selector for the architecture.
-  <ul>
-  <li>The recommended method is the <a href="CodeGenerator.html#instselect">
-      pattern-matching DAG-to-DAG instruction selector</a> (for example, see
-      the PowerPC backend in PPCISelDAGtoDAG.cpp).  Parts of instruction
-      selector creation can be performed by adding patterns to the instructions
-      in your <tt>.td</tt> file.</li>
-  </ul>
-</li>
-<li>Optionally, add subtarget support.
-<ul>
-  <li>If your target has multiple subtargets (e.g. variants with different
-      capabilities), implement the <tt>llvm::TargetSubtarget</tt> interface
-      for your architecture.  This allows you to add <tt>-mcpu=</tt> and 
-      <tt>-mattr=</tt> options.</li>
+<li><tt>getInstrInfo </tt></li>
+<li><tt>getRegisterInfo</tt></li>
+<li><tt>getFrameInfo</tt></li>
+<li><tt>getTargetData</tt></li>
+<li><tt>getSubtargetImpl</tt></li>
 </ul>
-<li>Optionally, add JIT support.
-  <ul>
-  <li>Create a subclass of <tt><a
-      href="CodeGenerator.html#targetjitinfo">TargetJITInfo</a></tt></li>
-  <li>Create a machine code emitter that will be used to emit binary code
-      directly into memory, given <tt>MachineInstr</tt>s</li>
-  </ul>
+<p>For some targets, you also need to support the following methods:
+</p>
+
+<ul>
+<li><tt>getTargetLowering </tt></li>
+<li><tt>getJITInfo</tt></li>
 </ul>
+<p>In addition, the XXXTargetMachine constructor should specify a
+TargetDescription string that determines the data layout for the target machine,
+including characteristics such as pointer size, alignment, and endianness. For
+example, the constructor for SparcTargetMachine contains the following: </p>
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="machineDetails">Implementation details</a>
+<div class="doc_code">
+<pre>
+SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
+  : DataLayout("E-p:32:32-f128:128:128"),
+    Subtarget(M, FS), InstrInfo(Subtarget),
+    FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
+}
+</pre>
 </div>
 
 <div class="doc_text">
-
+<p>Hyphens separate portions of the TargetDescription string. </p>
 <ul>
+<li>The "E" in the string indicates a big-endian target data model; a
+lower-case "e" would indicate little-endian. </li>
+<li>"p:" is followed by pointer information: size, ABI alignment, and
+preferred alignment. If only two figures follow "p:", then the first value is
+pointer size, and the second value is both ABI and preferred alignment.</li>
+<li>then a letter for numeric type alignment: "i", "f", "v", or "a"
+(corresponding to integer, floating point, vector, or aggregate). "i", "v", or
+"a" are followed by ABI alignment and preferred alignment. "f" is followed by
+three values, the first indicates the size of a long double, then ABI alignment
+and preferred alignment.</li>
+</ul>
+<p>You must also register your target using the RegisterTarget
+template. (See the TargetMachineRegistry class.) For example, in <tt>SparcTargetMachine.cpp</tt>,
+the target is registered with:</p>
+</div>
 
-<li><p><b>TableGen register info description</b> - describe a class which
-will store the register's number in the binary encoding of the instruction
-(e.g., for JIT purposes).</p>
+<div class="doc_code">
+<pre>
+namespace {
+  // Register the target.
+  RegisterTarget<SparcTargetMachine>X("sparc", "SPARC");
+}
+</pre>
+</div>
 
-<p>You also need to define register classes to contain these registers, such as
-the integer register class and floating-point register class, so that you can
-allocate virtual registers to instructions from these sets, and let the
-target-independent register allocator automatically choose the actual
-architected registers.</p>
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="RegisterSet">Register Set and Register Classes</a>
+</div>
+<!-- *********************************************************************** -->
+<div class="doc_text">
+<p>You should describe
+a concrete target-specific class
+that represents the register file of a target machine. This class is
+called XXXRegisterInfo (where XXX identifies the target) and represents the
+class register file data that is used for register allocation and also
+describes the interactions between registers. </p>
+
+<p>You also need to
+define register classes to categorize related registers. A register class
+should be added for groups of registers that are all treated the same way for
+some instruction. Typical examples are register classes that include integer,
+floating-point, or vector registers. A register allocator allows an
+instruction to use any register in a specified register class to perform the
+instruction in a similar manner. Register classes allocate virtual registers to
+instructions from these sets, and register classes let the target-independent
+register allocator automatically choose the actual registers.</p>
+
+<p>Much of the code for registers, including register definition,
+register aliases, and register classes, is generated by TableGen from
+<tt>XXXRegisterInfo.td</tt> input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
+<tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the implementation of
+XXXRegisterInfo requires hand-coding. </p>
+</div>
 
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="RegisterDef">Defining a Register</a>
+</div>
+<div class="doc_text">
+<p>The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
+for a target machine. The Register class (specified in <tt>Target.td</tt>) is used to
+define an object for each register. The specified string n becomes the Name of
+the register. The basic Register object does not have any subregisters and does
+not specify any aliases.</p>
+</div>
 <div class="doc_code">
 <pre>
-// class Register is defined in Target.td
-<b>class</b> <em>Target</em>Reg<string name> : Register<name> {
-  <b>let</b> Namespace = "<em>Target</em>";
+class Register<string n> {
+  string Namespace = "";
+  string AsmName = n;
+  string Name = n;
+  int SpillSize = 0;
+  int SpillAlignment = 0;
+  list<Register> Aliases = [];
+  list<Register> SubRegs = [];
+  list<int> DwarfNumbers = [];
 }
+</pre>
+</div>
 
-<b>class</b> IntReg<<b>bits</b><5> num, string name> : <em>Target</em>Reg<name> {
-  <b>field</b> <b>bits</b><5> Num = num;
-}
+<div class="doc_text">
+<p>For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
+definitions that utilize the Register class, such as:</p>
+</div>
+<div class="doc_code">
+<pre>
+def AL : Register<"AL">,
+DwarfRegNum<[0, 0, 0]>;
+</pre>
+</div>
 
-<b>def</b> R0 : IntReg<0, "%R0">;
-...
+<div class="doc_text">
+<p>This defines the register AL and assigns it values (with
+DwarfRegNum) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug information writer (such as
+DwarfWriter in <tt>llvm/lib/CodeGen</tt>) to identify a register. For register AL,
+DwarfRegNum takes an array of 3 values, representing 3 different modes: the
+first element is for X86-64, the second for EH (exception handling) on X86-32,
+and the third is generic. -1 is a special Dwarf number that indicates the gcc
+number is undefined, and -2 indicates the register number is invalid for this
+mode.</p>
 
-// class RegisterClass is defined in Target.td
-<b>def</b> IReg : RegisterClass<i64, 64, [R0, ... ]>;
+<p>From the previously described line in the <tt>X86RegisterInfo.td</tt>
+file, TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:</p>
+</div>
+<div class="doc_code">
+<pre>
+  static const unsigned GR8[] = { X86::AL, ... };
+ 
+  const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
+ 
+  const TargetRegisterDesc RegisterDescriptors[] = { 
+    ...
+    { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
 </pre>
 </div>
-</li>
 
-<li><p><b>TableGen instruction info description</b> - break up instructions into
-classes, usually that's already done by the manufacturer (see instruction
-manual).  Define a class for each instruction category.  Define each opcode as a
-subclass of the category, with appropriate parameters such as the fixed binary
-encoding of opcodes and extended opcodes, and map the register bits to the bits
-of the instruction which they are encoded in (for the JIT).  Also specify how
-the instruction should be printed so it can use the automatic assembly printer,
-e.g.:</p>
+<div class="doc_text">
+<p>From the register info file, TableGen generates a
+TargetRegisterDesc object for each register. TargetRegisterDesc is defined in
+<tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:</p>
+</div>
 
 <div class="doc_code">
 <pre>
-// class Instruction is defined in Target.td
-<b>class</b> Form<<b>bits</b><6> opcode, <b>dag</b> OL, <b>string</b> asmstr> : Instruction {
-  <b>field</b> <b>bits</b><42> Inst;
+struct TargetRegisterDesc {
+  const char     *AsmName;      // Assembly language name for the register
+  const char     *Name;         // Printable name for the reg (for debugging)
+  const unsigned *AliasSet;     // Register Alias Set
+  const unsigned *SubRegs;      // Sub-register set
+  const unsigned *ImmSubRegs;   // Immediate sub-register set
+  const unsigned *SuperRegs;    // Super-register set
+};</pre>
+</div>
 
-  <b>let</b> Namespace = "<em>Target</em>";
-  <b>let</b> Inst{0-6} = opcode;
-  <b>let</b> OperandList = OL;
-  <b>let</b> AsmString = asmstr;
-}
+<div class="doc_text">
+<p>TableGen uses the entire target description file (<tt>.td</tt>) to
+determine text names for the register (in the AsmName and Name fields of
+TargetRegisterDesc) and the relationships of other registers to the defined
+register (in the other TargetRegisterDesc fields). In this example, other
+definitions establish the registers "AX", "EAX", and "RAX" as aliases for one
+another, so TableGen generates a null-terminated array (AL_AliasSet) for this
+register alias set. </p>
+
+<p>The Register class is commonly used as a base class for more
+complex classes. In <tt>Target.td</tt>, the Register class is the base for the
+RegisterWithSubRegs class that is used to define registers that need to specify
+subregisters in the SubRegs list, as shown here:</p>
+</div>
+<div class="doc_code">
+<pre>
+class RegisterWithSubRegs<string n,
+list<Register> subregs> : Register<n> {
+  let SubRegs = subregs;
+}</pre>
+</div>
 
-<b>def</b> ADD : Form<42, (ops IReg:$rD, IReg:$rA, IReg:$rB), "add $rD, $rA, $rB">;
+<div class="doc_text">
+<p>In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined
+for SPARC: a Register subclass, SparcReg, and further subclasses: Ri, Rf, and
+Rd. SPARC registers are identified by 5-bit ID numbers, which is a feature
+common to these subclasses. Note the use of ‘let’ expressions to override values
+that are initially defined in a superclass (such as SubRegs field in the Rd
+class). </p>
+</div>
+<div class="doc_code">
+<pre>
+class SparcReg<string n> : Register<n> {
+  field bits<5> Num;
+  let Namespace = "SP";
+}
+// Ri - 32-bit integer registers
+class Ri<bits<5> num, string n> :
+SparcReg<n> {
+  let Num = num;
+}
+// Rf - 32-bit floating-point registers
+class Rf<bits<5> num, string n> :
+SparcReg<n> {
+  let Num = num;
+}
+// Rd - Slots in the FP register file for 64-bit
+floating-point values.
+class Rd<bits<5> num, string n,
+list<Register> subregs> : SparcReg<n> {
+  let Num = num;
+  let SubRegs = subregs;
+}</pre>
+</div>
+<div class="doc_text">
+<p>In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions
+that utilize these subclasses of Register, such as:</p>
+</div>
+<div class="doc_code">
+<pre>
+def G0 : Ri< 0, "G0">,
+DwarfRegNum<[0]>;
+def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
+...
+def F0 : Rf< 0, "F0">,
+DwarfRegNum<[32]>;
+def F1 : Rf< 1, "F1">,
+DwarfRegNum<[33]>;
+...
+def D0 : Rd< 0, "F0", [F0, F1]>,
+DwarfRegNum<[32]>;
+def D1 : Rd< 2, "F2", [F2, F3]>,
+DwarfRegNum<[34]>;
 </pre>
 </div>
-</li>
-
-</ul>
-
+<div class="doc_text">
+<p>The last two registers shown above (D0 and D1) are double-precision
+floating-point registers that are aliases for pairs of single-precision
+floating-point sub-registers. In addition to aliases, the sub-register and
+super-register relationships of the defined register are in fields of a
+register’s TargetRegisterDesc.</p>
 </div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="lang">Language backends</a>
+  <a name="RegisterClassDef">Defining a Register Class</a>
+</div>
+<div class="doc_text">
+<p>The RegisterClass class (specified in <tt>Target.td</tt>) is used to
+define an object that represents a group of related registers and also defines
+the default allocation order of the registers. A target description file
+<tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register classes using the
+following class:</p>
 </div>
 
+<div class="doc_code">
+<pre>
+class RegisterClass<string namespace,
+list<ValueType> regTypes, int alignment,
+                    list<Register> regList> {
+  string Namespace = namespace;
+  list<ValueType> RegTypes = regTypes;
+  int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
+  int Alignment = alignment;
+ 
+  // CopyCost is the cost of copying a value between two registers
+  // default value 1 means a single instruction
+  // A negative value means copying is extremely expensive or impossible
+  int CopyCost = 1;  
+  list<Register> MemberList = regList;
+  
+  // for register classes that are subregisters of this class
+  list<RegisterClass> SubRegClassList = [];  
+  
+  code MethodProtos = [{}];  // to insert arbitrary code
+  code MethodBodies = [{}];
+}</pre>
+</div>
 <div class="doc_text">
+<p>To define a RegisterClass, use the following 4 arguments:</p>
+<ul>
+<li>The first argument of the definition is the name of the
+namespace. </li>
+
+<li>The second argument is a list of ValueType register type values
+that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined values include
+integer types (such as i16, i32, and i1 for Boolean), floating-point types
+(f32, f64), and vector types (for example, v8i16 for an 8 x i16 vector). All
+registers in a RegisterClass must have the same ValueType, but some registers
+may store vector data in different configurations. For example a register that
+can process a 128-bit vector may be able to handle 16 8-bit integer elements, 8
+16-bit integers, 4 32-bit integers, and so on. </li>
+
+<li>The third argument of the RegisterClass definition specifies the
+alignment required of the registers when they are stored or loaded to memory.</li>
+
+<li>The final argument, <tt>regList</tt>, specifies which registers are in
+this class.  If an <tt>allocation_order_*</tt> method is not specified, then <tt>regList</tt> also
+defines the order of allocation used by the register allocator.</li>
+</ul>
 
-<p>For now, just take a look at <tt>lib/Target/CBackend</tt> for an example of
-how the C backend is written.</p>
+<p>In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
+FPRegs, DFPRegs, and IntRegs. For all three register classes, the first
+argument defines the namespace with the string “SP”. FPRegs defines a group of 32
+single-precision floating-point registers (F0 to F31); DFPRegs defines a group
+of 16 double-precision registers (D0-D15). For IntRegs, the MethodProtos and
+MethodBodies methods are used by TableGen to insert the specified code into generated
+output.</p>
+</div>
+<div class="doc_code">
+<pre>
+def FPRegs : RegisterClass<"SP", [f32], 32, [F0, F1, F2, F3, F4, F5, F6, F7,   
+  F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22,
+  F23, F24, F25, F26, F27, F28, F29, F30, F31]>;
+ 
+def DFPRegs : RegisterClass<"SP", [f64], 64, [D0, D1, D2, D3, D4, D5, D6, D7,
+  D8, D9, D10, D11, D12, D13, D14, D15]>;
+ 
+def IntRegs : RegisterClass<"SP", [i32], 32, [L0, L1, L2, L3, L4, L5, L6, L7,
+                                     I0, I1, I2, I3, I4, I5,
+                                     O0, O1, O2, O3, O4, O5, O7,
+                                     G1,
+                                     // Non-allocatable regs:
+                                     G2, G3, G4, 
+                                     O6, // stack ptr
+                                     I6, // frame ptr
+                                     I7, // return address
+                                     G0, // constant zero
+                                     G5, G6, G7 // reserved for kernel
+                                     ]> {
+  let MethodProtos = [{
+    iterator allocation_order_end(const MachineFunction &MF) const;
+  }];
+  let MethodBodies = [{
+    IntRegsClass::iterator
+    IntRegsClass::allocation_order_end(const MachineFunction &MF) const {
+      return end()-10  // Don't allocate special registers
+         -1;  
+    }
+  }];
+}
+</pre>
+</div>
+
+<div class="doc_text">
+<p>Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output
+files that are intended for inclusion in other source code that you write.
+<tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>, which should be
+included in the header file for the implementation of the SPARC register
+implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
+<tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
+SparcGenRegisterInfo that uses TargetRegisterInfo as its base. It also
+specifies types, based upon the defined register classes: DFPRegsClass, FPRegsClass,
+and IntRegsClass. </p>
+
+<p><tt>SparcRegisterInfo.td</tt> also generates SparcGenRegisterInfo.inc,
+which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC register
+implementation. The code below shows only the generated integer registers and
+associated register classes. The order of registers in IntRegs reflects the
+order in the definition of IntRegs in the target description file. Take special
+note of the use of MethodBodies in <tt>SparcRegisterInfo.td</tt> to create code in
+<tt>SparcGenRegisterInfo.inc</tt>. MethodProtos generates similar code in
+<tt>SparcGenRegisterInfo.h.inc</tt>.</p>
+</div>
 
+<div class="doc_code">
+<pre>  // IntRegs Register Class...
+  static const unsigned IntRegs[] = {
+    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
+SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5, SP::O0, SP::O1,
+SP::O2, SP::O3, SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, SP::G4, SP::O6,
+SP::I6, SP::I7, SP::G0, SP::G5, SP::G6, SP::G7, 
+  };
+ 
+  // IntRegsVTs Register Class Value Types...
+  static const MVT::ValueType IntRegsVTs[] = {
+    MVT::i32, MVT::Other
+  };
+namespace SP {   // Register class instances
+  DFPRegsClass    DFPRegsRegClass;
+  FPRegsClass     FPRegsRegClass;
+  IntRegsClass    IntRegsRegClass;
+...
+ 
+// IntRegs Sub-register Classess...
+  static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
+    NULL
+  };
+...
+// IntRegs Super-register Classess...
+  static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
+    NULL
+  };
+ 
+// IntRegs Register Class sub-classes...
+  static const TargetRegisterClass* const IntRegsSubclasses [] = {
+    NULL
+  };
+...
+ 
+// IntRegs Register Class super-classes...
+  static const TargetRegisterClass* const IntRegsSuperclasses [] = {
+    NULL
+  };
+...
+ 
+  IntRegsClass::iterator
+  IntRegsClass::allocation_order_end(const MachineFunction &MF) const {
+
+     return end()-10  // Don't allocate special registers
+         -1; 
+  }
+  
+IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 
+   IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 
+   IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
+}
+</pre>
 </div>
 <!-- ======================================================================= -->
 <div class="doc_subsection">
-  <a name="files">Files to create/modify</a>
+  <a name="implementRegister">Implement a subclass of 
+  <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a></a>
 </div>
-
 <div class="doc_text">
+<p>The final step is to hand code portions of XXXRegisterInfo, which
+implements the interface described in <tt>TargetRegisterInfo.h</tt>. These functions
+return 0, NULL, or false, unless overridden. Here’s a list of functions that
+are overridden for the SPARC implementation in <tt>SparcRegisterInfo.cpp</tt>:</p>
+<ul>
+<li><tt>getCalleeSavedRegs</tt> (returns a list of callee-saved registers in
+the order of the desired callee-save stack frame offset)</li>
 
-<p>To actually create your backend, you need to create and modify a few files.
-Here, the absolute minimum will be discussed. To actually use LLVM's target
-independent codegenerator, you must <a href="CodeGenerator.html">implement extra
-things</a>.</p>
+<li><tt>getCalleeSavedRegClasses</tt> (returns a list of preferred register
+classes with which to spill each callee saved register)</li>
 
-<p>First of all, you should create a subdirectory under <tt>lib/Target</tt>,
-which will hold all the files related to your target. Let's assume that our
-target is called, "Dummy", we would create the directory
-<tt>lib/Target/Dummy</tt>.</p>
+<li><tt>getReservedRegs</tt> (returns a bitset indexed by physical register
+numbers, indicating if a particular register is unavailable)</li>
+
+<li><tt>hasFP</tt> (return a Boolean indicating if a function should have a
+dedicated frame pointer register)</li>
 
-<p>In this new directory, you should put a <tt>Makefile</tt>. You can probably
-copy one from another target and modify it. It should at least contain the
-<tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then
-include <tt>$(LEVEL)/Makefile.common</tt>. Be careful to give the library the
-correct name, it must be named <tt>LLVMDummy</tt> (see the MIPS target, for
-example). Alternatively, you can split the library into
-<tt>LLVMDummyCodeGen</tt> and <tt>LLVMDummyAsmPrinter</tt>, the latter of which
-should be implemented in a subdirectory below <tt>lib/Target/Dummy</tt> (see the
-PowerPC target, for example).</p>
-
-<p>Note that these two naming schemes are hardcoded into llvm-config. Using any
-other naming scheme will confuse llvm-config and produce lots of (seemingly
-unrelated) linker errors when linking <tt>llc</tt>.</p>
-
-<p>To make your target actually do something, you need to implement a subclass
-of <tt>TargetMachine</tt>. This implementation should typically be in the file
-<tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in the
-<tt>lib/Target</tt> directory will be built and should work. To use LLVM's <a
-href="CodeGenerator.html">target independent code generator</a>, you should
-create a subclass of <tt>LLVMTargetMachine</tt>. This is what all current
-machine backends do. To create a target from scratch, create a subclass of
-<tt>TargetMachine</tt>. This is what the current language backends do.</p>
-
-<p>To get LLVM to actually build and link your target, you also need to add it
-to the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you need to modify the
-<tt>configure</tt> script to know about your target when parsing the
-<tt>--enable-targets</tt> option. Search the <tt>configure</tt> script for
-<tt>TARGETS_TO_BUILD</tt>, add your target to the lists there (some creativity
-required) and then reconfigure. Alternatively, you can change
-<tt>autotools/configure.ac</tt> and regenerate <tt>configure</tt> by running
-<tt>./autoconf/AutoRegen.sh</tt>.
+<li><tt>eliminateCallFramePseudoInstr</tt> (if call frame setup or destroy
+pseudo instructions are used, this can be called to eliminate them)</li>
 
+<li><tt>eliminateFrameIndex</tt> (eliminate abstract frame indices from
+instructions that may use them)</li>
+
+<li><tt>emitPrologue</tt> (insert prologue code into the function)</li>
+
+<li><tt>emitEpilogue</tt> (insert epilogue code into the function)</li>
+</ul>
 </div>
 
 <!-- *********************************************************************** -->
 <div class="doc_section">
-  <a name="related">Related reading material</a>
+  <a name="InstructionSet">Instruction Set</a>
 </div>
 <!-- *********************************************************************** -->
+<div class="doc_text">
+<p>During the early stages of code generation, the LLVM IR code is
+converted to a SelectionDAG with nodes that are instances of the SDNode class
+containing target instructions. An SDNode has an opcode, operands, type
+requirements, and operation properties (for example, is an operation
+commutative, does an operation load from memory). The various operation node
+types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> file (values
+of the NodeType enum in the ISD namespace).</p>
+
+<p>TableGen uses the following target description (.td) input files
+to generate much of the code for instruction definition:</p>
+<ul>
+<li><tt>Target.td</tt>, where the Instruction, Operand, InstrInfo, and other
+fundamental classes are defined</li>
+
+<li><tt>TargetSelectionDAG.td</tt>, used by SelectionDAG instruction selection
+generators, contains SDTC* classes (selection DAG type constraint), definitions
+of SelectionDAG nodes (such as imm, cond, bb, add, fadd, sub), and pattern
+support  (Pattern, Pat, PatFrag, PatLeaf, ComplexPattern)</li>
+
+<li><tt>XXXInstrFormats.td</tt>, patterns for definitions of target-specific
+instructions</li>
+
+<li><tt>XXXInstrInfo.td</tt>, target-specific definitions of instruction
+templates, condition codes, and instructions of an instruction set. (For architecture
+modifications, a different file name may be used. For example, for Pentium with
+SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and for Pentium with MMX, this
+file is <tt>X86InstrMMX.td</tt>.)</li>
+</ul>
+<p>There is also a target-specific <tt>XXX.td</tt> file, where XXX is the
+name of the target. The <tt>XXX.td</tt> file includes the other .td input files, but its
+contents are only directly important for subtargets.</p>
+
+<p>You should describe
+a concrete target-specific class
+XXXInstrInfo that represents machine
+instructions supported by a target machine. XXXInstrInfo contains an array of
+XXXInstrDescriptor objects, each of which describes one instruction. An
+instruction descriptor defines:</p>
+<ul>
+<li>opcode mnemonic</li>
+
+<li>number of operands</li>
+
+<li>list of implicit register definitions and uses</li>
+
+<li>target-independent properties (such as memory access, is
+commutable)</li>
+
+<li>target-specific flags </li>
+</ul>
+
+<p>The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a
+base for more complex instruction classes.</p>
+</div>
+
+<div class="doc_code">
+<pre>class Instruction {
+  string Namespace = "";
+  dag OutOperandList;       // An dag containing the MI def operand list.
+  dag InOperandList;        // An dag containing the MI use operand list.
+  string AsmString = "";    // The .s format to print the instruction with.
+  list<dag> Pattern;  // Set to the DAG pattern for this instruction
+  list<Register> Uses = []; 
+  list<Register> Defs = [];
+  list<Predicate> Predicates = [];  // predicates turned into isel match code
+  ... remainder not shown for space ...
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>A SelectionDAG node (SDNode) should contain an object
+representing a target-specific instruction that is defined in <tt>XXXInstrInfo.td</tt>. The
+instruction objects should represent instructions from the architecture manual
+of the target machine (such as the
+SPARC Architecture Manual for the SPARC target). </p>
+
+<p>A single
+instruction from the architecture manual is often modeled as multiple target
+instructions, depending upon its operands.  For example, a manual might
+describe an add instruction that takes a register or an immediate operand. An
+LLVM target could model this with two instructions named ADDri and ADDrr.</p>
+
+<p>You should define a
+class for each instruction category and define each opcode as a subclass of the
+category with appropriate parameters such as the fixed binary encoding of
+opcodes and extended opcodes. You should map the register bits to the bits of
+the instruction in which they are encoded (for the JIT). Also you should specify
+how the instruction should be printed when the automatic assembly printer is
+used.</p>
+
+<p>As is described in
+the SPARC Architecture Manual, Version 8, there are three major 32-bit formats
+for instructions. Format 1 is only for the CALL instruction. Format 2 is for
+branch on condition codes and SETHI (set high bits of a register) instructions.
+Format 3 is for other instructions. </p>
+
+<p>Each of these
+formats has corresponding classes in <tt>SparcInstrFormat.td</tt>. InstSP is a base
+class for other instruction classes. Additional base classes are specified for
+more precise formats: for example in <tt>SparcInstrFormat.td</tt>, F2_1 is for SETHI,
+and F2_2 is for branches. There are three other base classes: F3_1 for
+register/register operations, F3_2 for register/immediate operations, and F3_3 for
+floating-point operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
+synthetic SPARC instructions.   </p>
+
+<p><tt>SparcInstrInfo.td</tt>
+largely consists of operand and instruction definitions for the SPARC target. In
+<tt>SparcInstrInfo.td</tt>, the following target description file entry, LDrr, defines
+the Load Integer instruction for a Word (the LD SPARC opcode) from a memory
+address to a register. The first parameter, the value 3 (11<sub>2</sub>), is
+the operation value for this category of operation. The second parameter
+(000000<sub>2</sub>) is the specific operation value for LD/Load Word. The
+third parameter is the output destination, which is a register operand and
+defined in the Register target description file (IntRegs). </p>
+</div>
+<div class="doc_code">
+<pre>def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
+                 "ld [$addr], $dst",
+                 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
+</pre>
+</div>
+
+<div class="doc_text">
+<p>The fourth
+parameter is the input source, which uses the address operand MEMrr that is
+defined earlier in <tt>SparcInstrInfo.td</tt>:</p>
+</div>
+<div class="doc_code">
+<pre>def MEMrr : Operand<i32> {
+  let PrintMethod = "printMemOperand";
+  let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>The fifth parameter is a string that is used by the assembly
+printer and can be left as an empty string until the assembly printer interface
+is implemented. The sixth and final parameter is the pattern used to match the
+instruction during the SelectionDAG Select Phase described in 
+(<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM Target-Independent Code Generator</a>).
+This parameter is detailed in the next section, <a href="#InstructionSelector">Instruction Selector</a>.</p>
+
+<p>Instruction class definitions are not overloaded for different
+operand types, so separate versions of instructions are needed for register,
+memory, or immediate value operands. For example, to perform a 
+Load Integer instruction for a Word
+from an immediate operand to a register, the following instruction class is
+defined: </p>
+</div>
+<div class="doc_code">
+<pre>def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
+                 "ld [$addr], $dst",
+                 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
+</pre>
+</div>
+<div class="doc_text">
+<p>Writing these definitions for so many similar instructions can
+involve a lot of cut and paste. In td files, the <tt>multiclass</tt> directive enables
+the creation of templates to define several instruction classes at once (using
+the <tt>defm</tt> directive). For example in
+<tt>SparcInstrInfo.td</tt>, the <tt>multiclass</tt> pattern F3_12 is defined to create 2
+instruction classes each time F3_12 is invoked:  </p>
+</div>
+<div class="doc_code">
+<pre>multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
+  def rr  : F3_1 <2, Op3Val, 
+                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+                 !strconcat(OpcStr, " $b, $c, $dst"),
+                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
+  def ri  : F3_2 <2, Op3Val,
+                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+                 !strconcat(OpcStr, " $b, $c, $dst"),
+                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>So when the <tt>defm</tt> directive is used for the XOR and ADD
+instructions, as seen below, it creates four instruction objects: XORrr, XORri,
+ADDrr, and ADDri.</p>
+</div>
+<div class="doc_code">
+<pre>defm XOR   : F3_12<"xor", 0b000011, xor>;
+defm ADD   : F3_12<"add", 0b000000, add>;
+</pre>
+</div>
+
+<div class="doc_text">
+<p><tt>SparcInstrInfo.td</tt>
+also includes definitions for condition codes that are referenced by branch
+instructions. The following definitions in <tt>SparcInstrInfo.td</tt> indicate the bit location
+of the SPARC condition code; for example, the 10<sup>th</sup> bit represents
+the ‘greater than’ condition for integers, and the 22<sup>nd</sup> bit
+represents the ‘greater than’ condition for floats. </p>
+</div>
+
+<div class="doc_code">
+<pre>def ICC_NE  : ICC_VAL< 9>;  // Not Equal
+def ICC_E   : ICC_VAL< 1>;  // Equal
+def ICC_G   : ICC_VAL<10>;  // Greater
+...
+def FCC_U   : FCC_VAL<23>;  // Unordered
+def FCC_G   : FCC_VAL<22>;  // Greater
+def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
+...
+</pre>
+</div>
+
+<div class="doc_text">
+<p>(Note that <tt>Sparc.h</tt>
+also defines enums that correspond to the same SPARC condition codes. Care must
+be taken to ensure the values in <tt>Sparc.h</tt> correspond to the values in
+<tt>SparcInstrInfo.td</tt>; that is, <tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="implementInstr">Implement a subclass of 
+  <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a></a>
+</div>
+
+<div class="doc_text">
+<p>The final step is to hand code portions of XXXInstrInfo, which
+implements the interface described in <tt>TargetInstrInfo.h</tt>. These functions return
+0 or a Boolean or they assert, unless overridden. Here's a list of functions
+that are overridden for the SPARC implementation in <tt>SparcInstrInfo.cpp</tt>:</p>
+<ul>
+<li><tt>isMoveInstr</tt> (return true if the instruction is a register to
+register move; false, otherwise)</li>
 
+<li><tt>isLoadFromStackSlot</tt> (if the specified machine instruction is a
+direct load from a stack slot, return the register number of the destination
+and the FrameIndex of the stack slot)</li>
+
+<li><tt>isStoreToStackSlot</tt> (if the specified machine instruction is a
+direct store to a stack slot, return the register number of the destination and
+the FrameIndex of the stack slot)</li>
+
+<li><tt>copyRegToReg</tt> (copy values between a pair of registers)</li>
+
+<li><tt>storeRegToStackSlot</tt> (store a register value to a stack slot)</li>
+
+<li><tt>loadRegFromStackSlot</tt> (load a register value from a stack slot)</li>
+
+<li><tt>storeRegToAddr</tt> (store a register value to memory)</li>
+
+<li><tt>loadRegFromAddr</tt> (load a register value from memory)</li>
+
+<li><tt>foldMemoryOperand</tt> (attempt to combine instructions of any load or
+store instruction for the specified operand(s))</li>
+</ul>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="branchFolding">Branch Folding and If Conversion</a>
+</div>
 <div class="doc_text">
+<p>Performance can be improved by combining instructions or by eliminating
+instructions that are never reached. The <tt>AnalyzeBranch</tt> method in XXXInstrInfo may
+be implemented to examine conditional instructions and remove unnecessary
+instructions. <tt>AnalyzeBranch</tt> looks at the end of a machine basic block (MBB) for
+opportunities for improvement, such as branch folding and if conversion. The
+<tt>BranchFolder</tt> and <tt>IfConverter</tt> machine function passes (see the source files
+<tt>BranchFolding.cpp</tt> and <tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
+<tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
+instructions. </p>
+
+<p>Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and
+X86) can be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
+SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target implementation
+is shown below.</p>
 
+<p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
 <ul>
-<li><a href="CodeGenerator.html">Code generator</a> -
-    describes some of the classes in code generation at a high level, but
-    it is not (yet) complete</li>
-<li><a href="TableGenFundamentals.html">TableGen fundamentals</a> -
-    describes how to use TableGen to describe your target information
-    succinctly</li>
-<li><a href="HowToSubmitABug.html#codegen">Debugging code generation with
-    bugpoint</a> - shows bugpoint usage scenarios to simplify backend
-    development</li>
+<li>MachineBasicBlock &MBB – the incoming block to be
+examined</li>
+
+<li>MachineBasicBlock *&TBB – a destination block that is
+returned; for a conditional branch that evaluates to true, TBB is the
+destination </li>
+
+<li>MachineBasicBlock *&FBB – for a conditional branch that
+evaluates to false, FBB is returned as the destination</li>
+
+<li>std::vector<MachineOperand> &Cond – list of
+operands to evaluate a condition for a conditional branch</li>
 </ul>
 
+<p>In the simplest case, if a block ends without a branch, then it
+falls through to the successor block. No destination blocks are specified for
+either TBB or FBB, so both parameters return NULL. The start of the <tt>AnalyzeBranch</tt>
+(see code below for the ARM target) shows the function parameters and the code
+for the simplest case.</p>
+</div>
+
+<div class="doc_code">
+<pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+        MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
+        std::vector<MachineOperand> &Cond) const
+{
+  MachineBasicBlock::iterator I = MBB.end();
+  if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
+    return false;
+</pre>
+</div>
+
+<div class="doc_text">
+<p>If a block ends with a single unconditional branch instruction,
+then <tt>AnalyzeBranch</tt> (shown below) should return the destination of that branch
+in the TBB parameter. </p>
+</div>
+
+<div class="doc_code">
+<pre>if (LastOpc == ARM::B || LastOpc == ARM::tB) {
+      TBB = LastInst->getOperand(0).getMBB();
+      return false;
+    }
+</pre>
+</div>
+
+<div class="doc_text">
+<p>If a block ends with two unconditional branches, then the second
+branch is never reached. In that situation, as shown below, remove the last
+branch instruction and return the penultimate branch in the TBB parameter. </p>
+</div>
+
+<div class="doc_code">
+<pre>if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &&
+      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
+    TBB = SecondLastInst->getOperand(0).getMBB();
+    I = LastInst;
+    I->eraseFromParent();
+    return false;
+  }
+</pre>
+</div>
+<div class="doc_text">
+<p>A block may end with a single conditional branch instruction that
+falls through to successor block if the condition evaluates to false. In that
+case, <tt>AnalyzeBranch</tt> (shown below) should return the destination of that
+conditional branch in the TBB parameter and a list of operands in the <tt>Cond</tt>
+parameter to evaluate the condition. </p>
+</div>
+
+<div class="doc_code">
+<pre>if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
+      // Block ends with fall-through condbranch.
+      TBB = LastInst->getOperand(0).getMBB();
+      Cond.push_back(LastInst->getOperand(1));
+      Cond.push_back(LastInst->getOperand(2));
+      return false;
+    }
+</pre>
+</div>
+
+<div class="doc_text">
+<p>If a block ends with both a conditional branch and an ensuing
+unconditional branch, then <tt>AnalyzeBranch</tt> (shown below) should return the
+conditional branch destination (assuming it corresponds to a conditional
+evaluation of ‘true’) in the TBB parameter and the unconditional branch
+destination in the FBB (corresponding to a conditional evaluation of ‘false’).
+A list of operands to evaluate the condition should be returned in the <tt>Cond</tt>
+parameter.</p>
+</div>
+
+<div class="doc_code">
+<pre>unsigned SecondLastOpc = SecondLastInst->getOpcode();
+  if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
+      (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
+    TBB =  SecondLastInst->getOperand(0).getMBB();
+    Cond.push_back(SecondLastInst->getOperand(1));
+    Cond.push_back(SecondLastInst->getOperand(2));
+    FBB = LastInst->getOperand(0).getMBB();
+    return false;
+  }
+</pre>
+</div>
+
+<div class="doc_text">
+<p>For the last two cases (ending with a single conditional branch or
+ending with one conditional and one unconditional branch), the operands returned
+in the <tt>Cond</tt> parameter can be passed to methods of other instructions to create
+new branches or perform other operations. An implementation of <tt>AnalyzeBranch</tt>
+requires the helper methods <tt>RemoveBranch</tt> and <tt>InsertBranch</tt> to manage subsequent
+operations.</p>
+
+<p><tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
+<tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
+do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
+return true if it encounters a terminator it cannot handle, such as an indirect
+branch.</p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="InstructionSelector">Instruction Selector</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>LLVM uses a SelectionDAG to represent LLVM IR instructions, and nodes
+of the SelectionDAG ideally represent native target instructions. During code
+generation, instruction selection passes are performed to convert non-native
+DAG instructions into native target-specific instructions. The pass described
+in <tt>XXXISelDAGToDAG.cpp</tt> is used to match patterns and perform DAG-to-DAG
+instruction selection. Optionally, a pass may be defined (in
+<tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG operations for branch
+instructions. Later,
+the code in <tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types
+not supported natively (legalizes) in a Selection DAG. </p>
+
+<p>TableGen generates code for instruction selection using the
+following target description input files:</p>
+<ul>
+<li><tt>XXXInstrInfo.td</tt> contains definitions of instructions in a
+target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which is included
+in <tt>XXXISelDAGToDAG.cpp</tt>. </li>
+
+<li><tt>XXXCallingConv.td</tt> contains the calling and return value conventions
+for the target architecture, and it generates <tt>XXXGenCallingConv.inc</tt>, which is
+included in <tt>XXXISelLowering.cpp</tt>.</li>
+</ul>
+
+<p>The implementation of an instruction selection pass must include
+a header that declares the FunctionPass class or a subclass of FunctionPass. In
+<tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction selection
+pass into the queue of passes to run.</p>
+
+<p>The LLVM static
+compiler (<tt>llc</tt>) is an excellent tool for visualizing the contents of DAGs. To display
+the SelectionDAG before or after specific processing phases, use the command
+line options for <tt>llc</tt>, described at <a
+href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
+SelectionDAG Instruction Selection Process</a>.
+</p>
+
+<p>To describe instruction selector behavior, you should add
+patterns for lowering LLVM code into a SelectionDAG as the last parameter of
+the instruction definitions in <tt>XXXInstrInfo.td</tt>. For example, in
+<tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and the last
+parameter describes a pattern with the store DAG operator.</p>
+</div>
+
+<div class="doc_code">
+<pre>def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
+                 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>;
+</pre>
+</div>
+
+<div class="doc_text">
+<p>ADDRrr is a memory mode that is also defined in <tt>SparcInstrInfo.td</tt>:</p>
+</div>
+
+<div class="doc_code">
+<pre>def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
+</pre>
+</div>
+
+<div class="doc_text">
+<p>The definition of ADDRrr refers to SelectADDRrr, which is a function defined in an
+implementation of the Instructor Selector (such as <tt>SparcISelDAGToDAG.cpp</tt>). </p>
+
+<p>In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store
+is defined below:</p>
+</div>
+
+<div class="doc_code">
+<pre>def store : PatFrag<(ops node:$val, node:$ptr),
+                    (st node:$val, node:$ptr), [{
+  if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
+    return !ST->isTruncatingStore() && 
+           ST->getAddressingMode() == ISD::UNINDEXED;
+  return false;
+}]>;
+</pre>
+</div>
+<div class="doc_text">
+<p><tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
+<tt>SelectCode</tt> method that is used to call the appropriate processing method for an
+instruction. In this example, <tt>SelectCode</tt> calls <tt>Select_ISD_STORE</tt> for the
+ISD::STORE opcode.</p>
+</div>
+
+<div class="doc_code">
+<pre>SDNode *SelectCode(SDOperand N) {
+  ... 
+  MVT::ValueType NVT = N.Val->getValueType(0);
+  switch (N.getOpcode()) {
+  case ISD::STORE: {
+    switch (NVT) {
+    default:
+      return Select_ISD_STORE(N);
+      break;
+    }
+    break;
+  }
+  ...
+</pre>
+</div>
+<div class="doc_text">
+<p>The pattern for STrr is matched, so elsewhere in
+<tt>XXXGenDAGISel.inc</tt>, code for STrr is created for <tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method
+is also generated in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
+instruction. </p>
+</div>
+
+<div class="doc_code">
+<pre>SDNode *Select_ISD_STORE(const SDOperand &N) {
+  SDOperand Chain = N.getOperand(0);
+  if (Predicate_store(N.Val)) {
+    SDOperand N1 = N.getOperand(1);
+    SDOperand N2 = N.getOperand(2);
+    SDOperand CPTmp0;
+    SDOperand CPTmp1;
+ 
+    // Pattern: (st:void IntRegs:i32:$src, 
+    //           ADDRrr:i32:$addr)<<P:Predicate_store>>
+    // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
+    // Pattern complexity = 13  cost = 1  size = 0
+    if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
+        N1.Val->getValueType(0) == MVT::i32 &&
+        N2.Val->getValueType(0) == MVT::i32) {
+      return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
+    }
+...
+</pre>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
+</div>
+<div class="doc_text">
+<p>The Legalize phase converts a DAG to use types and operations
+that are natively supported by the target. For natively unsupported types and
+operations, you need to add code to the target-specific XXXTargetLowering implementation
+to convert unsupported types and operations to supported ones.</p>
+
+<p>In the constructor for the XXXTargetLowering class, first use the
+<tt>addRegisterClass</tt> method to specify which types are supports and which register
+classes are associated with them. The code for the register classes are generated
+by TableGen from <tt>XXXRegisterInfo.td</tt> and placed in <tt>XXXGenRegisterInfo.h.inc</tt>. For
+example, the implementation of the constructor for the SparcTargetLowering
+class (in <tt>SparcISelLowering.cpp</tt>) starts with the following code:</p>
+</div>
+
+<div class="doc_code">
+<pre>addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
+addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
+addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 
+</pre>
+</div>
+
+<div class="doc_text">
+<p>You should examine the node types in the ISD namespace 
+(<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>)
+and determine which operations the target natively supports. For operations
+that do <u>not</u> have native support, add a callback to the constructor for
+the XXXTargetLowering class, so the instruction selection process knows what to
+do. The TargetLowering class callback methods (declared in
+<tt>llvm/Target/TargetLowering.h</tt>) are:</p>
+<ul>
+<li><tt>setOperationAction</tt> (general operation)</li>
+
+<li><tt>setLoadExtAction</tt> (load with extension)</li>
+
+<li><tt>setTruncStoreAction</tt> (truncating store)</li>
+
+<li><tt>setIndexedLoadAction</tt> (indexed load)</li>
+
+<li><tt>setIndexedStoreAction</tt> (indexed store)</li>
+
+<li><tt>setConvertAction</tt> (type conversion)</li>
+
+<li><tt>setCondCodeAction</tt> (support for a given condition code)</li>
+</ul>
+
+<p>Note: on older releases, <tt>setLoadXAction</tt> is used instead of <tt>setLoadExtAction</tt>.
+Also, on older releases, <tt>setCondCodeAction</tt> may not be supported. Examine your
+release to see what methods are specifically supported.</p>
+
+<p>These callbacks are used to determine that an operation does or
+does not work with a specified type (or types). And in all cases, the third
+parameter is a LegalAction type enum value: <tt>Promote</tt>, <tt>Expand</tt>, 
+<tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
+contains examples of all four LegalAction values.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="promote">Promote</a>
+</div>
+
+<div class="doc_text">
+<p>For an operation without native support for a given type, the
+specified type may be promoted to a larger type that is supported. For example,
+SPARC does not support a sign-extending load for Boolean values (<tt>i1</tt> type), so
+in <tt>SparcISelLowering.cpp</tt> the third 
+parameter below, <tt>Promote</tt>, changes <tt>i1</tt> type
+values to a large type before loading.</p>
+</div>
+
+<div class="doc_code">
+<pre>setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="expand">Expand</a>
+</div>
+<div class="doc_text">
+<p>For a type without native support, a value may need to be broken
+down further, rather than promoted. For an operation without native support, a
+combination of other operations may be used to similar effect. In SPARC, the
+floating-point sine and cosine trig operations are supported by expansion to
+other operations, as indicated by the third parameter, <tt>Expand</tt>, to
+<tt>setOperationAction</tt>:</p>
+</div>
+
+<div class="doc_code">
+<pre>setOperationAction(ISD::FSIN, MVT::f32, Expand);
+setOperationAction(ISD::FCOS, MVT::f32, Expand);
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="custom">Custom</a>
+</div>
+<div class="doc_text">
+<p>For some operations, simple type promotion or operation expansion
+may be insufficient. In some cases, a special intrinsic function must be
+implemented. </p>
+
+<p>For example, a constant value may require special treatment, or
+an operation may require spilling and restoring registers in the stack and
+working with register allocators. </p>
+
+<p>As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
+conversion from a floating point value to a signed integer, first the
+<tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third parameter:</p>
+</div>
+
+<div class="doc_code">
+<pre>setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+</pre>
+</div>    
+<div class="doc_text">
+<p>In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a case
+statement should be added to indicate what function to call. In the following
+code, an FP_TO_SINT opcode will call the <tt>LowerFP_TO_SINT</tt> method:</p>
+</div>
+
+<div class="doc_code">
+<pre>SDOperand SparcTargetLowering::LowerOperation(
+                               SDOperand Op, SelectionDAG &DAG) {
+  switch (Op.getOpcode()) {
+  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+  ...
+  }
+}
+</pre>
+</div>        
+<div class="doc_text">
+<p>Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
+register to convert the floating-point value to an integer.</p>
+</div>
+
+<div class="doc_code">
+<pre>static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
+assert(Op.getValueType() == MVT::i32);
+  Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
+  return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
+}
+</pre>
+</div>    
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="legal">Legal</a>
+</div>
+<div class="doc_text">
+<p>The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
+operation <u>is</u> natively supported. <tt>Legal</tt> represents the default condition,
+so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action for CTPOP (an
+operation to count the bits set in an integer) is natively supported only for
+SPARC v9. The following code enables the <tt>Expand</tt> conversion technique for non-v9
+SPARC implementations.</p>
+</div>
+
+<div class="doc_code">
+<pre>setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+...
+if (TM.getSubtarget<SparcSubtarget>().isV9())
+  setOperationAction(ISD::CTPOP, MVT::i32, Legal);
+  case ISD::SETULT: return SPCC::ICC_CS;
+  case ISD::SETULE: return SPCC::ICC_LEU;
+  case ISD::SETUGT: return SPCC::ICC_GU;
+  case ISD::SETUGE: return SPCC::ICC_CC;
+  }
+}
+</pre>
+</div>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="callingConventions">Calling Conventions</a>
+</div>
+<div class="doc_text">
+<p>To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
+uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
+<tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target descriptor file
+<tt>XXXGenCallingConv.td</tt> and generate the header file <tt>XXXGenCallingConv.inc</tt>, which
+is typically included in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
+<tt>TargetCallingConv.td</tt> to specify:</p>
+<ul>
+<li>the order of parameter allocation</li>
+
+<li>where parameters and return values are placed (that is, on the
+stack or in registers)</li>
+
+<li>which registers may be used</li>
+
+<li>whether the caller or callee unwinds the stack</li>
+</ul>
+
+<p>The following example demonstrates the use of the CCIfType and
+CCAssignToReg interfaces. If the CCIfType predicate is true (that is, if the
+current argument is of type f32 or f64), then the action is performed. In this
+case, the CCAssignToReg action assigns the argument value to the first
+available register: either R0 or R1.  </p>
+</div>
+<div class="doc_code">
+<pre>CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
+</pre>
+</div>
+<div class="doc_text">
+<p><tt>SparcCallingConv.td</tt> contains definitions for a target-specific return-value
+calling convention (RetCC_Sparc32) and a basic 32-bit C calling convention
+(CC_Sparc32). The definition of RetCC_Sparc32 (shown below) indicates which
+registers are used for specified scalar return types. A single-precision float
+is returned to register F0, and a double-precision float goes to register D0. A
+32-bit integer is returned in register I0 or I1. </p>
+</div>
+
+<div class="doc_code">
+<pre>def RetCC_Sparc32 : CallingConv<[
+  CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
+  CCIfType<[f32], CCAssignToReg<[F0]>>,
+  CCIfType<[f64], CCAssignToReg<[D0]>>
+]>;
+</pre>
+</div>
+<div class="doc_text">
+<p>The definition of CC_Sparc32 in <tt>SparcCallingConv.td</tt> introduces
+CCAssignToStack, which assigns the value to a stack slot with the specified size
+and alignment. In the example below, the first parameter, 4, indicates the size
+of the slot, and the second parameter, also 4, indicates the stack alignment
+along 4-byte units. (Special cases: if size is zero, then the ABI size is used;
+if alignment is zero, then the ABI alignment is used.) </p>
+</div>
+
+<div class="doc_code">
+<pre>def CC_Sparc32 : CallingConv<[
+  // All arguments get passed in integer registers if there is space.
+  CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
+  CCAssignToStack<4, 4>
+]>;
+</pre>
+</div>
+<div class="doc_text">
+<p>CCDelegateTo is another commonly used interface, which tries to find
+a specified sub-calling convention and, if a match is found, it is invoked. In
+the following example (in <tt>X86CallingConv.td</tt>), the definition of RetCC_X86_32_C
+ends with CCDelegateTo. After the current value is assigned to the register ST0
+or ST1, the RetCC_X86Common is invoked.</p>
+</div>
+
+<div class="doc_code">
+<pre>def RetCC_X86_32_C : CallingConv<[
+  CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
+  CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
+  CCDelegateTo<RetCC_X86Common>
+]>;
+</pre>
+</div>
+<div class="doc_text">
+<p>CCIfCC is an interface that attempts to match the given name to
+the current calling convention. If the name identifies the current calling
+convention, then a specified action is invoked. In the following example (in
+<tt>X86CallingConv.td</tt>), if the Fast calling convention is in use, then RetCC_X86_32_Fast
+is invoked. If the SSECall calling convention is in use, then RetCC_X86_32_SSE
+is invoked. </p>
+</div>
+
+<div class="doc_code">
+<pre>def RetCC_X86_32 : CallingConv<[
+  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
+  CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
+  CCDelegateTo<RetCC_X86_32_C>
+]>;
+</pre>
+</div>
+<div class="doc_text">
+<p>Other calling convention interfaces include:</p>
+<ul>
+<li>CCIf <predicate, action> - if the predicate matches, apply
+the action</li>
+
+<li>CCIfInReg <action> - if the argument is marked with the
+‘inreg’ attribute, then apply the action </li>
+
+<li>CCIfNest <action> - if the argument is marked with the
+‘nest’ attribute, then apply the action</li>
+
+<li>CCIfNotVarArg <action> - if the current function does not
+take a variable number of arguments, apply the action</li>
+
+<li>CCAssignToRegWithShadow <registerList, shadowList> -
+similar to CCAssignToReg, but with a shadow list of registers</li>
+
+<li>CCPassByVal <size, align> - assign value to a stack slot
+with the minimum specified size and alignment </li>
+
+<li>CCPromoteToType <type> - promote the current value to the specified
+type</li>
+
+<li>CallingConv <[actions]> - define each calling convention
+that is supported</li>
+</ul>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="assemblyPrinter">Assembly Printer</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>During the code
+emission stage, the code generator may utilize an LLVM pass to produce assembly
+output. To do this, you want to implement the code for a printer that converts
+LLVM IR to a GAS-format assembly language for your target machine, using the
+following steps:</p>
+<ul>
+<li>Define all the assembly strings for your target, adding them to
+the instructions defined in the <tt>XXXInstrInfo.td</tt> file. 
+(See <a href="#InstructionSet">Instruction Set</a>.)
+TableGen will produce an output file (<tt>XXXGenAsmWriter.inc</tt>) with an
+implementation of the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
+
+<li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones
+declaration of the XXXTargetAsmInfo class (a subclass of TargetAsmInfo). </li>
+
+<li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
+for TargetAsmInfo properties and sometimes new implementations for methods</li>
+
+<li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the AsmPrinter class
+that performs the LLVM-to-assembly conversion. </li>
+</ul>
+
+<p>The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration
+of the XXXTargetAsmInfo class for use in <tt>XXXTargetAsmInfo.cpp</tt>. Similarly,
+<tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of XXXTargetAsmInfo replacement
+values that override the default values in <tt>TargetAsmInfo.cpp</tt>. For example in
+<tt>SparcTargetAsmInfo.cpp</tt>, </p>
+</div>
+
+<div class="doc_code">
+<pre>SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
+  Data16bitsDirective = "\t.half\t";
+  Data32bitsDirective = "\t.word\t";
+  Data64bitsDirective = 0;  // .xword is only supported by V9.
+  ZeroDirective = "\t.skip\t";
+  CommentString = "!";
+  ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>The X86 assembly printer implementation (X86TargetAsmInfo) is an
+example where the target specific TargetAsmInfo class uses overridden methods:
+<tt>ExpandInlineAsm</tt> and <tt>PreferredEHDataFormat</tt>. </p>
+
+<p>A target-specific implementation of AsmPrinter is written in
+<tt>XXXAsmPrinter.cpp</tt>, which implements the AsmPrinter class that converts the LLVM
+to printable assembly. The implementation must include the following headers
+that have declarations for the AsmPrinter and MachineFunctionPass classes. The
+MachineFunctionPass is a subclass of FunctionPass. </p>
+</div>
+
+<div class="doc_code">
+<pre>#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h" 
+</pre>
+</div>
+
+<div class="doc_text">
+<p>As a FunctionPass, AsmPrinter first calls <tt>doInitialization</tt> to set
+up the AsmPrinter. In SparcAsmPrinter, a Mangler object is instantiated to
+process variable names.</p>
+
+<p>In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method (declared
+in MachineFunctionPass) must be implemented for XXXAsmPrinter. In
+MachineFunctionPass, the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
+Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but generally
+do the following to process each machine function:</p>
+<ul>
+<li>call <tt>SetupMachineFunction</tt> to perform initialization</li>
+
+<li>call <tt>EmitConstantPool</tt> to print out (to the output stream)
+constants which have been spilled to memory </li>
+
+<li>call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the
+current function </li>
+
+<li>print out the label for the current function</li>
+
+<li>print out the code for the function, including basic block labels
+and the assembly for the instruction (using <tt>printInstruction</tt>)</li>
+</ul>
+<p>The XXXAsmPrinter implementation must also include the code
+generated by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
+in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the <tt>printInstruction</tt>
+method that may call these methods:</p>
+<ul>
+<li><tt>printOperand</tt></li>
+
+<li><tt>printMemOperand</tt></li>
+
+<li><tt>printCCOperand (for conditional statements)</tt></li>
+
+<li><tt>printDataDirective</tt></li>
+
+<li><tt>printDeclare</tt></li>
+
+<li><tt>printImplicitDef</tt></li>
+
+<li><tt>printInlineAsm</tt></li>
+
+<li><tt>printLabel</tt></li>
+
+<li><tt>printPICJumpTableEntry</tt></li>
+
+<li><tt>printPICJumpTableSetLabel</tt></li>
+</ul>
+
+<p>The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
+<tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are generally adequate for
+printing assembly and do not need to be overridden. (<tt>printBasicBlockLabel</tt> is
+another method that is implemented in <tt>AsmPrinter.cpp</tt> that may be directly used
+in an implementation of XXXAsmPrinter.)</p>
+
+<p>The <tt>printOperand</tt> method is implemented with a long switch/case
+statement for the type of operand: register, immediate, basic block, external
+symbol, global address, constant pool index, or jump table index. For an
+instruction with a memory address operand, the <tt>printMemOperand</tt> method should be
+implemented to generate the proper output. Similarly, <tt>printCCOperand</tt> should be
+used to print a conditional operand. </p>
+
+<p><tt>doFinalization</tt> should be overridden in XXXAsmPrinter, and
+it should be called to shut down the assembly printer. During <tt>doFinalization</tt>,
+global variables and constants are printed to output.</p>
+</div>
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="subtargetSupport">Subtarget Support</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>Subtarget support is used to inform the code generation process
+of instruction set variations for a given chip set.  For example, the LLVM
+SPARC implementation provided covers three major versions of the SPARC
+microprocessor architecture: Version 8 (V8, which is a 32-bit architecture),
+Version 9 (V9, a 64-bit architecture), and the UltraSPARC architecture. V8 has
+16 double-precision floating-point registers that are also usable as either 32
+single-precision or 8 quad-precision registers.  V8 is also purely big-endian. V9
+has 32 double-precision floating-point registers that are also usable as 16
+quad-precision registers, but cannot be used as single-precision registers. The
+UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
+extensions.</p>
+
+<p>If subtarget support is needed, you should implement a
+target-specific XXXSubtarget class for your architecture. This class should
+process the command-line options <tt>–mcpu=</tt> and <tt>–mattr=</tt></p>
+
+<p>TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files to
+generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown below, the
+SubtargetFeature interface is defined. The first 4 string parameters of the
+SubtargetFeature interface are a feature name, an attribute set by the feature,
+the value of the attribute, and a description of the feature. (The fifth
+parameter is a list of features whose presence is implied, and its default
+value is an empty array.)</p>
+</div>
+
+<div class="doc_code">
+<pre>class SubtargetFeature<string n, string a,  string v, string d,
+                       list<SubtargetFeature> i = []> {
+  string Name = n;
+  string Attribute = a;
+  string Value = v;
+  string Desc = d;
+  list<SubtargetFeature> Implies = i;
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
+following features.  </p>
+</div>
+
+<div class="doc_code">
+<pre>def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
+                     "Enable SPARC-V9 instructions">;
+def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 
+                     "V8DeprecatedInsts", "true",
+                     "Enable deprecated V8 instructions in V9 mode">;
+def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
+                     "Enable UltraSPARC Visual Instruction Set extensions">;
+</pre>
+</div>
+
+<div class="doc_text">
+<p>Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used
+to define particular SPARC processor subtypes that may have the previously
+described features. </p>
+</div>
+
+<div class="doc_code">
+<pre>class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+ 
+def : Proc<"generic",         []>;
+def : Proc<"v8",              []>;
+def : Proc<"supersparc",      []>;
+def : Proc<"sparclite",       []>;
+def : Proc<"f934",            []>;
+def : Proc<"hypersparc",      []>;
+def : Proc<"sparclite86x",    []>;
+def : Proc<"sparclet",        []>;
+def : Proc<"tsc701",          []>;
+def : Proc<"v9",              [FeatureV9]>;
+def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
+def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
+def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
+</pre>
+</div>
+
+<div class="doc_text">
+<p>From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
+SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
+constants to represent the CPU features and CPU subtypes, and the
+ParseSubtargetFeatures method that parses the features string that sets
+specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file should be
+included in the <tt>SparcSubtarget.cpp</tt>. The target-specific implementation of the XXXSubtarget
+method should follow this pseudocode:</p>
+</div>
+
+<div class="doc_code">
+<pre>XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
+  // Set the default features
+  // Determine default and user specified characteristics of the CPU
+  // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
+  // Perform any additional operations
+}
+</pre>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="jitSupport">JIT Support</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>The implementation of a target machine optionally includes a Just-In-Time
+(JIT) code generator that emits machine code and auxiliary structures as binary
+output that can be written directly to memory. 
+To do this, implement JIT code generation by performing the following
+steps:</p>
+<ul>
+<li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
+pass that transforms target-machine instructions into relocatable machine code.</li>
+
+<li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces
+for target-specific code-generation
+activities, such as emitting machine code and stubs. </li>
+
+<li>Modify XXXTargetMachine so that it provides a TargetJITInfo
+object through its <tt>getJITInfo</tt> method. </li>
+</ul>
+
+<p>There are several different approaches to writing the JIT support
+code. For instance, TableGen and target descriptor files may be used for
+creating a JIT code generator, but are not mandatory. For the Alpha and PowerPC
+target machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
+contains the binary coding of machine instructions and the
+<tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT implementations
+do not.</p>
+
+<p>Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
+<tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the MachineCodeEmitter
+class containing code for several callback functions that write data (in bytes,
+words, strings, etc.) to the output stream.</p>
+</div>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="mce">Machine Code Emitter</a>
+</div>
+
+<div class="doc_text">
+<p>In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the Emitter class is
+implemented as a function pass (subclass of MachineFunctionPass). The
+target-specific implementation of <tt>runOnMachineFunction</tt> (invoked by
+<tt>runOnFunction</tt> in MachineFunctionPass) iterates through the MachineBasicBlock
+calls <tt>emitInstruction</tt> to process each instruction and emit binary code. <tt>emitInstruction</tt>
+is largely implemented with case statements on the instruction types defined in
+<tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>, the <tt>emitInstruction</tt> method
+is built around the following switch/case statements:</p>
+</div>
+
+<div class="doc_code">
+<pre>switch (Desc->TSFlags & X86::FormMask) {
+case X86II::Pseudo:  // for not yet implemented instructions 
+   ...               // or pseudo-instructions
+   break;
+case X86II::RawFrm:  // for instructions with a fixed opcode value
+   ...
+   break;
+case X86II::AddRegFrm: // for instructions that have one register operand 
+   ...                 // added to their opcode
+   break;
+case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
+   ...                 // to specify a destination (register)
+   break;
+case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
+   ...                 // to specify a destination (memory)
+   break;
+case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
+   ...                 // to specify a source (register)
+   break;
+case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
+   ...                 // to specify a source (memory)
+   break;
+case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on 
+case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
+case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
+case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
+   ...  
+   break;
+case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
+case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
+case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
+case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
+   ...  
+   break;
+case X86II::MRMInitReg: // for instructions whose source and
+   ...                  // destination are the same register
+   break;
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>The implementations of these case statements often first emit the
+opcode and then get the operand(s). Then depending upon the operand, helper
+methods may be called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
+for the <tt>X86II::AddRegFrm</tt> case, the first data emitted (by <tt>emitByte</tt>) is the
+opcode added to the register operand. Then an object representing the machine
+operand, MO1, is extracted. The helper methods such as <tt>isImmediate</tt>,
+<tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and 
+<tt>isJumpTableIndex</tt>
+determine the operand type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
+as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>, 
+<tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
+and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.) </p>
+</div>
+
+<div class="doc_code">
+<pre>case X86II::AddRegFrm:
+  MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
+  
+  if (CurOp != NumOps) {
+    const MachineOperand &MO1 = MI.getOperand(CurOp++);
+    unsigned Size = X86InstrInfo::sizeOfImm(Desc);
+    if (MO1.isImmediate())
+      emitConstant(MO1.getImm(), Size);
+    else {
+      unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+        : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+      if (Opcode == X86::MOV64ri) 
+        rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
+      if (MO1.isGlobalAddress()) {
+        bool NeedStub = isa<Function>(MO1.getGlobal());
+        bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
+        emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
+                          NeedStub, isLazy);
+      } else if (MO1.isExternalSymbol())
+        emitExternalSymbolAddress(MO1.getSymbolName(), rt);
+      else if (MO1.isConstantPoolIndex())
+        emitConstPoolAddress(MO1.getIndex(), rt);
+      else if (MO1.isJumpTableIndex())
+        emitJumpTableAddress(MO1.getIndex(), rt);
+    }
+  }
+  break;
+</pre>
+</div>
+<div class="doc_text">
+<p>In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the variable <tt>rt</tt>,
+which is a RelocationType enum that may be used to relocate addresses (for
+example, a global address with a PIC base offset). The RelocationType enum for
+that target is defined in the short target-specific <tt>XXXRelocations.h</tt> file. The
+RelocationType is used by the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to
+rewrite addresses for referenced global symbols.</p>
+
+<p>For example, <tt>X86Relocations.h</tt> specifies the following relocation
+types for the X86 addresses. In all four cases, the relocated value is added to
+the value already in memory. For <tt>reloc_pcrel_word</tt> and <tt>reloc_picrel_word</tt>, 
+there is an additional initial adjustment.</p>
+</div>
+
+<div class="doc_code">
+<pre>enum RelocationType {
+  reloc_pcrel_word = 0,  // add reloc value after adjusting for the PC loc
+  reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
+  reloc_absolute_word = 2, // absolute relocation; no additional adjustment 
+  reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
+};
+</pre>
+</div>
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="targetJITInfo">Target JIT Info</a>
+</div>
+<div class="doc_text">
+<p><tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific code-generation
+activities, such as emitting machine code and stubs. At minimum, 
+a target-specific version of XXXJITInfo implements the following:</p>
+<ul>
+<li><tt>getLazyResolverFunction</tt> – initializes the JIT, gives the
+target a function that is used for compilation </li>
+
+<li><tt>emitFunctionStub</tt> – returns a native function with a
+specified address for a callback function</li>
+
+<li><tt>relocate</tt> – changes the addresses of referenced globals,
+based on relocation types</li>
+
+<li>callback function that are wrappers to a function stub that is
+used when the real target is not initially known </li>
+</ul>
+
+<p><tt>getLazyResolverFunction</tt> is generally trivial to implement. It
+makes the incoming parameter as the global JITCompilerFunction and returns the
+callback function that will be used a function wrapper. For the Alpha target
+(in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt> implementation is simply:</p>
+</div>
+
+<div class="doc_code">
+<pre>TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(  
+                                            JITCompilerFn F) 
+{
+  JITCompilerFunction = F;
+  return AlphaCompilationCallback;
+}
+</pre>
+</div>
+<div class="doc_text">
+<p>For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is
+a little more complication, because it returns a different callback function
+for processors with SSE instructions and XMM registers. </p>
+
+<p>The callback function initially saves and later restores the
+callee register values, incoming arguments, and frame and return address. The
+callback function needs low-level access to the registers or stack, so it is typically
+implemented with assembler. </p>
 </div>
 
 <!-- *********************************************************************** -->
@@ -300,7 +2069,7 @@
   <a href="http://validator.w3.org/check/referer"><img
   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
 
-  <a href="http://misha.brukman.net">Misha Brukman</a><br>
+  <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a>
   <br>
   Last modified: $Date$





More information about the llvm-commits mailing list