[llvm-commits] [llvm] r52638 - in /llvm/trunk: include/llvm/ADT/APInt.h lib/Support/APInt.cpp
Wojciech Matyjewicz
wmatyjewicz at fastmail.fm
Mon Jun 23 12:39:51 PDT 2008
Author: wmat
Date: Mon Jun 23 14:39:50 2008
New Revision: 52638
URL: http://llvm.org/viewvc/llvm-project?rev=52638&view=rev
Log:
First step to fix PR2088. Implement routine to compute the
multiplicative inverse of a given number. Modify udivrem to allow input and
output pairs of arguments to overlap. Patch is based on the work by Chandler
Carruth.
Modified:
llvm/trunk/include/llvm/ADT/APInt.h
llvm/trunk/lib/Support/APInt.cpp
Modified: llvm/trunk/include/llvm/ADT/APInt.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/APInt.h?rev=52638&r1=52637&r2=52638&view=diff
==============================================================================
--- llvm/trunk/include/llvm/ADT/APInt.h (original)
+++ llvm/trunk/include/llvm/ADT/APInt.h Mon Jun 23 14:39:50 2008
@@ -668,9 +668,11 @@
return this->urem(RHS);
}
- /// Sometimes it is convenient to divide two APInt values and obtain both
- /// the quotient and remainder. This function does both operations in the
- /// same computation making it a little more efficient.
+ /// Sometimes it is convenient to divide two APInt values and obtain both the
+ /// quotient and remainder. This function does both operations in the same
+ /// computation making it a little more efficient. The pair of input arguments
+ /// may overlap with the pair of output arguments. It is safe to call
+ /// udivrem(X, Y, X, Y), for example.
/// @brief Dual division/remainder interface.
static void udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder);
@@ -1107,6 +1109,9 @@
return *this;
}
+ /// @returns the multiplicative inverse for a given modulo.
+ APInt multiplicativeInverse(const APInt& modulo) const;
+
/// @}
/// @name Building-block Operations for APInt and APFloat
/// @{
@@ -1301,7 +1306,7 @@
}
/// GreatestCommonDivisor - This function returns the greatest common
-/// divisor of the two APInt values using Enclid's algorithm.
+/// divisor of the two APInt values using Euclid's algorithm.
/// @returns the greatest common divisor of Val1 and Val2
/// @brief Compute GCD of two APInt values.
APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
Modified: llvm/trunk/lib/Support/APInt.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Support/APInt.cpp?rev=52638&r1=52637&r2=52638&view=diff
==============================================================================
--- llvm/trunk/lib/Support/APInt.cpp (original)
+++ llvm/trunk/lib/Support/APInt.cpp Mon Jun 23 14:39:50 2008
@@ -1426,6 +1426,50 @@
return x_old + 1;
}
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+ assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+ // Using the properties listed at the following web page (accessed 06/21/08):
+ // http://www.numbertheory.org/php/euclid.html
+ // (especially the properties numbered 3, 4 and 9) it can be proved that
+ // BitWidth bits suffice for all the computations in the algorithm implemented
+ // below. More precisely, this number of bits suffice if the multiplicative
+ // inverse exists, but may not suffice for the general extended Euclidean
+ // algorithm.
+
+ APInt r[2] = { modulo, *this };
+ APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+ APInt q(BitWidth, 0);
+
+ unsigned i;
+ for (i = 0; r[i^1] != 0; i ^= 1) {
+ // An overview of the math without the confusing bit-flipping:
+ // q = r[i-2] / r[i-1]
+ // r[i] = r[i-2] % r[i-1]
+ // t[i] = t[i-2] - t[i-1] * q
+ udivrem(r[i], r[i^1], q, r[i]);
+ t[i] -= t[i^1] * q;
+ }
+
+ // If this APInt and the modulo are not coprime, there is no multiplicative
+ // inverse, so return 0. We check this by looking at the next-to-last
+ // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+ // algorithm.
+ if (r[i] != 1)
+ return APInt(BitWidth, 0);
+
+ // The next-to-last t is the multiplicative inverse. However, we are
+ // interested in a positive inverse. Calcuate a positive one from a negative
+ // one if necessary. A simple addition of the modulo suffices because
+ // abs(t[i]) is known to less than *this/2 (see the link above).
+ return t[i].isNegative() ? t[i] + modulo : t[i];
+}
+
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
/// variables here have the same names as in the algorithm. Comments explain
@@ -1882,13 +1926,10 @@
if (lhsWords == 1 && rhsWords == 1) {
// There is only one word to consider so use the native versions.
- if (LHS.isSingleWord()) {
- Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
- Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
- } else {
- Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
- Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
- }
+ uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
+ uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+ Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
+ Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
return;
}
More information about the llvm-commits
mailing list