[llvm-commits] [llvm] r45632 - in /llvm/trunk/utils/TableGen: CodeGenDAGPatterns.cpp CodeGenDAGPatterns.h CodeGenTarget.cpp CodeGenTarget.h DAGISelEmitter.cpp DAGISelEmitter.h RegisterInfoEmitter.cpp TableGenBackend.cpp TableGenBackend.h
Chris Lattner
sabre at nondot.org
Sat Jan 5 14:25:13 PST 2008
Author: lattner
Date: Sat Jan 5 16:25:12 2008
New Revision: 45632
URL: http://llvm.org/viewvc/llvm-project?rev=45632&view=rev
Log:
change getQualifiedName to be a global function.
Split the pattern parsing code out from the dag isel emitter into it's own file.
No functionality change.
Added:
llvm/trunk/utils/TableGen/CodeGenDAGPatterns.cpp
llvm/trunk/utils/TableGen/CodeGenDAGPatterns.h
Modified:
llvm/trunk/utils/TableGen/CodeGenTarget.cpp
llvm/trunk/utils/TableGen/CodeGenTarget.h
llvm/trunk/utils/TableGen/DAGISelEmitter.cpp
llvm/trunk/utils/TableGen/DAGISelEmitter.h
llvm/trunk/utils/TableGen/RegisterInfoEmitter.cpp
llvm/trunk/utils/TableGen/TableGenBackend.cpp
llvm/trunk/utils/TableGen/TableGenBackend.h
Added: llvm/trunk/utils/TableGen/CodeGenDAGPatterns.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/CodeGenDAGPatterns.cpp?rev=45632&view=auto
==============================================================================
--- llvm/trunk/utils/TableGen/CodeGenDAGPatterns.cpp (added)
+++ llvm/trunk/utils/TableGen/CodeGenDAGPatterns.cpp Sat Jan 5 16:25:12 2008
@@ -0,0 +1,2092 @@
+//===- CodegenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CodegenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodegenDAGPatterns.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+//#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+//#include <algorithm>
+#include <set>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Helpers for working with extended types.
+
+/// FilterVTs - Filter a list of VT's according to a predicate.
+///
+template<typename T>
+static std::vector<MVT::ValueType>
+FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
+ std::vector<MVT::ValueType> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ if (Filter(InVTs[i]))
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+template<typename T>
+static std::vector<unsigned char>
+FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
+ std::vector<unsigned char> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ if (Filter((MVT::ValueType)InVTs[i]))
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+static std::vector<unsigned char>
+ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
+ std::vector<unsigned char> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
+ const std::vector<unsigned char> &RHS) {
+ if (LHS.size() > RHS.size()) return false;
+ for (unsigned i = 0, e = LHS.size(); i != e; ++i)
+ if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
+ return false;
+ return true;
+}
+
+/// isExtIntegerVT - Return true if the specified extended value type vector
+/// contains isInt or an integer value type.
+namespace llvm {
+namespace MVT {
+bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
+ assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+ return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
+}
+
+/// isExtFloatingPointVT - Return true if the specified extended value type
+/// vector contains isFP or a FP value type.
+bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
+ assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+ return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
+}
+} // end namespace MVT.
+} // end namespace llvm.
+
+//===----------------------------------------------------------------------===//
+// SDTypeConstraint implementation
+//
+
+SDTypeConstraint::SDTypeConstraint(Record *R) {
+ OperandNo = R->getValueAsInt("OperandNum");
+
+ if (R->isSubClassOf("SDTCisVT")) {
+ ConstraintType = SDTCisVT;
+ x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
+ } else if (R->isSubClassOf("SDTCisPtrTy")) {
+ ConstraintType = SDTCisPtrTy;
+ } else if (R->isSubClassOf("SDTCisInt")) {
+ ConstraintType = SDTCisInt;
+ } else if (R->isSubClassOf("SDTCisFP")) {
+ ConstraintType = SDTCisFP;
+ } else if (R->isSubClassOf("SDTCisSameAs")) {
+ ConstraintType = SDTCisSameAs;
+ x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
+ ConstraintType = SDTCisVTSmallerThanOp;
+ x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
+ ConstraintType = SDTCisOpSmallerThanOp;
+ x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
+ R->getValueAsInt("BigOperandNum");
+ } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
+ ConstraintType = SDTCisIntVectorOfSameSize;
+ x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOpNum");
+ } else {
+ cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
+ exit(1);
+ }
+}
+
+/// getOperandNum - Return the node corresponding to operand #OpNo in tree
+/// N, which has NumResults results.
+TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
+ TreePatternNode *N,
+ unsigned NumResults) const {
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+
+ if (OpNo >= (NumResults + N->getNumChildren())) {
+ cerr << "Invalid operand number " << OpNo << " ";
+ N->dump();
+ cerr << '\n';
+ exit(1);
+ }
+
+ if (OpNo < NumResults)
+ return N; // FIXME: need value #
+ else
+ return N->getChild(OpNo-NumResults);
+}
+
+/// ApplyTypeConstraint - Given a node in a pattern, apply this type
+/// constraint to the nodes operands. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const {
+ unsigned NumResults = NodeInfo.getNumResults();
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+
+ // Check that the number of operands is sane. Negative operands -> varargs.
+ if (NodeInfo.getNumOperands() >= 0) {
+ if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
+ TP.error(N->getOperator()->getName() + " node requires exactly " +
+ itostr(NodeInfo.getNumOperands()) + " operands!");
+ }
+
+ const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
+
+ TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
+
+ switch (ConstraintType) {
+ default: assert(0 && "Unknown constraint type!");
+ case SDTCisVT:
+ // Operand must be a particular type.
+ return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
+ case SDTCisPtrTy: {
+ // Operand must be same as target pointer type.
+ return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
+ }
+ case SDTCisInt: {
+ // If there is only one integer type supported, this must be it.
+ std::vector<MVT::ValueType> IntVTs =
+ FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
+
+ // If we found exactly one supported integer type, apply it.
+ if (IntVTs.size() == 1)
+ return NodeToApply->UpdateNodeType(IntVTs[0], TP);
+ return NodeToApply->UpdateNodeType(MVT::isInt, TP);
+ }
+ case SDTCisFP: {
+ // If there is only one FP type supported, this must be it.
+ std::vector<MVT::ValueType> FPVTs =
+ FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
+
+ // If we found exactly one supported FP type, apply it.
+ if (FPVTs.size() == 1)
+ return NodeToApply->UpdateNodeType(FPVTs[0], TP);
+ return NodeToApply->UpdateNodeType(MVT::isFP, TP);
+ }
+ case SDTCisSameAs: {
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
+ return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
+ OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
+ }
+ case SDTCisVTSmallerThanOp: {
+ // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
+ // have an integer type that is smaller than the VT.
+ if (!NodeToApply->isLeaf() ||
+ !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
+ !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
+ ->isSubClassOf("ValueType"))
+ TP.error(N->getOperator()->getName() + " expects a VT operand!");
+ MVT::ValueType VT =
+ getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
+ if (!MVT::isInteger(VT))
+ TP.error(N->getOperator()->getName() + " VT operand must be integer!");
+
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
+
+ // It must be integer.
+ bool MadeChange = false;
+ MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
+
+ // This code only handles nodes that have one type set. Assert here so
+ // that we can change this if we ever need to deal with multiple value
+ // types at this point.
+ assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
+ if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
+ OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
+ return false;
+ }
+ case SDTCisOpSmallerThanOp: {
+ TreePatternNode *BigOperand =
+ getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
+
+ // Both operands must be integer or FP, but we don't care which.
+ bool MadeChange = false;
+
+ // This code does not currently handle nodes which have multiple types,
+ // where some types are integer, and some are fp. Assert that this is not
+ // the case.
+ assert(!(MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
+ MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
+ !(MVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
+ MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
+ "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
+ if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
+ MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
+ else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
+ MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
+ if (MVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
+ MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
+ else if (MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
+ MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
+
+ std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
+
+ if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
+ VTs = FilterVTs(VTs, MVT::isInteger);
+ } else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
+ VTs = FilterVTs(VTs, MVT::isFloatingPoint);
+ } else {
+ VTs.clear();
+ }
+
+ switch (VTs.size()) {
+ default: // Too many VT's to pick from.
+ case 0: break; // No info yet.
+ case 1:
+ // Only one VT of this flavor. Cannot ever satisify the constraints.
+ return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
+ case 2:
+ // If we have exactly two possible types, the little operand must be the
+ // small one, the big operand should be the big one. Common with
+ // float/double for example.
+ assert(VTs[0] < VTs[1] && "Should be sorted!");
+ MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
+ MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
+ break;
+ }
+ return MadeChange;
+ }
+ case SDTCisIntVectorOfSameSize: {
+ TreePatternNode *OtherOperand =
+ getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
+ N, NumResults);
+ if (OtherOperand->hasTypeSet()) {
+ if (!MVT::isVector(OtherOperand->getTypeNum(0)))
+ TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
+ MVT::ValueType IVT = OtherOperand->getTypeNum(0);
+ IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
+ return NodeToApply->UpdateNodeType(IVT, TP);
+ }
+ return false;
+ }
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNodeInfo implementation
+//
+SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
+ EnumName = R->getValueAsString("Opcode");
+ SDClassName = R->getValueAsString("SDClass");
+ Record *TypeProfile = R->getValueAsDef("TypeProfile");
+ NumResults = TypeProfile->getValueAsInt("NumResults");
+ NumOperands = TypeProfile->getValueAsInt("NumOperands");
+
+ // Parse the properties.
+ Properties = 0;
+ std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
+ for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
+ if (PropList[i]->getName() == "SDNPCommutative") {
+ Properties |= 1 << SDNPCommutative;
+ } else if (PropList[i]->getName() == "SDNPAssociative") {
+ Properties |= 1 << SDNPAssociative;
+ } else if (PropList[i]->getName() == "SDNPHasChain") {
+ Properties |= 1 << SDNPHasChain;
+ } else if (PropList[i]->getName() == "SDNPOutFlag") {
+ Properties |= 1 << SDNPOutFlag;
+ } else if (PropList[i]->getName() == "SDNPInFlag") {
+ Properties |= 1 << SDNPInFlag;
+ } else if (PropList[i]->getName() == "SDNPOptInFlag") {
+ Properties |= 1 << SDNPOptInFlag;
+ } else {
+ cerr << "Unknown SD Node property '" << PropList[i]->getName()
+ << "' on node '" << R->getName() << "'!\n";
+ exit(1);
+ }
+ }
+
+
+ // Parse the type constraints.
+ std::vector<Record*> ConstraintList =
+ TypeProfile->getValueAsListOfDefs("Constraints");
+ TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
+}
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+TreePatternNode::~TreePatternNode() {
+#if 0 // FIXME: implement refcounted tree nodes!
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ delete getChild(i);
+#endif
+}
+
+/// UpdateNodeType - Set the node type of N to VT if VT contains
+/// information. If N already contains a conflicting type, then throw an
+/// exception. This returns true if any information was updated.
+///
+bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
+ TreePattern &TP) {
+ assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
+
+ if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
+ return false;
+ if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
+ setTypes(ExtVTs);
+ return true;
+ }
+
+ if (getExtTypeNum(0) == MVT::iPTR) {
+ if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
+ return false;
+ if (MVT::isExtIntegerInVTs(ExtVTs)) {
+ std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
+ if (FVTs.size()) {
+ setTypes(ExtVTs);
+ return true;
+ }
+ }
+ }
+
+ if (ExtVTs[0] == MVT::isInt && MVT::isExtIntegerInVTs(getExtTypes())) {
+ assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
+ if (getExtTypes() == FVTs)
+ return false;
+ setTypes(FVTs);
+ return true;
+ }
+ if (ExtVTs[0] == MVT::iPTR && MVT::isExtIntegerInVTs(getExtTypes())) {
+ //assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
+ if (getExtTypes() == FVTs)
+ return false;
+ if (FVTs.size()) {
+ setTypes(FVTs);
+ return true;
+ }
+ }
+ if (ExtVTs[0] == MVT::isFP && MVT::isExtFloatingPointInVTs(getExtTypes())) {
+ assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs =
+ FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
+ if (getExtTypes() == FVTs)
+ return false;
+ setTypes(FVTs);
+ return true;
+ }
+
+ // If we know this is an int or fp type, and we are told it is a specific one,
+ // take the advice.
+ //
+ // Similarly, we should probably set the type here to the intersection of
+ // {isInt|isFP} and ExtVTs
+ if ((getExtTypeNum(0) == MVT::isInt && MVT::isExtIntegerInVTs(ExtVTs)) ||
+ (getExtTypeNum(0) == MVT::isFP && MVT::isExtFloatingPointInVTs(ExtVTs))){
+ setTypes(ExtVTs);
+ return true;
+ }
+ if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
+ setTypes(ExtVTs);
+ return true;
+ }
+
+ if (isLeaf()) {
+ dump();
+ cerr << " ";
+ TP.error("Type inference contradiction found in node!");
+ } else {
+ TP.error("Type inference contradiction found in node " +
+ getOperator()->getName() + "!");
+ }
+ return true; // unreachable
+}
+
+
+void TreePatternNode::print(std::ostream &OS) const {
+ if (isLeaf()) {
+ OS << *getLeafValue();
+ } else {
+ OS << "(" << getOperator()->getName();
+ }
+
+ // FIXME: At some point we should handle printing all the value types for
+ // nodes that are multiply typed.
+ switch (getExtTypeNum(0)) {
+ case MVT::Other: OS << ":Other"; break;
+ case MVT::isInt: OS << ":isInt"; break;
+ case MVT::isFP : OS << ":isFP"; break;
+ case MVT::isUnknown: ; /*OS << ":?";*/ break;
+ case MVT::iPTR: OS << ":iPTR"; break;
+ default: {
+ std::string VTName = llvm::getName(getTypeNum(0));
+ // Strip off MVT:: prefix if present.
+ if (VTName.substr(0,5) == "MVT::")
+ VTName = VTName.substr(5);
+ OS << ":" << VTName;
+ break;
+ }
+ }
+
+ if (!isLeaf()) {
+ if (getNumChildren() != 0) {
+ OS << " ";
+ getChild(0)->print(OS);
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ OS << ", ";
+ getChild(i)->print(OS);
+ }
+ }
+ OS << ")";
+ }
+
+ if (!PredicateFn.empty())
+ OS << "<<P:" << PredicateFn << ">>";
+ if (TransformFn)
+ OS << "<<X:" << TransformFn->getName() << ">>";
+ if (!getName().empty())
+ OS << ":$" << getName();
+
+}
+void TreePatternNode::dump() const {
+ print(*cerr.stream());
+}
+
+/// isIsomorphicTo - Return true if this node is recursively isomorphic to
+/// the specified node. For this comparison, all of the state of the node
+/// is considered, except for the assigned name. Nodes with differing names
+/// that are otherwise identical are considered isomorphic.
+bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
+ if (N == this) return true;
+ if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
+ getPredicateFn() != N->getPredicateFn() ||
+ getTransformFn() != N->getTransformFn())
+ return false;
+
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
+ if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
+ return DI->getDef() == NDI->getDef();
+ return getLeafValue() == N->getLeafValue();
+ }
+
+ if (N->getOperator() != getOperator() ||
+ N->getNumChildren() != getNumChildren()) return false;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
+ return false;
+ return true;
+}
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNode *TreePatternNode::clone() const {
+ TreePatternNode *New;
+ if (isLeaf()) {
+ New = new TreePatternNode(getLeafValue());
+ } else {
+ std::vector<TreePatternNode*> CChildren;
+ CChildren.reserve(Children.size());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ CChildren.push_back(getChild(i)->clone());
+ New = new TreePatternNode(getOperator(), CChildren);
+ }
+ New->setName(getName());
+ New->setTypes(getExtTypes());
+ New->setPredicateFn(getPredicateFn());
+ New->setTransformFn(getTransformFn());
+ return New;
+}
+
+/// SubstituteFormalArguments - Replace the formal arguments in this tree
+/// with actual values specified by ArgMap.
+void TreePatternNode::
+SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
+ if (isLeaf()) return;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ if (Child->isLeaf()) {
+ Init *Val = Child->getLeafValue();
+ if (dynamic_cast<DefInit*>(Val) &&
+ static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
+ // We found a use of a formal argument, replace it with its value.
+ Child = ArgMap[Child->getName()];
+ assert(Child && "Couldn't find formal argument!");
+ setChild(i, Child);
+ }
+ } else {
+ getChild(i)->SubstituteFormalArguments(ArgMap);
+ }
+ }
+}
+
+
+/// InlinePatternFragments - If this pattern refers to any pattern
+/// fragments, inline them into place, giving us a pattern without any
+/// PatFrag references.
+TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
+ if (isLeaf()) return this; // nothing to do.
+ Record *Op = getOperator();
+
+ if (!Op->isSubClassOf("PatFrag")) {
+ // Just recursively inline children nodes.
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ setChild(i, getChild(i)->InlinePatternFragments(TP));
+ return this;
+ }
+
+ // Otherwise, we found a reference to a fragment. First, look up its
+ // TreePattern record.
+ TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
+
+ // Verify that we are passing the right number of operands.
+ if (Frag->getNumArgs() != Children.size())
+ TP.error("'" + Op->getName() + "' fragment requires " +
+ utostr(Frag->getNumArgs()) + " operands!");
+
+ TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
+
+ // Resolve formal arguments to their actual value.
+ if (Frag->getNumArgs()) {
+ // Compute the map of formal to actual arguments.
+ std::map<std::string, TreePatternNode*> ArgMap;
+ for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
+ ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
+
+ FragTree->SubstituteFormalArguments(ArgMap);
+ }
+
+ FragTree->setName(getName());
+ FragTree->UpdateNodeType(getExtTypes(), TP);
+
+ // Get a new copy of this fragment to stitch into here.
+ //delete this; // FIXME: implement refcounting!
+ return FragTree;
+}
+
+/// getImplicitType - Check to see if the specified record has an implicit
+/// type which should be applied to it. This infer the type of register
+/// references from the register file information, for example.
+///
+static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
+ TreePattern &TP) {
+ // Some common return values
+ std::vector<unsigned char> Unknown(1, MVT::isUnknown);
+ std::vector<unsigned char> Other(1, MVT::Other);
+
+ // Check to see if this is a register or a register class...
+ if (R->isSubClassOf("RegisterClass")) {
+ if (NotRegisters)
+ return Unknown;
+ const CodeGenRegisterClass &RC =
+ TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
+ return ConvertVTs(RC.getValueTypes());
+ } else if (R->isSubClassOf("PatFrag")) {
+ // Pattern fragment types will be resolved when they are inlined.
+ return Unknown;
+ } else if (R->isSubClassOf("Register")) {
+ if (NotRegisters)
+ return Unknown;
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return T.getRegisterVTs(R);
+ } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+ // Using a VTSDNode or CondCodeSDNode.
+ return Other;
+ } else if (R->isSubClassOf("ComplexPattern")) {
+ if (NotRegisters)
+ return Unknown;
+ std::vector<unsigned char>
+ ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
+ return ComplexPat;
+ } else if (R->getName() == "ptr_rc") {
+ Other[0] = MVT::iPTR;
+ return Other;
+ } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
+ R->getName() == "zero_reg") {
+ // Placeholder.
+ return Unknown;
+ }
+
+ TP.error("Unknown node flavor used in pattern: " + R->getName());
+ return Other;
+}
+
+/// ApplyTypeConstraints - Apply all of the type constraints relevent to
+/// this node and its children in the tree. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
+ CodegenDAGPatterns &CDP = TP.getDAGPatterns();
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+ // If it's a regclass or something else known, include the type.
+ return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
+ } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
+ // Int inits are always integers. :)
+ bool MadeChange = UpdateNodeType(MVT::isInt, TP);
+
+ if (hasTypeSet()) {
+ // At some point, it may make sense for this tree pattern to have
+ // multiple types. Assert here that it does not, so we revisit this
+ // code when appropriate.
+ assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
+ MVT::ValueType VT = getTypeNum(0);
+ for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
+ assert(getTypeNum(i) == VT && "TreePattern has too many types!");
+
+ VT = getTypeNum(0);
+ if (VT != MVT::iPTR) {
+ unsigned Size = MVT::getSizeInBits(VT);
+ // Make sure that the value is representable for this type.
+ if (Size < 32) {
+ int Val = (II->getValue() << (32-Size)) >> (32-Size);
+ if (Val != II->getValue())
+ TP.error("Sign-extended integer value '" + itostr(II->getValue())+
+ "' is out of range for type '" +
+ getEnumName(getTypeNum(0)) + "'!");
+ }
+ }
+ }
+
+ return MadeChange;
+ }
+ return false;
+ }
+
+ // special handling for set, which isn't really an SDNode.
+ if (getOperator()->getName() == "set") {
+ assert (getNumChildren() >= 2 && "Missing RHS of a set?");
+ unsigned NC = getNumChildren();
+ bool MadeChange = false;
+ for (unsigned i = 0; i < NC-1; ++i) {
+ MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ // Types of operands must match.
+ MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
+ TP);
+ MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
+ TP);
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+ }
+ return MadeChange;
+ } else if (getOperator()->getName() == "implicit" ||
+ getOperator()->getName() == "parallel") {
+ bool MadeChange = false;
+ for (unsigned i = 0; i < getNumChildren(); ++i)
+ MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+ return MadeChange;
+ } else if (getOperator() == CDP.get_intrinsic_void_sdnode() ||
+ getOperator() == CDP.get_intrinsic_w_chain_sdnode() ||
+ getOperator() == CDP.get_intrinsic_wo_chain_sdnode()) {
+ unsigned IID =
+ dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
+ const CodeGenIntrinsic &Int = CDP.getIntrinsicInfo(IID);
+ bool MadeChange = false;
+
+ // Apply the result type to the node.
+ MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
+
+ if (getNumChildren() != Int.ArgVTs.size())
+ TP.error("Intrinsic '" + Int.Name + "' expects " +
+ utostr(Int.ArgVTs.size()-1) + " operands, not " +
+ utostr(getNumChildren()-1) + " operands!");
+
+ // Apply type info to the intrinsic ID.
+ MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
+
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ MVT::ValueType OpVT = Int.ArgVTs[i];
+ MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ }
+ return MadeChange;
+ } else if (getOperator()->isSubClassOf("SDNode")) {
+ const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
+
+ bool MadeChange = NI.ApplyTypeConstraints(this, TP);
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ // Branch, etc. do not produce results and top-level forms in instr pattern
+ // must have void types.
+ if (NI.getNumResults() == 0)
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+
+ // If this is a vector_shuffle operation, apply types to the build_vector
+ // operation. The types of the integers don't matter, but this ensures they
+ // won't get checked.
+ if (getOperator()->getName() == "vector_shuffle" &&
+ getChild(2)->getOperator()->getName() == "build_vector") {
+ TreePatternNode *BV = getChild(2);
+ const std::vector<MVT::ValueType> &LegalVTs
+ = CDP.getTargetInfo().getLegalValueTypes();
+ MVT::ValueType LegalIntVT = MVT::Other;
+ for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
+ if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
+ LegalIntVT = LegalVTs[i];
+ break;
+ }
+ assert(LegalIntVT != MVT::Other && "No legal integer VT?");
+
+ for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
+ MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
+ }
+ return MadeChange;
+ } else if (getOperator()->isSubClassOf("Instruction")) {
+ const DAGInstruction &Inst = CDP.getInstruction(getOperator());
+ bool MadeChange = false;
+ unsigned NumResults = Inst.getNumResults();
+
+ assert(NumResults <= 1 &&
+ "Only supports zero or one result instrs!");
+
+ CodeGenInstruction &InstInfo =
+ CDP.getTargetInfo().getInstruction(getOperator()->getName());
+ // Apply the result type to the node
+ if (NumResults == 0 || InstInfo.NumDefs == 0) {
+ MadeChange = UpdateNodeType(MVT::isVoid, TP);
+ } else {
+ Record *ResultNode = Inst.getResult(0);
+
+ if (ResultNode->getName() == "ptr_rc") {
+ std::vector<unsigned char> VT;
+ VT.push_back(MVT::iPTR);
+ MadeChange = UpdateNodeType(VT, TP);
+ } else {
+ assert(ResultNode->isSubClassOf("RegisterClass") &&
+ "Operands should be register classes!");
+
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(ResultNode);
+ MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ }
+ }
+
+ unsigned ChildNo = 0;
+ for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
+ Record *OperandNode = Inst.getOperand(i);
+
+ // If the instruction expects a predicate or optional def operand, we
+ // codegen this by setting the operand to it's default value if it has a
+ // non-empty DefaultOps field.
+ if ((OperandNode->isSubClassOf("PredicateOperand") ||
+ OperandNode->isSubClassOf("OptionalDefOperand")) &&
+ !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
+ continue;
+
+ // Verify that we didn't run out of provided operands.
+ if (ChildNo >= getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' expects more operands than were provided.");
+
+ MVT::ValueType VT;
+ TreePatternNode *Child = getChild(ChildNo++);
+ if (OperandNode->isSubClassOf("RegisterClass")) {
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(OperandNode);
+ MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ } else if (OperandNode->isSubClassOf("Operand")) {
+ VT = getValueType(OperandNode->getValueAsDef("Type"));
+ MadeChange |= Child->UpdateNodeType(VT, TP);
+ } else if (OperandNode->getName() == "ptr_rc") {
+ MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
+ } else {
+ assert(0 && "Unknown operand type!");
+ abort();
+ }
+ MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
+ }
+
+ if (ChildNo != getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' was provided too many operands!");
+
+ return MadeChange;
+ } else {
+ assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
+
+ // Node transforms always take one operand.
+ if (getNumChildren() != 1)
+ TP.error("Node transform '" + getOperator()->getName() +
+ "' requires one operand!");
+
+ // If either the output or input of the xform does not have exact
+ // type info. We assume they must be the same. Otherwise, it is perfectly
+ // legal to transform from one type to a completely different type.
+ if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
+ bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
+ return MadeChange;
+ }
+ return false;
+ }
+}
+
+/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
+/// RHS of a commutative operation, not the on LHS.
+static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm")
+ return true;
+ if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
+ return true;
+ return false;
+}
+
+
+/// canPatternMatch - If it is impossible for this pattern to match on this
+/// target, fill in Reason and return false. Otherwise, return true. This is
+/// used as a santity check for .td files (to prevent people from writing stuff
+/// that can never possibly work), and to prevent the pattern permuter from
+/// generating stuff that is useless.
+bool TreePatternNode::canPatternMatch(std::string &Reason,
+ CodegenDAGPatterns &CDP){
+ if (isLeaf()) return true;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->canPatternMatch(Reason, CDP))
+ return false;
+
+ // If this is an intrinsic, handle cases that would make it not match. For
+ // example, if an operand is required to be an immediate.
+ if (getOperator()->isSubClassOf("Intrinsic")) {
+ // TODO:
+ return true;
+ }
+
+ // If this node is a commutative operator, check that the LHS isn't an
+ // immediate.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
+ if (NodeInfo.hasProperty(SDNPCommutative)) {
+ // Scan all of the operands of the node and make sure that only the last one
+ // is a constant node, unless the RHS also is.
+ if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
+ for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
+ if (OnlyOnRHSOfCommutative(getChild(i))) {
+ Reason="Immediate value must be on the RHS of commutative operators!";
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePattern implementation
+//
+
+TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodegenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
+ Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
+}
+
+TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodegenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ Trees.push_back(ParseTreePattern(Pat));
+}
+
+TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+ CodegenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ Trees.push_back(Pat);
+}
+
+
+
+void TreePattern::error(const std::string &Msg) const {
+ dump();
+ throw "In " + TheRecord->getName() + ": " + Msg;
+}
+
+TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
+ DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
+ if (!OpDef) error("Pattern has unexpected operator type!");
+ Record *Operator = OpDef->getDef();
+
+ if (Operator->isSubClassOf("ValueType")) {
+ // If the operator is a ValueType, then this must be "type cast" of a leaf
+ // node.
+ if (Dag->getNumArgs() != 1)
+ error("Type cast only takes one operand!");
+
+ Init *Arg = Dag->getArg(0);
+ TreePatternNode *New;
+ if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DI->getDef();
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+ Dag->setArg(0, new DagInit(DI,
+ std::vector<std::pair<Init*, std::string> >()));
+ return ParseTreePattern(Dag);
+ }
+ New = new TreePatternNode(DI);
+ } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ New = ParseTreePattern(DI);
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ New = new TreePatternNode(II);
+ if (!Dag->getArgName(0).empty())
+ error("Constant int argument should not have a name!");
+ } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+
+ New = new TreePatternNode(dynamic_cast<IntInit*>(II));
+ if (!Dag->getArgName(0).empty())
+ error("Constant int argument should not have a name!");
+ } else {
+ Arg->dump();
+ error("Unknown leaf value for tree pattern!");
+ return 0;
+ }
+
+ // Apply the type cast.
+ New->UpdateNodeType(getValueType(Operator), *this);
+ New->setName(Dag->getArgName(0));
+ return New;
+ }
+
+ // Verify that this is something that makes sense for an operator.
+ if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
+ !Operator->isSubClassOf("Instruction") &&
+ !Operator->isSubClassOf("SDNodeXForm") &&
+ !Operator->isSubClassOf("Intrinsic") &&
+ Operator->getName() != "set" &&
+ Operator->getName() != "implicit" &&
+ Operator->getName() != "parallel")
+ error("Unrecognized node '" + Operator->getName() + "'!");
+
+ // Check to see if this is something that is illegal in an input pattern.
+ if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
+ Operator->isSubClassOf("SDNodeXForm")))
+ error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+
+ std::vector<TreePatternNode*> Children;
+
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
+ Init *Arg = Dag->getArg(i);
+ if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ Children.push_back(ParseTreePattern(DI));
+ if (Children.back()->getName().empty())
+ Children.back()->setName(Dag->getArgName(i));
+ } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DefI->getDef();
+ // Direct reference to a leaf DagNode or PatFrag? Turn it into a
+ // TreePatternNode if its own.
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+ Dag->setArg(i, new DagInit(DefI,
+ std::vector<std::pair<Init*, std::string> >()));
+ --i; // Revisit this node...
+ } else {
+ TreePatternNode *Node = new TreePatternNode(DefI);
+ Node->setName(Dag->getArgName(i));
+ Children.push_back(Node);
+
+ // Input argument?
+ if (R->getName() == "node") {
+ if (Dag->getArgName(i).empty())
+ error("'node' argument requires a name to match with operand list");
+ Args.push_back(Dag->getArgName(i));
+ }
+ }
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ TreePatternNode *Node = new TreePatternNode(II);
+ if (!Dag->getArgName(i).empty())
+ error("Constant int argument should not have a name!");
+ Children.push_back(Node);
+ } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+
+ TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
+ if (!Dag->getArgName(i).empty())
+ error("Constant int argument should not have a name!");
+ Children.push_back(Node);
+ } else {
+ cerr << '"';
+ Arg->dump();
+ cerr << "\": ";
+ error("Unknown leaf value for tree pattern!");
+ }
+ }
+
+ // If the operator is an intrinsic, then this is just syntactic sugar for for
+ // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
+ // convert the intrinsic name to a number.
+ if (Operator->isSubClassOf("Intrinsic")) {
+ const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
+ unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
+
+ // If this intrinsic returns void, it must have side-effects and thus a
+ // chain.
+ if (Int.ArgVTs[0] == MVT::isVoid) {
+ Operator = getDAGPatterns().get_intrinsic_void_sdnode();
+ } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
+ // Has side-effects, requires chain.
+ Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
+ } else {
+ // Otherwise, no chain.
+ Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
+ }
+
+ TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
+ Children.insert(Children.begin(), IIDNode);
+ }
+
+ return new TreePatternNode(Operator, Children);
+}
+
+/// InferAllTypes - Infer/propagate as many types throughout the expression
+/// patterns as possible. Return true if all types are infered, false
+/// otherwise. Throw an exception if a type contradiction is found.
+bool TreePattern::InferAllTypes() {
+ bool MadeChange = true;
+ while (MadeChange) {
+ MadeChange = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
+ }
+
+ bool HasUnresolvedTypes = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
+ return !HasUnresolvedTypes;
+}
+
+void TreePattern::print(std::ostream &OS) const {
+ OS << getRecord()->getName();
+ if (!Args.empty()) {
+ OS << "(" << Args[0];
+ for (unsigned i = 1, e = Args.size(); i != e; ++i)
+ OS << ", " << Args[i];
+ OS << ")";
+ }
+ OS << ": ";
+
+ if (Trees.size() > 1)
+ OS << "[\n";
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
+ OS << "\t";
+ Trees[i]->print(OS);
+ OS << "\n";
+ }
+
+ if (Trees.size() > 1)
+ OS << "]\n";
+}
+
+void TreePattern::dump() const { print(*cerr.stream()); }
+
+//===----------------------------------------------------------------------===//
+// CodegenDAGPatterns implementation
+//
+
+// FIXME: REMOVE OSTREAM ARGUMENT
+CodegenDAGPatterns::CodegenDAGPatterns(RecordKeeper &R, std::ostream &OS)
+ : Records(R) {
+
+ Intrinsics = LoadIntrinsics(Records);
+ ParseNodeInfo();
+ ParseNodeTransforms(OS);
+ ParseComplexPatterns();
+ ParsePatternFragments(OS);
+ ParseDefaultOperands();
+ ParseInstructions();
+ ParsePatterns();
+
+ // Generate variants. For example, commutative patterns can match
+ // multiple ways. Add them to PatternsToMatch as well.
+ GenerateVariants();
+}
+
+CodegenDAGPatterns::~CodegenDAGPatterns() {
+ for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+ E = PatternFragments.end(); I != E; ++I)
+ delete I->second;
+}
+
+
+Record *CodegenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
+ Record *N = Records.getDef(Name);
+ if (!N || !N->isSubClassOf("SDNode")) {
+ cerr << "Error getting SDNode '" << Name << "'!\n";
+ exit(1);
+ }
+ return N;
+}
+
+// Parse all of the SDNode definitions for the target, populating SDNodes.
+void CodegenDAGPatterns::ParseNodeInfo() {
+ std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
+ while (!Nodes.empty()) {
+ SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
+ Nodes.pop_back();
+ }
+
+ // Get the buildin intrinsic nodes.
+ intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
+ intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
+ intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
+}
+
+/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
+/// map, and emit them to the file as functions.
+void CodegenDAGPatterns::ParseNodeTransforms(std::ostream &OS) {
+ OS << "\n// Node transformations.\n";
+ std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
+ while (!Xforms.empty()) {
+ Record *XFormNode = Xforms.back();
+ Record *SDNode = XFormNode->getValueAsDef("Opcode");
+ std::string Code = XFormNode->getValueAsCode("XFormFunction");
+ SDNodeXForms.insert(std::make_pair(XFormNode,
+ std::make_pair(SDNode, Code)));
+
+ if (!Code.empty()) {
+ std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
+ const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+ OS << "inline SDOperand Transform_" << XFormNode->getName()
+ << "(SDNode *" << C2 << ") {\n";
+ if (ClassName != "SDNode")
+ OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+ OS << Code << "\n}\n";
+ }
+
+ Xforms.pop_back();
+ }
+}
+
+void CodegenDAGPatterns::ParseComplexPatterns() {
+ std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
+ while (!AMs.empty()) {
+ ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
+ AMs.pop_back();
+ }
+}
+
+
+/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
+/// file, building up the PatternFragments map. After we've collected them all,
+/// inline fragments together as necessary, so that there are no references left
+/// inside a pattern fragment to a pattern fragment.
+///
+/// This also emits all of the predicate functions to the output file.
+///
+void CodegenDAGPatterns::ParsePatternFragments(std::ostream &OS) {
+ std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
+
+ // First step, parse all of the fragments and emit predicate functions.
+ OS << "\n// Predicate functions.\n";
+ for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+ DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
+ TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
+ PatternFragments[Fragments[i]] = P;
+
+ // Validate the argument list, converting it to map, to discard duplicates.
+ std::vector<std::string> &Args = P->getArgList();
+ std::set<std::string> OperandsMap(Args.begin(), Args.end());
+
+ if (OperandsMap.count(""))
+ P->error("Cannot have unnamed 'node' values in pattern fragment!");
+
+ // Parse the operands list.
+ DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
+ DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
+ // Special cases: ops == outs == ins. Different names are used to
+ // improve readibility.
+ if (!OpsOp ||
+ (OpsOp->getDef()->getName() != "ops" &&
+ OpsOp->getDef()->getName() != "outs" &&
+ OpsOp->getDef()->getName() != "ins"))
+ P->error("Operands list should start with '(ops ... '!");
+
+ // Copy over the arguments.
+ Args.clear();
+ for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
+ if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
+ static_cast<DefInit*>(OpsList->getArg(j))->
+ getDef()->getName() != "node")
+ P->error("Operands list should all be 'node' values.");
+ if (OpsList->getArgName(j).empty())
+ P->error("Operands list should have names for each operand!");
+ if (!OperandsMap.count(OpsList->getArgName(j)))
+ P->error("'" + OpsList->getArgName(j) +
+ "' does not occur in pattern or was multiply specified!");
+ OperandsMap.erase(OpsList->getArgName(j));
+ Args.push_back(OpsList->getArgName(j));
+ }
+
+ if (!OperandsMap.empty())
+ P->error("Operands list does not contain an entry for operand '" +
+ *OperandsMap.begin() + "'!");
+
+ // If there is a code init for this fragment, emit the predicate code and
+ // keep track of the fact that this fragment uses it.
+ std::string Code = Fragments[i]->getValueAsCode("Predicate");
+ if (!Code.empty()) {
+ if (P->getOnlyTree()->isLeaf())
+ OS << "inline bool Predicate_" << Fragments[i]->getName()
+ << "(SDNode *N) {\n";
+ else {
+ std::string ClassName =
+ getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
+ const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+ OS << "inline bool Predicate_" << Fragments[i]->getName()
+ << "(SDNode *" << C2 << ") {\n";
+ if (ClassName != "SDNode")
+ OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+ }
+ OS << Code << "\n}\n";
+ P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
+ }
+
+ // If there is a node transformation corresponding to this, keep track of
+ // it.
+ Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
+ if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
+ P->getOnlyTree()->setTransformFn(Transform);
+ }
+
+ OS << "\n\n";
+
+ // Now that we've parsed all of the tree fragments, do a closure on them so
+ // that there are not references to PatFrags left inside of them.
+ for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+ E = PatternFragments.end(); I != E; ++I) {
+ TreePattern *ThePat = I->second;
+ ThePat->InlinePatternFragments();
+
+ // Infer as many types as possible. Don't worry about it if we don't infer
+ // all of them, some may depend on the inputs of the pattern.
+ try {
+ ThePat->InferAllTypes();
+ } catch (...) {
+ // If this pattern fragment is not supported by this target (no types can
+ // satisfy its constraints), just ignore it. If the bogus pattern is
+ // actually used by instructions, the type consistency error will be
+ // reported there.
+ }
+
+ // If debugging, print out the pattern fragment result.
+ DEBUG(ThePat->dump());
+ }
+}
+
+void CodegenDAGPatterns::ParseDefaultOperands() {
+ std::vector<Record*> DefaultOps[2];
+ DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
+ DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
+
+ // Find some SDNode.
+ assert(!SDNodes.empty() && "No SDNodes parsed?");
+ Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
+
+ for (unsigned iter = 0; iter != 2; ++iter) {
+ for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
+ DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
+
+ // Clone the DefaultInfo dag node, changing the operator from 'ops' to
+ // SomeSDnode so that we can parse this.
+ std::vector<std::pair<Init*, std::string> > Ops;
+ for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
+ Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
+ DefaultInfo->getArgName(op)));
+ DagInit *DI = new DagInit(SomeSDNode, Ops);
+
+ // Create a TreePattern to parse this.
+ TreePattern P(DefaultOps[iter][i], DI, false, *this);
+ assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
+
+ // Copy the operands over into a DAGDefaultOperand.
+ DAGDefaultOperand DefaultOpInfo;
+
+ TreePatternNode *T = P.getTree(0);
+ for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
+ TreePatternNode *TPN = T->getChild(op);
+ while (TPN->ApplyTypeConstraints(P, false))
+ /* Resolve all types */;
+
+ if (TPN->ContainsUnresolvedType())
+ if (iter == 0)
+ throw "Value #" + utostr(i) + " of PredicateOperand '" +
+ DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+ else
+ throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
+ DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+
+ DefaultOpInfo.DefaultOps.push_back(TPN);
+ }
+
+ // Insert it into the DefaultOperands map so we can find it later.
+ DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
+ }
+ }
+}
+
+/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
+/// instruction input. Return true if this is a real use.
+static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::vector<Record*> &InstImpInputs) {
+ // No name -> not interesting.
+ if (Pat->getName().empty()) {
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
+ I->error("Input " + DI->getDef()->getName() + " must be named!");
+ else if (DI && DI->getDef()->isSubClassOf("Register"))
+ InstImpInputs.push_back(DI->getDef());
+ ;
+ }
+ return false;
+ }
+
+ Record *Rec;
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
+ Rec = DI->getDef();
+ } else {
+ assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
+ Rec = Pat->getOperator();
+ }
+
+ // SRCVALUE nodes are ignored.
+ if (Rec->getName() == "srcvalue")
+ return false;
+
+ TreePatternNode *&Slot = InstInputs[Pat->getName()];
+ if (!Slot) {
+ Slot = Pat;
+ } else {
+ Record *SlotRec;
+ if (Slot->isLeaf()) {
+ SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
+ } else {
+ assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
+ SlotRec = Slot->getOperator();
+ }
+
+ // Ensure that the inputs agree if we've already seen this input.
+ if (Rec != SlotRec)
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ if (Slot->getExtTypes() != Pat->getExtTypes())
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ }
+ return true;
+}
+
+/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
+/// part of "I", the instruction), computing the set of inputs and outputs of
+/// the pattern. Report errors if we see anything naughty.
+void CodegenDAGPatterns::
+FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::map<std::string, TreePatternNode*>&InstResults,
+ std::vector<Record*> &InstImpInputs,
+ std::vector<Record*> &InstImpResults) {
+ if (Pat->isLeaf()) {
+ bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ } else if (Pat->getOperator()->getName() == "implicit") {
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("implicitly defined value should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val || !Val->getDef()->isSubClassOf("Register"))
+ I->error("implicitly defined value should be a register!");
+ InstImpResults.push_back(Val->getDef());
+ }
+ return;
+ } else if (Pat->getOperator()->getName() != "set") {
+ // If this is not a set, verify that the children nodes are not void typed,
+ // and recurse.
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
+ I->error("Cannot have void nodes inside of patterns!");
+ FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // If this is a non-leaf node with no children, treat it basically as if
+ // it were a leaf. This handles nodes like (imm).
+ bool isUse = false;
+ if (Pat->getNumChildren() == 0)
+ isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ // Otherwise, this is a set, validate and collect instruction results.
+ if (Pat->getNumChildren() == 0)
+ I->error("set requires operands!");
+
+ if (Pat->getTransformFn())
+ I->error("Cannot specify a transform function on a set node!");
+
+ // Check the set destinations.
+ unsigned NumDests = Pat->getNumChildren()-1;
+ for (unsigned i = 0; i != NumDests; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("set destination should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val)
+ I->error("set destination should be a register!");
+
+ if (Val->getDef()->isSubClassOf("RegisterClass") ||
+ Val->getDef()->getName() == "ptr_rc") {
+ if (Dest->getName().empty())
+ I->error("set destination must have a name!");
+ if (InstResults.count(Dest->getName()))
+ I->error("cannot set '" + Dest->getName() +"' multiple times");
+ InstResults[Dest->getName()] = Dest;
+ } else if (Val->getDef()->isSubClassOf("Register")) {
+ InstImpResults.push_back(Val->getDef());
+ } else {
+ I->error("set destination should be a register!");
+ }
+ }
+
+ // Verify and collect info from the computation.
+ FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
+ InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+}
+
+/// ParseInstructions - Parse all of the instructions, inlining and resolving
+/// any fragments involved. This populates the Instructions list with fully
+/// resolved instructions.
+void CodegenDAGPatterns::ParseInstructions() {
+ std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
+
+ for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
+ ListInit *LI = 0;
+
+ if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
+ LI = Instrs[i]->getValueAsListInit("Pattern");
+
+ // If there is no pattern, only collect minimal information about the
+ // instruction for its operand list. We have to assume that there is one
+ // result, as we have no detailed info.
+ if (!LI || LI->getSize() == 0) {
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+
+ CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
+
+ if (InstInfo.OperandList.size() != 0) {
+ if (InstInfo.NumDefs == 0) {
+ // These produce no results
+ for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
+ Operands.push_back(InstInfo.OperandList[j].Rec);
+ } else {
+ // Assume the first operand is the result.
+ Results.push_back(InstInfo.OperandList[0].Rec);
+
+ // The rest are inputs.
+ for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
+ Operands.push_back(InstInfo.OperandList[j].Rec);
+ }
+ }
+
+ // Create and insert the instruction.
+ std::vector<Record*> ImpResults;
+ std::vector<Record*> ImpOperands;
+ Instructions.insert(std::make_pair(Instrs[i],
+ DAGInstruction(0, Results, Operands, ImpResults,
+ ImpOperands)));
+ continue; // no pattern.
+ }
+
+ // Parse the instruction.
+ TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
+ // Inline pattern fragments into it.
+ I->InlinePatternFragments();
+
+ // Infer as many types as possible. If we cannot infer all of them, we can
+ // never do anything with this instruction pattern: report it to the user.
+ if (!I->InferAllTypes())
+ I->error("Could not infer all types in pattern!");
+
+ // InstInputs - Keep track of all of the inputs of the instruction, along
+ // with the record they are declared as.
+ std::map<std::string, TreePatternNode*> InstInputs;
+
+ // InstResults - Keep track of all the virtual registers that are 'set'
+ // in the instruction, including what reg class they are.
+ std::map<std::string, TreePatternNode*> InstResults;
+
+ std::vector<Record*> InstImpInputs;
+ std::vector<Record*> InstImpResults;
+
+ // Verify that the top-level forms in the instruction are of void type, and
+ // fill in the InstResults map.
+ for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
+ TreePatternNode *Pat = I->getTree(j);
+ if (Pat->getExtTypeNum(0) != MVT::isVoid)
+ I->error("Top-level forms in instruction pattern should have"
+ " void types");
+
+ // Find inputs and outputs, and verify the structure of the uses/defs.
+ FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // Now that we have inputs and outputs of the pattern, inspect the operands
+ // list for the instruction. This determines the order that operands are
+ // added to the machine instruction the node corresponds to.
+ unsigned NumResults = InstResults.size();
+
+ // Parse the operands list from the (ops) list, validating it.
+ assert(I->getArgList().empty() && "Args list should still be empty here!");
+ CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
+
+ // Check that all of the results occur first in the list.
+ std::vector<Record*> Results;
+ TreePatternNode *Res0Node = NULL;
+ for (unsigned i = 0; i != NumResults; ++i) {
+ if (i == CGI.OperandList.size())
+ I->error("'" + InstResults.begin()->first +
+ "' set but does not appear in operand list!");
+ const std::string &OpName = CGI.OperandList[i].Name;
+
+ // Check that it exists in InstResults.
+ TreePatternNode *RNode = InstResults[OpName];
+ if (RNode == 0)
+ I->error("Operand $" + OpName + " does not exist in operand list!");
+
+ if (i == 0)
+ Res0Node = RNode;
+ Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
+ if (R == 0)
+ I->error("Operand $" + OpName + " should be a set destination: all "
+ "outputs must occur before inputs in operand list!");
+
+ if (CGI.OperandList[i].Rec != R)
+ I->error("Operand $" + OpName + " class mismatch!");
+
+ // Remember the return type.
+ Results.push_back(CGI.OperandList[i].Rec);
+
+ // Okay, this one checks out.
+ InstResults.erase(OpName);
+ }
+
+ // Loop over the inputs next. Make a copy of InstInputs so we can destroy
+ // the copy while we're checking the inputs.
+ std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
+
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ std::vector<Record*> Operands;
+ for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
+ CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
+ const std::string &OpName = Op.Name;
+ if (OpName.empty())
+ I->error("Operand #" + utostr(i) + " in operands list has no name!");
+
+ if (!InstInputsCheck.count(OpName)) {
+ // If this is an predicate operand or optional def operand with an
+ // DefaultOps set filled in, we can ignore this. When we codegen it,
+ // we will do so as always executed.
+ if (Op.Rec->isSubClassOf("PredicateOperand") ||
+ Op.Rec->isSubClassOf("OptionalDefOperand")) {
+ // Does it have a non-empty DefaultOps field? If so, ignore this
+ // operand.
+ if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
+ continue;
+ }
+ I->error("Operand $" + OpName +
+ " does not appear in the instruction pattern");
+ }
+ TreePatternNode *InVal = InstInputsCheck[OpName];
+ InstInputsCheck.erase(OpName); // It occurred, remove from map.
+
+ if (InVal->isLeaf() &&
+ dynamic_cast<DefInit*>(InVal->getLeafValue())) {
+ Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
+ if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
+ I->error("Operand $" + OpName + "'s register class disagrees"
+ " between the operand and pattern");
+ }
+ Operands.push_back(Op.Rec);
+
+ // Construct the result for the dest-pattern operand list.
+ TreePatternNode *OpNode = InVal->clone();
+
+ // No predicate is useful on the result.
+ OpNode->setPredicateFn("");
+
+ // Promote the xform function to be an explicit node if set.
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children);
+ }
+
+ ResultNodeOperands.push_back(OpNode);
+ }
+
+ if (!InstInputsCheck.empty())
+ I->error("Input operand $" + InstInputsCheck.begin()->first +
+ " occurs in pattern but not in operands list!");
+
+ TreePatternNode *ResultPattern =
+ new TreePatternNode(I->getRecord(), ResultNodeOperands);
+ // Copy fully inferred output node type to instruction result pattern.
+ if (NumResults > 0)
+ ResultPattern->setTypes(Res0Node->getExtTypes());
+
+ // Create and insert the instruction.
+ // FIXME: InstImpResults and InstImpInputs should not be part of
+ // DAGInstruction.
+ DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
+ Instructions.insert(std::make_pair(I->getRecord(), TheInst));
+
+ // Use a temporary tree pattern to infer all types and make sure that the
+ // constructed result is correct. This depends on the instruction already
+ // being inserted into the Instructions map.
+ TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
+ Temp.InferAllTypes();
+
+ DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
+ TheInsertedInst.setResultPattern(Temp.getOnlyTree());
+
+ DEBUG(I->dump());
+ }
+
+ // If we can, convert the instructions to be patterns that are matched!
+ for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
+ E = Instructions.end(); II != E; ++II) {
+ DAGInstruction &TheInst = II->second;
+ TreePattern *I = TheInst.getPattern();
+ if (I == 0) continue; // No pattern.
+
+ // FIXME: Assume only the first tree is the pattern. The others are clobber
+ // nodes.
+ TreePatternNode *Pattern = I->getTree(0);
+ TreePatternNode *SrcPattern;
+ if (Pattern->getOperator()->getName() == "set") {
+ SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
+ } else{
+ // Not a set (store or something?)
+ SrcPattern = Pattern;
+ }
+
+ std::string Reason;
+ if (!SrcPattern->canPatternMatch(Reason, *this))
+ I->error("Instruction can never match: " + Reason);
+
+ Record *Instr = II->first;
+ TreePatternNode *DstPattern = TheInst.getResultPattern();
+ PatternsToMatch.
+ push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
+ SrcPattern, DstPattern, TheInst.getImpResults(),
+ Instr->getValueAsInt("AddedComplexity")));
+ }
+}
+
+void CodegenDAGPatterns::ParsePatterns() {
+ std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
+
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
+ DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
+ Record *Operator = OpDef->getDef();
+ TreePattern *Pattern;
+ if (Operator->getName() != "parallel")
+ Pattern = new TreePattern(Patterns[i], Tree, true, *this);
+ else {
+ std::vector<Init*> Values;
+ for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
+ Values.push_back(Tree->getArg(j));
+ ListInit *LI = new ListInit(Values);
+ Pattern = new TreePattern(Patterns[i], LI, true, *this);
+ }
+
+ // Inline pattern fragments into it.
+ Pattern->InlinePatternFragments();
+
+ ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
+ if (LI->getSize() == 0) continue; // no pattern.
+
+ // Parse the instruction.
+ TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
+
+ // Inline pattern fragments into it.
+ Result->InlinePatternFragments();
+
+ if (Result->getNumTrees() != 1)
+ Result->error("Cannot handle instructions producing instructions "
+ "with temporaries yet!");
+
+ bool IterateInference;
+ bool InferredAllPatternTypes, InferredAllResultTypes;
+ do {
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllPatternTypes = Pattern->InferAllTypes();
+
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllResultTypes = Result->InferAllTypes();
+
+ // Apply the type of the result to the source pattern. This helps us
+ // resolve cases where the input type is known to be a pointer type (which
+ // is considered resolved), but the result knows it needs to be 32- or
+ // 64-bits. Infer the other way for good measure.
+ IterateInference = Pattern->getTree(0)->
+ UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
+ IterateInference |= Result->getTree(0)->
+ UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
+ } while (IterateInference);
+
+ // Verify that we inferred enough types that we can do something with the
+ // pattern and result. If these fire the user has to add type casts.
+ if (!InferredAllPatternTypes)
+ Pattern->error("Could not infer all types in pattern!");
+ if (!InferredAllResultTypes)
+ Result->error("Could not infer all types in pattern result!");
+
+ // Validate that the input pattern is correct.
+ std::map<std::string, TreePatternNode*> InstInputs;
+ std::map<std::string, TreePatternNode*> InstResults;
+ std::vector<Record*> InstImpInputs;
+ std::vector<Record*> InstImpResults;
+ for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
+ FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
+ InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+
+ // Promote the xform function to be an explicit node if set.
+ TreePatternNode *DstPattern = Result->getOnlyTree();
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
+ TreePatternNode *OpNode = DstPattern->getChild(ii);
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children);
+ }
+ ResultNodeOperands.push_back(OpNode);
+ }
+ DstPattern = Result->getOnlyTree();
+ if (!DstPattern->isLeaf())
+ DstPattern = new TreePatternNode(DstPattern->getOperator(),
+ ResultNodeOperands);
+ DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
+ TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
+ Temp.InferAllTypes();
+
+ std::string Reason;
+ if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
+ Pattern->error("Pattern can never match: " + Reason);
+
+ PatternsToMatch.
+ push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
+ Pattern->getTree(0),
+ Temp.getOnlyTree(), InstImpResults,
+ Patterns[i]->getValueAsInt("AddedComplexity")));
+ }
+}
+
+/// CombineChildVariants - Given a bunch of permutations of each child of the
+/// 'operator' node, put them together in all possible ways.
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodegenDAGPatterns &CDP) {
+ // Make sure that each operand has at least one variant to choose from.
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ if (ChildVariants[i].empty())
+ return;
+
+ // The end result is an all-pairs construction of the resultant pattern.
+ std::vector<unsigned> Idxs;
+ Idxs.resize(ChildVariants.size());
+ bool NotDone = true;
+ while (NotDone) {
+ // Create the variant and add it to the output list.
+ std::vector<TreePatternNode*> NewChildren;
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ NewChildren.push_back(ChildVariants[i][Idxs[i]]);
+ TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
+
+ // Copy over properties.
+ R->setName(Orig->getName());
+ R->setPredicateFn(Orig->getPredicateFn());
+ R->setTransformFn(Orig->getTransformFn());
+ R->setTypes(Orig->getExtTypes());
+
+ // If this pattern cannot every match, do not include it as a variant.
+ std::string ErrString;
+ if (!R->canPatternMatch(ErrString, CDP)) {
+ delete R;
+ } else {
+ bool AlreadyExists = false;
+
+ // Scan to see if this pattern has already been emitted. We can get
+ // duplication due to things like commuting:
+ // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
+ // which are the same pattern. Ignore the dups.
+ for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
+ if (R->isIsomorphicTo(OutVariants[i])) {
+ AlreadyExists = true;
+ break;
+ }
+
+ if (AlreadyExists)
+ delete R;
+ else
+ OutVariants.push_back(R);
+ }
+
+ // Increment indices to the next permutation.
+ NotDone = false;
+ // Look for something we can increment without causing a wrap-around.
+ for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
+ if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
+ NotDone = true; // Found something to increment.
+ break;
+ }
+ Idxs[IdxsIdx] = 0;
+ }
+ }
+}
+
+/// CombineChildVariants - A helper function for binary operators.
+///
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<TreePatternNode*> &LHS,
+ const std::vector<TreePatternNode*> &RHS,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodegenDAGPatterns &CDP) {
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.push_back(LHS);
+ ChildVariants.push_back(RHS);
+ CombineChildVariants(Orig, ChildVariants, OutVariants, CDP);
+}
+
+
+static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
+ std::vector<TreePatternNode *> &Children) {
+ assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
+ Record *Operator = N->getOperator();
+
+ // Only permit raw nodes.
+ if (!N->getName().empty() || !N->getPredicateFn().empty() ||
+ N->getTransformFn()) {
+ Children.push_back(N);
+ return;
+ }
+
+ if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
+ Children.push_back(N->getChild(0));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
+
+ if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
+ Children.push_back(N->getChild(1));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
+}
+
+/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
+/// the (potentially recursive) pattern by using algebraic laws.
+///
+static void GenerateVariantsOf(TreePatternNode *N,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodegenDAGPatterns &CDP) {
+ // We cannot permute leaves.
+ if (N->isLeaf()) {
+ OutVariants.push_back(N);
+ return;
+ }
+
+ // Look up interesting info about the node.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
+
+ // If this node is associative, reassociate.
+ if (NodeInfo.hasProperty(SDNPAssociative)) {
+ // Reassociate by pulling together all of the linked operators
+ std::vector<TreePatternNode*> MaximalChildren;
+ GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
+
+ // Only handle child sizes of 3. Otherwise we'll end up trying too many
+ // permutations.
+ if (MaximalChildren.size() == 3) {
+ // Find the variants of all of our maximal children.
+ std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
+ GenerateVariantsOf(MaximalChildren[0], AVariants, CDP);
+ GenerateVariantsOf(MaximalChildren[1], BVariants, CDP);
+ GenerateVariantsOf(MaximalChildren[2], CVariants, CDP);
+
+ // There are only two ways we can permute the tree:
+ // (A op B) op C and A op (B op C)
+ // Within these forms, we can also permute A/B/C.
+
+ // Generate legal pair permutations of A/B/C.
+ std::vector<TreePatternNode*> ABVariants;
+ std::vector<TreePatternNode*> BAVariants;
+ std::vector<TreePatternNode*> ACVariants;
+ std::vector<TreePatternNode*> CAVariants;
+ std::vector<TreePatternNode*> BCVariants;
+ std::vector<TreePatternNode*> CBVariants;
+ CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP);
+ CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP);
+ CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP);
+ CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP);
+ CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP);
+ CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP);
+
+ // Combine those into the result: (x op x) op x
+ CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP);
+ CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP);
+ CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP);
+ CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP);
+ CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP);
+ CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP);
+
+ // Combine those into the result: x op (x op x)
+ CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP);
+ CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP);
+ CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP);
+ CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP);
+ CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP);
+ CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP);
+ return;
+ }
+ }
+
+ // Compute permutations of all children.
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.resize(N->getNumChildren());
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP);
+
+ // Build all permutations based on how the children were formed.
+ CombineChildVariants(N, ChildVariants, OutVariants, CDP);
+
+ // If this node is commutative, consider the commuted order.
+ if (NodeInfo.hasProperty(SDNPCommutative)) {
+ assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
+ // Don't count children which are actually register references.
+ unsigned NC = 0;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (Child->isLeaf())
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register"))
+ continue;
+ }
+ NC++;
+ }
+ // Consider the commuted order.
+ if (NC == 2)
+ CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
+ OutVariants, CDP);
+ }
+}
+
+
+// GenerateVariants - Generate variants. For example, commutative patterns can
+// match multiple ways. Add them to PatternsToMatch as well.
+void CodegenDAGPatterns::GenerateVariants() {
+ DOUT << "Generating instruction variants.\n";
+
+ // Loop over all of the patterns we've collected, checking to see if we can
+ // generate variants of the instruction, through the exploitation of
+ // identities. This permits the target to provide agressive matching without
+ // the .td file having to contain tons of variants of instructions.
+ //
+ // Note that this loop adds new patterns to the PatternsToMatch list, but we
+ // intentionally do not reconsider these. Any variants of added patterns have
+ // already been added.
+ //
+ for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+ std::vector<TreePatternNode*> Variants;
+ GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
+
+ assert(!Variants.empty() && "Must create at least original variant!");
+ Variants.erase(Variants.begin()); // Remove the original pattern.
+
+ if (Variants.empty()) // No variants for this pattern.
+ continue;
+
+ DOUT << "FOUND VARIANTS OF: ";
+ DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
+ DOUT << "\n";
+
+ for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
+ TreePatternNode *Variant = Variants[v];
+
+ DOUT << " VAR#" << v << ": ";
+ DEBUG(Variant->dump());
+ DOUT << "\n";
+
+ // Scan to see if an instruction or explicit pattern already matches this.
+ bool AlreadyExists = false;
+ for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
+ // Check to see if this variant already exists.
+ if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
+ DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
+ AlreadyExists = true;
+ break;
+ }
+ }
+ // If we already have it, ignore the variant.
+ if (AlreadyExists) continue;
+
+ // Otherwise, add it to the list of patterns we have.
+ PatternsToMatch.
+ push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
+ Variant, PatternsToMatch[i].getDstPattern(),
+ PatternsToMatch[i].getDstRegs(),
+ PatternsToMatch[i].getAddedComplexity()));
+ }
+
+ DOUT << "\n";
+ }
+}
+
Added: llvm/trunk/utils/TableGen/CodeGenDAGPatterns.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/CodeGenDAGPatterns.h?rev=45632&view=auto
==============================================================================
--- llvm/trunk/utils/TableGen/CodeGenDAGPatterns.h (added)
+++ llvm/trunk/utils/TableGen/CodeGenDAGPatterns.h Sat Jan 5 16:25:12 2008
@@ -0,0 +1,552 @@
+//===- CodegenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the CodegenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef CODEGEN_DAGPATTERNS_H
+#define CODEGEN_DAGPATTERNS_H
+
+#include "TableGenBackend.h"
+#include "CodeGenTarget.h"
+#include "CodeGenIntrinsics.h"
+
+namespace llvm {
+ class Record;
+ struct Init;
+ class ListInit;
+ class DagInit;
+ class SDNodeInfo;
+ class TreePattern;
+ class TreePatternNode;
+ class CodegenDAGPatterns;
+ class ComplexPattern;
+
+/// MVT::DAGISelGenValueType - These are some extended forms of MVT::ValueType
+/// that we use as lattice values during type inferrence.
+namespace MVT {
+ enum DAGISelGenValueType {
+ isFP = MVT::LAST_VALUETYPE,
+ isInt,
+ isUnknown
+ };
+
+ /// isExtIntegerVT - Return true if the specified extended value type vector
+ /// contains isInt or an integer value type.
+ bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs);
+
+ /// isExtFloatingPointVT - Return true if the specified extended value type
+ /// vector contains isFP or a FP value type.
+ bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs);
+}
+
+/// SDTypeConstraint - This is a discriminated union of constraints,
+/// corresponding to the SDTypeConstraint tablegen class in Target.td.
+struct SDTypeConstraint {
+ SDTypeConstraint(Record *R);
+
+ unsigned OperandNo; // The operand # this constraint applies to.
+ enum {
+ SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisSameAs,
+ SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisIntVectorOfSameSize
+ } ConstraintType;
+
+ union { // The discriminated union.
+ struct {
+ MVT::ValueType VT;
+ } SDTCisVT_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisSameAs_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisVTSmallerThanOp_Info;
+ struct {
+ unsigned BigOperandNum;
+ } SDTCisOpSmallerThanOp_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisIntVectorOfSameSize_Info;
+ } x;
+
+ /// ApplyTypeConstraint - Given a node in a pattern, apply this type
+ /// constraint to the nodes operands. This returns true if it makes a
+ /// change, false otherwise. If a type contradiction is found, throw an
+ /// exception.
+ bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const;
+
+ /// getOperandNum - Return the node corresponding to operand #OpNo in tree
+ /// N, which has NumResults results.
+ TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
+ unsigned NumResults) const;
+};
+
+/// SDNodeInfo - One of these records is created for each SDNode instance in
+/// the target .td file. This represents the various dag nodes we will be
+/// processing.
+class SDNodeInfo {
+ Record *Def;
+ std::string EnumName;
+ std::string SDClassName;
+ unsigned Properties;
+ unsigned NumResults;
+ int NumOperands;
+ std::vector<SDTypeConstraint> TypeConstraints;
+public:
+ SDNodeInfo(Record *R); // Parse the specified record.
+
+ unsigned getNumResults() const { return NumResults; }
+ int getNumOperands() const { return NumOperands; }
+ Record *getRecord() const { return Def; }
+ const std::string &getEnumName() const { return EnumName; }
+ const std::string &getSDClassName() const { return SDClassName; }
+
+ const std::vector<SDTypeConstraint> &getTypeConstraints() const {
+ return TypeConstraints;
+ }
+
+ /// hasProperty - Return true if this node has the specified property.
+ ///
+ bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
+
+ /// ApplyTypeConstraints - Given a node in a pattern, apply the type
+ /// constraints for this node to the operands of the node. This returns
+ /// true if it makes a change, false otherwise. If a type contradiction is
+ /// found, throw an exception.
+ bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
+ bool MadeChange = false;
+ for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
+ MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
+ return MadeChange;
+ }
+};
+
+/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
+/// patterns), and as such should be ref counted. We currently just leak all
+/// TreePatternNode objects!
+class TreePatternNode {
+ /// The inferred type for this node, or MVT::isUnknown if it hasn't
+ /// been determined yet.
+ std::vector<unsigned char> Types;
+
+ /// Operator - The Record for the operator if this is an interior node (not
+ /// a leaf).
+ Record *Operator;
+
+ /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
+ ///
+ Init *Val;
+
+ /// Name - The name given to this node with the :$foo notation.
+ ///
+ std::string Name;
+
+ /// PredicateFn - The predicate function to execute on this node to check
+ /// for a match. If this string is empty, no predicate is involved.
+ std::string PredicateFn;
+
+ /// TransformFn - The transformation function to execute on this node before
+ /// it can be substituted into the resulting instruction on a pattern match.
+ Record *TransformFn;
+
+ std::vector<TreePatternNode*> Children;
+public:
+ TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch)
+ : Types(), Operator(Op), Val(0), TransformFn(0),
+ Children(Ch) { Types.push_back(MVT::isUnknown); }
+ TreePatternNode(Init *val) // leaf ctor
+ : Types(), Operator(0), Val(val), TransformFn(0) {
+ Types.push_back(MVT::isUnknown);
+ }
+ ~TreePatternNode();
+
+ const std::string &getName() const { return Name; }
+ void setName(const std::string &N) { Name = N; }
+
+ bool isLeaf() const { return Val != 0; }
+ bool hasTypeSet() const {
+ return (Types[0] < MVT::LAST_VALUETYPE) || (Types[0] == MVT::iPTR);
+ }
+ bool isTypeCompletelyUnknown() const {
+ return Types[0] == MVT::isUnknown;
+ }
+ bool isTypeDynamicallyResolved() const {
+ return Types[0] == MVT::iPTR;
+ }
+ MVT::ValueType getTypeNum(unsigned Num) const {
+ assert(hasTypeSet() && "Doesn't have a type yet!");
+ assert(Types.size() > Num && "Type num out of range!");
+ return (MVT::ValueType)Types[Num];
+ }
+ unsigned char getExtTypeNum(unsigned Num) const {
+ assert(Types.size() > Num && "Extended type num out of range!");
+ return Types[Num];
+ }
+ const std::vector<unsigned char> &getExtTypes() const { return Types; }
+ void setTypes(const std::vector<unsigned char> &T) { Types = T; }
+ void removeTypes() { Types = std::vector<unsigned char>(1,MVT::isUnknown); }
+
+ Init *getLeafValue() const { assert(isLeaf()); return Val; }
+ Record *getOperator() const { assert(!isLeaf()); return Operator; }
+
+ unsigned getNumChildren() const { return Children.size(); }
+ TreePatternNode *getChild(unsigned N) const { return Children[N]; }
+ void setChild(unsigned i, TreePatternNode *N) {
+ Children[i] = N;
+ }
+
+
+ const std::string &getPredicateFn() const { return PredicateFn; }
+ void setPredicateFn(const std::string &Fn) { PredicateFn = Fn; }
+
+ Record *getTransformFn() const { return TransformFn; }
+ void setTransformFn(Record *Fn) { TransformFn = Fn; }
+
+ void print(std::ostream &OS) const;
+ void dump() const;
+
+public: // Higher level manipulation routines.
+
+ /// clone - Return a new copy of this tree.
+ ///
+ TreePatternNode *clone() const;
+
+ /// isIsomorphicTo - Return true if this node is recursively isomorphic to
+ /// the specified node. For this comparison, all of the state of the node
+ /// is considered, except for the assigned name. Nodes with differing names
+ /// that are otherwise identical are considered isomorphic.
+ bool isIsomorphicTo(const TreePatternNode *N) const;
+
+ /// SubstituteFormalArguments - Replace the formal arguments in this tree
+ /// with actual values specified by ArgMap.
+ void SubstituteFormalArguments(std::map<std::string,
+ TreePatternNode*> &ArgMap);
+
+ /// InlinePatternFragments - If this pattern refers to any pattern
+ /// fragments, inline them into place, giving us a pattern without any
+ /// PatFrag references.
+ TreePatternNode *InlinePatternFragments(TreePattern &TP);
+
+ /// ApplyTypeConstraints - Apply all of the type constraints relevent to
+ /// this node and its children in the tree. This returns true if it makes a
+ /// change, false otherwise. If a type contradiction is found, throw an
+ /// exception.
+ bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
+
+ /// UpdateNodeType - Set the node type of N to VT if VT contains
+ /// information. If N already contains a conflicting type, then throw an
+ /// exception. This returns true if any information was updated.
+ ///
+ bool UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
+ TreePattern &TP);
+ bool UpdateNodeType(unsigned char ExtVT, TreePattern &TP) {
+ std::vector<unsigned char> ExtVTs(1, ExtVT);
+ return UpdateNodeType(ExtVTs, TP);
+ }
+
+ /// ContainsUnresolvedType - Return true if this tree contains any
+ /// unresolved types.
+ bool ContainsUnresolvedType() const {
+ if (!hasTypeSet() && !isTypeDynamicallyResolved()) return true;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (getChild(i)->ContainsUnresolvedType()) return true;
+ return false;
+ }
+
+ /// canPatternMatch - If it is impossible for this pattern to match on this
+ /// target, fill in Reason and return false. Otherwise, return true.
+ bool canPatternMatch(std::string &Reason, CodegenDAGPatterns &CDP);
+};
+
+
+/// TreePattern - Represent a pattern, used for instructions, pattern
+/// fragments, etc.
+///
+class TreePattern {
+ /// Trees - The list of pattern trees which corresponds to this pattern.
+ /// Note that PatFrag's only have a single tree.
+ ///
+ std::vector<TreePatternNode*> Trees;
+
+ /// TheRecord - The actual TableGen record corresponding to this pattern.
+ ///
+ Record *TheRecord;
+
+ /// Args - This is a list of all of the arguments to this pattern (for
+ /// PatFrag patterns), which are the 'node' markers in this pattern.
+ std::vector<std::string> Args;
+
+ /// CDP - the top-level object coordinating this madness.
+ ///
+ CodegenDAGPatterns &CDP;
+
+ /// isInputPattern - True if this is an input pattern, something to match.
+ /// False if this is an output pattern, something to emit.
+ bool isInputPattern;
+public:
+
+ /// TreePattern constructor - Parse the specified DagInits into the
+ /// current record.
+ TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodegenDAGPatterns &ise);
+ TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodegenDAGPatterns &ise);
+ TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+ CodegenDAGPatterns &ise);
+
+ /// getTrees - Return the tree patterns which corresponds to this pattern.
+ ///
+ const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
+ unsigned getNumTrees() const { return Trees.size(); }
+ TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
+ TreePatternNode *getOnlyTree() const {
+ assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
+ return Trees[0];
+ }
+
+ /// getRecord - Return the actual TableGen record corresponding to this
+ /// pattern.
+ ///
+ Record *getRecord() const { return TheRecord; }
+
+ unsigned getNumArgs() const { return Args.size(); }
+ const std::string &getArgName(unsigned i) const {
+ assert(i < Args.size() && "Argument reference out of range!");
+ return Args[i];
+ }
+ std::vector<std::string> &getArgList() { return Args; }
+
+ CodegenDAGPatterns &getDAGPatterns() const { return CDP; }
+
+ /// InlinePatternFragments - If this pattern refers to any pattern
+ /// fragments, inline them into place, giving us a pattern without any
+ /// PatFrag references.
+ void InlinePatternFragments() {
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ Trees[i] = Trees[i]->InlinePatternFragments(*this);
+ }
+
+ /// InferAllTypes - Infer/propagate as many types throughout the expression
+ /// patterns as possible. Return true if all types are infered, false
+ /// otherwise. Throw an exception if a type contradiction is found.
+ bool InferAllTypes();
+
+ /// error - Throw an exception, prefixing it with information about this
+ /// pattern.
+ void error(const std::string &Msg) const;
+
+ void print(std::ostream &OS) const;
+ void dump() const;
+
+private:
+ TreePatternNode *ParseTreePattern(DagInit *DI);
+};
+
+/// DAGDefaultOperand - One of these is created for each PredicateOperand
+/// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
+struct DAGDefaultOperand {
+ std::vector<TreePatternNode*> DefaultOps;
+};
+
+class DAGInstruction {
+ TreePattern *Pattern;
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+ std::vector<Record*> ImpResults;
+ std::vector<Record*> ImpOperands;
+ TreePatternNode *ResultPattern;
+public:
+ DAGInstruction(TreePattern *TP,
+ const std::vector<Record*> &results,
+ const std::vector<Record*> &operands,
+ const std::vector<Record*> &impresults,
+ const std::vector<Record*> &impoperands)
+ : Pattern(TP), Results(results), Operands(operands),
+ ImpResults(impresults), ImpOperands(impoperands),
+ ResultPattern(0) {}
+
+ TreePattern *getPattern() const { return Pattern; }
+ unsigned getNumResults() const { return Results.size(); }
+ unsigned getNumOperands() const { return Operands.size(); }
+ unsigned getNumImpResults() const { return ImpResults.size(); }
+ unsigned getNumImpOperands() const { return ImpOperands.size(); }
+ const std::vector<Record*>& getImpResults() const { return ImpResults; }
+
+ void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
+
+ Record *getResult(unsigned RN) const {
+ assert(RN < Results.size());
+ return Results[RN];
+ }
+
+ Record *getOperand(unsigned ON) const {
+ assert(ON < Operands.size());
+ return Operands[ON];
+ }
+
+ Record *getImpResult(unsigned RN) const {
+ assert(RN < ImpResults.size());
+ return ImpResults[RN];
+ }
+
+ Record *getImpOperand(unsigned ON) const {
+ assert(ON < ImpOperands.size());
+ return ImpOperands[ON];
+ }
+
+ TreePatternNode *getResultPattern() const { return ResultPattern; }
+};
+
+/// PatternToMatch - Used by CodegenDAGPatterns to keep tab of patterns
+/// processed to produce isel.
+struct PatternToMatch {
+ PatternToMatch(ListInit *preds,
+ TreePatternNode *src, TreePatternNode *dst,
+ const std::vector<Record*> &dstregs,
+ unsigned complexity):
+ Predicates(preds), SrcPattern(src), DstPattern(dst), Dstregs(dstregs),
+ AddedComplexity(complexity) {};
+
+ ListInit *Predicates; // Top level predicate conditions to match.
+ TreePatternNode *SrcPattern; // Source pattern to match.
+ TreePatternNode *DstPattern; // Resulting pattern.
+ std::vector<Record*> Dstregs; // Physical register defs being matched.
+ unsigned AddedComplexity; // Add to matching pattern complexity.
+
+ ListInit *getPredicates() const { return Predicates; }
+ TreePatternNode *getSrcPattern() const { return SrcPattern; }
+ TreePatternNode *getDstPattern() const { return DstPattern; }
+ const std::vector<Record*> &getDstRegs() const { return Dstregs; }
+ unsigned getAddedComplexity() const { return AddedComplexity; }
+};
+
+
+class CodegenDAGPatterns {
+ RecordKeeper &Records;
+ CodeGenTarget Target;
+ std::vector<CodeGenIntrinsic> Intrinsics;
+
+ std::map<Record*, SDNodeInfo> SDNodes;
+ std::map<Record*, std::pair<Record*, std::string> > SDNodeXForms;
+ std::map<Record*, ComplexPattern> ComplexPatterns;
+ std::map<Record*, TreePattern*> PatternFragments;
+ std::map<Record*, DAGDefaultOperand> DefaultOperands;
+ std::map<Record*, DAGInstruction> Instructions;
+
+ // Specific SDNode definitions:
+ Record *intrinsic_void_sdnode;
+ Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
+
+ /// PatternsToMatch - All of the things we are matching on the DAG. The first
+ /// value is the pattern to match, the second pattern is the result to
+ /// emit.
+ std::vector<PatternToMatch> PatternsToMatch;
+public:
+ CodegenDAGPatterns(RecordKeeper &R, std::ostream &OS);
+ ~CodegenDAGPatterns();
+
+ const CodeGenTarget &getTargetInfo() const { return Target; }
+
+ Record *getSDNodeNamed(const std::string &Name) const;
+
+ const SDNodeInfo &getSDNodeInfo(Record *R) const {
+ assert(SDNodes.count(R) && "Unknown node!");
+ return SDNodes.find(R)->second;
+ }
+
+ const std::pair<Record*, std::string> &getSDNodeTransform(Record *R) const {
+ assert(SDNodeXForms.count(R) && "Invalid transform!");
+ return SDNodeXForms.find(R)->second;
+ }
+
+ const ComplexPattern &getComplexPattern(Record *R) const {
+ assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
+ return ComplexPatterns.find(R)->second;
+ }
+
+ const CodeGenIntrinsic &getIntrinsic(Record *R) const {
+ for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
+ if (Intrinsics[i].TheDef == R) return Intrinsics[i];
+ assert(0 && "Unknown intrinsic!");
+ abort();
+ }
+
+ const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
+ assert(IID-1 < Intrinsics.size() && "Bad intrinsic ID!");
+ return Intrinsics[IID-1];
+ }
+
+ unsigned getIntrinsicID(Record *R) const {
+ for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
+ if (Intrinsics[i].TheDef == R) return i;
+ assert(0 && "Unknown intrinsic!");
+ abort();
+ }
+
+ const DAGDefaultOperand &getDefaultOperand(Record *R) {
+ assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
+ return DefaultOperands.find(R)->second;
+ }
+
+ // Pattern Fragment information.
+ TreePattern *getPatternFragment(Record *R) const {
+ assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
+ return PatternFragments.find(R)->second;
+ }
+ typedef std::map<Record*, TreePattern*>::const_iterator pf_iterator;
+ pf_iterator pf_begin() const { return PatternFragments.begin(); }
+ pf_iterator pf_end() const { return PatternFragments.end(); }
+
+ // Patterns to match information.
+ // FIXME: make a const_iterator.
+ typedef std::vector<PatternToMatch>::iterator ptm_iterator;
+ ptm_iterator ptm_begin() { return PatternsToMatch.begin(); }
+ ptm_iterator ptm_end() { return PatternsToMatch.end(); }
+
+
+
+ const DAGInstruction &getInstruction(Record *R) const {
+ assert(Instructions.count(R) && "Unknown instruction!");
+ return Instructions.find(R)->second;
+ }
+
+ Record *get_intrinsic_void_sdnode() const {
+ return intrinsic_void_sdnode;
+ }
+ Record *get_intrinsic_w_chain_sdnode() const {
+ return intrinsic_w_chain_sdnode;
+ }
+ Record *get_intrinsic_wo_chain_sdnode() const {
+ return intrinsic_wo_chain_sdnode;
+ }
+
+private:
+ void ParseNodeInfo();
+ void ParseNodeTransforms(std::ostream &OS);
+ void ParseComplexPatterns();
+ void ParsePatternFragments(std::ostream &OS);
+ void ParseDefaultOperands();
+ void ParseInstructions();
+ void ParsePatterns();
+ void GenerateVariants();
+
+ void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string,
+ TreePatternNode*> &InstInputs,
+ std::map<std::string,
+ TreePatternNode*> &InstResults,
+ std::vector<Record*> &InstImpInputs,
+ std::vector<Record*> &InstImpResults);
+};
+} // end namespace llvm
+
+#endif
Modified: llvm/trunk/utils/TableGen/CodeGenTarget.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/CodeGenTarget.cpp?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/CodeGenTarget.cpp (original)
+++ llvm/trunk/utils/TableGen/CodeGenTarget.cpp Sat Jan 5 16:25:12 2008
@@ -106,6 +106,17 @@
}
}
+/// getQualifiedName - Return the name of the specified record, with a
+/// namespace qualifier if the record contains one.
+///
+std::string llvm::getQualifiedName(const Record *R) {
+ std::string Namespace = R->getValueAsString("Namespace");
+ if (Namespace.empty()) return R->getName();
+ return Namespace + "::" + R->getName();
+}
+
+
+
/// getTarget - Return the current instance of the Target class.
///
Modified: llvm/trunk/utils/TableGen/CodeGenTarget.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/CodeGenTarget.h?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/CodeGenTarget.h (original)
+++ llvm/trunk/utils/TableGen/CodeGenTarget.h Sat Jan 5 16:25:12 2008
@@ -40,7 +40,10 @@
std::string getName(MVT::ValueType T);
std::string getEnumName(MVT::ValueType T);
-
+/// getQualifiedName - Return the name of the specified record, with a
+/// namespace qualifier if the record contains one.
+std::string getQualifiedName(const Record *R);
+
/// CodeGenTarget - This class corresponds to the Target class in the .td files.
///
class CodeGenTarget {
Modified: llvm/trunk/utils/TableGen/DAGISelEmitter.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/DAGISelEmitter.cpp?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/DAGISelEmitter.cpp (original)
+++ llvm/trunk/utils/TableGen/DAGISelEmitter.cpp Sat Jan 5 16:25:12 2008
@@ -18,2064 +18,32 @@
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
-#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
-// Helpers for working with extended types.
-
-/// FilterVTs - Filter a list of VT's according to a predicate.
-///
-template<typename T>
-static std::vector<MVT::ValueType>
-FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
- std::vector<MVT::ValueType> Result;
- for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
- if (Filter(InVTs[i]))
- Result.push_back(InVTs[i]);
- return Result;
-}
-
-template<typename T>
-static std::vector<unsigned char>
-FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
- std::vector<unsigned char> Result;
- for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
- if (Filter((MVT::ValueType)InVTs[i]))
- Result.push_back(InVTs[i]);
- return Result;
-}
-
-static std::vector<unsigned char>
-ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
- std::vector<unsigned char> Result;
- for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
- Result.push_back(InVTs[i]);
- return Result;
-}
-
-static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
- const std::vector<unsigned char> &RHS) {
- if (LHS.size() > RHS.size()) return false;
- for (unsigned i = 0, e = LHS.size(); i != e; ++i)
- if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
- return false;
- return true;
-}
-
-/// isExtIntegerVT - Return true if the specified extended value type vector
-/// contains isInt or an integer value type.
-static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
- assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
- return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
-}
-
-/// isExtFloatingPointVT - Return true if the specified extended value type
-/// vector contains isFP or a FP value type.
-static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
- assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
- return EVTs[0] == MVT::isFP ||
- !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
-}
-
-//===----------------------------------------------------------------------===//
-// SDTypeConstraint implementation
-//
-
-SDTypeConstraint::SDTypeConstraint(Record *R) {
- OperandNo = R->getValueAsInt("OperandNum");
-
- if (R->isSubClassOf("SDTCisVT")) {
- ConstraintType = SDTCisVT;
- x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
- } else if (R->isSubClassOf("SDTCisPtrTy")) {
- ConstraintType = SDTCisPtrTy;
- } else if (R->isSubClassOf("SDTCisInt")) {
- ConstraintType = SDTCisInt;
- } else if (R->isSubClassOf("SDTCisFP")) {
- ConstraintType = SDTCisFP;
- } else if (R->isSubClassOf("SDTCisSameAs")) {
- ConstraintType = SDTCisSameAs;
- x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
- ConstraintType = SDTCisVTSmallerThanOp;
- x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
- R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
- ConstraintType = SDTCisOpSmallerThanOp;
- x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
- R->getValueAsInt("BigOperandNum");
- } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
- ConstraintType = SDTCisIntVectorOfSameSize;
- x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
- R->getValueAsInt("OtherOpNum");
- } else {
- cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
- exit(1);
- }
-}
-
-/// getOperandNum - Return the node corresponding to operand #OpNo in tree
-/// N, which has NumResults results.
-TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
- TreePatternNode *N,
- unsigned NumResults) const {
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
-
- if (OpNo >= (NumResults + N->getNumChildren())) {
- cerr << "Invalid operand number " << OpNo << " ";
- N->dump();
- cerr << '\n';
- exit(1);
- }
-
- if (OpNo < NumResults)
- return N; // FIXME: need value #
- else
- return N->getChild(OpNo-NumResults);
-}
-
-/// ApplyTypeConstraint - Given a node in a pattern, apply this type
-/// constraint to the nodes operands. This returns true if it makes a
-/// change, false otherwise. If a type contradiction is found, throw an
-/// exception.
-bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- TreePattern &TP) const {
- unsigned NumResults = NodeInfo.getNumResults();
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
-
- // Check that the number of operands is sane. Negative operands -> varargs.
- if (NodeInfo.getNumOperands() >= 0) {
- if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
- TP.error(N->getOperator()->getName() + " node requires exactly " +
- itostr(NodeInfo.getNumOperands()) + " operands!");
- }
-
- const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
-
- TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
-
- switch (ConstraintType) {
- default: assert(0 && "Unknown constraint type!");
- case SDTCisVT:
- // Operand must be a particular type.
- return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
- case SDTCisPtrTy: {
- // Operand must be same as target pointer type.
- return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
- }
- case SDTCisInt: {
- // If there is only one integer type supported, this must be it.
- std::vector<MVT::ValueType> IntVTs =
- FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
-
- // If we found exactly one supported integer type, apply it.
- if (IntVTs.size() == 1)
- return NodeToApply->UpdateNodeType(IntVTs[0], TP);
- return NodeToApply->UpdateNodeType(MVT::isInt, TP);
- }
- case SDTCisFP: {
- // If there is only one FP type supported, this must be it.
- std::vector<MVT::ValueType> FPVTs =
- FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
-
- // If we found exactly one supported FP type, apply it.
- if (FPVTs.size() == 1)
- return NodeToApply->UpdateNodeType(FPVTs[0], TP);
- return NodeToApply->UpdateNodeType(MVT::isFP, TP);
- }
- case SDTCisSameAs: {
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
- return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
- OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
- }
- case SDTCisVTSmallerThanOp: {
- // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
- // have an integer type that is smaller than the VT.
- if (!NodeToApply->isLeaf() ||
- !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
- !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
- ->isSubClassOf("ValueType"))
- TP.error(N->getOperator()->getName() + " expects a VT operand!");
- MVT::ValueType VT =
- getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
- if (!MVT::isInteger(VT))
- TP.error(N->getOperator()->getName() + " VT operand must be integer!");
-
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
-
- // It must be integer.
- bool MadeChange = false;
- MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
-
- // This code only handles nodes that have one type set. Assert here so
- // that we can change this if we ever need to deal with multiple value
- // types at this point.
- assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
- if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
- OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
- return false;
- }
- case SDTCisOpSmallerThanOp: {
- TreePatternNode *BigOperand =
- getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
-
- // Both operands must be integer or FP, but we don't care which.
- bool MadeChange = false;
-
- // This code does not currently handle nodes which have multiple types,
- // where some types are integer, and some are fp. Assert that this is not
- // the case.
- assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
- isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
- !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
- isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
- "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
- if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
- MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
- else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
- MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
- if (isExtIntegerInVTs(BigOperand->getExtTypes()))
- MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
- else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
- MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
-
- std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
-
- if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
- VTs = FilterVTs(VTs, MVT::isInteger);
- } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
- VTs = FilterVTs(VTs, MVT::isFloatingPoint);
- } else {
- VTs.clear();
- }
-
- switch (VTs.size()) {
- default: // Too many VT's to pick from.
- case 0: break; // No info yet.
- case 1:
- // Only one VT of this flavor. Cannot ever satisify the constraints.
- return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
- case 2:
- // If we have exactly two possible types, the little operand must be the
- // small one, the big operand should be the big one. Common with
- // float/double for example.
- assert(VTs[0] < VTs[1] && "Should be sorted!");
- MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
- MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
- break;
- }
- return MadeChange;
- }
- case SDTCisIntVectorOfSameSize: {
- TreePatternNode *OtherOperand =
- getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
- N, NumResults);
- if (OtherOperand->hasTypeSet()) {
- if (!MVT::isVector(OtherOperand->getTypeNum(0)))
- TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
- MVT::ValueType IVT = OtherOperand->getTypeNum(0);
- IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
- return NodeToApply->UpdateNodeType(IVT, TP);
- }
- return false;
- }
- }
- return false;
-}
-
-
-//===----------------------------------------------------------------------===//
-// SDNodeInfo implementation
-//
-SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
- EnumName = R->getValueAsString("Opcode");
- SDClassName = R->getValueAsString("SDClass");
- Record *TypeProfile = R->getValueAsDef("TypeProfile");
- NumResults = TypeProfile->getValueAsInt("NumResults");
- NumOperands = TypeProfile->getValueAsInt("NumOperands");
-
- // Parse the properties.
- Properties = 0;
- std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
- for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
- if (PropList[i]->getName() == "SDNPCommutative") {
- Properties |= 1 << SDNPCommutative;
- } else if (PropList[i]->getName() == "SDNPAssociative") {
- Properties |= 1 << SDNPAssociative;
- } else if (PropList[i]->getName() == "SDNPHasChain") {
- Properties |= 1 << SDNPHasChain;
- } else if (PropList[i]->getName() == "SDNPOutFlag") {
- Properties |= 1 << SDNPOutFlag;
- } else if (PropList[i]->getName() == "SDNPInFlag") {
- Properties |= 1 << SDNPInFlag;
- } else if (PropList[i]->getName() == "SDNPOptInFlag") {
- Properties |= 1 << SDNPOptInFlag;
- } else {
- cerr << "Unknown SD Node property '" << PropList[i]->getName()
- << "' on node '" << R->getName() << "'!\n";
- exit(1);
- }
- }
-
-
- // Parse the type constraints.
- std::vector<Record*> ConstraintList =
- TypeProfile->getValueAsListOfDefs("Constraints");
- TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
-}
-
-//===----------------------------------------------------------------------===//
-// TreePatternNode implementation
-//
-
-TreePatternNode::~TreePatternNode() {
-#if 0 // FIXME: implement refcounted tree nodes!
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- delete getChild(i);
-#endif
-}
-
-/// UpdateNodeType - Set the node type of N to VT if VT contains
-/// information. If N already contains a conflicting type, then throw an
-/// exception. This returns true if any information was updated.
-///
-bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
- TreePattern &TP) {
- assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
-
- if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
- return false;
- if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
- setTypes(ExtVTs);
- return true;
- }
-
- if (getExtTypeNum(0) == MVT::iPTR) {
- if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
- return false;
- if (isExtIntegerInVTs(ExtVTs)) {
- std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
- if (FVTs.size()) {
- setTypes(ExtVTs);
- return true;
- }
- }
- }
-
- if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
- assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
- if (getExtTypes() == FVTs)
- return false;
- setTypes(FVTs);
- return true;
- }
- if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
- //assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
- if (getExtTypes() == FVTs)
- return false;
- if (FVTs.size()) {
- setTypes(FVTs);
- return true;
- }
- }
- if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
- assert(hasTypeSet() && "should be handled above!");
- std::vector<unsigned char> FVTs =
- FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
- if (getExtTypes() == FVTs)
- return false;
- setTypes(FVTs);
- return true;
- }
-
- // If we know this is an int or fp type, and we are told it is a specific one,
- // take the advice.
- //
- // Similarly, we should probably set the type here to the intersection of
- // {isInt|isFP} and ExtVTs
- if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
- (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
- setTypes(ExtVTs);
- return true;
- }
- if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
- setTypes(ExtVTs);
- return true;
- }
-
- if (isLeaf()) {
- dump();
- cerr << " ";
- TP.error("Type inference contradiction found in node!");
- } else {
- TP.error("Type inference contradiction found in node " +
- getOperator()->getName() + "!");
- }
- return true; // unreachable
-}
-
-
-void TreePatternNode::print(std::ostream &OS) const {
- if (isLeaf()) {
- OS << *getLeafValue();
- } else {
- OS << "(" << getOperator()->getName();
- }
-
- // FIXME: At some point we should handle printing all the value types for
- // nodes that are multiply typed.
- switch (getExtTypeNum(0)) {
- case MVT::Other: OS << ":Other"; break;
- case MVT::isInt: OS << ":isInt"; break;
- case MVT::isFP : OS << ":isFP"; break;
- case MVT::isUnknown: ; /*OS << ":?";*/ break;
- case MVT::iPTR: OS << ":iPTR"; break;
- default: {
- std::string VTName = llvm::getName(getTypeNum(0));
- // Strip off MVT:: prefix if present.
- if (VTName.substr(0,5) == "MVT::")
- VTName = VTName.substr(5);
- OS << ":" << VTName;
- break;
- }
- }
-
- if (!isLeaf()) {
- if (getNumChildren() != 0) {
- OS << " ";
- getChild(0)->print(OS);
- for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
- OS << ", ";
- getChild(i)->print(OS);
- }
- }
- OS << ")";
- }
-
- if (!PredicateFn.empty())
- OS << "<<P:" << PredicateFn << ">>";
- if (TransformFn)
- OS << "<<X:" << TransformFn->getName() << ">>";
- if (!getName().empty())
- OS << ":$" << getName();
-
-}
-void TreePatternNode::dump() const {
- print(*cerr.stream());
-}
-
-/// isIsomorphicTo - Return true if this node is recursively isomorphic to
-/// the specified node. For this comparison, all of the state of the node
-/// is considered, except for the assigned name. Nodes with differing names
-/// that are otherwise identical are considered isomorphic.
-bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
- if (N == this) return true;
- if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
- getPredicateFn() != N->getPredicateFn() ||
- getTransformFn() != N->getTransformFn())
- return false;
-
- if (isLeaf()) {
- if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
- if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
- return DI->getDef() == NDI->getDef();
- return getLeafValue() == N->getLeafValue();
- }
-
- if (N->getOperator() != getOperator() ||
- N->getNumChildren() != getNumChildren()) return false;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
- return false;
- return true;
-}
-
-/// clone - Make a copy of this tree and all of its children.
-///
-TreePatternNode *TreePatternNode::clone() const {
- TreePatternNode *New;
- if (isLeaf()) {
- New = new TreePatternNode(getLeafValue());
- } else {
- std::vector<TreePatternNode*> CChildren;
- CChildren.reserve(Children.size());
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- CChildren.push_back(getChild(i)->clone());
- New = new TreePatternNode(getOperator(), CChildren);
- }
- New->setName(getName());
- New->setTypes(getExtTypes());
- New->setPredicateFn(getPredicateFn());
- New->setTransformFn(getTransformFn());
- return New;
-}
-
-/// SubstituteFormalArguments - Replace the formal arguments in this tree
-/// with actual values specified by ArgMap.
-void TreePatternNode::
-SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
- if (isLeaf()) return;
-
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = getChild(i);
- if (Child->isLeaf()) {
- Init *Val = Child->getLeafValue();
- if (dynamic_cast<DefInit*>(Val) &&
- static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
- // We found a use of a formal argument, replace it with its value.
- Child = ArgMap[Child->getName()];
- assert(Child && "Couldn't find formal argument!");
- setChild(i, Child);
- }
- } else {
- getChild(i)->SubstituteFormalArguments(ArgMap);
- }
- }
-}
-
-
-/// InlinePatternFragments - If this pattern refers to any pattern
-/// fragments, inline them into place, giving us a pattern without any
-/// PatFrag references.
-TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
- if (isLeaf()) return this; // nothing to do.
- Record *Op = getOperator();
-
- if (!Op->isSubClassOf("PatFrag")) {
- // Just recursively inline children nodes.
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- setChild(i, getChild(i)->InlinePatternFragments(TP));
- return this;
- }
-
- // Otherwise, we found a reference to a fragment. First, look up its
- // TreePattern record.
- TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
-
- // Verify that we are passing the right number of operands.
- if (Frag->getNumArgs() != Children.size())
- TP.error("'" + Op->getName() + "' fragment requires " +
- utostr(Frag->getNumArgs()) + " operands!");
-
- TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
-
- // Resolve formal arguments to their actual value.
- if (Frag->getNumArgs()) {
- // Compute the map of formal to actual arguments.
- std::map<std::string, TreePatternNode*> ArgMap;
- for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
- ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
-
- FragTree->SubstituteFormalArguments(ArgMap);
- }
-
- FragTree->setName(getName());
- FragTree->UpdateNodeType(getExtTypes(), TP);
-
- // Get a new copy of this fragment to stitch into here.
- //delete this; // FIXME: implement refcounting!
- return FragTree;
-}
-
-/// getImplicitType - Check to see if the specified record has an implicit
-/// type which should be applied to it. This infer the type of register
-/// references from the register file information, for example.
-///
-static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
- TreePattern &TP) {
- // Some common return values
- std::vector<unsigned char> Unknown(1, MVT::isUnknown);
- std::vector<unsigned char> Other(1, MVT::Other);
-
- // Check to see if this is a register or a register class...
- if (R->isSubClassOf("RegisterClass")) {
- if (NotRegisters)
- return Unknown;
- const CodeGenRegisterClass &RC =
- TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
- return ConvertVTs(RC.getValueTypes());
- } else if (R->isSubClassOf("PatFrag")) {
- // Pattern fragment types will be resolved when they are inlined.
- return Unknown;
- } else if (R->isSubClassOf("Register")) {
- if (NotRegisters)
- return Unknown;
- const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
- return T.getRegisterVTs(R);
- } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
- // Using a VTSDNode or CondCodeSDNode.
- return Other;
- } else if (R->isSubClassOf("ComplexPattern")) {
- if (NotRegisters)
- return Unknown;
- std::vector<unsigned char>
- ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
- return ComplexPat;
- } else if (R->getName() == "ptr_rc") {
- Other[0] = MVT::iPTR;
- return Other;
- } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
- R->getName() == "zero_reg") {
- // Placeholder.
- return Unknown;
- }
-
- TP.error("Unknown node flavor used in pattern: " + R->getName());
- return Other;
-}
-
-/// ApplyTypeConstraints - Apply all of the type constraints relevent to
-/// this node and its children in the tree. This returns true if it makes a
-/// change, false otherwise. If a type contradiction is found, throw an
-/// exception.
-bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
- DAGISelEmitter &ISE = TP.getDAGISelEmitter();
- if (isLeaf()) {
- if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
- // If it's a regclass or something else known, include the type.
- return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
- } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
- // Int inits are always integers. :)
- bool MadeChange = UpdateNodeType(MVT::isInt, TP);
-
- if (hasTypeSet()) {
- // At some point, it may make sense for this tree pattern to have
- // multiple types. Assert here that it does not, so we revisit this
- // code when appropriate.
- assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
- MVT::ValueType VT = getTypeNum(0);
- for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
- assert(getTypeNum(i) == VT && "TreePattern has too many types!");
-
- VT = getTypeNum(0);
- if (VT != MVT::iPTR) {
- unsigned Size = MVT::getSizeInBits(VT);
- // Make sure that the value is representable for this type.
- if (Size < 32) {
- int Val = (II->getValue() << (32-Size)) >> (32-Size);
- if (Val != II->getValue())
- TP.error("Sign-extended integer value '" + itostr(II->getValue())+
- "' is out of range for type '" +
- getEnumName(getTypeNum(0)) + "'!");
- }
- }
- }
-
- return MadeChange;
- }
- return false;
- }
-
- // special handling for set, which isn't really an SDNode.
- if (getOperator()->getName() == "set") {
- assert (getNumChildren() >= 2 && "Missing RHS of a set?");
- unsigned NC = getNumChildren();
- bool MadeChange = false;
- for (unsigned i = 0; i < NC-1; ++i) {
- MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
-
- // Types of operands must match.
- MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
- TP);
- MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
- TP);
- MadeChange |= UpdateNodeType(MVT::isVoid, TP);
- }
- return MadeChange;
- } else if (getOperator()->getName() == "implicit" ||
- getOperator()->getName() == "parallel") {
- bool MadeChange = false;
- for (unsigned i = 0; i < getNumChildren(); ++i)
- MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- MadeChange |= UpdateNodeType(MVT::isVoid, TP);
- return MadeChange;
- } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
- getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
- getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
- unsigned IID =
- dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
- const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
- bool MadeChange = false;
-
- // Apply the result type to the node.
- MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
-
- if (getNumChildren() != Int.ArgVTs.size())
- TP.error("Intrinsic '" + Int.Name + "' expects " +
- utostr(Int.ArgVTs.size()-1) + " operands, not " +
- utostr(getNumChildren()-1) + " operands!");
-
- // Apply type info to the intrinsic ID.
- MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
-
- for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
- MVT::ValueType OpVT = Int.ArgVTs[i];
- MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- }
- return MadeChange;
- } else if (getOperator()->isSubClassOf("SDNode")) {
- const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
-
- bool MadeChange = NI.ApplyTypeConstraints(this, TP);
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- // Branch, etc. do not produce results and top-level forms in instr pattern
- // must have void types.
- if (NI.getNumResults() == 0)
- MadeChange |= UpdateNodeType(MVT::isVoid, TP);
-
- // If this is a vector_shuffle operation, apply types to the build_vector
- // operation. The types of the integers don't matter, but this ensures they
- // won't get checked.
- if (getOperator()->getName() == "vector_shuffle" &&
- getChild(2)->getOperator()->getName() == "build_vector") {
- TreePatternNode *BV = getChild(2);
- const std::vector<MVT::ValueType> &LegalVTs
- = ISE.getTargetInfo().getLegalValueTypes();
- MVT::ValueType LegalIntVT = MVT::Other;
- for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
- if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
- LegalIntVT = LegalVTs[i];
- break;
- }
- assert(LegalIntVT != MVT::Other && "No legal integer VT?");
-
- for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
- MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
- }
- return MadeChange;
- } else if (getOperator()->isSubClassOf("Instruction")) {
- const DAGInstruction &Inst = ISE.getInstruction(getOperator());
- bool MadeChange = false;
- unsigned NumResults = Inst.getNumResults();
-
- assert(NumResults <= 1 &&
- "Only supports zero or one result instrs!");
-
- CodeGenInstruction &InstInfo =
- ISE.getTargetInfo().getInstruction(getOperator()->getName());
- // Apply the result type to the node
- if (NumResults == 0 || InstInfo.NumDefs == 0) {
- MadeChange = UpdateNodeType(MVT::isVoid, TP);
- } else {
- Record *ResultNode = Inst.getResult(0);
-
- if (ResultNode->getName() == "ptr_rc") {
- std::vector<unsigned char> VT;
- VT.push_back(MVT::iPTR);
- MadeChange = UpdateNodeType(VT, TP);
- } else {
- assert(ResultNode->isSubClassOf("RegisterClass") &&
- "Operands should be register classes!");
-
- const CodeGenRegisterClass &RC =
- ISE.getTargetInfo().getRegisterClass(ResultNode);
- MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
- }
- }
-
- unsigned ChildNo = 0;
- for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
- Record *OperandNode = Inst.getOperand(i);
-
- // If the instruction expects a predicate or optional def operand, we
- // codegen this by setting the operand to it's default value if it has a
- // non-empty DefaultOps field.
- if ((OperandNode->isSubClassOf("PredicateOperand") ||
- OperandNode->isSubClassOf("OptionalDefOperand")) &&
- !ISE.getDefaultOperand(OperandNode).DefaultOps.empty())
- continue;
-
- // Verify that we didn't run out of provided operands.
- if (ChildNo >= getNumChildren())
- TP.error("Instruction '" + getOperator()->getName() +
- "' expects more operands than were provided.");
-
- MVT::ValueType VT;
- TreePatternNode *Child = getChild(ChildNo++);
- if (OperandNode->isSubClassOf("RegisterClass")) {
- const CodeGenRegisterClass &RC =
- ISE.getTargetInfo().getRegisterClass(OperandNode);
- MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
- } else if (OperandNode->isSubClassOf("Operand")) {
- VT = getValueType(OperandNode->getValueAsDef("Type"));
- MadeChange |= Child->UpdateNodeType(VT, TP);
- } else if (OperandNode->getName() == "ptr_rc") {
- MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
- } else {
- assert(0 && "Unknown operand type!");
- abort();
- }
- MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
- }
-
- if (ChildNo != getNumChildren())
- TP.error("Instruction '" + getOperator()->getName() +
- "' was provided too many operands!");
-
- return MadeChange;
- } else {
- assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
-
- // Node transforms always take one operand.
- if (getNumChildren() != 1)
- TP.error("Node transform '" + getOperator()->getName() +
- "' requires one operand!");
-
- // If either the output or input of the xform does not have exact
- // type info. We assume they must be the same. Otherwise, it is perfectly
- // legal to transform from one type to a completely different type.
- if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
- bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
- MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
- return MadeChange;
- }
- return false;
- }
-}
-
-/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
-/// RHS of a commutative operation, not the on LHS.
-static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
- if (!N->isLeaf() && N->getOperator()->getName() == "imm")
- return true;
- if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
- return true;
- return false;
-}
-
-
-/// canPatternMatch - If it is impossible for this pattern to match on this
-/// target, fill in Reason and return false. Otherwise, return true. This is
-/// used as a santity check for .td files (to prevent people from writing stuff
-/// that can never possibly work), and to prevent the pattern permuter from
-/// generating stuff that is useless.
-bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
- if (isLeaf()) return true;
-
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->canPatternMatch(Reason, ISE))
- return false;
-
- // If this is an intrinsic, handle cases that would make it not match. For
- // example, if an operand is required to be an immediate.
- if (getOperator()->isSubClassOf("Intrinsic")) {
- // TODO:
- return true;
- }
-
- // If this node is a commutative operator, check that the LHS isn't an
- // immediate.
- const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
- if (NodeInfo.hasProperty(SDNPCommutative)) {
- // Scan all of the operands of the node and make sure that only the last one
- // is a constant node, unless the RHS also is.
- if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
- for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
- if (OnlyOnRHSOfCommutative(getChild(i))) {
- Reason="Immediate value must be on the RHS of commutative operators!";
- return false;
- }
- }
- }
-
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// TreePattern implementation
-//
-
-TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
- DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
- isInputPattern = isInput;
- for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
- Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
-}
-
-TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
- DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
- isInputPattern = isInput;
- Trees.push_back(ParseTreePattern(Pat));
-}
-
-TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
- DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
- isInputPattern = isInput;
- Trees.push_back(Pat);
-}
-
-
-
-void TreePattern::error(const std::string &Msg) const {
- dump();
- throw "In " + TheRecord->getName() + ": " + Msg;
-}
-
-TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
- DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
- if (!OpDef) error("Pattern has unexpected operator type!");
- Record *Operator = OpDef->getDef();
-
- if (Operator->isSubClassOf("ValueType")) {
- // If the operator is a ValueType, then this must be "type cast" of a leaf
- // node.
- if (Dag->getNumArgs() != 1)
- error("Type cast only takes one operand!");
-
- Init *Arg = Dag->getArg(0);
- TreePatternNode *New;
- if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
- Record *R = DI->getDef();
- if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
- Dag->setArg(0, new DagInit(DI,
- std::vector<std::pair<Init*, std::string> >()));
- return ParseTreePattern(Dag);
- }
- New = new TreePatternNode(DI);
- } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
- New = ParseTreePattern(DI);
- } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
- New = new TreePatternNode(II);
- if (!Dag->getArgName(0).empty())
- error("Constant int argument should not have a name!");
- } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
- // Turn this into an IntInit.
- Init *II = BI->convertInitializerTo(new IntRecTy());
- if (II == 0 || !dynamic_cast<IntInit*>(II))
- error("Bits value must be constants!");
-
- New = new TreePatternNode(dynamic_cast<IntInit*>(II));
- if (!Dag->getArgName(0).empty())
- error("Constant int argument should not have a name!");
- } else {
- Arg->dump();
- error("Unknown leaf value for tree pattern!");
- return 0;
- }
-
- // Apply the type cast.
- New->UpdateNodeType(getValueType(Operator), *this);
- New->setName(Dag->getArgName(0));
- return New;
- }
-
- // Verify that this is something that makes sense for an operator.
- if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
- !Operator->isSubClassOf("Instruction") &&
- !Operator->isSubClassOf("SDNodeXForm") &&
- !Operator->isSubClassOf("Intrinsic") &&
- Operator->getName() != "set" &&
- Operator->getName() != "implicit" &&
- Operator->getName() != "parallel")
- error("Unrecognized node '" + Operator->getName() + "'!");
-
- // Check to see if this is something that is illegal in an input pattern.
- if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
- Operator->isSubClassOf("SDNodeXForm")))
- error("Cannot use '" + Operator->getName() + "' in an input pattern!");
-
- std::vector<TreePatternNode*> Children;
-
- for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
- Init *Arg = Dag->getArg(i);
- if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
- Children.push_back(ParseTreePattern(DI));
- if (Children.back()->getName().empty())
- Children.back()->setName(Dag->getArgName(i));
- } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
- Record *R = DefI->getDef();
- // Direct reference to a leaf DagNode or PatFrag? Turn it into a
- // TreePatternNode if its own.
- if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
- Dag->setArg(i, new DagInit(DefI,
- std::vector<std::pair<Init*, std::string> >()));
- --i; // Revisit this node...
- } else {
- TreePatternNode *Node = new TreePatternNode(DefI);
- Node->setName(Dag->getArgName(i));
- Children.push_back(Node);
-
- // Input argument?
- if (R->getName() == "node") {
- if (Dag->getArgName(i).empty())
- error("'node' argument requires a name to match with operand list");
- Args.push_back(Dag->getArgName(i));
- }
- }
- } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
- TreePatternNode *Node = new TreePatternNode(II);
- if (!Dag->getArgName(i).empty())
- error("Constant int argument should not have a name!");
- Children.push_back(Node);
- } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
- // Turn this into an IntInit.
- Init *II = BI->convertInitializerTo(new IntRecTy());
- if (II == 0 || !dynamic_cast<IntInit*>(II))
- error("Bits value must be constants!");
-
- TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
- if (!Dag->getArgName(i).empty())
- error("Constant int argument should not have a name!");
- Children.push_back(Node);
- } else {
- cerr << '"';
- Arg->dump();
- cerr << "\": ";
- error("Unknown leaf value for tree pattern!");
- }
- }
-
- // If the operator is an intrinsic, then this is just syntactic sugar for for
- // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
- // convert the intrinsic name to a number.
- if (Operator->isSubClassOf("Intrinsic")) {
- const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
- unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
-
- // If this intrinsic returns void, it must have side-effects and thus a
- // chain.
- if (Int.ArgVTs[0] == MVT::isVoid) {
- Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
- } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
- // Has side-effects, requires chain.
- Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
- } else {
- // Otherwise, no chain.
- Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
- }
-
- TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
- Children.insert(Children.begin(), IIDNode);
- }
-
- return new TreePatternNode(Operator, Children);
-}
-
-/// InferAllTypes - Infer/propagate as many types throughout the expression
-/// patterns as possible. Return true if all types are infered, false
-/// otherwise. Throw an exception if a type contradiction is found.
-bool TreePattern::InferAllTypes() {
- bool MadeChange = true;
- while (MadeChange) {
- MadeChange = false;
- for (unsigned i = 0, e = Trees.size(); i != e; ++i)
- MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
- }
-
- bool HasUnresolvedTypes = false;
- for (unsigned i = 0, e = Trees.size(); i != e; ++i)
- HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
- return !HasUnresolvedTypes;
-}
-
-void TreePattern::print(std::ostream &OS) const {
- OS << getRecord()->getName();
- if (!Args.empty()) {
- OS << "(" << Args[0];
- for (unsigned i = 1, e = Args.size(); i != e; ++i)
- OS << ", " << Args[i];
- OS << ")";
- }
- OS << ": ";
-
- if (Trees.size() > 1)
- OS << "[\n";
- for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
- OS << "\t";
- Trees[i]->print(OS);
- OS << "\n";
- }
-
- if (Trees.size() > 1)
- OS << "]\n";
-}
-
-void TreePattern::dump() const { print(*cerr.stream()); }
-
-
-
-//===----------------------------------------------------------------------===//
// DAGISelEmitter implementation
//
-// Parse all of the SDNode definitions for the target, populating SDNodes.
-void DAGISelEmitter::ParseNodeInfo() {
- std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
- while (!Nodes.empty()) {
- SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
- Nodes.pop_back();
- }
-
- // Get the buildin intrinsic nodes.
- intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
- intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
- intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
-}
-
-/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
-/// map, and emit them to the file as functions.
-void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
- OS << "\n// Node transformations.\n";
- std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
- while (!Xforms.empty()) {
- Record *XFormNode = Xforms.back();
- Record *SDNode = XFormNode->getValueAsDef("Opcode");
- std::string Code = XFormNode->getValueAsCode("XFormFunction");
- SDNodeXForms.insert(std::make_pair(XFormNode,
- std::make_pair(SDNode, Code)));
-
- if (!Code.empty()) {
- std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
- const char *C2 = ClassName == "SDNode" ? "N" : "inN";
-
- OS << "inline SDOperand Transform_" << XFormNode->getName()
- << "(SDNode *" << C2 << ") {\n";
- if (ClassName != "SDNode")
- OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
- OS << Code << "\n}\n";
- }
-
- Xforms.pop_back();
- }
-}
-
-void DAGISelEmitter::ParseComplexPatterns() {
- std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
- while (!AMs.empty()) {
- ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
- AMs.pop_back();
- }
-}
-
-
-/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
-/// file, building up the PatternFragments map. After we've collected them all,
-/// inline fragments together as necessary, so that there are no references left
-/// inside a pattern fragment to a pattern fragment.
-///
-/// This also emits all of the predicate functions to the output file.
-///
-void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
- std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
-
- // First step, parse all of the fragments and emit predicate functions.
- OS << "\n// Predicate functions.\n";
- for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
- DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
- TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
- PatternFragments[Fragments[i]] = P;
-
- // Validate the argument list, converting it to map, to discard duplicates.
- std::vector<std::string> &Args = P->getArgList();
- std::set<std::string> OperandsMap(Args.begin(), Args.end());
-
- if (OperandsMap.count(""))
- P->error("Cannot have unnamed 'node' values in pattern fragment!");
-
- // Parse the operands list.
- DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
- DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
- // Special cases: ops == outs == ins. Different names are used to
- // improve readibility.
- if (!OpsOp ||
- (OpsOp->getDef()->getName() != "ops" &&
- OpsOp->getDef()->getName() != "outs" &&
- OpsOp->getDef()->getName() != "ins"))
- P->error("Operands list should start with '(ops ... '!");
-
- // Copy over the arguments.
- Args.clear();
- for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
- if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
- static_cast<DefInit*>(OpsList->getArg(j))->
- getDef()->getName() != "node")
- P->error("Operands list should all be 'node' values.");
- if (OpsList->getArgName(j).empty())
- P->error("Operands list should have names for each operand!");
- if (!OperandsMap.count(OpsList->getArgName(j)))
- P->error("'" + OpsList->getArgName(j) +
- "' does not occur in pattern or was multiply specified!");
- OperandsMap.erase(OpsList->getArgName(j));
- Args.push_back(OpsList->getArgName(j));
- }
-
- if (!OperandsMap.empty())
- P->error("Operands list does not contain an entry for operand '" +
- *OperandsMap.begin() + "'!");
-
- // If there is a code init for this fragment, emit the predicate code and
- // keep track of the fact that this fragment uses it.
- std::string Code = Fragments[i]->getValueAsCode("Predicate");
- if (!Code.empty()) {
- if (P->getOnlyTree()->isLeaf())
- OS << "inline bool Predicate_" << Fragments[i]->getName()
- << "(SDNode *N) {\n";
- else {
- std::string ClassName =
- getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
- const char *C2 = ClassName == "SDNode" ? "N" : "inN";
-
- OS << "inline bool Predicate_" << Fragments[i]->getName()
- << "(SDNode *" << C2 << ") {\n";
- if (ClassName != "SDNode")
- OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
- }
- OS << Code << "\n}\n";
- P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
- }
-
- // If there is a node transformation corresponding to this, keep track of
- // it.
- Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
- if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
- P->getOnlyTree()->setTransformFn(Transform);
- }
-
- OS << "\n\n";
-
- // Now that we've parsed all of the tree fragments, do a closure on them so
- // that there are not references to PatFrags left inside of them.
- for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
- E = PatternFragments.end(); I != E; ++I) {
- TreePattern *ThePat = I->second;
- ThePat->InlinePatternFragments();
-
- // Infer as many types as possible. Don't worry about it if we don't infer
- // all of them, some may depend on the inputs of the pattern.
- try {
- ThePat->InferAllTypes();
- } catch (...) {
- // If this pattern fragment is not supported by this target (no types can
- // satisfy its constraints), just ignore it. If the bogus pattern is
- // actually used by instructions, the type consistency error will be
- // reported there.
- }
-
- // If debugging, print out the pattern fragment result.
- DEBUG(ThePat->dump());
- }
-}
-
-void DAGISelEmitter::ParseDefaultOperands() {
- std::vector<Record*> DefaultOps[2];
- DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
- DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
-
- // Find some SDNode.
- assert(!SDNodes.empty() && "No SDNodes parsed?");
- Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
-
- for (unsigned iter = 0; iter != 2; ++iter) {
- for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
- DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
-
- // Clone the DefaultInfo dag node, changing the operator from 'ops' to
- // SomeSDnode so that we can parse this.
- std::vector<std::pair<Init*, std::string> > Ops;
- for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
- Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
- DefaultInfo->getArgName(op)));
- DagInit *DI = new DagInit(SomeSDNode, Ops);
-
- // Create a TreePattern to parse this.
- TreePattern P(DefaultOps[iter][i], DI, false, *this);
- assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
-
- // Copy the operands over into a DAGDefaultOperand.
- DAGDefaultOperand DefaultOpInfo;
-
- TreePatternNode *T = P.getTree(0);
- for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
- TreePatternNode *TPN = T->getChild(op);
- while (TPN->ApplyTypeConstraints(P, false))
- /* Resolve all types */;
-
- if (TPN->ContainsUnresolvedType())
- if (iter == 0)
- throw "Value #" + utostr(i) + " of PredicateOperand '" +
- DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
- else
- throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
- DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
-
- DefaultOpInfo.DefaultOps.push_back(TPN);
- }
-
- // Insert it into the DefaultOperands map so we can find it later.
- DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
- }
- }
-}
-
-/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
-/// instruction input. Return true if this is a real use.
-static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
- std::map<std::string, TreePatternNode*> &InstInputs,
- std::vector<Record*> &InstImpInputs) {
- // No name -> not interesting.
- if (Pat->getName().empty()) {
- if (Pat->isLeaf()) {
- DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
- if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
- I->error("Input " + DI->getDef()->getName() + " must be named!");
- else if (DI && DI->getDef()->isSubClassOf("Register"))
- InstImpInputs.push_back(DI->getDef());
- ;
- }
- return false;
- }
-
- Record *Rec;
- if (Pat->isLeaf()) {
- DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
- if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
- Rec = DI->getDef();
- } else {
- assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
- Rec = Pat->getOperator();
- }
-
- // SRCVALUE nodes are ignored.
- if (Rec->getName() == "srcvalue")
- return false;
-
- TreePatternNode *&Slot = InstInputs[Pat->getName()];
- if (!Slot) {
- Slot = Pat;
- } else {
- Record *SlotRec;
- if (Slot->isLeaf()) {
- SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
- } else {
- assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
- SlotRec = Slot->getOperator();
- }
-
- // Ensure that the inputs agree if we've already seen this input.
- if (Rec != SlotRec)
- I->error("All $" + Pat->getName() + " inputs must agree with each other");
- if (Slot->getExtTypes() != Pat->getExtTypes())
- I->error("All $" + Pat->getName() + " inputs must agree with each other");
- }
- return true;
-}
-
-/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
-/// part of "I", the instruction), computing the set of inputs and outputs of
-/// the pattern. Report errors if we see anything naughty.
-void DAGISelEmitter::
-FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
- std::map<std::string, TreePatternNode*> &InstInputs,
- std::map<std::string, TreePatternNode*>&InstResults,
- std::vector<Record*> &InstImpInputs,
- std::vector<Record*> &InstImpResults) {
- if (Pat->isLeaf()) {
- bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
- if (!isUse && Pat->getTransformFn())
- I->error("Cannot specify a transform function for a non-input value!");
- return;
- } else if (Pat->getOperator()->getName() == "implicit") {
- for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- TreePatternNode *Dest = Pat->getChild(i);
- if (!Dest->isLeaf())
- I->error("implicitly defined value should be a register!");
-
- DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
- if (!Val || !Val->getDef()->isSubClassOf("Register"))
- I->error("implicitly defined value should be a register!");
- InstImpResults.push_back(Val->getDef());
- }
- return;
- } else if (Pat->getOperator()->getName() != "set") {
- // If this is not a set, verify that the children nodes are not void typed,
- // and recurse.
- for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
- I->error("Cannot have void nodes inside of patterns!");
- FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
- InstImpInputs, InstImpResults);
- }
-
- // If this is a non-leaf node with no children, treat it basically as if
- // it were a leaf. This handles nodes like (imm).
- bool isUse = false;
- if (Pat->getNumChildren() == 0)
- isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
-
- if (!isUse && Pat->getTransformFn())
- I->error("Cannot specify a transform function for a non-input value!");
- return;
- }
-
- // Otherwise, this is a set, validate and collect instruction results.
- if (Pat->getNumChildren() == 0)
- I->error("set requires operands!");
-
- if (Pat->getTransformFn())
- I->error("Cannot specify a transform function on a set node!");
-
- // Check the set destinations.
- unsigned NumDests = Pat->getNumChildren()-1;
- for (unsigned i = 0; i != NumDests; ++i) {
- TreePatternNode *Dest = Pat->getChild(i);
- if (!Dest->isLeaf())
- I->error("set destination should be a register!");
-
- DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
- if (!Val)
- I->error("set destination should be a register!");
-
- if (Val->getDef()->isSubClassOf("RegisterClass") ||
- Val->getDef()->getName() == "ptr_rc") {
- if (Dest->getName().empty())
- I->error("set destination must have a name!");
- if (InstResults.count(Dest->getName()))
- I->error("cannot set '" + Dest->getName() +"' multiple times");
- InstResults[Dest->getName()] = Dest;
- } else if (Val->getDef()->isSubClassOf("Register")) {
- InstImpResults.push_back(Val->getDef());
- } else {
- I->error("set destination should be a register!");
- }
- }
-
- // Verify and collect info from the computation.
- FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
- InstInputs, InstResults,
- InstImpInputs, InstImpResults);
-}
-
-/// ParseInstructions - Parse all of the instructions, inlining and resolving
-/// any fragments involved. This populates the Instructions list with fully
-/// resolved instructions.
-void DAGISelEmitter::ParseInstructions() {
- std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
-
- for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
- ListInit *LI = 0;
-
- if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
- LI = Instrs[i]->getValueAsListInit("Pattern");
-
- // If there is no pattern, only collect minimal information about the
- // instruction for its operand list. We have to assume that there is one
- // result, as we have no detailed info.
- if (!LI || LI->getSize() == 0) {
- std::vector<Record*> Results;
- std::vector<Record*> Operands;
-
- CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
-
- if (InstInfo.OperandList.size() != 0) {
- if (InstInfo.NumDefs == 0) {
- // These produce no results
- for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
- Operands.push_back(InstInfo.OperandList[j].Rec);
- } else {
- // Assume the first operand is the result.
- Results.push_back(InstInfo.OperandList[0].Rec);
-
- // The rest are inputs.
- for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
- Operands.push_back(InstInfo.OperandList[j].Rec);
- }
- }
-
- // Create and insert the instruction.
- std::vector<Record*> ImpResults;
- std::vector<Record*> ImpOperands;
- Instructions.insert(std::make_pair(Instrs[i],
- DAGInstruction(0, Results, Operands, ImpResults,
- ImpOperands)));
- continue; // no pattern.
- }
-
- // Parse the instruction.
- TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
- // Inline pattern fragments into it.
- I->InlinePatternFragments();
-
- // Infer as many types as possible. If we cannot infer all of them, we can
- // never do anything with this instruction pattern: report it to the user.
- if (!I->InferAllTypes())
- I->error("Could not infer all types in pattern!");
-
- // InstInputs - Keep track of all of the inputs of the instruction, along
- // with the record they are declared as.
- std::map<std::string, TreePatternNode*> InstInputs;
-
- // InstResults - Keep track of all the virtual registers that are 'set'
- // in the instruction, including what reg class they are.
- std::map<std::string, TreePatternNode*> InstResults;
-
- std::vector<Record*> InstImpInputs;
- std::vector<Record*> InstImpResults;
-
- // Verify that the top-level forms in the instruction are of void type, and
- // fill in the InstResults map.
- for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
- TreePatternNode *Pat = I->getTree(j);
- if (Pat->getExtTypeNum(0) != MVT::isVoid)
- I->error("Top-level forms in instruction pattern should have"
- " void types");
-
- // Find inputs and outputs, and verify the structure of the uses/defs.
- FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
- InstImpInputs, InstImpResults);
- }
-
- // Now that we have inputs and outputs of the pattern, inspect the operands
- // list for the instruction. This determines the order that operands are
- // added to the machine instruction the node corresponds to.
- unsigned NumResults = InstResults.size();
-
- // Parse the operands list from the (ops) list, validating it.
- assert(I->getArgList().empty() && "Args list should still be empty here!");
- CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
-
- // Check that all of the results occur first in the list.
- std::vector<Record*> Results;
- TreePatternNode *Res0Node = NULL;
- for (unsigned i = 0; i != NumResults; ++i) {
- if (i == CGI.OperandList.size())
- I->error("'" + InstResults.begin()->first +
- "' set but does not appear in operand list!");
- const std::string &OpName = CGI.OperandList[i].Name;
-
- // Check that it exists in InstResults.
- TreePatternNode *RNode = InstResults[OpName];
- if (RNode == 0)
- I->error("Operand $" + OpName + " does not exist in operand list!");
-
- if (i == 0)
- Res0Node = RNode;
- Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
- if (R == 0)
- I->error("Operand $" + OpName + " should be a set destination: all "
- "outputs must occur before inputs in operand list!");
-
- if (CGI.OperandList[i].Rec != R)
- I->error("Operand $" + OpName + " class mismatch!");
-
- // Remember the return type.
- Results.push_back(CGI.OperandList[i].Rec);
-
- // Okay, this one checks out.
- InstResults.erase(OpName);
- }
-
- // Loop over the inputs next. Make a copy of InstInputs so we can destroy
- // the copy while we're checking the inputs.
- std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
-
- std::vector<TreePatternNode*> ResultNodeOperands;
- std::vector<Record*> Operands;
- for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
- CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
- const std::string &OpName = Op.Name;
- if (OpName.empty())
- I->error("Operand #" + utostr(i) + " in operands list has no name!");
-
- if (!InstInputsCheck.count(OpName)) {
- // If this is an predicate operand or optional def operand with an
- // DefaultOps set filled in, we can ignore this. When we codegen it,
- // we will do so as always executed.
- if (Op.Rec->isSubClassOf("PredicateOperand") ||
- Op.Rec->isSubClassOf("OptionalDefOperand")) {
- // Does it have a non-empty DefaultOps field? If so, ignore this
- // operand.
- if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
- continue;
- }
- I->error("Operand $" + OpName +
- " does not appear in the instruction pattern");
- }
- TreePatternNode *InVal = InstInputsCheck[OpName];
- InstInputsCheck.erase(OpName); // It occurred, remove from map.
-
- if (InVal->isLeaf() &&
- dynamic_cast<DefInit*>(InVal->getLeafValue())) {
- Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
- if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
- I->error("Operand $" + OpName + "'s register class disagrees"
- " between the operand and pattern");
- }
- Operands.push_back(Op.Rec);
-
- // Construct the result for the dest-pattern operand list.
- TreePatternNode *OpNode = InVal->clone();
-
- // No predicate is useful on the result.
- OpNode->setPredicateFn("");
-
- // Promote the xform function to be an explicit node if set.
- if (Record *Xform = OpNode->getTransformFn()) {
- OpNode->setTransformFn(0);
- std::vector<TreePatternNode*> Children;
- Children.push_back(OpNode);
- OpNode = new TreePatternNode(Xform, Children);
- }
-
- ResultNodeOperands.push_back(OpNode);
- }
-
- if (!InstInputsCheck.empty())
- I->error("Input operand $" + InstInputsCheck.begin()->first +
- " occurs in pattern but not in operands list!");
-
- TreePatternNode *ResultPattern =
- new TreePatternNode(I->getRecord(), ResultNodeOperands);
- // Copy fully inferred output node type to instruction result pattern.
- if (NumResults > 0)
- ResultPattern->setTypes(Res0Node->getExtTypes());
-
- // Create and insert the instruction.
- // FIXME: InstImpResults and InstImpInputs should not be part of
- // DAGInstruction.
- DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
- Instructions.insert(std::make_pair(I->getRecord(), TheInst));
-
- // Use a temporary tree pattern to infer all types and make sure that the
- // constructed result is correct. This depends on the instruction already
- // being inserted into the Instructions map.
- TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
- Temp.InferAllTypes();
-
- DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
- TheInsertedInst.setResultPattern(Temp.getOnlyTree());
-
- DEBUG(I->dump());
- }
-
- // If we can, convert the instructions to be patterns that are matched!
- for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
- E = Instructions.end(); II != E; ++II) {
- DAGInstruction &TheInst = II->second;
- TreePattern *I = TheInst.getPattern();
- if (I == 0) continue; // No pattern.
-
- // FIXME: Assume only the first tree is the pattern. The others are clobber
- // nodes.
- TreePatternNode *Pattern = I->getTree(0);
- TreePatternNode *SrcPattern;
- if (Pattern->getOperator()->getName() == "set") {
- SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
- } else{
- // Not a set (store or something?)
- SrcPattern = Pattern;
- }
-
- std::string Reason;
- if (!SrcPattern->canPatternMatch(Reason, *this))
- I->error("Instruction can never match: " + Reason);
-
- Record *Instr = II->first;
- TreePatternNode *DstPattern = TheInst.getResultPattern();
- PatternsToMatch.
- push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
- SrcPattern, DstPattern, TheInst.getImpResults(),
- Instr->getValueAsInt("AddedComplexity")));
- }
-}
-
-void DAGISelEmitter::ParsePatterns() {
- std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
-
- for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
- DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
- DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
- Record *Operator = OpDef->getDef();
- TreePattern *Pattern;
- if (Operator->getName() != "parallel")
- Pattern = new TreePattern(Patterns[i], Tree, true, *this);
- else {
- std::vector<Init*> Values;
- for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
- Values.push_back(Tree->getArg(j));
- ListInit *LI = new ListInit(Values);
- Pattern = new TreePattern(Patterns[i], LI, true, *this);
- }
-
- // Inline pattern fragments into it.
- Pattern->InlinePatternFragments();
-
- ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
- if (LI->getSize() == 0) continue; // no pattern.
-
- // Parse the instruction.
- TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
-
- // Inline pattern fragments into it.
- Result->InlinePatternFragments();
-
- if (Result->getNumTrees() != 1)
- Result->error("Cannot handle instructions producing instructions "
- "with temporaries yet!");
-
- bool IterateInference;
- bool InferredAllPatternTypes, InferredAllResultTypes;
- do {
- // Infer as many types as possible. If we cannot infer all of them, we
- // can never do anything with this pattern: report it to the user.
- InferredAllPatternTypes = Pattern->InferAllTypes();
-
- // Infer as many types as possible. If we cannot infer all of them, we
- // can never do anything with this pattern: report it to the user.
- InferredAllResultTypes = Result->InferAllTypes();
-
- // Apply the type of the result to the source pattern. This helps us
- // resolve cases where the input type is known to be a pointer type (which
- // is considered resolved), but the result knows it needs to be 32- or
- // 64-bits. Infer the other way for good measure.
- IterateInference = Pattern->getTree(0)->
- UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
- IterateInference |= Result->getTree(0)->
- UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
- } while (IterateInference);
-
- // Verify that we inferred enough types that we can do something with the
- // pattern and result. If these fire the user has to add type casts.
- if (!InferredAllPatternTypes)
- Pattern->error("Could not infer all types in pattern!");
- if (!InferredAllResultTypes)
- Result->error("Could not infer all types in pattern result!");
-
- // Validate that the input pattern is correct.
- std::map<std::string, TreePatternNode*> InstInputs;
- std::map<std::string, TreePatternNode*> InstResults;
- std::vector<Record*> InstImpInputs;
- std::vector<Record*> InstImpResults;
- for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
- FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
- InstInputs, InstResults,
- InstImpInputs, InstImpResults);
-
- // Promote the xform function to be an explicit node if set.
- TreePatternNode *DstPattern = Result->getOnlyTree();
- std::vector<TreePatternNode*> ResultNodeOperands;
- for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
- TreePatternNode *OpNode = DstPattern->getChild(ii);
- if (Record *Xform = OpNode->getTransformFn()) {
- OpNode->setTransformFn(0);
- std::vector<TreePatternNode*> Children;
- Children.push_back(OpNode);
- OpNode = new TreePatternNode(Xform, Children);
- }
- ResultNodeOperands.push_back(OpNode);
- }
- DstPattern = Result->getOnlyTree();
- if (!DstPattern->isLeaf())
- DstPattern = new TreePatternNode(DstPattern->getOperator(),
- ResultNodeOperands);
- DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
- TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
- Temp.InferAllTypes();
-
- std::string Reason;
- if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
- Pattern->error("Pattern can never match: " + Reason);
-
- PatternsToMatch.
- push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
- Pattern->getTree(0),
- Temp.getOnlyTree(), InstImpResults,
- Patterns[i]->getValueAsInt("AddedComplexity")));
- }
-}
-/// CombineChildVariants - Given a bunch of permutations of each child of the
-/// 'operator' node, put them together in all possible ways.
-static void CombineChildVariants(TreePatternNode *Orig,
- const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
- std::vector<TreePatternNode*> &OutVariants,
- DAGISelEmitter &ISE) {
- // Make sure that each operand has at least one variant to choose from.
- for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
- if (ChildVariants[i].empty())
- return;
-
- // The end result is an all-pairs construction of the resultant pattern.
- std::vector<unsigned> Idxs;
- Idxs.resize(ChildVariants.size());
- bool NotDone = true;
- while (NotDone) {
- // Create the variant and add it to the output list.
- std::vector<TreePatternNode*> NewChildren;
- for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
- NewChildren.push_back(ChildVariants[i][Idxs[i]]);
- TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
-
- // Copy over properties.
- R->setName(Orig->getName());
- R->setPredicateFn(Orig->getPredicateFn());
- R->setTransformFn(Orig->getTransformFn());
- R->setTypes(Orig->getExtTypes());
-
- // If this pattern cannot every match, do not include it as a variant.
- std::string ErrString;
- if (!R->canPatternMatch(ErrString, ISE)) {
- delete R;
- } else {
- bool AlreadyExists = false;
-
- // Scan to see if this pattern has already been emitted. We can get
- // duplication due to things like commuting:
- // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
- // which are the same pattern. Ignore the dups.
- for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
- if (R->isIsomorphicTo(OutVariants[i])) {
- AlreadyExists = true;
- break;
- }
-
- if (AlreadyExists)
- delete R;
- else
- OutVariants.push_back(R);
- }
-
- // Increment indices to the next permutation.
- NotDone = false;
- // Look for something we can increment without causing a wrap-around.
- for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
- if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
- NotDone = true; // Found something to increment.
- break;
- }
- Idxs[IdxsIdx] = 0;
- }
- }
-}
-
-/// CombineChildVariants - A helper function for binary operators.
-///
-static void CombineChildVariants(TreePatternNode *Orig,
- const std::vector<TreePatternNode*> &LHS,
- const std::vector<TreePatternNode*> &RHS,
- std::vector<TreePatternNode*> &OutVariants,
- DAGISelEmitter &ISE) {
- std::vector<std::vector<TreePatternNode*> > ChildVariants;
- ChildVariants.push_back(LHS);
- ChildVariants.push_back(RHS);
- CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
-}
-
-
-static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
- std::vector<TreePatternNode *> &Children) {
- assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
- Record *Operator = N->getOperator();
-
- // Only permit raw nodes.
- if (!N->getName().empty() || !N->getPredicateFn().empty() ||
- N->getTransformFn()) {
- Children.push_back(N);
- return;
- }
-
- if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
- Children.push_back(N->getChild(0));
- else
- GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
-
- if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
- Children.push_back(N->getChild(1));
- else
- GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
-}
-
-/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
-/// the (potentially recursive) pattern by using algebraic laws.
-///
-static void GenerateVariantsOf(TreePatternNode *N,
- std::vector<TreePatternNode*> &OutVariants,
- DAGISelEmitter &ISE) {
- // We cannot permute leaves.
- if (N->isLeaf()) {
- OutVariants.push_back(N);
- return;
- }
-
- // Look up interesting info about the node.
- const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
-
- // If this node is associative, reassociate.
- if (NodeInfo.hasProperty(SDNPAssociative)) {
- // Reassociate by pulling together all of the linked operators
- std::vector<TreePatternNode*> MaximalChildren;
- GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
-
- // Only handle child sizes of 3. Otherwise we'll end up trying too many
- // permutations.
- if (MaximalChildren.size() == 3) {
- // Find the variants of all of our maximal children.
- std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
- GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
- GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
- GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
-
- // There are only two ways we can permute the tree:
- // (A op B) op C and A op (B op C)
- // Within these forms, we can also permute A/B/C.
-
- // Generate legal pair permutations of A/B/C.
- std::vector<TreePatternNode*> ABVariants;
- std::vector<TreePatternNode*> BAVariants;
- std::vector<TreePatternNode*> ACVariants;
- std::vector<TreePatternNode*> CAVariants;
- std::vector<TreePatternNode*> BCVariants;
- std::vector<TreePatternNode*> CBVariants;
- CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
- CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
- CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
- CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
- CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
- CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
-
- // Combine those into the result: (x op x) op x
- CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
- CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
- CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
- CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
- CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
- CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
-
- // Combine those into the result: x op (x op x)
- CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
- CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
- CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
- CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
- CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
- CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
- return;
- }
- }
-
- // Compute permutations of all children.
- std::vector<std::vector<TreePatternNode*> > ChildVariants;
- ChildVariants.resize(N->getNumChildren());
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
-
- // Build all permutations based on how the children were formed.
- CombineChildVariants(N, ChildVariants, OutVariants, ISE);
-
- // If this node is commutative, consider the commuted order.
- if (NodeInfo.hasProperty(SDNPCommutative)) {
- assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
- // Don't count children which are actually register references.
- unsigned NC = 0;
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = N->getChild(i);
- if (Child->isLeaf())
- if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
- Record *RR = DI->getDef();
- if (RR->isSubClassOf("Register"))
- continue;
- }
- NC++;
- }
- // Consider the commuted order.
- if (NC == 2)
- CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
- OutVariants, ISE);
- }
-}
-
-
-// GenerateVariants - Generate variants. For example, commutative patterns can
-// match multiple ways. Add them to PatternsToMatch as well.
-void DAGISelEmitter::GenerateVariants() {
-
- DOUT << "Generating instruction variants.\n";
-
- // Loop over all of the patterns we've collected, checking to see if we can
- // generate variants of the instruction, through the exploitation of
- // identities. This permits the target to provide agressive matching without
- // the .td file having to contain tons of variants of instructions.
- //
- // Note that this loop adds new patterns to the PatternsToMatch list, but we
- // intentionally do not reconsider these. Any variants of added patterns have
- // already been added.
- //
- for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
- std::vector<TreePatternNode*> Variants;
- GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
-
- assert(!Variants.empty() && "Must create at least original variant!");
- Variants.erase(Variants.begin()); // Remove the original pattern.
-
- if (Variants.empty()) // No variants for this pattern.
- continue;
-
- DOUT << "FOUND VARIANTS OF: ";
- DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
- DOUT << "\n";
-
- for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
- TreePatternNode *Variant = Variants[v];
-
- DOUT << " VAR#" << v << ": ";
- DEBUG(Variant->dump());
- DOUT << "\n";
-
- // Scan to see if an instruction or explicit pattern already matches this.
- bool AlreadyExists = false;
- for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
- // Check to see if this variant already exists.
- if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
- DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
- AlreadyExists = true;
- break;
- }
- }
- // If we already have it, ignore the variant.
- if (AlreadyExists) continue;
-
- // Otherwise, add it to the list of patterns we have.
- PatternsToMatch.
- push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
- Variant, PatternsToMatch[i].getDstPattern(),
- PatternsToMatch[i].getDstRegs(),
- PatternsToMatch[i].getAddedComplexity()));
- }
-
- DOUT << "\n";
- }
-}
-
-// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
-// ComplexPattern.
-static bool NodeIsComplexPattern(TreePatternNode *N)
-{
+/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
+/// ComplexPattern.
+static bool NodeIsComplexPattern(TreePatternNode *N) {
return (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern"));
}
-// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
-// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
+/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
+/// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
- DAGISelEmitter &ISE)
-{
+ CodegenDAGPatterns &CGP) {
if (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern")) {
- return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
- ->getDef());
+ return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
+ ->getDef());
}
return NULL;
}
@@ -2083,9 +51,9 @@
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
-static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
- assert((isExtIntegerInVTs(P->getExtTypes()) ||
- isExtFloatingPointInVTs(P->getExtTypes()) ||
+static unsigned getPatternSize(TreePatternNode *P, CodegenDAGPatterns &CGP) {
+ assert((MVT::isExtIntegerInVTs(P->getExtTypes()) ||
+ MVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
P->getExtTypeNum(0) == MVT::isVoid ||
P->getExtTypeNum(0) == MVT::Flag ||
P->getExtTypeNum(0) == MVT::iPTR) &&
@@ -2101,7 +69,7 @@
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
- const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
+ const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
if (AM)
Size += AM->getNumOperands() * 3;
@@ -2114,12 +82,12 @@
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
- Size += getPatternSize(Child, ISE);
+ Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (NodeIsComplexPattern(Child))
- Size += getPatternSize(Child, ISE);
+ Size += getPatternSize(Child, CGP);
else if (!Child->getPredicateFn().empty())
++Size;
}
@@ -2131,25 +99,27 @@
/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
-static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
+static unsigned getResultPatternCost(TreePatternNode *P,
+ CodegenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost++;
- CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
+ CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
if (II.usesCustomDAGSchedInserter)
Cost += 10;
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
- Cost += getResultPatternCost(P->getChild(i), ISE);
+ Cost += getResultPatternCost(P->getChild(i), CGP);
return Cost;
}
/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
-static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
+static unsigned getResultPatternSize(TreePatternNode *P,
+ CodegenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
@@ -2158,7 +128,7 @@
Cost += Op->getValueAsInt("CodeSize");
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
- Cost += getResultPatternSize(P->getChild(i), ISE);
+ Cost += getResultPatternSize(P->getChild(i), CGP);
return Cost;
}
@@ -2166,26 +136,26 @@
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
- PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
- DAGISelEmitter &ISE;
+ PatternSortingPredicate(CodegenDAGPatterns &cgp) : CGP(cgp) {}
+ CodegenDAGPatterns &CGP;
bool operator()(PatternToMatch *LHS,
PatternToMatch *RHS) {
- unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
- unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
+ unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
+ unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
LHSSize += LHS->getAddedComplexity();
RHSSize += RHS->getAddedComplexity();
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
if (LHSSize < RHSSize) return false;
// If the patterns have equal complexity, compare generated instruction cost
- unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
- unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
+ unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
+ unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
if (LHSCost < RHSCost) return true;
if (LHSCost > RHSCost) return false;
- return getResultPatternSize(LHS->getDstPattern(), ISE) <
- getResultPatternSize(RHS->getDstPattern(), ISE);
+ return getResultPatternSize(LHS->getDstPattern(), CGP) <
+ getResultPatternSize(RHS->getDstPattern(), CGP);
}
};
@@ -2207,22 +177,12 @@
RemoveAllTypes(N->getChild(i));
}
-Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
- Record *N = Records.getDef(Name);
- if (!N || !N->isSubClassOf("SDNode")) {
- cerr << "Error getting SDNode '" << Name << "'!\n";
- exit(1);
- }
- return N;
-}
-
/// NodeHasProperty - return true if TreePatternNode has the specified
/// property.
static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
- DAGISelEmitter &ISE)
-{
+ CodegenDAGPatterns &CGP) {
if (N->isLeaf()) {
- const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
+ const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
if (CP)
return CP->hasProperty(Property);
return false;
@@ -2230,19 +190,17 @@
Record *Operator = N->getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
- const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
- return NodeInfo.hasProperty(Property);
+ return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
- DAGISelEmitter &ISE)
-{
- if (NodeHasProperty(N, Property, ISE))
+ CodegenDAGPatterns &CGP) {
+ if (NodeHasProperty(N, Property, CGP))
return true;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
- if (PatternHasProperty(Child, Property, ISE))
+ if (PatternHasProperty(Child, Property, CGP))
return true;
}
@@ -2251,7 +209,7 @@
class PatternCodeEmitter {
private:
- DAGISelEmitter &ISE;
+ CodegenDAGPatterns &CGP;
// Predicates.
ListInit *Predicates;
@@ -2315,13 +273,13 @@
VTNo++;
}
public:
- PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
+ PatternCodeEmitter(CodegenDAGPatterns &cgp, ListInit *preds,
TreePatternNode *pattern, TreePatternNode *instr,
std::vector<std::pair<unsigned, std::string> > &gc,
std::set<std::string> &gd,
std::vector<std::string> &to,
std::vector<std::string> &tv)
- : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
+ : CGP(cgp), Predicates(preds), Pattern(pattern), Instruction(instr),
GeneratedCode(gc), GeneratedDecl(gd),
TargetOpcodes(to), TargetVTs(tv),
TmpNo(0), OpcNo(0), VTNo(0) {}
@@ -2387,8 +345,8 @@
// Emit code to load the child nodes and match their contents recursively.
unsigned OpNo = 0;
- bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE);
- bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE);
+ bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP);
+ bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP);
bool EmittedUseCheck = false;
if (HasChain) {
if (NodeHasChain)
@@ -2415,11 +373,11 @@
if (P != Pattern)
NeedCheck = true;
else {
- const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
+ const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
NeedCheck =
- P->getOperator() == ISE.get_intrinsic_void_sdnode() ||
- P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
- P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() ||
+ P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
+ P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
+ P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
PInfo.getNumOperands() > 1 ||
PInfo.hasProperty(SDNPHasChain) ||
PInfo.hasProperty(SDNPInFlag) ||
@@ -2454,9 +412,9 @@
// FIXME: If the optional incoming flag does not exist. Then it is ok to
// fold it.
if (!isRoot &&
- (PatternHasProperty(N, SDNPInFlag, ISE) ||
- PatternHasProperty(N, SDNPOptInFlag, ISE) ||
- PatternHasProperty(N, SDNPOutFlag, ISE))) {
+ (PatternHasProperty(N, SDNPInFlag, CGP) ||
+ PatternHasProperty(N, SDNPOptInFlag, CGP) ||
+ PatternHasProperty(N, SDNPOutFlag, CGP))) {
if (!EmittedUseCheck) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
@@ -2513,7 +471,7 @@
// Handle cases when root is a complex pattern.
const ComplexPattern *CP;
- if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
+ if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
@@ -2543,11 +501,11 @@
const std::string &ChainSuffix, bool &FoundChain) {
if (!Child->isLeaf()) {
// If it's not a leaf, recursively match.
- const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
+ const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
emitCheck(RootName + ".getOpcode() == " +
CInfo.getEnumName());
EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
- if (NodeHasProperty(Child, SDNPHasChain, ISE))
+ if (NodeHasProperty(Child, SDNPHasChain, CGP))
FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
} else {
// If this child has a name associated with it, capture it in VarMap. If
@@ -2577,7 +535,7 @@
// Handle register references.
} else if (LeafRec->isSubClassOf("ComplexPattern")) {
// Handle complex pattern.
- const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
+ const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
@@ -2585,7 +543,7 @@
emitCode("SDOperand CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
- const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
+ const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
FoldedChains.push_back(std::make_pair("CPInChain",
PInfo.getNumResults()));
ChainName = "Chain" + ChainSuffix;
@@ -2730,7 +688,7 @@
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
- } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
+ } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
NodeOps.push_back("CPTmp" + utostr(i));
@@ -2755,7 +713,7 @@
unsigned ResNo = TmpNo++;
if (DI->getDef()->isSubClassOf("Register")) {
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
- ISE.getQualifiedName(DI->getDef()) + ", " +
+ getQualifiedName(DI->getDef()) + ", " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
@@ -2785,9 +743,9 @@
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
- const CodeGenTarget &CGT = ISE.getTargetInfo();
+ const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
- const DAGInstruction &Inst = ISE.getInstruction(Op);
+ const DAGInstruction &Inst = CGP.getInstruction(Op);
TreePattern *InstPat = Inst.getPattern();
// FIXME: Assume actual pattern comes before "implicit".
TreePatternNode *InstPatNode =
@@ -2801,15 +759,15 @@
bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
bool HasImpResults = isRoot && DstRegs.size() > 0;
bool NodeHasOptInFlag = isRoot &&
- PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
+ PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
bool NodeHasInFlag = isRoot &&
- PatternHasProperty(Pattern, SDNPInFlag, ISE);
+ PatternHasProperty(Pattern, SDNPInFlag, CGP);
bool NodeHasOutFlag = isRoot &&
- PatternHasProperty(Pattern, SDNPOutFlag, ISE);
+ PatternHasProperty(Pattern, SDNPOutFlag, CGP);
bool NodeHasChain = InstPatNode &&
- PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
+ PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
bool InputHasChain = isRoot &&
- NodeHasProperty(Pattern, SDNPHasChain, ISE);
+ NodeHasProperty(Pattern, SDNPHasChain, CGP);
unsigned NumResults = Inst.getNumResults();
unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
@@ -2865,7 +823,7 @@
Record *OperandNode = II.OperandList[InstOpNo].Rec;
if ((!OperandNode->isSubClassOf("PredicateOperand") &&
!OperandNode->isSubClassOf("OptionalDefOperand")) ||
- ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) {
+ CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
@@ -2874,7 +832,7 @@
// Otherwise, this is a predicate or optional def operand, emit the
// 'default ops' operands.
const DAGDefaultOperand &DefaultOp =
- ISE.getDefaultOperand(II.OperandList[InstOpNo].Rec);
+ CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
InFlagDecled, ResNodeDecled);
@@ -3154,7 +1112,7 @@
}
unsigned OpNo =
- (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
+ (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
Prefix + utostr(OpNo)))
@@ -3168,10 +1126,10 @@
void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
bool &ChainEmitted, bool &InFlagDecled,
bool &ResNodeDecled, bool isRoot = false) {
- const CodeGenTarget &T = ISE.getTargetInfo();
+ const CodeGenTarget &T = CGP.getTargetInfo();
unsigned OpNo =
- (unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
- bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
+ (unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
+ bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
TreePatternNode *Child = N->getChild(i);
if (!Child->isLeaf()) {
@@ -3209,7 +1167,7 @@
}
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
- ", " + ISE.getQualifiedName(RR) +
+ ", " + getQualifiedName(RR) +
", " + RootName + utostr(OpNo) + ", InFlag).Val;");
ResNodeDecled = true;
emitCode(ChainName + " = SDOperand(ResNode, 0);");
@@ -3241,7 +1199,7 @@
std::set<std::string> &GeneratedDecl,
std::vector<std::string> &TargetOpcodes,
std::vector<std::string> &TargetVTs) {
- PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
+ PatternCodeEmitter Emitter(*CGP, Pattern.getPredicates(),
Pattern.getSrcPattern(), Pattern.getDstPattern(),
GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs);
@@ -3251,7 +1209,7 @@
Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
// TP - Get *SOME* tree pattern, we don't care which.
- TreePattern &TP = *PatternFragments.begin()->second;
+ TreePattern &TP = *CGP->pf_begin()->second;
// At this point, we know that we structurally match the pattern, but the
// types of the nodes may not match. Figure out the fewest number of type
@@ -3345,11 +1303,11 @@
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
- << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
+ << getPatternSize(Pattern.getSrcPattern(), *CGP) + AddedComplexity
<< " cost = "
- << getResultPatternCost(Pattern.getDstPattern(), *this)
+ << getResultPatternCost(Pattern.getDstPattern(), *CGP)
<< " size = "
- << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
+ << getResultPatternSize(Pattern.getDstPattern(), *CGP) << "\n";
}
if (FirstCodeLine.first != 1) {
OS << std::string(Indent, ' ') << "{\n";
@@ -3370,11 +1328,11 @@
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
- << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
+ << getPatternSize(Pattern.getSrcPattern(), *CGP) + AddedComplexity
<< " cost = "
- << getResultPatternCost(Pattern.getDstPattern(), *this)
+ << getResultPatternCost(Pattern.getDstPattern(), *CGP)
<< " size = "
- << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
+ << getResultPatternSize(Pattern.getDstPattern(), *CGP) << "\n";
}
EmitPatterns(Other, Indent, OS);
return;
@@ -3422,9 +1380,8 @@
OS << std::string(Indent-2, ' ') << "}\n";
}
-static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) {
- const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op);
- return OpcodeInfo.getEnumName();
+static std::string getOpcodeName(Record *Op, CodegenDAGPatterns &CGP) {
+ return CGP.getSDNodeInfo(Op).getEnumName();
}
static std::string getLegalCName(std::string OpName) {
@@ -3435,6 +1392,8 @@
}
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
+ const CodeGenTarget &Target = CGP->getTargetInfo();
+
// Get the namespace to insert instructions into. Make sure not to pick up
// "TargetInstrInfo" by accidentally getting the namespace off the PHI
// instruction or something.
@@ -3452,29 +1411,31 @@
std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode;
// All unique target node emission functions.
std::map<std::string, unsigned> EmitFunctions;
- for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
- TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
+ for (CodegenDAGPatterns::ptm_iterator I = CGP->ptm_begin(),
+ E = CGP->ptm_end(); I != E; ++I) {
+ PatternToMatch &Pattern = *I;
+
+ TreePatternNode *Node = Pattern.getSrcPattern();
if (!Node->isLeaf()) {
- PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)].
- push_back(&PatternsToMatch[i]);
+ PatternsByOpcode[getOpcodeName(Node->getOperator(), *CGP)].
+ push_back(&Pattern);
} else {
const ComplexPattern *CP;
if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
- PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)].
- push_back(&PatternsToMatch[i]);
- } else if ((CP = NodeGetComplexPattern(Node, *this))) {
+ PatternsByOpcode[getOpcodeName(CGP->getSDNodeNamed("imm"), *CGP)].
+ push_back(&Pattern);
+ } else if ((CP = NodeGetComplexPattern(Node, *CGP))) {
std::vector<Record*> OpNodes = CP->getRootNodes();
for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
- PatternsByOpcode[getOpcodeName(OpNodes[j], *this)]
- .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(),
- &PatternsToMatch[i]);
+ PatternsByOpcode[getOpcodeName(OpNodes[j], *CGP)]
+ .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *CGP)].begin(),
+ &Pattern);
}
} else {
cerr << "Unrecognized opcode '";
Node->dump();
cerr << "' on tree pattern '";
- cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName();
- cerr << "'!\n";
+ cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
exit(1);
}
}
@@ -3499,7 +1460,7 @@
// the matches in order of minimal cost. Sort the patterns so the least
// cost one is at the start.
std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
- PatternSortingPredicate(*this));
+ PatternSortingPredicate(*CGP));
// Split them into groups by type.
std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
@@ -3864,6 +1825,7 @@
}
void DAGISelEmitter::run(std::ostream &OS) {
+ CodeGenTarget Target;
EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
" target", OS);
@@ -3999,23 +1961,15 @@
OS << " return Dummy.getValue();\n";
OS << "}\n";
- Intrinsics = LoadIntrinsics(Records);
- ParseNodeInfo();
- ParseNodeTransforms(OS);
- ParseComplexPatterns();
- ParsePatternFragments(OS);
- ParseDefaultOperands();
- ParseInstructions();
- ParsePatterns();
-
- // Generate variants. For example, commutative patterns can match
- // multiple ways. Add them to PatternsToMatch as well.
- GenerateVariants();
+ CodegenDAGPatterns CGP(Records, OS);
+ this->CGP = &CGP;
+
DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
- for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
- DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
- DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump());
+ for (CodegenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
+ I != E; ++I) {
+ DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump());
+ DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump());
DOUT << "\n";
}
@@ -4024,10 +1978,4 @@
// definitions. Emit the resultant instruction selector.
EmitInstructionSelector(OS);
- for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
- E = PatternFragments.end(); I != E; ++I)
- delete I->second;
- PatternFragments.clear();
-
- Instructions.clear();
}
Modified: llvm/trunk/utils/TableGen/DAGISelEmitter.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/DAGISelEmitter.h?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/DAGISelEmitter.h (original)
+++ llvm/trunk/utils/TableGen/DAGISelEmitter.h Sat Jan 5 16:25:12 2008
@@ -14,523 +14,25 @@
#ifndef DAGISEL_EMITTER_H
#define DAGISEL_EMITTER_H
-#include "TableGenBackend.h"
-#include "CodeGenTarget.h"
-#include "CodeGenIntrinsics.h"
+#include "CodeGenDAGPatterns.h"
#include <set>
namespace llvm {
- class Record;
- struct Init;
- class ListInit;
- class DagInit;
- class SDNodeInfo;
- class TreePattern;
- class TreePatternNode;
- class DAGISelEmitter;
- class ComplexPattern;
-
- /// MVT::DAGISelGenValueType - These are some extended forms of MVT::ValueType
- /// that we use as lattice values during type inferrence.
- namespace MVT {
- enum DAGISelGenValueType {
- isFP = MVT::LAST_VALUETYPE,
- isInt,
- isUnknown
- };
- }
-
- /// SDTypeConstraint - This is a discriminated union of constraints,
- /// corresponding to the SDTypeConstraint tablegen class in Target.td.
- struct SDTypeConstraint {
- SDTypeConstraint(Record *R);
-
- unsigned OperandNo; // The operand # this constraint applies to.
- enum {
- SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisSameAs,
- SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisIntVectorOfSameSize
- } ConstraintType;
-
- union { // The discriminated union.
- struct {
- MVT::ValueType VT;
- } SDTCisVT_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisSameAs_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisVTSmallerThanOp_Info;
- struct {
- unsigned BigOperandNum;
- } SDTCisOpSmallerThanOp_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisIntVectorOfSameSize_Info;
- } x;
-
- /// ApplyTypeConstraint - Given a node in a pattern, apply this type
- /// constraint to the nodes operands. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, throw an
- /// exception.
- bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
- TreePattern &TP) const;
-
- /// getOperandNum - Return the node corresponding to operand #OpNo in tree
- /// N, which has NumResults results.
- TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
- unsigned NumResults) const;
- };
-
- /// SDNodeInfo - One of these records is created for each SDNode instance in
- /// the target .td file. This represents the various dag nodes we will be
- /// processing.
- class SDNodeInfo {
- Record *Def;
- std::string EnumName;
- std::string SDClassName;
- unsigned Properties;
- unsigned NumResults;
- int NumOperands;
- std::vector<SDTypeConstraint> TypeConstraints;
- public:
- SDNodeInfo(Record *R); // Parse the specified record.
-
- unsigned getNumResults() const { return NumResults; }
- int getNumOperands() const { return NumOperands; }
- Record *getRecord() const { return Def; }
- const std::string &getEnumName() const { return EnumName; }
- const std::string &getSDClassName() const { return SDClassName; }
-
- const std::vector<SDTypeConstraint> &getTypeConstraints() const {
- return TypeConstraints;
- }
-
- /// hasProperty - Return true if this node has the specified property.
- ///
- bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
-
- /// ApplyTypeConstraints - Given a node in a pattern, apply the type
- /// constraints for this node to the operands of the node. This returns
- /// true if it makes a change, false otherwise. If a type contradiction is
- /// found, throw an exception.
- bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
- bool MadeChange = false;
- for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
- MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
- return MadeChange;
- }
- };
-
- /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
- /// patterns), and as such should be ref counted. We currently just leak all
- /// TreePatternNode objects!
- class TreePatternNode {
- /// The inferred type for this node, or MVT::isUnknown if it hasn't
- /// been determined yet.
- std::vector<unsigned char> Types;
-
- /// Operator - The Record for the operator if this is an interior node (not
- /// a leaf).
- Record *Operator;
-
- /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
- ///
- Init *Val;
-
- /// Name - The name given to this node with the :$foo notation.
- ///
- std::string Name;
-
- /// PredicateFn - The predicate function to execute on this node to check
- /// for a match. If this string is empty, no predicate is involved.
- std::string PredicateFn;
-
- /// TransformFn - The transformation function to execute on this node before
- /// it can be substituted into the resulting instruction on a pattern match.
- Record *TransformFn;
-
- std::vector<TreePatternNode*> Children;
- public:
- TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch)
- : Types(), Operator(Op), Val(0), TransformFn(0),
- Children(Ch) { Types.push_back(MVT::isUnknown); }
- TreePatternNode(Init *val) // leaf ctor
- : Types(), Operator(0), Val(val), TransformFn(0) {
- Types.push_back(MVT::isUnknown);
- }
- ~TreePatternNode();
-
- const std::string &getName() const { return Name; }
- void setName(const std::string &N) { Name = N; }
-
- bool isLeaf() const { return Val != 0; }
- bool hasTypeSet() const {
- return (Types[0] < MVT::LAST_VALUETYPE) || (Types[0] == MVT::iPTR);
- }
- bool isTypeCompletelyUnknown() const {
- return Types[0] == MVT::isUnknown;
- }
- bool isTypeDynamicallyResolved() const {
- return Types[0] == MVT::iPTR;
- }
- MVT::ValueType getTypeNum(unsigned Num) const {
- assert(hasTypeSet() && "Doesn't have a type yet!");
- assert(Types.size() > Num && "Type num out of range!");
- return (MVT::ValueType)Types[Num];
- }
- unsigned char getExtTypeNum(unsigned Num) const {
- assert(Types.size() > Num && "Extended type num out of range!");
- return Types[Num];
- }
- const std::vector<unsigned char> &getExtTypes() const { return Types; }
- void setTypes(const std::vector<unsigned char> &T) { Types = T; }
- void removeTypes() { Types = std::vector<unsigned char>(1,MVT::isUnknown); }
-
- Init *getLeafValue() const { assert(isLeaf()); return Val; }
- Record *getOperator() const { assert(!isLeaf()); return Operator; }
-
- unsigned getNumChildren() const { return Children.size(); }
- TreePatternNode *getChild(unsigned N) const { return Children[N]; }
- void setChild(unsigned i, TreePatternNode *N) {
- Children[i] = N;
- }
-
-
- const std::string &getPredicateFn() const { return PredicateFn; }
- void setPredicateFn(const std::string &Fn) { PredicateFn = Fn; }
-
- Record *getTransformFn() const { return TransformFn; }
- void setTransformFn(Record *Fn) { TransformFn = Fn; }
-
- void print(std::ostream &OS) const;
- void dump() const;
-
- public: // Higher level manipulation routines.
-
- /// clone - Return a new copy of this tree.
- ///
- TreePatternNode *clone() const;
-
- /// isIsomorphicTo - Return true if this node is recursively isomorphic to
- /// the specified node. For this comparison, all of the state of the node
- /// is considered, except for the assigned name. Nodes with differing names
- /// that are otherwise identical are considered isomorphic.
- bool isIsomorphicTo(const TreePatternNode *N) const;
-
- /// SubstituteFormalArguments - Replace the formal arguments in this tree
- /// with actual values specified by ArgMap.
- void SubstituteFormalArguments(std::map<std::string,
- TreePatternNode*> &ArgMap);
-
- /// InlinePatternFragments - If this pattern refers to any pattern
- /// fragments, inline them into place, giving us a pattern without any
- /// PatFrag references.
- TreePatternNode *InlinePatternFragments(TreePattern &TP);
-
- /// ApplyTypeConstraints - Apply all of the type constraints relevent to
- /// this node and its children in the tree. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, throw an
- /// exception.
- bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
-
- /// UpdateNodeType - Set the node type of N to VT if VT contains
- /// information. If N already contains a conflicting type, then throw an
- /// exception. This returns true if any information was updated.
- ///
- bool UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
- TreePattern &TP);
- bool UpdateNodeType(unsigned char ExtVT, TreePattern &TP) {
- std::vector<unsigned char> ExtVTs(1, ExtVT);
- return UpdateNodeType(ExtVTs, TP);
- }
-
- /// ContainsUnresolvedType - Return true if this tree contains any
- /// unresolved types.
- bool ContainsUnresolvedType() const {
- if (!hasTypeSet() && !isTypeDynamicallyResolved()) return true;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (getChild(i)->ContainsUnresolvedType()) return true;
- return false;
- }
-
- /// canPatternMatch - If it is impossible for this pattern to match on this
- /// target, fill in Reason and return false. Otherwise, return true.
- bool canPatternMatch(std::string &Reason, DAGISelEmitter &ISE);
- };
-
-
- /// TreePattern - Represent a pattern, used for instructions, pattern
- /// fragments, etc.
- ///
- class TreePattern {
- /// Trees - The list of pattern trees which corresponds to this pattern.
- /// Note that PatFrag's only have a single tree.
- ///
- std::vector<TreePatternNode*> Trees;
-
- /// TheRecord - The actual TableGen record corresponding to this pattern.
- ///
- Record *TheRecord;
-
- /// Args - This is a list of all of the arguments to this pattern (for
- /// PatFrag patterns), which are the 'node' markers in this pattern.
- std::vector<std::string> Args;
-
- /// ISE - the DAG isel emitter coordinating this madness.
- ///
- DAGISelEmitter &ISE;
-
- /// isInputPattern - True if this is an input pattern, something to match.
- /// False if this is an output pattern, something to emit.
- bool isInputPattern;
- public:
-
- /// TreePattern constructor - Parse the specified DagInits into the
- /// current record.
- TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
- DAGISelEmitter &ise);
- TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
- DAGISelEmitter &ise);
- TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
- DAGISelEmitter &ise);
-
- /// getTrees - Return the tree patterns which corresponds to this pattern.
- ///
- const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
- unsigned getNumTrees() const { return Trees.size(); }
- TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
- TreePatternNode *getOnlyTree() const {
- assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
- return Trees[0];
- }
-
- /// getRecord - Return the actual TableGen record corresponding to this
- /// pattern.
- ///
- Record *getRecord() const { return TheRecord; }
-
- unsigned getNumArgs() const { return Args.size(); }
- const std::string &getArgName(unsigned i) const {
- assert(i < Args.size() && "Argument reference out of range!");
- return Args[i];
- }
- std::vector<std::string> &getArgList() { return Args; }
-
- DAGISelEmitter &getDAGISelEmitter() const { return ISE; }
-
- /// InlinePatternFragments - If this pattern refers to any pattern
- /// fragments, inline them into place, giving us a pattern without any
- /// PatFrag references.
- void InlinePatternFragments() {
- for (unsigned i = 0, e = Trees.size(); i != e; ++i)
- Trees[i] = Trees[i]->InlinePatternFragments(*this);
- }
-
- /// InferAllTypes - Infer/propagate as many types throughout the expression
- /// patterns as possible. Return true if all types are infered, false
- /// otherwise. Throw an exception if a type contradiction is found.
- bool InferAllTypes();
-
- /// error - Throw an exception, prefixing it with information about this
- /// pattern.
- void error(const std::string &Msg) const;
-
- void print(std::ostream &OS) const;
- void dump() const;
-
- private:
- TreePatternNode *ParseTreePattern(DagInit *DI);
- };
-
- /// DAGDefaultOperand - One of these is created for each PredicateOperand
- /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
- struct DAGDefaultOperand {
- std::vector<TreePatternNode*> DefaultOps;
- };
-
- class DAGInstruction {
- TreePattern *Pattern;
- std::vector<Record*> Results;
- std::vector<Record*> Operands;
- std::vector<Record*> ImpResults;
- std::vector<Record*> ImpOperands;
- TreePatternNode *ResultPattern;
- public:
- DAGInstruction(TreePattern *TP,
- const std::vector<Record*> &results,
- const std::vector<Record*> &operands,
- const std::vector<Record*> &impresults,
- const std::vector<Record*> &impoperands)
- : Pattern(TP), Results(results), Operands(operands),
- ImpResults(impresults), ImpOperands(impoperands),
- ResultPattern(0) {}
-
- TreePattern *getPattern() const { return Pattern; }
- unsigned getNumResults() const { return Results.size(); }
- unsigned getNumOperands() const { return Operands.size(); }
- unsigned getNumImpResults() const { return ImpResults.size(); }
- unsigned getNumImpOperands() const { return ImpOperands.size(); }
- const std::vector<Record*>& getImpResults() const { return ImpResults; }
-
- void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
-
- Record *getResult(unsigned RN) const {
- assert(RN < Results.size());
- return Results[RN];
- }
-
- Record *getOperand(unsigned ON) const {
- assert(ON < Operands.size());
- return Operands[ON];
- }
-
- Record *getImpResult(unsigned RN) const {
- assert(RN < ImpResults.size());
- return ImpResults[RN];
- }
-
- Record *getImpOperand(unsigned ON) const {
- assert(ON < ImpOperands.size());
- return ImpOperands[ON];
- }
-
- TreePatternNode *getResultPattern() const { return ResultPattern; }
- };
-
-/// PatternToMatch - Used by DAGISelEmitter to keep tab of patterns processed
-/// to produce isel.
-struct PatternToMatch {
- PatternToMatch(ListInit *preds,
- TreePatternNode *src, TreePatternNode *dst,
- const std::vector<Record*> &dstregs,
- unsigned complexity):
- Predicates(preds), SrcPattern(src), DstPattern(dst), Dstregs(dstregs),
- AddedComplexity(complexity) {};
-
- ListInit *Predicates; // Top level predicate conditions to match.
- TreePatternNode *SrcPattern; // Source pattern to match.
- TreePatternNode *DstPattern; // Resulting pattern.
- std::vector<Record*> Dstregs; // Physical register defs being matched.
- unsigned AddedComplexity; // Add to matching pattern complexity.
-
- ListInit *getPredicates() const { return Predicates; }
- TreePatternNode *getSrcPattern() const { return SrcPattern; }
- TreePatternNode *getDstPattern() const { return DstPattern; }
- const std::vector<Record*> &getDstRegs() const { return Dstregs; }
- unsigned getAddedComplexity() const { return AddedComplexity; }
-};
/// DAGISelEmitter - The top-level class which coordinates construction
/// and emission of the instruction selector.
///
class DAGISelEmitter : public TableGenBackend {
-private:
RecordKeeper &Records;
- CodeGenTarget Target;
- std::vector<CodeGenIntrinsic> Intrinsics;
-
- std::map<Record*, SDNodeInfo> SDNodes;
- std::map<Record*, std::pair<Record*, std::string> > SDNodeXForms;
- std::map<Record*, ComplexPattern> ComplexPatterns;
- std::map<Record*, TreePattern*> PatternFragments;
- std::map<Record*, DAGDefaultOperand> DefaultOperands;
- std::map<Record*, DAGInstruction> Instructions;
-
- // Specific SDNode definitions:
- Record *intrinsic_void_sdnode;
- Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
-
- /// PatternsToMatch - All of the things we are matching on the DAG. The first
- /// value is the pattern to match, the second pattern is the result to
- /// emit.
- std::vector<PatternToMatch> PatternsToMatch;
+ CodegenDAGPatterns *CGP;
public:
DAGISelEmitter(RecordKeeper &R) : Records(R) {}
// run - Output the isel, returning true on failure.
void run(std::ostream &OS);
- const CodeGenTarget &getTargetInfo() const { return Target; }
-
- Record *getSDNodeNamed(const std::string &Name) const;
-
- const SDNodeInfo &getSDNodeInfo(Record *R) const {
- assert(SDNodes.count(R) && "Unknown node!");
- return SDNodes.find(R)->second;
- }
-
- const std::pair<Record*, std::string> &getSDNodeTransform(Record *R) const {
- assert(SDNodeXForms.count(R) && "Invalid transform!");
- return SDNodeXForms.find(R)->second;
- }
-
- const ComplexPattern &getComplexPattern(Record *R) const {
- assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
- return ComplexPatterns.find(R)->second;
- }
-
- const CodeGenIntrinsic &getIntrinsic(Record *R) const {
- for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
- if (Intrinsics[i].TheDef == R) return Intrinsics[i];
- assert(0 && "Unknown intrinsic!");
- abort();
- }
-
- const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
- assert(IID-1 < Intrinsics.size() && "Bad intrinsic ID!");
- return Intrinsics[IID-1];
- }
-
- unsigned getIntrinsicID(Record *R) const {
- for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
- if (Intrinsics[i].TheDef == R) return i;
- assert(0 && "Unknown intrinsic!");
- abort();
- }
-
- const DAGDefaultOperand &getDefaultOperand(Record *R) {
- assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
- return DefaultOperands.find(R)->second;
- }
-
- TreePattern *getPatternFragment(Record *R) const {
- assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
- return PatternFragments.find(R)->second;
- }
-
- const DAGInstruction &getInstruction(Record *R) const {
- assert(Instructions.count(R) && "Unknown instruction!");
- return Instructions.find(R)->second;
- }
-
- Record *get_intrinsic_void_sdnode() const {
- return intrinsic_void_sdnode;
- }
- Record *get_intrinsic_w_chain_sdnode() const {
- return intrinsic_w_chain_sdnode;
- }
- Record *get_intrinsic_wo_chain_sdnode() const {
- return intrinsic_wo_chain_sdnode;
- }
-
private:
- void ParseNodeInfo();
- void ParseNodeTransforms(std::ostream &OS);
- void ParseComplexPatterns();
- void ParsePatternFragments(std::ostream &OS);
- void ParseDefaultOperands();
- void ParseInstructions();
- void ParsePatterns();
- void GenerateVariants();
- void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
- std::map<std::string,
- TreePatternNode*> &InstInputs,
- std::map<std::string,
- TreePatternNode*> &InstResults,
- std::vector<Record*> &InstImpInputs,
- std::vector<Record*> &InstImpResults);
void GenerateCodeForPattern(PatternToMatch &Pattern,
std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
std::set<std::string> &GeneratedDecl,
Modified: llvm/trunk/utils/TableGen/RegisterInfoEmitter.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/RegisterInfoEmitter.cpp?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/RegisterInfoEmitter.cpp (original)
+++ llvm/trunk/utils/TableGen/RegisterInfoEmitter.cpp Sat Jan 5 16:25:12 2008
@@ -113,11 +113,10 @@
static void addSuperReg(Record *R, Record *S,
std::map<Record*, std::set<Record*> > &SubRegs,
std::map<Record*, std::set<Record*> > &SuperRegs,
- std::map<Record*, std::set<Record*> > &Aliases,
- RegisterInfoEmitter &RIE) {
+ std::map<Record*, std::set<Record*> > &Aliases) {
if (R == S) {
cerr << "Error: recursive sub-register relationship between"
- << " register " << RIE.getQualifiedName(R)
+ << " register " << getQualifiedName(R)
<< " and its sub-registers?\n";
abort();
}
@@ -129,30 +128,29 @@
if (SuperRegs.count(S))
for (std::set<Record*>::iterator I = SuperRegs[S].begin(),
E = SuperRegs[S].end(); I != E; ++I)
- addSuperReg(R, *I, SubRegs, SuperRegs, Aliases, RIE);
+ addSuperReg(R, *I, SubRegs, SuperRegs, Aliases);
}
static void addSubSuperReg(Record *R, Record *S,
std::map<Record*, std::set<Record*> > &SubRegs,
std::map<Record*, std::set<Record*> > &SuperRegs,
- std::map<Record*, std::set<Record*> > &Aliases,
- RegisterInfoEmitter &RIE) {
+ std::map<Record*, std::set<Record*> > &Aliases) {
if (R == S) {
cerr << "Error: recursive sub-register relationship between"
- << " register " << RIE.getQualifiedName(R)
+ << " register " << getQualifiedName(R)
<< " and its sub-registers?\n";
abort();
}
if (!SubRegs[R].insert(S).second)
return;
- addSuperReg(S, R, SubRegs, SuperRegs, Aliases, RIE);
+ addSuperReg(S, R, SubRegs, SuperRegs, Aliases);
Aliases[R].insert(S);
Aliases[S].insert(R);
if (SubRegs.count(S))
for (std::set<Record*>::iterator I = SubRegs[S].begin(),
E = SubRegs[S].end(); I != E; ++I)
- addSubSuperReg(R, *I, SubRegs, SuperRegs, Aliases, RIE);
+ addSubSuperReg(R, *I, SubRegs, SuperRegs, Aliases);
}
// RegisterInfoEmitter::run - Main register file description emitter.
@@ -446,7 +444,7 @@
<< " multiple times!\n";
RegisterImmSubRegs[R].insert(SubReg);
addSubSuperReg(R, SubReg, RegisterSubRegs, RegisterSuperRegs,
- RegisterAliases, *this);
+ RegisterAliases);
}
}
Modified: llvm/trunk/utils/TableGen/TableGenBackend.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/TableGenBackend.cpp?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/TableGenBackend.cpp (original)
+++ llvm/trunk/utils/TableGen/TableGenBackend.cpp Sat Jan 5 16:25:12 2008
@@ -23,12 +23,3 @@
"----------------------------------===//\n\n";
}
-/// getQualifiedName - Return the name of the specified record, with a
-/// namespace qualifier if the record contains one.
-///
-std::string TableGenBackend::getQualifiedName(Record *R) const {
- std::string Namespace = R->getValueAsString("Namespace");
- if (Namespace.empty()) return R->getName();
- return Namespace + "::" + R->getName();
-}
-
Modified: llvm/trunk/utils/TableGen/TableGenBackend.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/TableGenBackend.h?rev=45632&r1=45631&r2=45632&view=diff
==============================================================================
--- llvm/trunk/utils/TableGen/TableGenBackend.h (original)
+++ llvm/trunk/utils/TableGen/TableGenBackend.h Sat Jan 5 16:25:12 2008
@@ -36,9 +36,6 @@
/// ostream.
void EmitSourceFileHeader(const std::string &Desc, std::ostream &OS) const;
- /// getQualifiedName - Return the name of the specified record, with a
- /// namespace qualifier if the record contains one.
- std::string getQualifiedName(Record *R) const;
};
} // End llvm namespace
More information about the llvm-commits
mailing list