[llvm-commits] [support] r44853 - /support/trunk/lib/Support/APInt.cpp

Reid Spencer rspencer at reidspencer.com
Mon Dec 10 22:57:04 PST 2007


Author: reid
Date: Tue Dec 11 00:57:03 2007
New Revision: 44853

URL: http://llvm.org/viewvc/llvm-project?rev=44853&view=rev
Log:
Remove APInt.cpp in preparation for update.

Removed:
    support/trunk/lib/Support/APInt.cpp

Removed: support/trunk/lib/Support/APInt.cpp
URL: http://llvm.org/viewvc/llvm-project/support/trunk/lib/Support/APInt.cpp?rev=44852&view=auto

==============================================================================
--- support/trunk/lib/Support/APInt.cpp (original)
+++ support/trunk/lib/Support/APInt.cpp (removed)
@@ -1,2646 +0,0 @@
-//===-- APInt.cpp - Implement APInt class ---------------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file was developed by Sheng Zhou and is distributed under the 
-// University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a class to represent arbitrary precision integer
-// constant values and provide a variety of arithmetic operations on them.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "apint"
-#include "llvm/ADT/APInt.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include <math.h>
-#include <limits>
-#include <cstring>
-#include <cstdlib>
-#include <iomanip>
-
-using namespace llvm;
-
-/// A utility function for allocating memory, checking for allocation failures,
-/// and ensuring the contents are zeroed.
-inline static uint64_t* getClearedMemory(uint32_t numWords) {
-  uint64_t * result = new uint64_t[numWords];
-  assert(result && "APInt memory allocation fails!");
-  memset(result, 0, numWords * sizeof(uint64_t));
-  return result;
-}
-
-/// A utility function for allocating memory and checking for allocation 
-/// failure.  The content is not zeroed.
-inline static uint64_t* getMemory(uint32_t numWords) {
-  uint64_t * result = new uint64_t[numWords];
-  assert(result && "APInt memory allocation fails!");
-  return result;
-}
-
-APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned) 
-  : BitWidth(numBits), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  if (isSingleWord())
-    VAL = val;
-  else {
-    pVal = getClearedMemory(getNumWords());
-    pVal[0] = val;
-    if (isSigned && int64_t(val) < 0) 
-      for (unsigned i = 1; i < getNumWords(); ++i)
-        pVal[i] = -1ULL;
-  }
-  clearUnusedBits();
-}
-
-APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
-  : BitWidth(numBits), VAL(0)  {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  assert(bigVal && "Null pointer detected!");
-  if (isSingleWord())
-    VAL = bigVal[0];
-  else {
-    // Get memory, cleared to 0
-    pVal = getClearedMemory(getNumWords());
-    // Calculate the number of words to copy
-    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
-    // Copy the words from bigVal to pVal
-    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
-  }
-  // Make sure unused high bits are cleared
-  clearUnusedBits();
-}
-
-APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, 
-             uint8_t radix) 
-  : BitWidth(numbits), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  fromString(numbits, StrStart, slen, radix);
-}
-
-APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
-  : BitWidth(numbits), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  assert(!Val.empty() && "String empty?");
-  fromString(numbits, Val.c_str(), Val.size(), radix);
-}
-
-APInt::APInt(const APInt& that)
-  : BitWidth(that.BitWidth), VAL(0) {
-  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
-  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
-  if (isSingleWord()) 
-    VAL = that.VAL;
-  else {
-    pVal = getMemory(getNumWords());
-    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
-  }
-}
-
-APInt::~APInt() {
-  if (!isSingleWord() && pVal) 
-    delete [] pVal;
-}
-
-APInt& APInt::operator=(const APInt& RHS) {
-  // Don't do anything for X = X
-  if (this == &RHS)
-    return *this;
-
-  // If the bitwidths are the same, we can avoid mucking with memory
-  if (BitWidth == RHS.getBitWidth()) {
-    if (isSingleWord()) 
-      VAL = RHS.VAL;
-    else
-      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
-    return *this;
-  }
-
-  if (isSingleWord())
-    if (RHS.isSingleWord())
-      VAL = RHS.VAL;
-    else {
-      VAL = 0;
-      pVal = getMemory(RHS.getNumWords());
-      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
-    }
-  else if (getNumWords() == RHS.getNumWords()) 
-    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
-  else if (RHS.isSingleWord()) {
-    delete [] pVal;
-    VAL = RHS.VAL;
-  } else {
-    delete [] pVal;
-    pVal = getMemory(RHS.getNumWords());
-    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
-  }
-  BitWidth = RHS.BitWidth;
-  return clearUnusedBits();
-}
-
-APInt& APInt::operator=(uint64_t RHS) {
-  if (isSingleWord()) 
-    VAL = RHS;
-  else {
-    pVal[0] = RHS;
-    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
-  }
-  return clearUnusedBits();
-}
-
-/// add_1 - This function adds a single "digit" integer, y, to the multiple 
-/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
-/// 1 is returned if there is a carry out, otherwise 0 is returned.
-/// @returns the carry of the addition.
-static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
-  for (uint32_t i = 0; i < len; ++i) {
-    dest[i] = y + x[i];
-    if (dest[i] < y)
-      y = 1; // Carry one to next digit.
-    else {
-      y = 0; // No need to carry so exit early
-      break;
-    }
-  }
-  return y;
-}
-
-/// @brief Prefix increment operator. Increments the APInt by one.
-APInt& APInt::operator++() {
-  if (isSingleWord()) 
-    ++VAL;
-  else
-    add_1(pVal, pVal, getNumWords(), 1);
-  return clearUnusedBits();
-}
-
-/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from 
-/// the multi-digit integer array, x[], propagating the borrowed 1 value until 
-/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
-/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
-/// In other words, if y > x then this function returns 1, otherwise 0.
-/// @returns the borrow out of the subtraction
-static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
-  for (uint32_t i = 0; i < len; ++i) {
-    uint64_t X = x[i];
-    x[i] -= y;
-    if (y > X) 
-      y = 1;  // We have to "borrow 1" from next "digit"
-    else {
-      y = 0;  // No need to borrow
-      break;  // Remaining digits are unchanged so exit early
-    }
-  }
-  return bool(y);
-}
-
-/// @brief Prefix decrement operator. Decrements the APInt by one.
-APInt& APInt::operator--() {
-  if (isSingleWord()) 
-    --VAL;
-  else
-    sub_1(pVal, getNumWords(), 1);
-  return clearUnusedBits();
-}
-
-/// add - This function adds the integer array x to the integer array Y and
-/// places the result in dest. 
-/// @returns the carry out from the addition
-/// @brief General addition of 64-bit integer arrays
-static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 
-                uint32_t len) {
-  bool carry = false;
-  for (uint32_t i = 0; i< len; ++i) {
-    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
-    dest[i] = x[i] + y[i] + carry;
-    carry = dest[i] < limit || (carry && dest[i] == limit);
-  }
-  return carry;
-}
-
-/// Adds the RHS APint to this APInt.
-/// @returns this, after addition of RHS.
-/// @brief Addition assignment operator. 
-APInt& APInt::operator+=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) 
-    VAL += RHS.VAL;
-  else {
-    add(pVal, pVal, RHS.pVal, getNumWords());
-  }
-  return clearUnusedBits();
-}
-
-/// Subtracts the integer array y from the integer array x 
-/// @returns returns the borrow out.
-/// @brief Generalized subtraction of 64-bit integer arrays.
-static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 
-                uint32_t len) {
-  bool borrow = false;
-  for (uint32_t i = 0; i < len; ++i) {
-    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
-    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
-    dest[i] = x_tmp - y[i];
-  }
-  return borrow;
-}
-
-/// Subtracts the RHS APInt from this APInt
-/// @returns this, after subtraction
-/// @brief Subtraction assignment operator. 
-APInt& APInt::operator-=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) 
-    VAL -= RHS.VAL;
-  else
-    sub(pVal, pVal, RHS.pVal, getNumWords());
-  return clearUnusedBits();
-}
-
-/// Multiplies an integer array, x by a a uint64_t integer and places the result
-/// into dest. 
-/// @returns the carry out of the multiplication.
-/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
-static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
-  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
-  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
-  uint64_t carry = 0;
-
-  // For each digit of x.
-  for (uint32_t i = 0; i < len; ++i) {
-    // Split x into high and low words
-    uint64_t lx = x[i] & 0xffffffffULL;
-    uint64_t hx = x[i] >> 32;
-    // hasCarry - A flag to indicate if there is a carry to the next digit.
-    // hasCarry == 0, no carry
-    // hasCarry == 1, has carry
-    // hasCarry == 2, no carry and the calculation result == 0.
-    uint8_t hasCarry = 0;
-    dest[i] = carry + lx * ly;
-    // Determine if the add above introduces carry.
-    hasCarry = (dest[i] < carry) ? 1 : 0;
-    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
-    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 
-    // (2^32 - 1) + 2^32 = 2^64.
-    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
-
-    carry += (lx * hy) & 0xffffffffULL;
-    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
-    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 
-            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
-  }
-  return carry;
-}
-
-/// Multiplies integer array x by integer array y and stores the result into 
-/// the integer array dest. Note that dest's size must be >= xlen + ylen.
-/// @brief Generalized multiplicate of integer arrays.
-static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], 
-                uint32_t ylen) {
-  dest[xlen] = mul_1(dest, x, xlen, y[0]);
-  for (uint32_t i = 1; i < ylen; ++i) {
-    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
-    uint64_t carry = 0, lx = 0, hx = 0;
-    for (uint32_t j = 0; j < xlen; ++j) {
-      lx = x[j] & 0xffffffffULL;
-      hx = x[j] >> 32;
-      // hasCarry - A flag to indicate if has carry.
-      // hasCarry == 0, no carry
-      // hasCarry == 1, has carry
-      // hasCarry == 2, no carry and the calculation result == 0.
-      uint8_t hasCarry = 0;
-      uint64_t resul = carry + lx * ly;
-      hasCarry = (resul < carry) ? 1 : 0;
-      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
-      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
-
-      carry += (lx * hy) & 0xffffffffULL;
-      resul = (carry << 32) | (resul & 0xffffffffULL);
-      dest[i+j] += resul;
-      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
-              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 
-              ((lx * hy) >> 32) + hx * hy;
-    }
-    dest[i+xlen] = carry;
-  }
-}
-
-APInt& APInt::operator*=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) {
-    VAL *= RHS.VAL;
-    clearUnusedBits();
-    return *this;
-  }
-
-  // Get some bit facts about LHS and check for zero
-  uint32_t lhsBits = getActiveBits();
-  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
-  if (!lhsWords) 
-    // 0 * X ===> 0
-    return *this;
-
-  // Get some bit facts about RHS and check for zero
-  uint32_t rhsBits = RHS.getActiveBits();
-  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
-  if (!rhsWords) {
-    // X * 0 ===> 0
-    clear();
-    return *this;
-  }
-
-  // Allocate space for the result
-  uint32_t destWords = rhsWords + lhsWords;
-  uint64_t *dest = getMemory(destWords);
-
-  // Perform the long multiply
-  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
-
-  // Copy result back into *this
-  clear();
-  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
-  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
-
-  // delete dest array and return
-  delete[] dest;
-  return *this;
-}
-
-APInt& APInt::operator&=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) {
-    VAL &= RHS.VAL;
-    return *this;
-  }
-  uint32_t numWords = getNumWords();
-  for (uint32_t i = 0; i < numWords; ++i)
-    pVal[i] &= RHS.pVal[i];
-  return *this;
-}
-
-APInt& APInt::operator|=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) {
-    VAL |= RHS.VAL;
-    return *this;
-  }
-  uint32_t numWords = getNumWords();
-  for (uint32_t i = 0; i < numWords; ++i)
-    pVal[i] |= RHS.pVal[i];
-  return *this;
-}
-
-APInt& APInt::operator^=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) {
-    VAL ^= RHS.VAL;
-    this->clearUnusedBits();
-    return *this;
-  } 
-  uint32_t numWords = getNumWords();
-  for (uint32_t i = 0; i < numWords; ++i)
-    pVal[i] ^= RHS.pVal[i];
-  return clearUnusedBits();
-}
-
-APInt APInt::operator&(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(getBitWidth(), VAL & RHS.VAL);
-
-  uint32_t numWords = getNumWords();
-  uint64_t* val = getMemory(numWords);
-  for (uint32_t i = 0; i < numWords; ++i)
-    val[i] = pVal[i] & RHS.pVal[i];
-  return APInt(val, getBitWidth());
-}
-
-APInt APInt::operator|(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(getBitWidth(), VAL | RHS.VAL);
-
-  uint32_t numWords = getNumWords();
-  uint64_t *val = getMemory(numWords);
-  for (uint32_t i = 0; i < numWords; ++i)
-    val[i] = pVal[i] | RHS.pVal[i];
-  return APInt(val, getBitWidth());
-}
-
-APInt APInt::operator^(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(BitWidth, VAL ^ RHS.VAL);
-
-  uint32_t numWords = getNumWords();
-  uint64_t *val = getMemory(numWords);
-  for (uint32_t i = 0; i < numWords; ++i)
-    val[i] = pVal[i] ^ RHS.pVal[i];
-
-  // 0^0==1 so clear the high bits in case they got set.
-  return APInt(val, getBitWidth()).clearUnusedBits();
-}
-
-bool APInt::operator !() const {
-  if (isSingleWord())
-    return !VAL;
-
-  for (uint32_t i = 0; i < getNumWords(); ++i)
-    if (pVal[i]) 
-      return false;
-  return true;
-}
-
-APInt APInt::operator*(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(BitWidth, VAL * RHS.VAL);
-  APInt Result(*this);
-  Result *= RHS;
-  return Result.clearUnusedBits();
-}
-
-APInt APInt::operator+(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(BitWidth, VAL + RHS.VAL);
-  APInt Result(BitWidth, 0);
-  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
-  return Result.clearUnusedBits();
-}
-
-APInt APInt::operator-(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord())
-    return APInt(BitWidth, VAL - RHS.VAL);
-  APInt Result(BitWidth, 0);
-  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
-  return Result.clearUnusedBits();
-}
-
-bool APInt::operator[](uint32_t bitPosition) const {
-  return (maskBit(bitPosition) & 
-          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
-}
-
-bool APInt::operator==(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
-  if (isSingleWord())
-    return VAL == RHS.VAL;
-
-  // Get some facts about the number of bits used in the two operands.
-  uint32_t n1 = getActiveBits();
-  uint32_t n2 = RHS.getActiveBits();
-
-  // If the number of bits isn't the same, they aren't equal
-  if (n1 != n2) 
-    return false;
-
-  // If the number of bits fits in a word, we only need to compare the low word.
-  if (n1 <= APINT_BITS_PER_WORD)
-    return pVal[0] == RHS.pVal[0];
-
-  // Otherwise, compare everything
-  for (int i = whichWord(n1 - 1); i >= 0; --i)
-    if (pVal[i] != RHS.pVal[i]) 
-      return false;
-  return true;
-}
-
-bool APInt::operator==(uint64_t Val) const {
-  if (isSingleWord())
-    return VAL == Val;
-
-  uint32_t n = getActiveBits(); 
-  if (n <= APINT_BITS_PER_WORD)
-    return pVal[0] == Val;
-  else
-    return false;
-}
-
-bool APInt::ult(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
-  if (isSingleWord())
-    return VAL < RHS.VAL;
-
-  // Get active bit length of both operands
-  uint32_t n1 = getActiveBits();
-  uint32_t n2 = RHS.getActiveBits();
-
-  // If magnitude of LHS is less than RHS, return true.
-  if (n1 < n2)
-    return true;
-
-  // If magnitude of RHS is greather than LHS, return false.
-  if (n2 < n1)
-    return false;
-
-  // If they bot fit in a word, just compare the low order word
-  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
-    return pVal[0] < RHS.pVal[0];
-
-  // Otherwise, compare all words
-  uint32_t topWord = whichWord(std::max(n1,n2)-1);
-  for (int i = topWord; i >= 0; --i) {
-    if (pVal[i] > RHS.pVal[i]) 
-      return false;
-    if (pVal[i] < RHS.pVal[i]) 
-      return true;
-  }
-  return false;
-}
-
-bool APInt::slt(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
-  if (isSingleWord()) {
-    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
-    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
-    return lhsSext < rhsSext;
-  }
-
-  APInt lhs(*this);
-  APInt rhs(RHS);
-  bool lhsNeg = isNegative();
-  bool rhsNeg = rhs.isNegative();
-  if (lhsNeg) {
-    // Sign bit is set so perform two's complement to make it positive
-    lhs.flip();
-    lhs++;
-  }
-  if (rhsNeg) {
-    // Sign bit is set so perform two's complement to make it positive
-    rhs.flip();
-    rhs++;
-  }
-
-  // Now we have unsigned values to compare so do the comparison if necessary
-  // based on the negativeness of the values.
-  if (lhsNeg)
-    if (rhsNeg)
-      return lhs.ugt(rhs);
-    else
-      return true;
-  else if (rhsNeg)
-    return false;
-  else 
-    return lhs.ult(rhs);
-}
-
-APInt& APInt::set(uint32_t bitPosition) {
-  if (isSingleWord()) 
-    VAL |= maskBit(bitPosition);
-  else 
-    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
-  return *this;
-}
-
-APInt& APInt::set() {
-  if (isSingleWord()) {
-    VAL = -1ULL;
-    return clearUnusedBits();
-  }
-
-  // Set all the bits in all the words.
-  for (uint32_t i = 0; i < getNumWords(); ++i)
-    pVal[i] = -1ULL;
-  // Clear the unused ones
-  return clearUnusedBits();
-}
-
-/// Set the given bit to 0 whose position is given as "bitPosition".
-/// @brief Set a given bit to 0.
-APInt& APInt::clear(uint32_t bitPosition) {
-  if (isSingleWord()) 
-    VAL &= ~maskBit(bitPosition);
-  else 
-    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
-  return *this;
-}
-
-/// @brief Set every bit to 0.
-APInt& APInt::clear() {
-  if (isSingleWord()) 
-    VAL = 0;
-  else 
-    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
-  return *this;
-}
-
-/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
-/// this APInt.
-APInt APInt::operator~() const {
-  APInt Result(*this);
-  Result.flip();
-  return Result;
-}
-
-/// @brief Toggle every bit to its opposite value.
-APInt& APInt::flip() {
-  if (isSingleWord()) {
-    VAL ^= -1ULL;
-    return clearUnusedBits();
-  }
-  for (uint32_t i = 0; i < getNumWords(); ++i)
-    pVal[i] ^= -1ULL;
-  return clearUnusedBits();
-}
-
-/// Toggle a given bit to its opposite value whose position is given 
-/// as "bitPosition".
-/// @brief Toggles a given bit to its opposite value.
-APInt& APInt::flip(uint32_t bitPosition) {
-  assert(bitPosition < BitWidth && "Out of the bit-width range!");
-  if ((*this)[bitPosition]) clear(bitPosition);
-  else set(bitPosition);
-  return *this;
-}
-
-uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
-  assert(str != 0 && "Invalid value string");
-  assert(slen > 0 && "Invalid string length");
-
-  // Each computation below needs to know if its negative
-  uint32_t isNegative = str[0] == '-';
-  if (isNegative) {
-    slen--;
-    str++;
-  }
-  // For radixes of power-of-two values, the bits required is accurately and
-  // easily computed
-  if (radix == 2)
-    return slen + isNegative;
-  if (radix == 8)
-    return slen * 3 + isNegative;
-  if (radix == 16)
-    return slen * 4 + isNegative;
-
-  // Otherwise it must be radix == 10, the hard case
-  assert(radix == 10 && "Invalid radix");
-
-  // This is grossly inefficient but accurate. We could probably do something
-  // with a computation of roughly slen*64/20 and then adjust by the value of
-  // the first few digits. But, I'm not sure how accurate that could be.
-
-  // Compute a sufficient number of bits that is always large enough but might
-  // be too large. This avoids the assertion in the constructor.
-  uint32_t sufficient = slen*64/18;
-
-  // Convert to the actual binary value.
-  APInt tmp(sufficient, str, slen, radix);
-
-  // Compute how many bits are required.
-  return isNegative + tmp.logBase2() + 1;
-}
-
-uint64_t APInt::getHashValue() const {
-  // Put the bit width into the low order bits.
-  uint64_t hash = BitWidth;
-
-  // Add the sum of the words to the hash.
-  if (isSingleWord())
-    hash += VAL << 6; // clear separation of up to 64 bits
-  else
-    for (uint32_t i = 0; i < getNumWords(); ++i)
-      hash += pVal[i] << 6; // clear sepration of up to 64 bits
-  return hash;
-}
-
-/// HiBits - This function returns the high "numBits" bits of this APInt.
-APInt APInt::getHiBits(uint32_t numBits) const {
-  return APIntOps::lshr(*this, BitWidth - numBits);
-}
-
-/// LoBits - This function returns the low "numBits" bits of this APInt.
-APInt APInt::getLoBits(uint32_t numBits) const {
-  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 
-                        BitWidth - numBits);
-}
-
-bool APInt::isPowerOf2() const {
-  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
-}
-
-uint32_t APInt::countLeadingZeros() const {
-  uint32_t Count = 0;
-  if (isSingleWord())
-    Count = CountLeadingZeros_64(VAL);
-  else {
-    for (uint32_t i = getNumWords(); i > 0u; --i) {
-      if (pVal[i-1] == 0)
-        Count += APINT_BITS_PER_WORD;
-      else {
-        Count += CountLeadingZeros_64(pVal[i-1]);
-        break;
-      }
-    }
-  }
-  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
-  if (remainder)
-    Count -= APINT_BITS_PER_WORD - remainder;
-  return std::min(Count, BitWidth);
-}
-
-static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
-  uint32_t Count = 0;
-  if (skip)
-    V <<= skip;
-  while (V && (V & (1ULL << 63))) {
-    Count++;
-    V <<= 1;
-  }
-  return Count;
-}
-
-uint32_t APInt::countLeadingOnes() const {
-  if (isSingleWord())
-    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
-
-  uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
-  uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
-  int i = getNumWords() - 1;
-  uint32_t Count = countLeadingOnes_64(pVal[i], shift);
-  if (Count == highWordBits) {
-    for (i--; i >= 0; --i) {
-      if (pVal[i] == -1ULL)
-        Count += APINT_BITS_PER_WORD;
-      else {
-        Count += countLeadingOnes_64(pVal[i], 0);
-        break;
-      }
-    }
-  }
-  return Count;
-}
-
-uint32_t APInt::countTrailingZeros() const {
-  if (isSingleWord())
-    return std::min(CountTrailingZeros_64(VAL), BitWidth);
-  uint32_t Count = 0;
-  uint32_t i = 0;
-  for (; i < getNumWords() && pVal[i] == 0; ++i)
-    Count += APINT_BITS_PER_WORD;
-  if (i < getNumWords())
-    Count += CountTrailingZeros_64(pVal[i]);
-  return std::min(Count, BitWidth);
-}
-
-uint32_t APInt::countPopulation() const {
-  if (isSingleWord())
-    return CountPopulation_64(VAL);
-  uint32_t Count = 0;
-  for (uint32_t i = 0; i < getNumWords(); ++i)
-    Count += CountPopulation_64(pVal[i]);
-  return Count;
-}
-
-APInt APInt::byteSwap() const {
-  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
-  if (BitWidth == 16)
-    return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
-  else if (BitWidth == 32)
-    return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
-  else if (BitWidth == 48) {
-    uint32_t Tmp1 = uint32_t(VAL >> 16);
-    Tmp1 = ByteSwap_32(Tmp1);
-    uint16_t Tmp2 = uint16_t(VAL);
-    Tmp2 = ByteSwap_16(Tmp2);
-    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
-  } else if (BitWidth == 64)
-    return APInt(BitWidth, ByteSwap_64(VAL));
-  else {
-    APInt Result(BitWidth, 0);
-    char *pByte = (char*)Result.pVal;
-    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
-      char Tmp = pByte[i];
-      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
-      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
-    }
-    return Result;
-  }
-}
-
-APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 
-                                            const APInt& API2) {
-  APInt A = API1, B = API2;
-  while (!!B) {
-    APInt T = B;
-    B = APIntOps::urem(A, B);
-    A = T;
-  }
-  return A;
-}
-
-APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
-  union {
-    double D;
-    uint64_t I;
-  } T;
-  T.D = Double;
-
-  // Get the sign bit from the highest order bit
-  bool isNeg = T.I >> 63;
-
-  // Get the 11-bit exponent and adjust for the 1023 bit bias
-  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
-
-  // If the exponent is negative, the value is < 0 so just return 0.
-  if (exp < 0)
-    return APInt(width, 0u);
-
-  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
-  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
-
-  // If the exponent doesn't shift all bits out of the mantissa
-  if (exp < 52)
-    return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 
-                    APInt(width, mantissa >> (52 - exp));
-
-  // If the client didn't provide enough bits for us to shift the mantissa into
-  // then the result is undefined, just return 0
-  if (width <= exp - 52)
-    return APInt(width, 0);
-
-  // Otherwise, we have to shift the mantissa bits up to the right location
-  APInt Tmp(width, mantissa);
-  Tmp = Tmp.shl(exp - 52);
-  return isNeg ? -Tmp : Tmp;
-}
-
-/// RoundToDouble - This function convert this APInt to a double.
-/// The layout for double is as following (IEEE Standard 754):
-///  --------------------------------------
-/// |  Sign    Exponent    Fraction    Bias |
-/// |-------------------------------------- |
-/// |  1[63]   11[62-52]   52[51-00]   1023 |
-///  -------------------------------------- 
-double APInt::roundToDouble(bool isSigned) const {
-
-  // Handle the simple case where the value is contained in one uint64_t.
-  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
-    if (isSigned) {
-      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
-      return double(sext);
-    } else
-      return double(VAL);
-  }
-
-  // Determine if the value is negative.
-  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
-
-  // Construct the absolute value if we're negative.
-  APInt Tmp(isNeg ? -(*this) : (*this));
-
-  // Figure out how many bits we're using.
-  uint32_t n = Tmp.getActiveBits();
-
-  // The exponent (without bias normalization) is just the number of bits
-  // we are using. Note that the sign bit is gone since we constructed the
-  // absolute value.
-  uint64_t exp = n;
-
-  // Return infinity for exponent overflow
-  if (exp > 1023) {
-    if (!isSigned || !isNeg)
-      return std::numeric_limits<double>::infinity();
-    else 
-      return -std::numeric_limits<double>::infinity();
-  }
-  exp += 1023; // Increment for 1023 bias
-
-  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
-  // extract the high 52 bits from the correct words in pVal.
-  uint64_t mantissa;
-  unsigned hiWord = whichWord(n-1);
-  if (hiWord == 0) {
-    mantissa = Tmp.pVal[0];
-    if (n > 52)
-      mantissa >>= n - 52; // shift down, we want the top 52 bits.
-  } else {
-    assert(hiWord > 0 && "huh?");
-    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
-    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
-    mantissa = hibits | lobits;
-  }
-
-  // The leading bit of mantissa is implicit, so get rid of it.
-  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
-  union {
-    double D;
-    uint64_t I;
-  } T;
-  T.I = sign | (exp << 52) | mantissa;
-  return T.D;
-}
-
-// Truncate to new width.
-APInt &APInt::trunc(uint32_t width) {
-  assert(width < BitWidth && "Invalid APInt Truncate request");
-  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
-  uint32_t wordsBefore = getNumWords();
-  BitWidth = width;
-  uint32_t wordsAfter = getNumWords();
-  if (wordsBefore != wordsAfter) {
-    if (wordsAfter == 1) {
-      uint64_t *tmp = pVal;
-      VAL = pVal[0];
-      delete [] tmp;
-    } else {
-      uint64_t *newVal = getClearedMemory(wordsAfter);
-      for (uint32_t i = 0; i < wordsAfter; ++i)
-        newVal[i] = pVal[i];
-      delete [] pVal;
-      pVal = newVal;
-    }
-  }
-  return clearUnusedBits();
-}
-
-// Sign extend to a new width.
-APInt &APInt::sext(uint32_t width) {
-  assert(width > BitWidth && "Invalid APInt SignExtend request");
-  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
-  // If the sign bit isn't set, this is the same as zext.
-  if (!isNegative()) {
-    zext(width);
-    return *this;
-  }
-
-  // The sign bit is set. First, get some facts
-  uint32_t wordsBefore = getNumWords();
-  uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
-  BitWidth = width;
-  uint32_t wordsAfter = getNumWords();
-
-  // Mask the high order word appropriately
-  if (wordsBefore == wordsAfter) {
-    uint32_t newWordBits = width % APINT_BITS_PER_WORD;
-    // The extension is contained to the wordsBefore-1th word.
-    uint64_t mask = ~0ULL;
-    if (newWordBits)
-      mask >>= APINT_BITS_PER_WORD - newWordBits;
-    mask <<= wordBits;
-    if (wordsBefore == 1)
-      VAL |= mask;
-    else
-      pVal[wordsBefore-1] |= mask;
-    return clearUnusedBits();
-  }
-
-  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
-  uint64_t *newVal = getMemory(wordsAfter);
-  if (wordsBefore == 1)
-    newVal[0] = VAL | mask;
-  else {
-    for (uint32_t i = 0; i < wordsBefore; ++i)
-      newVal[i] = pVal[i];
-    newVal[wordsBefore-1] |= mask;
-  }
-  for (uint32_t i = wordsBefore; i < wordsAfter; i++)
-    newVal[i] = -1ULL;
-  if (wordsBefore != 1)
-    delete [] pVal;
-  pVal = newVal;
-  return clearUnusedBits();
-}
-
-//  Zero extend to a new width.
-APInt &APInt::zext(uint32_t width) {
-  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
-  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
-  uint32_t wordsBefore = getNumWords();
-  BitWidth = width;
-  uint32_t wordsAfter = getNumWords();
-  if (wordsBefore != wordsAfter) {
-    uint64_t *newVal = getClearedMemory(wordsAfter);
-    if (wordsBefore == 1)
-      newVal[0] = VAL;
-    else 
-      for (uint32_t i = 0; i < wordsBefore; ++i)
-        newVal[i] = pVal[i];
-    if (wordsBefore != 1)
-      delete [] pVal;
-    pVal = newVal;
-  }
-  return *this;
-}
-
-APInt &APInt::zextOrTrunc(uint32_t width) {
-  if (BitWidth < width)
-    return zext(width);
-  if (BitWidth > width)
-    return trunc(width);
-  return *this;
-}
-
-APInt &APInt::sextOrTrunc(uint32_t width) {
-  if (BitWidth < width)
-    return sext(width);
-  if (BitWidth > width)
-    return trunc(width);
-  return *this;
-}
-
-/// Arithmetic right-shift this APInt by shiftAmt.
-/// @brief Arithmetic right-shift function.
-APInt APInt::ashr(uint32_t shiftAmt) const {
-  assert(shiftAmt <= BitWidth && "Invalid shift amount");
-  // Handle a degenerate case
-  if (shiftAmt == 0)
-    return *this;
-
-  // Handle single word shifts with built-in ashr
-  if (isSingleWord()) {
-    if (shiftAmt == BitWidth)
-      return APInt(BitWidth, 0); // undefined
-    else {
-      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
-      return APInt(BitWidth, 
-        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
-    }
-  }
-
-  // If all the bits were shifted out, the result is, technically, undefined.
-  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
-  // issues in the algorithm below.
-  if (shiftAmt == BitWidth) {
-    if (isNegative())
-      return APInt(BitWidth, -1ULL);
-    else
-      return APInt(BitWidth, 0);
-  }
-
-  // Create some space for the result.
-  uint64_t * val = new uint64_t[getNumWords()];
-
-  // Compute some values needed by the following shift algorithms
-  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
-  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
-  uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
-  uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
-  if (bitsInWord == 0)
-    bitsInWord = APINT_BITS_PER_WORD;
-
-  // If we are shifting whole words, just move whole words
-  if (wordShift == 0) {
-    // Move the words containing significant bits
-    for (uint32_t i = 0; i <= breakWord; ++i) 
-      val[i] = pVal[i+offset]; // move whole word
-
-    // Adjust the top significant word for sign bit fill, if negative
-    if (isNegative())
-      if (bitsInWord < APINT_BITS_PER_WORD)
-        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
-  } else {
-    // Shift the low order words 
-    for (uint32_t i = 0; i < breakWord; ++i) {
-      // This combines the shifted corresponding word with the low bits from
-      // the next word (shifted into this word's high bits).
-      val[i] = (pVal[i+offset] >> wordShift) | 
-               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
-    }
-
-    // Shift the break word. In this case there are no bits from the next word
-    // to include in this word.
-    val[breakWord] = pVal[breakWord+offset] >> wordShift;
-
-    // Deal with sign extenstion in the break word, and possibly the word before
-    // it.
-    if (isNegative()) {
-      if (wordShift > bitsInWord) {
-        if (breakWord > 0)
-          val[breakWord-1] |= 
-            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
-        val[breakWord] |= ~0ULL;
-      } else 
-        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
-    }
-  }
-
-  // Remaining words are 0 or -1, just assign them.
-  uint64_t fillValue = (isNegative() ? -1ULL : 0);
-  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
-    val[i] = fillValue;
-  return APInt(val, BitWidth).clearUnusedBits();
-}
-
-/// Logical right-shift this APInt by shiftAmt.
-/// @brief Logical right-shift function.
-APInt APInt::lshr(uint32_t shiftAmt) const {
-  if (isSingleWord()) {
-    if (shiftAmt == BitWidth)
-      return APInt(BitWidth, 0);
-    else 
-      return APInt(BitWidth, this->VAL >> shiftAmt);
-  }
-
-  // If all the bits were shifted out, the result is 0. This avoids issues
-  // with shifting by the size of the integer type, which produces undefined
-  // results. We define these "undefined results" to always be 0.
-  if (shiftAmt == BitWidth)
-    return APInt(BitWidth, 0);
-
-  // If none of the bits are shifted out, the result is *this. This avoids
-  // issues with shifting byt he size of the integer type, which produces 
-  // undefined results in the code below. This is also an optimization.
-  if (shiftAmt == 0)
-    return *this;
-
-  // Create some space for the result.
-  uint64_t * val = new uint64_t[getNumWords()];
-
-  // If we are shifting less than a word, compute the shift with a simple carry
-  if (shiftAmt < APINT_BITS_PER_WORD) {
-    uint64_t carry = 0;
-    for (int i = getNumWords()-1; i >= 0; --i) {
-      val[i] = (pVal[i] >> shiftAmt) | carry;
-      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
-    }
-    return APInt(val, BitWidth).clearUnusedBits();
-  }
-
-  // Compute some values needed by the remaining shift algorithms
-  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
-  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
-
-  // If we are shifting whole words, just move whole words
-  if (wordShift == 0) {
-    for (uint32_t i = 0; i < getNumWords() - offset; ++i) 
-      val[i] = pVal[i+offset];
-    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
-      val[i] = 0;
-    return APInt(val,BitWidth).clearUnusedBits();
-  }
-
-  // Shift the low order words 
-  uint32_t breakWord = getNumWords() - offset -1;
-  for (uint32_t i = 0; i < breakWord; ++i)
-    val[i] = (pVal[i+offset] >> wordShift) |
-             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
-  // Shift the break word.
-  val[breakWord] = pVal[breakWord+offset] >> wordShift;
-
-  // Remaining words are 0
-  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
-    val[i] = 0;
-  return APInt(val, BitWidth).clearUnusedBits();
-}
-
-/// Left-shift this APInt by shiftAmt.
-/// @brief Left-shift function.
-APInt APInt::shl(uint32_t shiftAmt) const {
-  assert(shiftAmt <= BitWidth && "Invalid shift amount");
-  if (isSingleWord()) {
-    if (shiftAmt == BitWidth)
-      return APInt(BitWidth, 0); // avoid undefined shift results
-    return APInt(BitWidth, VAL << shiftAmt);
-  }
-
-  // If all the bits were shifted out, the result is 0. This avoids issues
-  // with shifting by the size of the integer type, which produces undefined
-  // results. We define these "undefined results" to always be 0.
-  if (shiftAmt == BitWidth)
-    return APInt(BitWidth, 0);
-
-  // If none of the bits are shifted out, the result is *this. This avoids a
-  // lshr by the words size in the loop below which can produce incorrect
-  // results. It also avoids the expensive computation below for a common case.
-  if (shiftAmt == 0)
-    return *this;
-
-  // Create some space for the result.
-  uint64_t * val = new uint64_t[getNumWords()];
-
-  // If we are shifting less than a word, do it the easy way
-  if (shiftAmt < APINT_BITS_PER_WORD) {
-    uint64_t carry = 0;
-    for (uint32_t i = 0; i < getNumWords(); i++) {
-      val[i] = pVal[i] << shiftAmt | carry;
-      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
-    }
-    return APInt(val, BitWidth).clearUnusedBits();
-  }
-
-  // Compute some values needed by the remaining shift algorithms
-  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
-  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
-
-  // If we are shifting whole words, just move whole words
-  if (wordShift == 0) {
-    for (uint32_t i = 0; i < offset; i++) 
-      val[i] = 0;
-    for (uint32_t i = offset; i < getNumWords(); i++)
-      val[i] = pVal[i-offset];
-    return APInt(val,BitWidth).clearUnusedBits();
-  }
-
-  // Copy whole words from this to Result.
-  uint32_t i = getNumWords() - 1;
-  for (; i > offset; --i)
-    val[i] = pVal[i-offset] << wordShift |
-             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
-  val[offset] = pVal[0] << wordShift;
-  for (i = 0; i < offset; ++i)
-    val[i] = 0;
-  return APInt(val, BitWidth).clearUnusedBits();
-}
-
-APInt APInt::rotl(uint32_t rotateAmt) const {
-  if (rotateAmt == 0)
-    return *this;
-  // Don't get too fancy, just use existing shift/or facilities
-  APInt hi(*this);
-  APInt lo(*this);
-  hi.shl(rotateAmt);
-  lo.lshr(BitWidth - rotateAmt);
-  return hi | lo;
-}
-
-APInt APInt::rotr(uint32_t rotateAmt) const {
-  if (rotateAmt == 0)
-    return *this;
-  // Don't get too fancy, just use existing shift/or facilities
-  APInt hi(*this);
-  APInt lo(*this);
-  lo.lshr(rotateAmt);
-  hi.shl(BitWidth - rotateAmt);
-  return hi | lo;
-}
-
-// Square Root - this method computes and returns the square root of "this".
-// Three mechanisms are used for computation. For small values (<= 5 bits),
-// a table lookup is done. This gets some performance for common cases. For
-// values using less than 52 bits, the value is converted to double and then
-// the libc sqrt function is called. The result is rounded and then converted
-// back to a uint64_t which is then used to construct the result. Finally,
-// the Babylonian method for computing square roots is used. 
-APInt APInt::sqrt() const {
-
-  // Determine the magnitude of the value.
-  uint32_t magnitude = getActiveBits();
-
-  // Use a fast table for some small values. This also gets rid of some
-  // rounding errors in libc sqrt for small values.
-  if (magnitude <= 5) {
-    static const uint8_t results[32] = {
-      /*     0 */ 0,
-      /*  1- 2 */ 1, 1,
-      /*  3- 6 */ 2, 2, 2, 2, 
-      /*  7-12 */ 3, 3, 3, 3, 3, 3,
-      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
-      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-      /*    31 */ 6
-    };
-    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
-  }
-
-  // If the magnitude of the value fits in less than 52 bits (the precision of
-  // an IEEE double precision floating point value), then we can use the
-  // libc sqrt function which will probably use a hardware sqrt computation.
-  // This should be faster than the algorithm below.
-  if (magnitude < 52) {
-#ifdef _MSC_VER
-    // Amazingly, VC++ doesn't have round().
-    return APInt(BitWidth, 
-                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
-#else
-    return APInt(BitWidth, 
-                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
-#endif
-  }
-
-  // Okay, all the short cuts are exhausted. We must compute it. The following
-  // is a classical Babylonian method for computing the square root. This code
-  // was adapted to APINt from a wikipedia article on such computations.
-  // See http://www.wikipedia.org/ and go to the page named
-  // Calculate_an_integer_square_root. 
-  uint32_t nbits = BitWidth, i = 4;
-  APInt testy(BitWidth, 16);
-  APInt x_old(BitWidth, 1);
-  APInt x_new(BitWidth, 0);
-  APInt two(BitWidth, 2);
-
-  // Select a good starting value using binary logarithms.
-  for (;; i += 2, testy = testy.shl(2)) 
-    if (i >= nbits || this->ule(testy)) {
-      x_old = x_old.shl(i / 2);
-      break;
-    }
-
-  // Use the Babylonian method to arrive at the integer square root: 
-  for (;;) {
-    x_new = (this->udiv(x_old) + x_old).udiv(two);
-    if (x_old.ule(x_new))
-      break;
-    x_old = x_new;
-  }
-
-  // Make sure we return the closest approximation
-  // NOTE: The rounding calculation below is correct. It will produce an 
-  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
-  // determined to be a rounding issue with pari/gp as it begins to use a 
-  // floating point representation after 192 bits. There are no discrepancies
-  // between this algorithm and pari/gp for bit widths < 192 bits.
-  APInt square(x_old * x_old);
-  APInt nextSquare((x_old + 1) * (x_old +1));
-  if (this->ult(square))
-    return x_old;
-  else if (this->ule(nextSquare)) {
-    APInt midpoint((nextSquare - square).udiv(two));
-    APInt offset(*this - square);
-    if (offset.ult(midpoint))
-      return x_old;
-    else
-      return x_old + 1;
-  } else
-    assert(0 && "Error in APInt::sqrt computation");
-  return x_old + 1;
-}
-
-/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
-/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
-/// variables here have the same names as in the algorithm. Comments explain
-/// the algorithm and any deviation from it.
-static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 
-                     uint32_t m, uint32_t n) {
-  assert(u && "Must provide dividend");
-  assert(v && "Must provide divisor");
-  assert(q && "Must provide quotient");
-  assert(u != v && u != q && v != q && "Must us different memory");
-  assert(n>1 && "n must be > 1");
-
-  // Knuth uses the value b as the base of the number system. In our case b
-  // is 2^31 so we just set it to -1u.
-  uint64_t b = uint64_t(1) << 32;
-
-  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
-  DEBUG(cerr << "KnuthDiv: original:");
-  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
-  DEBUG(cerr << " by");
-  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
-  DEBUG(cerr << '\n');
-  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 
-  // u and v by d. Note that we have taken Knuth's advice here to use a power 
-  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 
-  // 2 allows us to shift instead of multiply and it is easy to determine the 
-  // shift amount from the leading zeros.  We are basically normalizing the u
-  // and v so that its high bits are shifted to the top of v's range without
-  // overflow. Note that this can require an extra word in u so that u must
-  // be of length m+n+1.
-  uint32_t shift = CountLeadingZeros_32(v[n-1]);
-  uint32_t v_carry = 0;
-  uint32_t u_carry = 0;
-  if (shift) {
-    for (uint32_t i = 0; i < m+n; ++i) {
-      uint32_t u_tmp = u[i] >> (32 - shift);
-      u[i] = (u[i] << shift) | u_carry;
-      u_carry = u_tmp;
-    }
-    for (uint32_t i = 0; i < n; ++i) {
-      uint32_t v_tmp = v[i] >> (32 - shift);
-      v[i] = (v[i] << shift) | v_carry;
-      v_carry = v_tmp;
-    }
-  }
-  u[m+n] = u_carry;
-  DEBUG(cerr << "KnuthDiv:   normal:");
-  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
-  DEBUG(cerr << " by");
-  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
-  DEBUG(cerr << '\n');
-
-  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
-  int j = m;
-  do {
-    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
-    // D3. [Calculate q'.]. 
-    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
-    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
-    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
-    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
-    // on v[n-2] determines at high speed most of the cases in which the trial
-    // value qp is one too large, and it eliminates all cases where qp is two 
-    // too large. 
-    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
-    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
-    uint64_t qp = dividend / v[n-1];
-    uint64_t rp = dividend % v[n-1];
-    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
-      qp--;
-      rp += v[n-1];
-      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
-        qp--;
-    }
-    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
-
-    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
-    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
-    // consists of a simple multiplication by a one-place number, combined with
-    // a subtraction. 
-    bool isNeg = false;
-    for (uint32_t i = 0; i < n; ++i) {
-      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
-      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
-      bool borrow = subtrahend > u_tmp;
-      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp 
-                 << ", subtrahend == " << subtrahend
-                 << ", borrow = " << borrow << '\n');
-
-      uint64_t result = u_tmp - subtrahend;
-      uint32_t k = j + i;
-      u[k++] = result & (b-1); // subtract low word
-      u[k++] = result >> 32;   // subtract high word
-      while (borrow && k <= m+n) { // deal with borrow to the left
-        borrow = u[k] == 0;
-        u[k]--;
-        k++;
-      }
-      isNeg |= borrow;
-      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " << 
-                    u[j+i+1] << '\n'); 
-    }
-    DEBUG(cerr << "KnuthDiv: after subtraction:");
-    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
-    DEBUG(cerr << '\n');
-    // The digits (u[j+n]...u[j]) should be kept positive; if the result of 
-    // this step is actually negative, (u[j+n]...u[j]) should be left as the 
-    // true value plus b**(n+1), namely as the b's complement of
-    // the true value, and a "borrow" to the left should be remembered.
-    //
-    if (isNeg) {
-      bool carry = true;  // true because b's complement is "complement + 1"
-      for (uint32_t i = 0; i <= m+n; ++i) {
-        u[i] = ~u[i] + carry; // b's complement
-        carry = carry && u[i] == 0;
-      }
-    }
-    DEBUG(cerr << "KnuthDiv: after complement:");
-    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
-    DEBUG(cerr << '\n');
-
-    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 
-    // negative, go to step D6; otherwise go on to step D7.
-    q[j] = qp;
-    if (isNeg) {
-      // D6. [Add back]. The probability that this step is necessary is very 
-      // small, on the order of only 2/b. Make sure that test data accounts for
-      // this possibility. Decrease q[j] by 1 
-      q[j]--;
-      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 
-      // A carry will occur to the left of u[j+n], and it should be ignored 
-      // since it cancels with the borrow that occurred in D4.
-      bool carry = false;
-      for (uint32_t i = 0; i < n; i++) {
-        uint32_t limit = std::min(u[j+i],v[i]);
-        u[j+i] += v[i] + carry;
-        carry = u[j+i] < limit || (carry && u[j+i] == limit);
-      }
-      u[j+n] += carry;
-    }
-    DEBUG(cerr << "KnuthDiv: after correction:");
-    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
-    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
-
-  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
-  } while (--j >= 0);
-
-  DEBUG(cerr << "KnuthDiv: quotient:");
-  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
-  DEBUG(cerr << '\n');
-
-  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
-  // remainder may be obtained by dividing u[...] by d. If r is non-null we
-  // compute the remainder (urem uses this).
-  if (r) {
-    // The value d is expressed by the "shift" value above since we avoided
-    // multiplication by d by using a shift left. So, all we have to do is
-    // shift right here. In order to mak
-    if (shift) {
-      uint32_t carry = 0;
-      DEBUG(cerr << "KnuthDiv: remainder:");
-      for (int i = n-1; i >= 0; i--) {
-        r[i] = (u[i] >> shift) | carry;
-        carry = u[i] << (32 - shift);
-        DEBUG(cerr << " " << r[i]);
-      }
-    } else {
-      for (int i = n-1; i >= 0; i--) {
-        r[i] = u[i];
-        DEBUG(cerr << " " << r[i]);
-      }
-    }
-    DEBUG(cerr << '\n');
-  }
-  DEBUG(cerr << std::setbase(10) << '\n');
-}
-
-void APInt::divide(const APInt LHS, uint32_t lhsWords, 
-                   const APInt &RHS, uint32_t rhsWords,
-                   APInt *Quotient, APInt *Remainder)
-{
-  assert(lhsWords >= rhsWords && "Fractional result");
-
-  // First, compose the values into an array of 32-bit words instead of 
-  // 64-bit words. This is a necessity of both the "short division" algorithm
-  // and the the Knuth "classical algorithm" which requires there to be native 
-  // operations for +, -, and * on an m bit value with an m*2 bit result. We 
-  // can't use 64-bit operands here because we don't have native results of 
-  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't 
-  // work on large-endian machines.
-  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
-  uint32_t n = rhsWords * 2;
-  uint32_t m = (lhsWords * 2) - n;
-
-  // Allocate space for the temporary values we need either on the stack, if
-  // it will fit, or on the heap if it won't.
-  uint32_t SPACE[128];
-  uint32_t *U = 0;
-  uint32_t *V = 0;
-  uint32_t *Q = 0;
-  uint32_t *R = 0;
-  if ((Remainder?4:3)*n+2*m+1 <= 128) {
-    U = &SPACE[0];
-    V = &SPACE[m+n+1];
-    Q = &SPACE[(m+n+1) + n];
-    if (Remainder)
-      R = &SPACE[(m+n+1) + n + (m+n)];
-  } else {
-    U = new uint32_t[m + n + 1];
-    V = new uint32_t[n];
-    Q = new uint32_t[m+n];
-    if (Remainder)
-      R = new uint32_t[n];
-  }
-
-  // Initialize the dividend
-  memset(U, 0, (m+n+1)*sizeof(uint32_t));
-  for (unsigned i = 0; i < lhsWords; ++i) {
-    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
-    U[i * 2] = tmp & mask;
-    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
-  }
-  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
-
-  // Initialize the divisor
-  memset(V, 0, (n)*sizeof(uint32_t));
-  for (unsigned i = 0; i < rhsWords; ++i) {
-    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
-    V[i * 2] = tmp & mask;
-    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
-  }
-
-  // initialize the quotient and remainder
-  memset(Q, 0, (m+n) * sizeof(uint32_t));
-  if (Remainder)
-    memset(R, 0, n * sizeof(uint32_t));
-
-  // Now, adjust m and n for the Knuth division. n is the number of words in 
-  // the divisor. m is the number of words by which the dividend exceeds the
-  // divisor (i.e. m+n is the length of the dividend). These sizes must not 
-  // contain any zero words or the Knuth algorithm fails.
-  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
-    n--;
-    m++;
-  }
-  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
-    m--;
-
-  // If we're left with only a single word for the divisor, Knuth doesn't work
-  // so we implement the short division algorithm here. This is much simpler
-  // and faster because we are certain that we can divide a 64-bit quantity
-  // by a 32-bit quantity at hardware speed and short division is simply a
-  // series of such operations. This is just like doing short division but we
-  // are using base 2^32 instead of base 10.
-  assert(n != 0 && "Divide by zero?");
-  if (n == 1) {
-    uint32_t divisor = V[0];
-    uint32_t remainder = 0;
-    for (int i = m+n-1; i >= 0; i--) {
-      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
-      if (partial_dividend == 0) {
-        Q[i] = 0;
-        remainder = 0;
-      } else if (partial_dividend < divisor) {
-        Q[i] = 0;
-        remainder = partial_dividend;
-      } else if (partial_dividend == divisor) {
-        Q[i] = 1;
-        remainder = 0;
-      } else {
-        Q[i] = partial_dividend / divisor;
-        remainder = partial_dividend - (Q[i] * divisor);
-      }
-    }
-    if (R)
-      R[0] = remainder;
-  } else {
-    // Now we're ready to invoke the Knuth classical divide algorithm. In this
-    // case n > 1.
-    KnuthDiv(U, V, Q, R, m, n);
-  }
-
-  // If the caller wants the quotient
-  if (Quotient) {
-    // Set up the Quotient value's memory.
-    if (Quotient->BitWidth != LHS.BitWidth) {
-      if (Quotient->isSingleWord())
-        Quotient->VAL = 0;
-      else
-        delete [] Quotient->pVal;
-      Quotient->BitWidth = LHS.BitWidth;
-      if (!Quotient->isSingleWord())
-        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
-    } else
-      Quotient->clear();
-
-    // The quotient is in Q. Reconstitute the quotient into Quotient's low 
-    // order words.
-    if (lhsWords == 1) {
-      uint64_t tmp = 
-        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
-      if (Quotient->isSingleWord())
-        Quotient->VAL = tmp;
-      else
-        Quotient->pVal[0] = tmp;
-    } else {
-      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
-      for (unsigned i = 0; i < lhsWords; ++i)
-        Quotient->pVal[i] = 
-          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
-    }
-  }
-
-  // If the caller wants the remainder
-  if (Remainder) {
-    // Set up the Remainder value's memory.
-    if (Remainder->BitWidth != RHS.BitWidth) {
-      if (Remainder->isSingleWord())
-        Remainder->VAL = 0;
-      else
-        delete [] Remainder->pVal;
-      Remainder->BitWidth = RHS.BitWidth;
-      if (!Remainder->isSingleWord())
-        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
-    } else
-      Remainder->clear();
-
-    // The remainder is in R. Reconstitute the remainder into Remainder's low
-    // order words.
-    if (rhsWords == 1) {
-      uint64_t tmp = 
-        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
-      if (Remainder->isSingleWord())
-        Remainder->VAL = tmp;
-      else
-        Remainder->pVal[0] = tmp;
-    } else {
-      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
-      for (unsigned i = 0; i < rhsWords; ++i)
-        Remainder->pVal[i] = 
-          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
-    }
-  }
-
-  // Clean up the memory we allocated.
-  if (U != &SPACE[0]) {
-    delete [] U;
-    delete [] V;
-    delete [] Q;
-    delete [] R;
-  }
-}
-
-APInt APInt::udiv(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-
-  // First, deal with the easy case
-  if (isSingleWord()) {
-    assert(RHS.VAL != 0 && "Divide by zero?");
-    return APInt(BitWidth, VAL / RHS.VAL);
-  }
-
-  // Get some facts about the LHS and RHS number of bits and words
-  uint32_t rhsBits = RHS.getActiveBits();
-  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
-  assert(rhsWords && "Divided by zero???");
-  uint32_t lhsBits = this->getActiveBits();
-  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
-
-  // Deal with some degenerate cases
-  if (!lhsWords) 
-    // 0 / X ===> 0
-    return APInt(BitWidth, 0); 
-  else if (lhsWords < rhsWords || this->ult(RHS)) {
-    // X / Y ===> 0, iff X < Y
-    return APInt(BitWidth, 0);
-  } else if (*this == RHS) {
-    // X / X ===> 1
-    return APInt(BitWidth, 1);
-  } else if (lhsWords == 1 && rhsWords == 1) {
-    // All high words are zero, just use native divide
-    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
-  }
-
-  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
-  APInt Quotient(1,0); // to hold result.
-  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
-  return Quotient;
-}
-
-APInt APInt::urem(const APInt& RHS) const {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) {
-    assert(RHS.VAL != 0 && "Remainder by zero?");
-    return APInt(BitWidth, VAL % RHS.VAL);
-  }
-
-  // Get some facts about the LHS
-  uint32_t lhsBits = getActiveBits();
-  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
-
-  // Get some facts about the RHS
-  uint32_t rhsBits = RHS.getActiveBits();
-  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
-  assert(rhsWords && "Performing remainder operation by zero ???");
-
-  // Check the degenerate cases
-  if (lhsWords == 0) {
-    // 0 % Y ===> 0
-    return APInt(BitWidth, 0);
-  } else if (lhsWords < rhsWords || this->ult(RHS)) {
-    // X % Y ===> X, iff X < Y
-    return *this;
-  } else if (*this == RHS) {
-    // X % X == 0;
-    return APInt(BitWidth, 0);
-  } else if (lhsWords == 1) {
-    // All high words are zero, just use native remainder
-    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
-  }
-
-  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
-  APInt Remainder(1,0);
-  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
-  return Remainder;
-}
-
-void APInt::udivrem(const APInt &LHS, const APInt &RHS, 
-                    APInt &Quotient, APInt &Remainder) {
-  // Get some size facts about the dividend and divisor
-  uint32_t lhsBits  = LHS.getActiveBits();
-  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
-  uint32_t rhsBits  = RHS.getActiveBits();
-  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
-
-  // Check the degenerate cases
-  if (lhsWords == 0) {              
-    Quotient = 0;                // 0 / Y ===> 0
-    Remainder = 0;               // 0 % Y ===> 0
-    return;
-  } 
-  
-  if (lhsWords < rhsWords || LHS.ult(RHS)) { 
-    Quotient = 0;               // X / Y ===> 0, iff X < Y
-    Remainder = LHS;            // X % Y ===> X, iff X < Y
-    return;
-  } 
-  
-  if (LHS == RHS) {
-    Quotient  = 1;              // X / X ===> 1
-    Remainder = 0;              // X % X ===> 0;
-    return;
-  } 
-  
-  if (lhsWords == 1 && rhsWords == 1) {
-    // There is only one word to consider so use the native versions.
-    if (LHS.isSingleWord()) {
-      Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
-      Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
-    } else {
-      Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
-      Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
-    }
-    return;
-  }
-
-  // Okay, lets do it the long way
-  divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
-}
-
-void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, 
-                       uint8_t radix) {
-  // Check our assumptions here
-  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
-         "Radix should be 2, 8, 10, or 16!");
-  assert(str && "String is null?");
-  bool isNeg = str[0] == '-';
-  if (isNeg)
-    str++, slen--;
-  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
-  assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
-  assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
-  assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
-
-  // Allocate memory
-  if (!isSingleWord())
-    pVal = getClearedMemory(getNumWords());
-
-  // Figure out if we can shift instead of multiply
-  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
-
-  // Set up an APInt for the digit to add outside the loop so we don't
-  // constantly construct/destruct it.
-  APInt apdigit(getBitWidth(), 0);
-  APInt apradix(getBitWidth(), radix);
-
-  // Enter digit traversal loop
-  for (unsigned i = 0; i < slen; i++) {
-    // Get a digit
-    uint32_t digit = 0;
-    char cdigit = str[i];
-    if (radix == 16) {
-      if (!isxdigit(cdigit))
-        assert(0 && "Invalid hex digit in string");
-      if (isdigit(cdigit))
-        digit = cdigit - '0';
-      else if (cdigit >= 'a')
-        digit = cdigit - 'a' + 10;
-      else if (cdigit >= 'A')
-        digit = cdigit - 'A' + 10;
-      else
-        assert(0 && "huh? we shouldn't get here");
-    } else if (isdigit(cdigit)) {
-      digit = cdigit - '0';
-    } else {
-      assert(0 && "Invalid character in digit string");
-    }
-
-    // Shift or multiply the value by the radix
-    if (shift)
-      *this <<= shift;
-    else
-      *this *= apradix;
-
-    // Add in the digit we just interpreted
-    if (apdigit.isSingleWord())
-      apdigit.VAL = digit;
-    else
-      apdigit.pVal[0] = digit;
-    *this += apdigit;
-  }
-  // If its negative, put it in two's complement form
-  if (isNeg) {
-    (*this)--;
-    this->flip();
-  }
-}
-
-std::string APInt::toString(uint8_t radix, bool wantSigned) const {
-  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
-         "Radix should be 2, 8, 10, or 16!");
-  static const char *digits[] = { 
-    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" 
-  };
-  std::string result;
-  uint32_t bits_used = getActiveBits();
-  if (isSingleWord()) {
-    char buf[65];
-    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
-       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
-    if (format) {
-      if (wantSigned) {
-        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> 
-                           (APINT_BITS_PER_WORD-BitWidth);
-        sprintf(buf, format, sextVal);
-      } else 
-        sprintf(buf, format, VAL);
-    } else {
-      memset(buf, 0, 65);
-      uint64_t v = VAL;
-      while (bits_used) {
-        uint32_t bit = v & 1;
-        bits_used--;
-        buf[bits_used] = digits[bit][0];
-        v >>=1;
-      }
-    }
-    result = buf;
-    return result;
-  }
-
-  if (radix != 10) {
-    // For the 2, 8 and 16 bit cases, we can just shift instead of divide 
-    // because the number of bits per digit (1,3 and 4 respectively) divides 
-    // equaly. We just shift until there value is zero.
-
-    // First, check for a zero value and just short circuit the logic below.
-    if (*this == 0)
-      result = "0";
-    else {
-      APInt tmp(*this);
-      size_t insert_at = 0;
-      if (wantSigned && this->isNegative()) {
-        // They want to print the signed version and it is a negative value
-        // Flip the bits and add one to turn it into the equivalent positive
-        // value and put a '-' in the result.
-        tmp.flip();
-        tmp++;
-        result = "-";
-        insert_at = 1;
-      }
-      // Just shift tmp right for each digit width until it becomes zero
-      uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
-      uint64_t mask = radix - 1;
-      APInt zero(tmp.getBitWidth(), 0);
-      while (tmp.ne(zero)) {
-        unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
-        result.insert(insert_at, digits[digit]);
-        tmp = tmp.lshr(shift);
-      }
-    }
-    return result;
-  }
-
-  APInt tmp(*this);
-  APInt divisor(4, radix);
-  APInt zero(tmp.getBitWidth(), 0);
-  size_t insert_at = 0;
-  if (wantSigned && tmp[BitWidth-1]) {
-    // They want to print the signed version and it is a negative value
-    // Flip the bits and add one to turn it into the equivalent positive
-    // value and put a '-' in the result.
-    tmp.flip();
-    tmp++;
-    result = "-";
-    insert_at = 1;
-  }
-  if (tmp == APInt(tmp.getBitWidth(), 0))
-    result = "0";
-  else while (tmp.ne(zero)) {
-    APInt APdigit(1,0);
-    APInt tmp2(tmp.getBitWidth(), 0);
-    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 
-           &APdigit);
-    uint32_t digit = APdigit.getZExtValue();
-    assert(digit < radix && "divide failed");
-    result.insert(insert_at,digits[digit]);
-    tmp = tmp2;
-  }
-
-  return result;
-}
-
-void APInt::dump() const
-{
-  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
-  if (isSingleWord())
-    cerr << VAL;
-  else for (unsigned i = getNumWords(); i > 0; i--) {
-    cerr << pVal[i-1] << " ";
-  }
-  cerr << " U(" << this->toStringUnsigned(10) << ") S("
-       << this->toStringSigned(10) << ")" << std::setbase(10);
-}
-
-// This implements a variety of operations on a representation of
-// arbitrary precision, two's-complement, bignum integer values.
-
-/* Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
-   and unrestricting assumption.  */
-COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
-
-/* Some handy functions local to this file.  */
-namespace {
-
-  /* Returns the integer part with the least significant BITS set.
-     BITS cannot be zero.  */
-  inline integerPart
-  lowBitMask(unsigned int bits)
-  {
-    assert (bits != 0 && bits <= integerPartWidth);
-
-    return ~(integerPart) 0 >> (integerPartWidth - bits);
-  }
-
-  /* Returns the value of the lower half of PART.  */
-  inline integerPart
-  lowHalf(integerPart part)
-  {
-    return part & lowBitMask(integerPartWidth / 2);
-  }
-
-  /* Returns the value of the upper half of PART.  */
-  inline integerPart
-  highHalf(integerPart part)
-  {
-    return part >> (integerPartWidth / 2);
-  }
-
-  /* Returns the bit number of the most significant set bit of a part.
-     If the input number has no bits set -1U is returned.  */
-  unsigned int
-  partMSB(integerPart value)
-  {
-    unsigned int n, msb;
-
-    if (value == 0)
-      return -1U;
-
-    n = integerPartWidth / 2;
-
-    msb = 0;
-    do {
-      if (value >> n) {
-        value >>= n;
-        msb += n;
-      }
-
-      n >>= 1;
-    } while (n);
-
-    return msb;
-  }
-
-  /* Returns the bit number of the least significant set bit of a
-     part.  If the input number has no bits set -1U is returned.  */
-  unsigned int
-  partLSB(integerPart value)
-  {
-    unsigned int n, lsb;
-
-    if (value == 0)
-      return -1U;
-
-    lsb = integerPartWidth - 1;
-    n = integerPartWidth / 2;
-
-    do {
-      if (value << n) {
-        value <<= n;
-        lsb -= n;
-      }
-
-      n >>= 1;
-    } while (n);
-
-    return lsb;
-  }
-}
-
-/* Sets the least significant part of a bignum to the input value, and
-   zeroes out higher parts.  */
-void
-APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
-{
-  unsigned int i;
-
-  assert (parts > 0);
-
-  dst[0] = part;
-  for(i = 1; i < parts; i++)
-    dst[i] = 0;
-}
-
-/* Assign one bignum to another.  */
-void
-APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    dst[i] = src[i];
-}
-
-/* Returns true if a bignum is zero, false otherwise.  */
-bool
-APInt::tcIsZero(const integerPart *src, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    if (src[i])
-      return false;
-
-  return true;
-}
-
-/* Extract the given bit of a bignum; returns 0 or 1.  */
-int
-APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
-{
-  return(parts[bit / integerPartWidth]
-         & ((integerPart) 1 << bit % integerPartWidth)) != 0;
-}
-
-/* Set the given bit of a bignum.  */
-void
-APInt::tcSetBit(integerPart *parts, unsigned int bit)
-{
-  parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
-}
-
-/* Returns the bit number of the least significant set bit of a
-   number.  If the input number has no bits set -1U is returned.  */
-unsigned int
-APInt::tcLSB(const integerPart *parts, unsigned int n)
-{
-  unsigned int i, lsb;
-
-  for(i = 0; i < n; i++) {
-      if (parts[i] != 0) {
-          lsb = partLSB(parts[i]);
-
-          return lsb + i * integerPartWidth;
-      }
-  }
-
-  return -1U;
-}
-
-/* Returns the bit number of the most significant set bit of a number.
-   If the input number has no bits set -1U is returned.  */
-unsigned int
-APInt::tcMSB(const integerPart *parts, unsigned int n)
-{
-  unsigned int msb;
-
-  do {
-      --n;
-
-      if (parts[n] != 0) {
-          msb = partMSB(parts[n]);
-
-          return msb + n * integerPartWidth;
-      }
-  } while (n);
-
-  return -1U;
-}
-
-/* Copy the bit vector of width srcBITS from SRC, starting at bit
-   srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
-   the least significant bit of DST.  All high bits above srcBITS in
-   DST are zero-filled.  */
-void
-APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
-                 unsigned int srcBits, unsigned int srcLSB)
-{
-  unsigned int firstSrcPart, dstParts, shift, n;
-
-  dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
-  assert (dstParts <= dstCount);
-
-  firstSrcPart = srcLSB / integerPartWidth;
-  tcAssign (dst, src + firstSrcPart, dstParts);
-
-  shift = srcLSB % integerPartWidth;
-  tcShiftRight (dst, dstParts, shift);
-
-  /* We now have (dstParts * integerPartWidth - shift) bits from SRC
-     in DST.  If this is less that srcBits, append the rest, else
-     clear the high bits.  */
-  n = dstParts * integerPartWidth - shift;
-  if (n < srcBits) {
-    integerPart mask = lowBitMask (srcBits - n);
-    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
-                          << n % integerPartWidth);
-  } else if (n > srcBits) {
-    if (srcBits % integerPartWidth)
-      dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
-  }
-
-  /* Clear high parts.  */
-  while (dstParts < dstCount)
-    dst[dstParts++] = 0;
-}
-
-/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
-integerPart
-APInt::tcAdd(integerPart *dst, const integerPart *rhs,
-             integerPart c, unsigned int parts)
-{
-  unsigned int i;
-
-  assert(c <= 1);
-
-  for(i = 0; i < parts; i++) {
-    integerPart l;
-
-    l = dst[i];
-    if (c) {
-      dst[i] += rhs[i] + 1;
-      c = (dst[i] <= l);
-    } else {
-      dst[i] += rhs[i];
-      c = (dst[i] < l);
-    }
-  }
-
-  return c;
-}
-
-/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
-integerPart
-APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
-                  integerPart c, unsigned int parts)
-{
-  unsigned int i;
-
-  assert(c <= 1);
-
-  for(i = 0; i < parts; i++) {
-    integerPart l;
-
-    l = dst[i];
-    if (c) {
-      dst[i] -= rhs[i] + 1;
-      c = (dst[i] >= l);
-    } else {
-      dst[i] -= rhs[i];
-      c = (dst[i] > l);
-    }
-  }
-
-  return c;
-}
-
-/* Negate a bignum in-place.  */
-void
-APInt::tcNegate(integerPart *dst, unsigned int parts)
-{
-  tcComplement(dst, parts);
-  tcIncrement(dst, parts);
-}
-
-/*  DST += SRC * MULTIPLIER + CARRY   if add is true
-    DST  = SRC * MULTIPLIER + CARRY   if add is false
-
-    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
-    they must start at the same point, i.e. DST == SRC.
-
-    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
-    returned.  Otherwise DST is filled with the least significant
-    DSTPARTS parts of the result, and if all of the omitted higher
-    parts were zero return zero, otherwise overflow occurred and
-    return one.  */
-int
-APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
-                      integerPart multiplier, integerPart carry,
-                      unsigned int srcParts, unsigned int dstParts,
-                      bool add)
-{
-  unsigned int i, n;
-
-  /* Otherwise our writes of DST kill our later reads of SRC.  */
-  assert(dst <= src || dst >= src + srcParts);
-  assert(dstParts <= srcParts + 1);
-
-  /* N loops; minimum of dstParts and srcParts.  */
-  n = dstParts < srcParts ? dstParts: srcParts;
-
-  for(i = 0; i < n; i++) {
-    integerPart low, mid, high, srcPart;
-
-      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
-
-         This cannot overflow, because
-
-         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
-
-         which is less than n^2.  */
-
-    srcPart = src[i];
-
-    if (multiplier == 0 || srcPart == 0)        {
-      low = carry;
-      high = 0;
-    } else {
-      low = lowHalf(srcPart) * lowHalf(multiplier);
-      high = highHalf(srcPart) * highHalf(multiplier);
-
-      mid = lowHalf(srcPart) * highHalf(multiplier);
-      high += highHalf(mid);
-      mid <<= integerPartWidth / 2;
-      if (low + mid < low)
-        high++;
-      low += mid;
-
-      mid = highHalf(srcPart) * lowHalf(multiplier);
-      high += highHalf(mid);
-      mid <<= integerPartWidth / 2;
-      if (low + mid < low)
-        high++;
-      low += mid;
-
-      /* Now add carry.  */
-      if (low + carry < low)
-        high++;
-      low += carry;
-    }
-
-    if (add) {
-      /* And now DST[i], and store the new low part there.  */
-      if (low + dst[i] < low)
-        high++;
-      dst[i] += low;
-    } else
-      dst[i] = low;
-
-    carry = high;
-  }
-
-  if (i < dstParts) {
-    /* Full multiplication, there is no overflow.  */
-    assert(i + 1 == dstParts);
-    dst[i] = carry;
-    return 0;
-  } else {
-    /* We overflowed if there is carry.  */
-    if (carry)
-      return 1;
-
-    /* We would overflow if any significant unwritten parts would be
-       non-zero.  This is true if any remaining src parts are non-zero
-       and the multiplier is non-zero.  */
-    if (multiplier)
-      for(; i < srcParts; i++)
-        if (src[i])
-          return 1;
-
-    /* We fitted in the narrow destination.  */
-    return 0;
-  }
-}
-
-/* DST = LHS * RHS, where DST has the same width as the operands and
-   is filled with the least significant parts of the result.  Returns
-   one if overflow occurred, otherwise zero.  DST must be disjoint
-   from both operands.  */
-int
-APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
-                  const integerPart *rhs, unsigned int parts)
-{
-  unsigned int i;
-  int overflow;
-
-  assert(dst != lhs && dst != rhs);
-
-  overflow = 0;
-  tcSet(dst, 0, parts);
-
-  for(i = 0; i < parts; i++)
-    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
-                               parts - i, true);
-
-  return overflow;
-}
-
-/* DST = LHS * RHS, where DST has width the sum of the widths of the
-   operands.  No overflow occurs.  DST must be disjoint from both
-   operands.  Returns the number of parts required to hold the
-   result.  */
-unsigned int
-APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
-                      const integerPart *rhs, unsigned int lhsParts,
-                      unsigned int rhsParts)
-{
-  /* Put the narrower number on the LHS for less loops below.  */
-  if (lhsParts > rhsParts) {
-    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
-  } else {
-    unsigned int n;
-
-    assert(dst != lhs && dst != rhs);
-
-    tcSet(dst, 0, rhsParts);
-
-    for(n = 0; n < lhsParts; n++)
-      tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
-
-    n = lhsParts + rhsParts;
-
-    return n - (dst[n - 1] == 0);
-  }
-}
-
-/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
-   Otherwise set LHS to LHS / RHS with the fractional part discarded,
-   set REMAINDER to the remainder, return zero.  i.e.
-
-   OLD_LHS = RHS * LHS + REMAINDER
-
-   SCRATCH is a bignum of the same size as the operands and result for
-   use by the routine; its contents need not be initialized and are
-   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
-*/
-int
-APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
-                integerPart *remainder, integerPart *srhs,
-                unsigned int parts)
-{
-  unsigned int n, shiftCount;
-  integerPart mask;
-
-  assert(lhs != remainder && lhs != srhs && remainder != srhs);
-
-  shiftCount = tcMSB(rhs, parts) + 1;
-  if (shiftCount == 0)
-    return true;
-
-  shiftCount = parts * integerPartWidth - shiftCount;
-  n = shiftCount / integerPartWidth;
-  mask = (integerPart) 1 << (shiftCount % integerPartWidth);
-
-  tcAssign(srhs, rhs, parts);
-  tcShiftLeft(srhs, parts, shiftCount);
-  tcAssign(remainder, lhs, parts);
-  tcSet(lhs, 0, parts);
-
-  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
-     the total.  */
-  for(;;) {
-      int compare;
-
-      compare = tcCompare(remainder, srhs, parts);
-      if (compare >= 0) {
-        tcSubtract(remainder, srhs, 0, parts);
-        lhs[n] |= mask;
-      }
-
-      if (shiftCount == 0)
-        break;
-      shiftCount--;
-      tcShiftRight(srhs, parts, 1);
-      if ((mask >>= 1) == 0)
-        mask = (integerPart) 1 << (integerPartWidth - 1), n--;
-  }
-
-  return false;
-}
-
-/* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
-   There are no restrictions on COUNT.  */
-void
-APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
-{
-  if (count) {
-    unsigned int jump, shift;
-
-    /* Jump is the inter-part jump; shift is is intra-part shift.  */
-    jump = count / integerPartWidth;
-    shift = count % integerPartWidth;
-
-    while (parts > jump) {
-      integerPart part;
-
-      parts--;
-
-      /* dst[i] comes from the two parts src[i - jump] and, if we have
-         an intra-part shift, src[i - jump - 1].  */
-      part = dst[parts - jump];
-      if (shift) {
-        part <<= shift;
-        if (parts >= jump + 1)
-          part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
-      }
-
-      dst[parts] = part;
-    }
-
-    while (parts > 0)
-      dst[--parts] = 0;
-  }
-}
-
-/* Shift a bignum right COUNT bits in-place.  Shifted in bits are
-   zero.  There are no restrictions on COUNT.  */
-void
-APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
-{
-  if (count) {
-    unsigned int i, jump, shift;
-
-    /* Jump is the inter-part jump; shift is is intra-part shift.  */
-    jump = count / integerPartWidth;
-    shift = count % integerPartWidth;
-
-    /* Perform the shift.  This leaves the most significant COUNT bits
-       of the result at zero.  */
-    for(i = 0; i < parts; i++) {
-      integerPart part;
-
-      if (i + jump >= parts) {
-        part = 0;
-      } else {
-        part = dst[i + jump];
-        if (shift) {
-          part >>= shift;
-          if (i + jump + 1 < parts)
-            part |= dst[i + jump + 1] << (integerPartWidth - shift);
-        }
-      }
-
-      dst[i] = part;
-    }
-  }
-}
-
-/* Bitwise and of two bignums.  */
-void
-APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    dst[i] &= rhs[i];
-}
-
-/* Bitwise inclusive or of two bignums.  */
-void
-APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    dst[i] |= rhs[i];
-}
-
-/* Bitwise exclusive or of two bignums.  */
-void
-APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    dst[i] ^= rhs[i];
-}
-
-/* Complement a bignum in-place.  */
-void
-APInt::tcComplement(integerPart *dst, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    dst[i] = ~dst[i];
-}
-
-/* Comparison (unsigned) of two bignums.  */
-int
-APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
-                 unsigned int parts)
-{
-  while (parts) {
-      parts--;
-      if (lhs[parts] == rhs[parts])
-        continue;
-
-      if (lhs[parts] > rhs[parts])
-        return 1;
-      else
-        return -1;
-    }
-
-  return 0;
-}
-
-/* Increment a bignum in-place, return the carry flag.  */
-integerPart
-APInt::tcIncrement(integerPart *dst, unsigned int parts)
-{
-  unsigned int i;
-
-  for(i = 0; i < parts; i++)
-    if (++dst[i] != 0)
-      break;
-
-  return i == parts;
-}
-
-/* Set the least significant BITS bits of a bignum, clear the
-   rest.  */
-void
-APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
-                                 unsigned int bits)
-{
-  unsigned int i;
-
-  i = 0;
-  while (bits > integerPartWidth) {
-    dst[i++] = ~(integerPart) 0;
-    bits -= integerPartWidth;
-  }
-
-  if (bits)
-    dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
-
-  while (i < parts)
-    dst[i++] = 0;
-}





More information about the llvm-commits mailing list