[llvm-commits] [llvm] r58426 - in /llvm/trunk: include/llvm/Target/TargetLowering.h lib/CodeGen/SelectionDAG/LegalizeDAG.cpp lib/CodeGen/SelectionDAG/LegalizeTypes.h lib/CodeGen/SelectionDAG/TargetLowering.cpp lib/Target/X86/X86ISelLowering.cpp lib/Target/X86/X86ISelLowering.h

Mon P Wang wangmp at apple.com
Thu Oct 30 01:01:46 PDT 2008


Author: wangmp
Date: Thu Oct 30 03:01:45 2008
New Revision: 58426

URL: http://llvm.org/viewvc/llvm-project?rev=58426&view=rev
Log:
Add initial support for vector widening.  Logic is set to widen for X86.
One will only see an effect if legalizetype is not active.  Will move
support to LegalizeType soon.

Modified:
    llvm/trunk/include/llvm/Target/TargetLowering.h
    llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
    llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeTypes.h
    llvm/trunk/lib/CodeGen/SelectionDAG/TargetLowering.cpp
    llvm/trunk/lib/Target/X86/X86ISelLowering.cpp
    llvm/trunk/lib/Target/X86/X86ISelLowering.h

Modified: llvm/trunk/include/llvm/Target/TargetLowering.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Target/TargetLowering.h?rev=58426&r1=58425&r2=58426&view=diff

==============================================================================
--- llvm/trunk/include/llvm/Target/TargetLowering.h (original)
+++ llvm/trunk/include/llvm/Target/TargetLowering.h Thu Oct 30 03:01:45 2008
@@ -164,7 +164,10 @@
     
     LegalizeAction getTypeAction(MVT VT) const {
       if (VT.isExtended()) {
-        if (VT.isVector()) return Expand;
+        if (VT.isVector()) {
+          // First try vector widening
+          return Promote;
+        }
         if (VT.isInteger())
           // First promote to a power-of-two size, then expand if necessary.
           return VT == VT.getRoundIntegerType() ? Expand : Promote;
@@ -261,6 +264,13 @@
                                   unsigned &NumIntermediates,
                                   MVT &RegisterVT) const;
   
+  /// getWidenVectorType: given a vector type, returns the type to widen to
+  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
+  /// If there is no vector type that we want to widen to, returns MVT::Other
+  /// When and were to widen is target dependent based on the cost of
+  /// scalarizing vs using the wider vector type.
+  virtual MVT getWidenVectorType(MVT VT);
+
   typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
   legal_fpimm_iterator legal_fpimm_begin() const {
     return LegalFPImmediates.begin();
@@ -1455,7 +1465,7 @@
   MVT TransformToType[MVT::LAST_VALUETYPE];
 
   // Defines the capacity of the TargetLowering::OpActions table
-  static const int OpActionsCapacity = 212;
+  static const int OpActionsCapacity = 218;
 
   /// OpActions - For each operation and each value type, keep a LegalizeAction
   /// that indicates how instruction selection should deal with the operation.

Modified: llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp?rev=58426&r1=58425&r2=58426&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp Thu Oct 30 03:01:45 2008
@@ -86,12 +86,12 @@
   DenseMap<SDValue, SDValue> PromotedNodes;
 
   /// ExpandedNodes - For nodes that need to be expanded this map indicates
-  /// which which operands are the expanded version of the input.  This allows
+  /// which operands are the expanded version of the input.  This allows
   /// us to avoid expanding the same node more than once.
   DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes;
 
   /// SplitNodes - For vector nodes that need to be split, this map indicates
-  /// which which operands are the split version of the input.  This allows us
+  /// which operands are the split version of the input.  This allows us
   /// to avoid splitting the same node more than once.
   std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes;
   
@@ -100,6 +100,11 @@
   /// processed to the result.
   std::map<SDValue, SDValue> ScalarizedNodes;
   
+  /// WidenNodes - For nodes that need to be widen from one vector type to
+  /// another, this contains the mapping of ones we have already widen.  This
+  /// allows us to avoid widening more than once.
+  std::map<SDValue, SDValue> WidenNodes;
+
   void AddLegalizedOperand(SDValue From, SDValue To) {
     LegalizedNodes.insert(std::make_pair(From, To));
     // If someone requests legalization of the new node, return itself.
@@ -112,6 +117,12 @@
     // If someone requests legalization of the new node, return itself.
     LegalizedNodes.insert(std::make_pair(To, To));
   }
+  void AddWidenOperand(SDValue From, SDValue To) {
+    bool isNew = WidenNodes.insert(std::make_pair(From, To)).second;
+    assert(isNew && "Got into the map somehow?");
+    // If someone requests legalization of the new node, return itself.
+    LegalizedNodes.insert(std::make_pair(To, To));
+  }
 
 public:
   explicit SelectionDAGLegalize(SelectionDAG &DAG);
@@ -169,6 +180,15 @@
   /// types.
   void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi);
 
+  /// WidenVectorOp - Widen a vector operation in order to do the computation
+  /// in a wider type given to a wider type given by WidenVT (e.g., v3i32 to
+  /// v4i32).  The produced value will have the correct value for the existing
+  /// elements but no guarantee is made about the new elements at the end of
+  /// the vector: it may be zero, sign-extended, or garbage.  This is useful
+  /// when we have instruction operating on an illegal vector type and we want
+  /// to widen it to do the computation on a legal wider vector type.
+  SDValue WidenVectorOp(SDValue Op, MVT WidenVT);
+
   /// SplitVectorOp - Given an operand of vector type, break it down into
   /// two smaller values.
   void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi);
@@ -178,6 +198,62 @@
   /// scalar (e.g. f32) value.
   SDValue ScalarizeVectorOp(SDValue O);
   
+  /// Useful 16 element vector used to pass operands for widening
+  typedef SmallVector<SDValue, 16> SDValueVector;  
+  
+  /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if
+  /// the LdChain contains a single load and false if it contains a token
+  /// factor for multiple loads. It takes
+  ///   Result:  location to return the result
+  ///   LdChain: location to return the load chain
+  ///   Op:      load operation to widen
+  ///   NVT:     widen vector result type we want for the load
+  bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, 
+                         SDValue Op, MVT NVT);
+                        
+  /// Helper genWidenVectorLoads - Helper function to generate a set of
+  /// loads to load a vector with a resulting wider type. It takes
+  ///   LdChain: list of chains for the load we have generated
+  ///   Chain:   incoming chain for the ld vector
+  ///   BasePtr: base pointer to load from
+  ///   SV:      memory disambiguation source value
+  ///   SVOffset:  memory disambiugation offset
+  ///   Alignment: alignment of the memory
+  ///   isVolatile: volatile load
+  ///   LdWidth:    width of memory that we want to load 
+  ///   ResType:    the wider result result type for the resulting loaded vector
+  SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain,
+                                SDValue BasePtr, const Value *SV,
+                                int SVOffset, unsigned Alignment,
+                                bool isVolatile, unsigned LdWidth,
+                                MVT ResType);
+  
+  /// StoreWidenVectorOp - Stores a widen vector into non widen memory
+  /// location. It takes
+  ///     ST:      store node that we want to replace
+  ///     Chain:   incoming store chain
+  ///     BasePtr: base address of where we want to store into
+  SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, 
+                               SDValue BasePtr);
+  
+  /// Helper genWidenVectorStores - Helper function to generate a set of
+  /// stores to store a widen vector into non widen memory
+  // It takes
+  //   StChain: list of chains for the stores we have generated
+  //   Chain:   incoming chain for the ld vector
+  //   BasePtr: base pointer to load from
+  //   SV:      memory disambiguation source value
+  //   SVOffset:   memory disambiugation offset
+  //   Alignment:  alignment of the memory
+  //   isVolatile: volatile lod
+  //   ValOp:   value to store  
+  //   StWidth: width of memory that we want to store 
+  void genWidenVectorStores(SDValueVector& StChain, SDValue Chain,
+                            SDValue BasePtr, const Value *SV,
+                            int SVOffset, unsigned Alignment,
+                            bool isVolatile, SDValue ValOp,
+                            unsigned StWidth);
+ 
   /// isShuffleLegal - Return non-null if a vector shuffle is legal with the
   /// specified mask and type.  Targets can specify exactly which masks they
   /// support and the code generator is tasked with not creating illegal masks.
@@ -300,6 +376,7 @@
   PromotedNodes.clear();
   SplitNodes.clear();
   ScalarizedNodes.clear();
+  WidenNodes.clear();
 
   // Remove dead nodes now.
   DAG.RemoveDeadNodes();
@@ -403,14 +480,27 @@
   return false;
 }
 
-/// HandleOp - Legalize, Promote, or Expand the specified operand as
+/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as
 /// appropriate for its type.
 void SelectionDAGLegalize::HandleOp(SDValue Op) {
   MVT VT = Op.getValueType();
   switch (getTypeAction(VT)) {
   default: assert(0 && "Bad type action!");
   case Legal:   (void)LegalizeOp(Op); break;
-  case Promote: (void)PromoteOp(Op); break;
+  case Promote:
+    if (!VT.isVector()) {
+      (void)PromoteOp(Op);
+      break;
+    }
+    else  {
+      // See if we can widen otherwise use Expand to either scalarize or split
+      MVT WidenVT = TLI.getWidenVectorType(VT);
+      if (WidenVT != MVT::Other) {
+        (void) WidenVectorOp(Op, WidenVT);
+        break;
+      }
+      // else fall thru to expand since we can't widen the vector
+    }
   case Expand:
     if (!VT.isVector()) {
       // If this is an illegal scalar, expand it into its two component
@@ -424,7 +514,7 @@
       // scalar operation.
       (void)ScalarizeVectorOp(Op);
     } else {
-      // Otherwise, this is an illegal multiple element vector.
+      // This is an illegal multiple element vector.
       // Split it in half and legalize both parts.
       SDValue X, Y;
       SplitVectorOp(Op, X, Y);
@@ -742,7 +832,7 @@
 
   // Store the vector.
   SDValue Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr,
-                              PseudoSourceValue::getFixedStack(SPFI), 0);
+                            PseudoSourceValue::getFixedStack(SPFI), 0);
 
   // Truncate or zero extend offset to target pointer type.
   unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
@@ -1417,6 +1507,12 @@
     default: assert(0 && "Cannot expand insert element operand");
     case Legal:   Tmp2 = LegalizeOp(Node->getOperand(1)); break;
     case Promote: Tmp2 = PromoteOp(Node->getOperand(1));  break;
+    case Expand:
+      // FIXME: An alternative would be to check to see if the target is not
+      // going to custom lower this operation, we could bitcast to half elt 
+      // width and perform two inserts at that width, if that is legal.
+      Tmp2 = Node->getOperand(1);
+      break;
     }
     Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
     
@@ -1432,6 +1528,8 @@
         break;
       }
       // FALLTHROUGH
+    case TargetLowering::Promote:
+      // Fall thru for vector case
     case TargetLowering::Expand: {
       // If the insert index is a constant, codegen this as a scalar_to_vector,
       // then a shuffle that inserts it into the right position in the vector.
@@ -1574,6 +1672,26 @@
     Result = ExpandEXTRACT_SUBVECTOR(Result);
     break;
     
+  case ISD::CONCAT_VECTORS: {
+    // Use extract/insert/build vector for now. We might try to be
+    // more clever later.
+    MVT PtrVT = TLI.getPointerTy();
+    SmallVector<SDValue, 8> Ops;
+    unsigned NumOperands = Node->getNumOperands();
+    for (unsigned i=0; i < NumOperands; ++i) {
+      SDValue SubOp = Node->getOperand(i);
+      MVT VVT = SubOp.getNode()->getValueType(0);
+      MVT EltVT = VVT.getVectorElementType();
+      unsigned NumSubElem = VVT.getVectorNumElements();
+      for (unsigned j=0; j < NumSubElem; ++j) {
+        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, SubOp,
+                                  DAG.getConstant(j, PtrVT)));
+      }
+    }
+    return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0),
+                      &Ops[0], Ops.size()));
+  }
+
   case ISD::CALLSEQ_START: {
     SDNode *CallEnd = FindCallEndFromCallStart(Node);
     
@@ -2429,14 +2547,16 @@
         break;
       }
       case Promote:
-        // Truncate the value and store the result.
-        Tmp3 = PromoteOp(ST->getValue());
-        Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
-                                   SVOffset, ST->getMemoryVT(),
-                                   isVolatile, Alignment);
-        break;
-
-      case Expand:
+        if (!ST->getMemoryVT().isVector()) {
+          // Truncate the value and store the result.
+          Tmp3 = PromoteOp(ST->getValue());
+          Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
+                                     SVOffset, ST->getMemoryVT(),
+                                     isVolatile, Alignment);
+          break;
+        }
+        // Fall thru to expand for vector
+      case Expand: {
         unsigned IncrementSize = 0;
         SDValue Lo, Hi;
       
@@ -2470,9 +2590,18 @@
             Result = LegalizeOp(Result);
             break;
           } else {
-            SplitVectorOp(ST->getValue(), Lo, Hi);
-            IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() *
-                            EVT.getSizeInBits()/8;
+            // Check if we have widen this node with another value
+            std::map<SDValue, SDValue>::iterator I =
+              WidenNodes.find(ST->getValue());
+            if (I != WidenNodes.end()) {
+              Result = StoreWidenVectorOp(ST, Tmp1, Tmp2);
+              break;
+            }
+            else {
+              SplitVectorOp(ST->getValue(), Lo, Hi);
+              IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() *
+                              EVT.getSizeInBits()/8;
+            }
           }
         } else {
           ExpandOp(ST->getValue(), Lo, Hi);
@@ -2501,6 +2630,7 @@
                           SVOffset, isVolatile, Alignment);
         Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
         break;
+      }  // case Expand
       }
     } else {
       switch (getTypeAction(ST->getValue().getValueType())) {
@@ -2508,9 +2638,12 @@
         Tmp3 = LegalizeOp(ST->getValue());
         break;
       case Promote:
-        // We can promote the value, the truncstore will still take care of it.
-        Tmp3 = PromoteOp(ST->getValue());
-        break;
+        if (!ST->getValue().getValueType().isVector()) {
+          // We can promote the value, the truncstore will still take care of it.
+          Tmp3 = PromoteOp(ST->getValue());
+          break;
+        }
+        // Vector case falls through to expand
       case Expand:
         // Just store the low part.  This may become a non-trunc store, so make
         // sure to use getTruncStore, not UpdateNodeOperands below.
@@ -2709,6 +2842,7 @@
       Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition.
       break;
     case Promote: {
+      assert(!Node->getOperand(0).getValueType().isVector() && "not possible");
       Tmp1 = PromoteOp(Node->getOperand(0));  // Promote the condition.
       // Make sure the condition is either zero or one.
       unsigned BitWidth = Tmp1.getValueSizeInBits();
@@ -2966,7 +3100,7 @@
     }
 
     Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
-      
+    
     switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
     default: assert(0 && "BinOp legalize operation not supported");
     case TargetLowering::Legal: break;
@@ -2979,7 +3113,7 @@
       // Fall through if the custom lower can't deal with the operation
     case TargetLowering::Expand: {
       MVT VT = Op.getValueType();
- 
+      
       // See if multiply or divide can be lowered using two-result operations.
       SDVTList VTs = DAG.getVTList(VT, VT);
       if (Node->getOpcode() == ISD::MUL) {
@@ -3030,7 +3164,7 @@
                          0);
         break;
       }
-
+      
       // Check to see if we have a libcall for this operator.
       RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
       bool isSigned = false;
@@ -3039,7 +3173,7 @@
       case ISD::SDIV:
         if (VT == MVT::i32) {
           LC = Node->getOpcode() == ISD::UDIV
-            ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32;
+               ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32;
           isSigned = Node->getOpcode() == ISD::SDIV;
         }
         break;
@@ -3058,7 +3192,7 @@
         Result = ExpandLibCall(LC, Node, isSigned, Dummy);
         break;
       }
-
+      
       assert(Node->getValueType(0).isVector() &&
              "Cannot expand this binary operator!");
       // Expand the operation into a bunch of nasty scalar code.
@@ -4548,6 +4682,9 @@
       return Op;
     }
     break;
+  case TargetLowering::Promote:
+    assert(TVT.isVector() && "not vector type");
+    // fall thru to expand since vectors are by default are promote
   case TargetLowering::Expand:
     break;
   }
@@ -5348,7 +5485,7 @@
     Args.push_back(Entry);
   }
   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
-                                           TLI.getPointerTy());
+                                         TLI.getPointerTy());
 
   // Splice the libcall in wherever FindInputOutputChains tells us to.
   const Type *RetTy = Node->getValueType(0).getTypeForMVT();
@@ -5958,7 +6095,6 @@
       return ExpandOp(Hi, Lo, Hi);
     return ExpandOp(Lo, Lo, Hi);
   case ISD::EXTRACT_VECTOR_ELT:
-    assert(VT==MVT::i64 && "Do not know how to expand this operator!");
     // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types.
     Lo  = ExpandEXTRACT_VECTOR_ELT(Op);
     return ExpandOp(Lo, Lo, Hi);
@@ -7423,6 +7559,690 @@
 }
 
 
+SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) {
+  std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op);
+  if (I != WidenNodes.end()) return I->second;
+  
+  MVT VT = Op.getValueType();
+  assert(VT.isVector() && "Cannot widen non-vector type!");
+
+  SDValue Result;
+  SDNode *Node = Op.getNode();
+  MVT EVT = VT.getVectorElementType();
+
+  unsigned NumElts = VT.getVectorNumElements();
+  unsigned NewNumElts = WidenVT.getVectorNumElements();
+  assert(NewNumElts > NumElts  && "Cannot widen to smaller type!");
+  assert(NewNumElts < 17);
+
+  // When widen is called, it is assumed that it is more efficient to use a
+  // wide type.  The default action is to widen to operation to a wider legal
+  // vector type and then do the operation if it is legal by calling LegalizeOp
+  // again.  If there is no vector equivalent, we will unroll the operation, do
+  // it, and rebuild the vector.  If most of the operations are vectorizible to
+  // the legal type, the resulting code will be more efficient.  If this is not
+  // the case, the resulting code will preform badly as we end up generating
+  // code to pack/unpack the results. It is the function that calls widen
+  // that is responsible for seeing this doesn't happen.  For some cases, we
+  // have decided that it is not worth widening so we just split the operation.
+  switch (Node->getOpcode()) {
+  default: 
+#ifndef NDEBUG
+      Node->dump(&DAG);
+#endif
+      assert(0 && "Unexpected operation in WidenVectorOp!");
+      break;
+  case ISD::CopyFromReg:
+    assert(0 && "CopyFromReg must be legal!");
+  case ISD::UNDEF:
+  case ISD::Constant:
+  case ISD::ConstantFP:
+    // To build a vector of these elements, clients should call BuildVector
+    // and with each element instead of creating a node with a vector type
+    assert(0 && "Unexpected operation in WidenVectorOp!");
+  case ISD::VAARG:
+    // Variable Arguments with vector types doesn't make any sense to me
+    assert(0 && "Unexpected operation in WidenVectorOp!");
+    break;
+  case ISD::BUILD_VECTOR: {
+    // Build a vector with undefined for the new nodes
+    SDValueVector NewOps(Node->op_begin(), Node->op_end());
+    for (unsigned i = NumElts; i < NewNumElts; ++i) {
+      NewOps.push_back(DAG.getNode(ISD::UNDEF,EVT));
+    }
+    Result = DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &NewOps[0], NewOps.size());    
+    break;
+  }
+  case ISD::INSERT_VECTOR_ELT: {
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, WidenVT, Tmp1,
+                         Node->getOperand(1), Node->getOperand(2));
+    break;
+  }
+  case ISD::VECTOR_SHUFFLE: {
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT);
+    // VECTOR_SHUFFLE 3rd operand must be a constant build vector that is
+    // used as permutation array. We build the vector here instead of widening
+    // because we don't want to legalize and have it turned to something else.
+    SDValue PermOp = Node->getOperand(2);
+    SDValueVector NewOps;
+    MVT PVT = PermOp.getValueType().getVectorElementType();
+    for (unsigned i = 0; i < NumElts; ++i) {
+      if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) {
+        NewOps.push_back(PermOp.getOperand(i));
+      } else {
+        unsigned Idx =
+        cast<ConstantSDNode>(PermOp.getOperand(i))->getZExtValue();
+        if (Idx < NumElts) {
+          NewOps.push_back(PermOp.getOperand(i));
+        }
+        else {
+          NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts,
+                                           PermOp.getOperand(i).getValueType()));
+        } 
+      }
+    }
+    for (unsigned i = NumElts; i < NewNumElts; ++i) {
+      NewOps.push_back(DAG.getNode(ISD::UNDEF,PVT));
+    }
+    
+    SDValue Tmp3 = DAG.getNode(ISD::BUILD_VECTOR, 
+                               MVT::getVectorVT(PVT, NewOps.size()),
+                               &NewOps[0], NewOps.size()); 
+    
+    Result = DAG.getNode(ISD::VECTOR_SHUFFLE, WidenVT, Tmp1, Tmp2, Tmp3);    
+    break;
+  }
+  case ISD::LOAD: {
+    // If the load widen returns true, we can use a single load for the
+    // vector.  Otherwise, it is returning a token factor for multiple
+    // loads.
+    SDValue TFOp;
+    if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT))
+      AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1)));
+    else
+      AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0)));
+    break;
+  }
+
+  case ISD::BIT_CONVERT: {
+    SDValue Tmp1 = Node->getOperand(0);
+    // Converts between two different types so we need to determine
+    // the correct widen type for the input operand.
+    MVT TVT = Tmp1.getValueType();
+    assert(TVT.isVector() && "can not widen non vector type");
+    MVT TEVT = TVT.getVectorElementType();
+    assert(WidenVT.getSizeInBits() % EVT.getSizeInBits() == 0 &&
+         "can not widen bit bit convert that are not multiple of element type");
+    MVT TWidenVT =  MVT::getVectorVT(TEVT,
+                                   WidenVT.getSizeInBits()/EVT.getSizeInBits());
+    Tmp1 = WidenVectorOp(Tmp1, TWidenVT);
+    assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits());
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1);
+
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+        break;
+    case TargetLowering::Promote:
+        // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }
+    break;
+  }
+
+  case ISD::SINT_TO_FP:
+  case ISD::UINT_TO_FP:
+  case ISD::FP_TO_SINT:
+  case ISD::FP_TO_UINT: {
+    SDValue Tmp1 = Node->getOperand(0);
+    // Converts between two different types so we need to determine
+    // the correct widen type for the input operand.
+    MVT TVT = Tmp1.getValueType();
+    assert(TVT.isVector() && "can not widen non vector type");
+    MVT TEVT = TVT.getVectorElementType();
+    MVT TWidenVT =  MVT::getVectorVT(TEVT, NewNumElts);
+    Tmp1 = WidenVectorOp(Tmp1, TWidenVT);
+    assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts);
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1);
+
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+        break;
+    case TargetLowering::Promote:
+        // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }
+    break;
+  }
+
+  case ISD::FP_EXTEND:
+    assert(0 && "Case not implemented.  Dynamically dead with 2 FP types!");
+  case ISD::TRUNCATE:
+  case ISD::SIGN_EXTEND:
+  case ISD::ZERO_EXTEND:
+  case ISD::ANY_EXTEND:
+  case ISD::FP_ROUND:
+  case ISD::SIGN_EXTEND_INREG:
+  case ISD::FABS:
+  case ISD::FNEG:
+  case ISD::FSQRT:
+  case ISD::FSIN:
+  case ISD::FCOS: {
+    // Unary op widening
+    SDValue Tmp1;    
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+
+    Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    assert(Tmp1.getValueType() == WidenVT);
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1);
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+        break;
+    case TargetLowering::Promote:
+        // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }
+    break;
+  }
+  case ISD::FPOW:
+  case ISD::FPOWI: 
+  case ISD::ADD:
+  case ISD::SUB:
+  case ISD::MUL:
+  case ISD::MULHS:
+  case ISD::MULHU:
+  case ISD::AND:
+  case ISD::OR:
+  case ISD::XOR:
+  case ISD::FADD:
+  case ISD::FSUB:
+  case ISD::FMUL:
+  case ISD::SDIV:
+  case ISD::SREM:
+  case ISD::FDIV:
+  case ISD::FREM:
+  case ISD::FCOPYSIGN:
+  case ISD::UDIV:
+  case ISD::UREM:
+  case ISD::BSWAP: {
+    // Binary op widening
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+    
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT);
+    assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT);
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2);
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+      break;
+    case TargetLowering::Promote:
+      // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code by first 
+      // Widening to the right type and then unroll the beast.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }
+    break;
+  }
+
+  case ISD::SHL:
+  case ISD::SRA:
+  case ISD::SRL: {
+    // Binary op with one non vector operand
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+    
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    assert(Tmp1.getValueType() == WidenVT);
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Node->getOperand(1));
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+      break;
+    case TargetLowering::Promote:
+       // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }
+    break;
+  }
+  case ISD::EXTRACT_VECTOR_ELT: {
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    assert(Tmp1.getValueType() == WidenVT);
+    Result = DAG.getNode(Node->getOpcode(), EVT, Tmp1, Node->getOperand(1));
+    break;
+  }
+  case ISD::CONCAT_VECTORS: {
+    // We concurrently support only widen on a multiple of the incoming vector.
+    // We could widen on a multiple of the incoming operand if necessary.
+    unsigned NumConcat = NewNumElts / NumElts;
+    assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector");
+    std::vector<SDValue> UnOps(NumElts, DAG.getNode(ISD::UNDEF, 
+                               VT.getVectorElementType()));
+    SDValue UndefVal = DAG.getNode(ISD::BUILD_VECTOR, VT,
+                                   &UnOps[0], UnOps.size());
+    SmallVector<SDValue, 8> MOps;
+    MOps.push_back(Op);
+    for (unsigned i = 1; i != NumConcat; ++i) {
+      MOps.push_back(UndefVal);
+    }
+    Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT,
+                                    &MOps[0], MOps.size()));
+    break;
+  }
+  case ISD::EXTRACT_SUBVECTOR: {
+    SDValue Tmp1;
+
+    // The incoming vector might already be the proper type
+    if (Node->getOperand(0).getValueType() != WidenVT)
+      Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
+    else
+      Tmp1 = Node->getOperand(0);
+    assert(Tmp1.getValueType() == WidenVT);
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Node->getOperand(1));
+    break;
+  }
+
+  case ISD::SELECT: {
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+
+    // Determine new condition widen type and widen
+    SDValue Cond1 = Node->getOperand(0);
+    MVT CondVT = Cond1.getValueType();
+    assert(CondVT.isVector() && "can not widen non vector type");
+    MVT CondEVT = CondVT.getVectorElementType();
+    MVT CondWidenVT =  MVT::getVectorVT(CondEVT, NewNumElts);
+    Cond1 = WidenVectorOp(Cond1, CondWidenVT);
+    assert(Cond1.getValueType() == CondWidenVT && "Condition not widen");
+
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT);
+    SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT);
+    assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT);
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Tmp1, Tmp2);
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+      break;
+    case TargetLowering::Promote:
+      // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code by first 
+      // Widening to the right type and then unroll the beast.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }  
+    break;
+  }
+  
+  case ISD::SELECT_CC: {
+    TargetLowering::LegalizeAction action =
+      TLI.getOperationAction(Node->getOpcode(), WidenVT);
+
+    // Determine new condition widen type and widen
+    SDValue Cond1 = Node->getOperand(0);
+    SDValue Cond2 = Node->getOperand(1);
+    MVT CondVT = Cond1.getValueType();
+    assert(CondVT.isVector() && "can not widen non vector type");
+    assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs");
+    MVT CondEVT = CondVT.getVectorElementType();
+    MVT CondWidenVT =  MVT::getVectorVT(CondEVT, NewNumElts);
+    Cond1 = WidenVectorOp(Cond1, CondWidenVT);
+    Cond2 = WidenVectorOp(Cond2, CondWidenVT);
+    assert(Cond1.getValueType() == CondWidenVT &&
+           Cond2.getValueType() == CondWidenVT && "condition not widen");
+
+    SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT);
+    SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT);
+    assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT &&
+           "operands not widen");
+    Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Cond2, Tmp1,
+                         Tmp2, Node->getOperand(4));
+    switch (action)  {
+    default: assert(0 && "action not supported");
+    case TargetLowering::Legal:
+      break;
+    case TargetLowering::Promote:
+      // We defer the promotion to when we legalize the op
+      break;
+    case TargetLowering::Expand:
+      // Expand the operation into a bunch of nasty scalar code by first 
+      // Widening to the right type and then unroll the beast.
+      Result = LegalizeOp(UnrollVectorOp(Result));
+      break;
+    }  
+    break;
+    break;
+  }
+
+  case ISD::ATOMIC_CMP_SWAP_8:
+  case ISD::ATOMIC_CMP_SWAP_16:
+  case ISD::ATOMIC_CMP_SWAP_32:
+  case ISD::ATOMIC_CMP_SWAP_64:
+  case ISD::ATOMIC_LOAD_ADD_8:
+  case ISD::ATOMIC_LOAD_SUB_8:
+  case ISD::ATOMIC_LOAD_AND_8:
+  case ISD::ATOMIC_LOAD_OR_8:
+  case ISD::ATOMIC_LOAD_XOR_8:
+  case ISD::ATOMIC_LOAD_NAND_8:
+  case ISD::ATOMIC_LOAD_MIN_8:
+  case ISD::ATOMIC_LOAD_MAX_8:
+  case ISD::ATOMIC_LOAD_UMIN_8:
+  case ISD::ATOMIC_LOAD_UMAX_8:
+  case ISD::ATOMIC_SWAP_8: 
+  case ISD::ATOMIC_LOAD_ADD_16:
+  case ISD::ATOMIC_LOAD_SUB_16:
+  case ISD::ATOMIC_LOAD_AND_16:
+  case ISD::ATOMIC_LOAD_OR_16:
+  case ISD::ATOMIC_LOAD_XOR_16:
+  case ISD::ATOMIC_LOAD_NAND_16:
+  case ISD::ATOMIC_LOAD_MIN_16:
+  case ISD::ATOMIC_LOAD_MAX_16:
+  case ISD::ATOMIC_LOAD_UMIN_16:
+  case ISD::ATOMIC_LOAD_UMAX_16:
+  case ISD::ATOMIC_SWAP_16:
+  case ISD::ATOMIC_LOAD_ADD_32:
+  case ISD::ATOMIC_LOAD_SUB_32:
+  case ISD::ATOMIC_LOAD_AND_32:
+  case ISD::ATOMIC_LOAD_OR_32:
+  case ISD::ATOMIC_LOAD_XOR_32:
+  case ISD::ATOMIC_LOAD_NAND_32:
+  case ISD::ATOMIC_LOAD_MIN_32:
+  case ISD::ATOMIC_LOAD_MAX_32:
+  case ISD::ATOMIC_LOAD_UMIN_32:
+  case ISD::ATOMIC_LOAD_UMAX_32:
+  case ISD::ATOMIC_SWAP_32:
+  case ISD::ATOMIC_LOAD_ADD_64:
+  case ISD::ATOMIC_LOAD_SUB_64:
+  case ISD::ATOMIC_LOAD_AND_64:
+  case ISD::ATOMIC_LOAD_OR_64:
+  case ISD::ATOMIC_LOAD_XOR_64:
+  case ISD::ATOMIC_LOAD_NAND_64:
+  case ISD::ATOMIC_LOAD_MIN_64:
+  case ISD::ATOMIC_LOAD_MAX_64:
+  case ISD::ATOMIC_LOAD_UMIN_64:
+  case ISD::ATOMIC_LOAD_UMAX_64:
+  case ISD::ATOMIC_SWAP_64: {
+    // For now, we assume that using vectors for these operations don't make
+    // much sense so we just split it.  We return an empty result
+    SDValue X, Y;
+    SplitVectorOp(Op, X, Y);
+    return Result;
+    break;
+  }
+
+  } // end switch (Node->getOpcode())
+
+  assert(Result.getNode() && "Didn't set a result!");  
+  if (Result != Op)
+    Result = LegalizeOp(Result);
+
+  AddWidenOperand(Op, Result);
+  return Result;
+}
+
+// Utility function to find a legal vector type and its associated element
+// type from a preferred width and whose vector type must be the same size
+// as the VVT.
+//  TLI:   Target lowering used to determine legal types
+//  Width: Preferred width of element type
+//  VVT:   Vector value type whose size we must match.
+// Returns VecEVT and EVT - the vector type and its associated element type
+static void FindWidenVecType(TargetLowering &TLI, unsigned Width, MVT VVT,
+                             MVT& EVT, MVT& VecEVT) {
+  // We start with the preferred width, make it a power of 2 and see if
+  // we can find a vector type of that width. If not, we reduce it by
+  // another power of 2.  If we have widen the type, a vector of bytes should
+  // always be legal.
+  assert(TLI.isTypeLegal(VVT));
+  unsigned EWidth = Width + 1;
+  do {
+    assert(EWidth > 0);
+    EWidth =  (1 << Log2_32(EWidth-1));
+    EVT = MVT::getIntegerVT(EWidth);
+    unsigned NumEVT = VVT.getSizeInBits()/EWidth;
+    VecEVT = MVT::getVectorVT(EVT, NumEVT);
+  } while (!TLI.isTypeLegal(VecEVT) ||
+           VVT.getSizeInBits() != VecEVT.getSizeInBits());
+}
+
+SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain,
+                                                    SDValue   Chain,
+                                                    SDValue   BasePtr,
+                                                    const Value *SV,
+                                                    int         SVOffset,
+                                                    unsigned    Alignment,
+                                                    bool        isVolatile,
+                                                    unsigned    LdWidth,
+                                                    MVT         ResType) {
+  // We assume that we have good rules to handle loading power of two loads so
+  // we break down the operations to power of 2 loads.  The strategy is to
+  // load the largest power of 2 that we can easily transform to a legal vector
+  // and then insert into that vector, and the cast the result into the legal
+  // vector that we want.  This avoids unnecessary stack converts.
+  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
+  //       the load is nonvolatile, we an use a wider load for the value.
+  // Find a vector length we can load a large chunk
+  MVT EVT, VecEVT;
+  unsigned EVTWidth;
+  FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT);
+  EVTWidth = EVT.getSizeInBits();
+
+  SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, SVOffset,
+                               isVolatile, Alignment);
+  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecEVT, LdOp);
+  LdChain.push_back(LdOp.getValue(1));
+  
+  // Check if we can load the element with one instruction
+  if (LdWidth == EVTWidth) {
+    return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp);
+  }
+
+  // The vector element order is endianness dependent.
+  unsigned Idx = 1;
+  LdWidth -= EVTWidth;
+  unsigned Offset = 0;
+    
+  while (LdWidth > 0) {
+    unsigned Increment = EVTWidth / 8;
+    Offset += Increment;
+    BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr,
+                          DAG.getIntPtrConstant(Increment));
+
+    if (LdWidth < EVTWidth) {
+      // Our current type we are using is too large, use a smaller size by
+      // using a smaller power of 2
+      unsigned oEVTWidth = EVTWidth;
+      FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT);
+      EVTWidth = EVT.getSizeInBits();
+      // Readjust position and vector position based on new load type
+      Idx = Idx * (oEVTWidth/EVTWidth)+1;
+      VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp);
+    }
+      
+    SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV,
+                                 SVOffset+Offset, isVolatile,
+                                 MinAlign(Alignment, Offset));
+    LdChain.push_back(LdOp.getValue(1));
+    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, VecEVT, VecOp, LdOp,
+                        DAG.getIntPtrConstant(Idx++));
+    
+    LdWidth -= EVTWidth;
+  }
+
+  return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp);
+}
+
+bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result,
+                                             SDValue& TFOp,
+                                             SDValue Op,
+                                             MVT NVT) {
+  // TODO: Add support for ConcatVec and the ability to load many vector
+  //       types (e.g., v4i8).  This will not work when a vector register
+  //       to memory mapping is strange (e.g., vector elements are not
+  //       stored in some sequential order).
+
+  // It must be true that the widen vector type is bigger than where 
+  // we need to load from.
+  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
+  MVT LdVT = LD->getMemoryVT();
+  assert(LdVT.isVector() && NVT.isVector());
+  assert(LdVT.getVectorElementType() == NVT.getVectorElementType());
+  
+  // Load information
+  SDValue Chain = LD->getChain();
+  SDValue BasePtr = LD->getBasePtr();
+  int       SVOffset = LD->getSrcValueOffset();
+  unsigned  Alignment = LD->getAlignment();
+  bool      isVolatile = LD->isVolatile();
+  const Value *SV = LD->getSrcValue();
+  unsigned int LdWidth = LdVT.getSizeInBits();
+  
+  // Load value as a large register
+  SDValueVector LdChain;
+  Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
+                               Alignment, isVolatile, LdWidth, NVT);
+
+  if (LdChain.size() == 1) {
+    TFOp = LdChain[0];
+    return true;
+  }
+  else {
+    TFOp=DAG.getNode(ISD::TokenFactor, MVT::Other, &LdChain[0], LdChain.size());
+    return false;
+  }
+}
+
+
+void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain,
+                                                SDValue   Chain,
+                                                SDValue   BasePtr,
+                                                const Value *SV,
+                                                int         SVOffset,
+                                                unsigned    Alignment,
+                                                bool        isVolatile,
+                                                SDValue   ValOp,
+                                                unsigned    StWidth) {
+  // Breaks the stores into a series of power of 2 width stores.  For any
+  // width, we convert the vector to the vector of element size that we
+  // want to store.  This avoids requiring a stack convert.
+  
+  // Find a width of the element type we can store with
+  MVT VVT = ValOp.getValueType();
+  MVT EVT, VecEVT;
+  unsigned EVTWidth;
+  FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT);
+  EVTWidth = EVT.getSizeInBits();
+
+  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, ValOp);
+  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp,
+                                  DAG.getIntPtrConstant(0));
+  SDValue StOp = DAG.getStore(Chain, EOp, BasePtr, SV, SVOffset,
+                               isVolatile, Alignment);
+  StChain.push_back(StOp);
+
+  // Check if we are done
+  if (StWidth == EVTWidth) {
+    return;
+  }
+  
+  unsigned Idx = 1;
+  StWidth -= EVTWidth;
+  unsigned Offset = 0;
+    
+  while (StWidth > 0) {
+    unsigned Increment = EVTWidth / 8;
+    Offset += Increment;
+    BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr,
+                          DAG.getIntPtrConstant(Increment));
+                          
+    if (StWidth < EVTWidth) {
+      // Our current type we are using is too large, use a smaller size by
+      // using a smaller power of 2
+      unsigned oEVTWidth = EVTWidth;
+      FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT);
+      EVTWidth = EVT.getSizeInBits();
+      // Readjust position and vector position based on new load type
+      Idx = Idx * (oEVTWidth/EVTWidth)+1;
+      VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp);
+    }
+    
+    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp,
+                      DAG.getIntPtrConstant(Idx));
+    StChain.push_back(DAG.getStore(Chain, EOp, BasePtr, SV,
+                                   SVOffset + Offset, isVolatile,
+                                   MinAlign(Alignment, Offset)));
+    StWidth -= EVTWidth;
+  }
+}
+
+
+SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST,
+                                                   SDValue Chain,
+                                                   SDValue BasePtr) {
+  // TODO: It might be cleaner if we can use SplitVector and have more legal
+  //        vector types that can be stored into memory (e.g., v4xi8 can
+  //        be stored as a word). This will not work when a vector register
+  //        to memory mapping is strange (e.g., vector elements are not
+  //        stored in some sequential order).
+  
+  MVT StVT = ST->getMemoryVT();
+  SDValue ValOp = ST->getValue();
+
+  // Check if we have widen this node with another value
+  std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp);
+  if (I != WidenNodes.end())
+    ValOp = I->second;
+    
+  MVT VVT = ValOp.getValueType();
+
+  // It must be true that we the widen vector type is bigger than where
+  // we need to store.
+  assert(StVT.isVector() && VVT.isVector());
+  assert(StVT.getSizeInBits() < VVT.getSizeInBits());
+  assert(StVT.getVectorElementType() == VVT.getVectorElementType());
+
+  // Store value
+  SDValueVector StChain;
+  genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(),
+                       ST->getSrcValueOffset(), ST->getAlignment(),
+                       ST->isVolatile(), ValOp, StVT.getSizeInBits());
+  if (StChain.size() == 1)
+    return StChain[0];
+  else 
+    return DAG.getNode(ISD::TokenFactor, MVT::Other,&StChain[0],StChain.size());
+}
+
+
 // SelectionDAG::Legalize - This is the entry point for the file.
 //
 void SelectionDAG::Legalize() {

Modified: llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeTypes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeTypes.h?rev=58426&r1=58425&r2=58426&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeTypes.h (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/LegalizeTypes.h Thu Oct 30 03:01:45 2008
@@ -79,7 +79,20 @@
     case TargetLowering::Legal:
       return Legal;
     case TargetLowering::Promote:
-      return PromoteInteger;
+      // Promote can mean
+      //   1) On integers, it means to promote type (e.g., i8 to i32)
+      //   2) For vectors, it means try to widen (e.g., v3i32 to v4i32)
+      if (!VT.isVector()) {
+        return PromoteInteger;
+      }
+      else {
+        // TODO: move widen code to LegalizeType
+        if (VT.getVectorNumElements() == 1) {
+          return ScalarizeVector;
+        } else {
+          return SplitVector;
+        }        
+      }
     case TargetLowering::Expand:
       // Expand can mean
       // 1) split scalar in half, 2) convert a float to an integer,

Modified: llvm/trunk/lib/CodeGen/SelectionDAG/TargetLowering.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/TargetLowering.cpp?rev=58426&r1=58425&r2=58426&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/TargetLowering.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/TargetLowering.cpp Thu Oct 30 03:01:45 2008
@@ -573,7 +573,7 @@
                                RegisterVT);
       RegisterTypeForVT[i] = RegisterVT;
       TransformToType[i] = MVT::Other; // this isn't actually used
-      ValueTypeActions.setTypeAction(VT, Expand);
+      ValueTypeActions.setTypeAction(VT, Promote);
     }
   }
 }
@@ -642,6 +642,20 @@
   return 1;
 }
 
+/// getWidenVectorType: given a vector type, returns the type to widen to
+/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
+/// If there is no vector type that we want to widen to, returns MVT::Other
+/// When and were to widen is target dependent based on the cost of
+/// scalarizing vs using the wider vector type.
+MVT TargetLowering::getWidenVectorType(MVT VT) {
+  assert(VT.isVector());
+  if (isTypeLegal(VT))
+    return VT;
+ 
+  // Default is not to widen until moved to LegalizeTypes
+  return MVT::Other;
+}
+
 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 /// function arguments in the caller parameter area.  This is the actual
 /// alignment, not its logarithm.

Modified: llvm/trunk/lib/Target/X86/X86ISelLowering.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86ISelLowering.cpp?rev=58426&r1=58425&r2=58426&view=diff

==============================================================================
--- llvm/trunk/lib/Target/X86/X86ISelLowering.cpp (original)
+++ llvm/trunk/lib/Target/X86/X86ISelLowering.cpp Thu Oct 30 03:01:45 2008
@@ -523,8 +523,9 @@
   setOperationAction(ISD::FEXP, MVT::f80, Expand);
   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
 
-  // First set operation action for all vector types to expand. Then we
-  // will selectively turn on ones that can be effectively codegen'd.
+  // First set operation action for all vector types to either to promote
+  // (for widening) or expand (for scalarization). Then we will selectively
+  // turn on ones that can be effectively codegen'd.
   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
@@ -543,6 +544,8 @@
     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
+    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT, Expand);
+    setOperationAction(ISD::CONCAT_VECTORS,(MVT::SimpleValueType)VT, Expand);
     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
@@ -7837,3 +7840,41 @@
 
   return Res;
 }
+
+//===----------------------------------------------------------------------===//
+//                           X86 Widen vector type
+//===----------------------------------------------------------------------===//
+
+/// getWidenVectorType: given a vector type, returns the type to widen
+/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
+/// If there is no vector type that we want to widen to, returns MVT::Other
+/// When and were to widen is target dependent based on the cost of
+/// scalarizing vs using the wider vector type.
+
+MVT X86TargetLowering::getWidenVectorType(MVT VT) {
+  assert(VT.isVector());
+  if (isTypeLegal(VT))
+    return VT;
+  
+  // TODO: In computeRegisterProperty, we can compute the list of legal vector
+  //       type based on element type.  This would speed up our search (though
+  //       it may not be worth it since the size of the list is relatively
+  //       small).
+  MVT EltVT = VT.getVectorElementType();
+  unsigned NElts = VT.getVectorNumElements();
+  
+  // On X86, it make sense to widen any vector wider than 1
+  if (NElts <= 1)
+    return MVT::Other;
+  
+  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE; 
+       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+    MVT SVT = (MVT::SimpleValueType)nVT;
+    
+    if (isTypeLegal(SVT) && 
+        SVT.getVectorElementType() == EltVT && 
+        SVT.getVectorNumElements() > NElts)
+      return SVT;
+  }
+  return MVT::Other;
+}

Modified: llvm/trunk/lib/Target/X86/X86ISelLowering.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86ISelLowering.h?rev=58426&r1=58425&r2=58426&view=diff

==============================================================================
--- llvm/trunk/lib/Target/X86/X86ISelLowering.h (original)
+++ llvm/trunk/lib/Target/X86/X86ISelLowering.h Thu Oct 30 03:01:45 2008
@@ -486,6 +486,13 @@
       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
     }
 
+    /// getWidenVectorType: given a vector type, returns the type to widen
+    /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
+    /// If there is no vector type that we want to widen to, returns MVT::Other
+    /// When and were to widen is target dependent based on the cost of
+    /// scalarizing vs using the wider vector type.
+    virtual MVT getWidenVectorType(MVT VT);
+
     /// createFastISel - This method returns a target specific FastISel object,
     /// or null if the target does not support "fast" ISel.
     virtual FastISel *





More information about the llvm-commits mailing list