[llvm-commits] [support] r44853 - /support/trunk/lib/Support/APInt.cpp
Reid Spencer
rspencer at reidspencer.com
Mon Dec 10 22:57:04 PST 2007
Author: reid
Date: Tue Dec 11 00:57:03 2007
New Revision: 44853
URL: http://llvm.org/viewvc/llvm-project?rev=44853&view=rev
Log:
Remove APInt.cpp in preparation for update.
Removed:
support/trunk/lib/Support/APInt.cpp
Removed: support/trunk/lib/Support/APInt.cpp
URL: http://llvm.org/viewvc/llvm-project/support/trunk/lib/Support/APInt.cpp?rev=44852&view=auto
==============================================================================
--- support/trunk/lib/Support/APInt.cpp (original)
+++ support/trunk/lib/Support/APInt.cpp (removed)
@@ -1,2646 +0,0 @@
-//===-- APInt.cpp - Implement APInt class ---------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by Sheng Zhou and is distributed under the
-// University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a class to represent arbitrary precision integer
-// constant values and provide a variety of arithmetic operations on them.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "apint"
-#include "llvm/ADT/APInt.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include <math.h>
-#include <limits>
-#include <cstring>
-#include <cstdlib>
-#include <iomanip>
-
-using namespace llvm;
-
-/// A utility function for allocating memory, checking for allocation failures,
-/// and ensuring the contents are zeroed.
-inline static uint64_t* getClearedMemory(uint32_t numWords) {
- uint64_t * result = new uint64_t[numWords];
- assert(result && "APInt memory allocation fails!");
- memset(result, 0, numWords * sizeof(uint64_t));
- return result;
-}
-
-/// A utility function for allocating memory and checking for allocation
-/// failure. The content is not zeroed.
-inline static uint64_t* getMemory(uint32_t numWords) {
- uint64_t * result = new uint64_t[numWords];
- assert(result && "APInt memory allocation fails!");
- return result;
-}
-
-APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
- : BitWidth(numBits), VAL(0) {
- assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
- assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
- if (isSingleWord())
- VAL = val;
- else {
- pVal = getClearedMemory(getNumWords());
- pVal[0] = val;
- if (isSigned && int64_t(val) < 0)
- for (unsigned i = 1; i < getNumWords(); ++i)
- pVal[i] = -1ULL;
- }
- clearUnusedBits();
-}
-
-APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
- : BitWidth(numBits), VAL(0) {
- assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
- assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
- assert(bigVal && "Null pointer detected!");
- if (isSingleWord())
- VAL = bigVal[0];
- else {
- // Get memory, cleared to 0
- pVal = getClearedMemory(getNumWords());
- // Calculate the number of words to copy
- uint32_t words = std::min<uint32_t>(numWords, getNumWords());
- // Copy the words from bigVal to pVal
- memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
- }
- // Make sure unused high bits are cleared
- clearUnusedBits();
-}
-
-APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
- uint8_t radix)
- : BitWidth(numbits), VAL(0) {
- assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
- assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
- fromString(numbits, StrStart, slen, radix);
-}
-
-APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
- : BitWidth(numbits), VAL(0) {
- assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
- assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
- assert(!Val.empty() && "String empty?");
- fromString(numbits, Val.c_str(), Val.size(), radix);
-}
-
-APInt::APInt(const APInt& that)
- : BitWidth(that.BitWidth), VAL(0) {
- assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
- assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
- if (isSingleWord())
- VAL = that.VAL;
- else {
- pVal = getMemory(getNumWords());
- memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
- }
-}
-
-APInt::~APInt() {
- if (!isSingleWord() && pVal)
- delete [] pVal;
-}
-
-APInt& APInt::operator=(const APInt& RHS) {
- // Don't do anything for X = X
- if (this == &RHS)
- return *this;
-
- // If the bitwidths are the same, we can avoid mucking with memory
- if (BitWidth == RHS.getBitWidth()) {
- if (isSingleWord())
- VAL = RHS.VAL;
- else
- memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
- return *this;
- }
-
- if (isSingleWord())
- if (RHS.isSingleWord())
- VAL = RHS.VAL;
- else {
- VAL = 0;
- pVal = getMemory(RHS.getNumWords());
- memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- }
- else if (getNumWords() == RHS.getNumWords())
- memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- else if (RHS.isSingleWord()) {
- delete [] pVal;
- VAL = RHS.VAL;
- } else {
- delete [] pVal;
- pVal = getMemory(RHS.getNumWords());
- memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- }
- BitWidth = RHS.BitWidth;
- return clearUnusedBits();
-}
-
-APInt& APInt::operator=(uint64_t RHS) {
- if (isSingleWord())
- VAL = RHS;
- else {
- pVal[0] = RHS;
- memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
- }
- return clearUnusedBits();
-}
-
-/// add_1 - This function adds a single "digit" integer, y, to the multiple
-/// "digit" integer array, x[]. x[] is modified to reflect the addition and
-/// 1 is returned if there is a carry out, otherwise 0 is returned.
-/// @returns the carry of the addition.
-static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
- for (uint32_t i = 0; i < len; ++i) {
- dest[i] = y + x[i];
- if (dest[i] < y)
- y = 1; // Carry one to next digit.
- else {
- y = 0; // No need to carry so exit early
- break;
- }
- }
- return y;
-}
-
-/// @brief Prefix increment operator. Increments the APInt by one.
-APInt& APInt::operator++() {
- if (isSingleWord())
- ++VAL;
- else
- add_1(pVal, pVal, getNumWords(), 1);
- return clearUnusedBits();
-}
-
-/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
-/// the multi-digit integer array, x[], propagating the borrowed 1 value until
-/// no further borrowing is neeeded or it runs out of "digits" in x. The result
-/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
-/// In other words, if y > x then this function returns 1, otherwise 0.
-/// @returns the borrow out of the subtraction
-static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
- for (uint32_t i = 0; i < len; ++i) {
- uint64_t X = x[i];
- x[i] -= y;
- if (y > X)
- y = 1; // We have to "borrow 1" from next "digit"
- else {
- y = 0; // No need to borrow
- break; // Remaining digits are unchanged so exit early
- }
- }
- return bool(y);
-}
-
-/// @brief Prefix decrement operator. Decrements the APInt by one.
-APInt& APInt::operator--() {
- if (isSingleWord())
- --VAL;
- else
- sub_1(pVal, getNumWords(), 1);
- return clearUnusedBits();
-}
-
-/// add - This function adds the integer array x to the integer array Y and
-/// places the result in dest.
-/// @returns the carry out from the addition
-/// @brief General addition of 64-bit integer arrays
-static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
- uint32_t len) {
- bool carry = false;
- for (uint32_t i = 0; i< len; ++i) {
- uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
- dest[i] = x[i] + y[i] + carry;
- carry = dest[i] < limit || (carry && dest[i] == limit);
- }
- return carry;
-}
-
-/// Adds the RHS APint to this APInt.
-/// @returns this, after addition of RHS.
-/// @brief Addition assignment operator.
-APInt& APInt::operator+=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- VAL += RHS.VAL;
- else {
- add(pVal, pVal, RHS.pVal, getNumWords());
- }
- return clearUnusedBits();
-}
-
-/// Subtracts the integer array y from the integer array x
-/// @returns returns the borrow out.
-/// @brief Generalized subtraction of 64-bit integer arrays.
-static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
- uint32_t len) {
- bool borrow = false;
- for (uint32_t i = 0; i < len; ++i) {
- uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
- borrow = y[i] > x_tmp || (borrow && x[i] == 0);
- dest[i] = x_tmp - y[i];
- }
- return borrow;
-}
-
-/// Subtracts the RHS APInt from this APInt
-/// @returns this, after subtraction
-/// @brief Subtraction assignment operator.
-APInt& APInt::operator-=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- VAL -= RHS.VAL;
- else
- sub(pVal, pVal, RHS.pVal, getNumWords());
- return clearUnusedBits();
-}
-
-/// Multiplies an integer array, x by a a uint64_t integer and places the result
-/// into dest.
-/// @returns the carry out of the multiplication.
-/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
-static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
- // Split y into high 32-bit part (hy) and low 32-bit part (ly)
- uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
- uint64_t carry = 0;
-
- // For each digit of x.
- for (uint32_t i = 0; i < len; ++i) {
- // Split x into high and low words
- uint64_t lx = x[i] & 0xffffffffULL;
- uint64_t hx = x[i] >> 32;
- // hasCarry - A flag to indicate if there is a carry to the next digit.
- // hasCarry == 0, no carry
- // hasCarry == 1, has carry
- // hasCarry == 2, no carry and the calculation result == 0.
- uint8_t hasCarry = 0;
- dest[i] = carry + lx * ly;
- // Determine if the add above introduces carry.
- hasCarry = (dest[i] < carry) ? 1 : 0;
- carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
- // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
- // (2^32 - 1) + 2^32 = 2^64.
- hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
-
- carry += (lx * hy) & 0xffffffffULL;
- dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
- carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
- (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
- }
- return carry;
-}
-
-/// Multiplies integer array x by integer array y and stores the result into
-/// the integer array dest. Note that dest's size must be >= xlen + ylen.
-/// @brief Generalized multiplicate of integer arrays.
-static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
- uint32_t ylen) {
- dest[xlen] = mul_1(dest, x, xlen, y[0]);
- for (uint32_t i = 1; i < ylen; ++i) {
- uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
- uint64_t carry = 0, lx = 0, hx = 0;
- for (uint32_t j = 0; j < xlen; ++j) {
- lx = x[j] & 0xffffffffULL;
- hx = x[j] >> 32;
- // hasCarry - A flag to indicate if has carry.
- // hasCarry == 0, no carry
- // hasCarry == 1, has carry
- // hasCarry == 2, no carry and the calculation result == 0.
- uint8_t hasCarry = 0;
- uint64_t resul = carry + lx * ly;
- hasCarry = (resul < carry) ? 1 : 0;
- carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
- hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
-
- carry += (lx * hy) & 0xffffffffULL;
- resul = (carry << 32) | (resul & 0xffffffffULL);
- dest[i+j] += resul;
- carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
- (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
- ((lx * hy) >> 32) + hx * hy;
- }
- dest[i+xlen] = carry;
- }
-}
-
-APInt& APInt::operator*=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL *= RHS.VAL;
- clearUnusedBits();
- return *this;
- }
-
- // Get some bit facts about LHS and check for zero
- uint32_t lhsBits = getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
- if (!lhsWords)
- // 0 * X ===> 0
- return *this;
-
- // Get some bit facts about RHS and check for zero
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
- if (!rhsWords) {
- // X * 0 ===> 0
- clear();
- return *this;
- }
-
- // Allocate space for the result
- uint32_t destWords = rhsWords + lhsWords;
- uint64_t *dest = getMemory(destWords);
-
- // Perform the long multiply
- mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
-
- // Copy result back into *this
- clear();
- uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
- memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
-
- // delete dest array and return
- delete[] dest;
- return *this;
-}
-
-APInt& APInt::operator&=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL &= RHS.VAL;
- return *this;
- }
- uint32_t numWords = getNumWords();
- for (uint32_t i = 0; i < numWords; ++i)
- pVal[i] &= RHS.pVal[i];
- return *this;
-}
-
-APInt& APInt::operator|=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL |= RHS.VAL;
- return *this;
- }
- uint32_t numWords = getNumWords();
- for (uint32_t i = 0; i < numWords; ++i)
- pVal[i] |= RHS.pVal[i];
- return *this;
-}
-
-APInt& APInt::operator^=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL ^= RHS.VAL;
- this->clearUnusedBits();
- return *this;
- }
- uint32_t numWords = getNumWords();
- for (uint32_t i = 0; i < numWords; ++i)
- pVal[i] ^= RHS.pVal[i];
- return clearUnusedBits();
-}
-
-APInt APInt::operator&(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(getBitWidth(), VAL & RHS.VAL);
-
- uint32_t numWords = getNumWords();
- uint64_t* val = getMemory(numWords);
- for (uint32_t i = 0; i < numWords; ++i)
- val[i] = pVal[i] & RHS.pVal[i];
- return APInt(val, getBitWidth());
-}
-
-APInt APInt::operator|(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(getBitWidth(), VAL | RHS.VAL);
-
- uint32_t numWords = getNumWords();
- uint64_t *val = getMemory(numWords);
- for (uint32_t i = 0; i < numWords; ++i)
- val[i] = pVal[i] | RHS.pVal[i];
- return APInt(val, getBitWidth());
-}
-
-APInt APInt::operator^(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL ^ RHS.VAL);
-
- uint32_t numWords = getNumWords();
- uint64_t *val = getMemory(numWords);
- for (uint32_t i = 0; i < numWords; ++i)
- val[i] = pVal[i] ^ RHS.pVal[i];
-
- // 0^0==1 so clear the high bits in case they got set.
- return APInt(val, getBitWidth()).clearUnusedBits();
-}
-
-bool APInt::operator !() const {
- if (isSingleWord())
- return !VAL;
-
- for (uint32_t i = 0; i < getNumWords(); ++i)
- if (pVal[i])
- return false;
- return true;
-}
-
-APInt APInt::operator*(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL * RHS.VAL);
- APInt Result(*this);
- Result *= RHS;
- return Result.clearUnusedBits();
-}
-
-APInt APInt::operator+(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL + RHS.VAL);
- APInt Result(BitWidth, 0);
- add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
- return Result.clearUnusedBits();
-}
-
-APInt APInt::operator-(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL - RHS.VAL);
- APInt Result(BitWidth, 0);
- sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
- return Result.clearUnusedBits();
-}
-
-bool APInt::operator[](uint32_t bitPosition) const {
- return (maskBit(bitPosition) &
- (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
-}
-
-bool APInt::operator==(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
- if (isSingleWord())
- return VAL == RHS.VAL;
-
- // Get some facts about the number of bits used in the two operands.
- uint32_t n1 = getActiveBits();
- uint32_t n2 = RHS.getActiveBits();
-
- // If the number of bits isn't the same, they aren't equal
- if (n1 != n2)
- return false;
-
- // If the number of bits fits in a word, we only need to compare the low word.
- if (n1 <= APINT_BITS_PER_WORD)
- return pVal[0] == RHS.pVal[0];
-
- // Otherwise, compare everything
- for (int i = whichWord(n1 - 1); i >= 0; --i)
- if (pVal[i] != RHS.pVal[i])
- return false;
- return true;
-}
-
-bool APInt::operator==(uint64_t Val) const {
- if (isSingleWord())
- return VAL == Val;
-
- uint32_t n = getActiveBits();
- if (n <= APINT_BITS_PER_WORD)
- return pVal[0] == Val;
- else
- return false;
-}
-
-bool APInt::ult(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
- if (isSingleWord())
- return VAL < RHS.VAL;
-
- // Get active bit length of both operands
- uint32_t n1 = getActiveBits();
- uint32_t n2 = RHS.getActiveBits();
-
- // If magnitude of LHS is less than RHS, return true.
- if (n1 < n2)
- return true;
-
- // If magnitude of RHS is greather than LHS, return false.
- if (n2 < n1)
- return false;
-
- // If they bot fit in a word, just compare the low order word
- if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
- return pVal[0] < RHS.pVal[0];
-
- // Otherwise, compare all words
- uint32_t topWord = whichWord(std::max(n1,n2)-1);
- for (int i = topWord; i >= 0; --i) {
- if (pVal[i] > RHS.pVal[i])
- return false;
- if (pVal[i] < RHS.pVal[i])
- return true;
- }
- return false;
-}
-
-bool APInt::slt(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
- if (isSingleWord()) {
- int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
- int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
- return lhsSext < rhsSext;
- }
-
- APInt lhs(*this);
- APInt rhs(RHS);
- bool lhsNeg = isNegative();
- bool rhsNeg = rhs.isNegative();
- if (lhsNeg) {
- // Sign bit is set so perform two's complement to make it positive
- lhs.flip();
- lhs++;
- }
- if (rhsNeg) {
- // Sign bit is set so perform two's complement to make it positive
- rhs.flip();
- rhs++;
- }
-
- // Now we have unsigned values to compare so do the comparison if necessary
- // based on the negativeness of the values.
- if (lhsNeg)
- if (rhsNeg)
- return lhs.ugt(rhs);
- else
- return true;
- else if (rhsNeg)
- return false;
- else
- return lhs.ult(rhs);
-}
-
-APInt& APInt::set(uint32_t bitPosition) {
- if (isSingleWord())
- VAL |= maskBit(bitPosition);
- else
- pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
- return *this;
-}
-
-APInt& APInt::set() {
- if (isSingleWord()) {
- VAL = -1ULL;
- return clearUnusedBits();
- }
-
- // Set all the bits in all the words.
- for (uint32_t i = 0; i < getNumWords(); ++i)
- pVal[i] = -1ULL;
- // Clear the unused ones
- return clearUnusedBits();
-}
-
-/// Set the given bit to 0 whose position is given as "bitPosition".
-/// @brief Set a given bit to 0.
-APInt& APInt::clear(uint32_t bitPosition) {
- if (isSingleWord())
- VAL &= ~maskBit(bitPosition);
- else
- pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
- return *this;
-}
-
-/// @brief Set every bit to 0.
-APInt& APInt::clear() {
- if (isSingleWord())
- VAL = 0;
- else
- memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
- return *this;
-}
-
-/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
-/// this APInt.
-APInt APInt::operator~() const {
- APInt Result(*this);
- Result.flip();
- return Result;
-}
-
-/// @brief Toggle every bit to its opposite value.
-APInt& APInt::flip() {
- if (isSingleWord()) {
- VAL ^= -1ULL;
- return clearUnusedBits();
- }
- for (uint32_t i = 0; i < getNumWords(); ++i)
- pVal[i] ^= -1ULL;
- return clearUnusedBits();
-}
-
-/// Toggle a given bit to its opposite value whose position is given
-/// as "bitPosition".
-/// @brief Toggles a given bit to its opposite value.
-APInt& APInt::flip(uint32_t bitPosition) {
- assert(bitPosition < BitWidth && "Out of the bit-width range!");
- if ((*this)[bitPosition]) clear(bitPosition);
- else set(bitPosition);
- return *this;
-}
-
-uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
- assert(str != 0 && "Invalid value string");
- assert(slen > 0 && "Invalid string length");
-
- // Each computation below needs to know if its negative
- uint32_t isNegative = str[0] == '-';
- if (isNegative) {
- slen--;
- str++;
- }
- // For radixes of power-of-two values, the bits required is accurately and
- // easily computed
- if (radix == 2)
- return slen + isNegative;
- if (radix == 8)
- return slen * 3 + isNegative;
- if (radix == 16)
- return slen * 4 + isNegative;
-
- // Otherwise it must be radix == 10, the hard case
- assert(radix == 10 && "Invalid radix");
-
- // This is grossly inefficient but accurate. We could probably do something
- // with a computation of roughly slen*64/20 and then adjust by the value of
- // the first few digits. But, I'm not sure how accurate that could be.
-
- // Compute a sufficient number of bits that is always large enough but might
- // be too large. This avoids the assertion in the constructor.
- uint32_t sufficient = slen*64/18;
-
- // Convert to the actual binary value.
- APInt tmp(sufficient, str, slen, radix);
-
- // Compute how many bits are required.
- return isNegative + tmp.logBase2() + 1;
-}
-
-uint64_t APInt::getHashValue() const {
- // Put the bit width into the low order bits.
- uint64_t hash = BitWidth;
-
- // Add the sum of the words to the hash.
- if (isSingleWord())
- hash += VAL << 6; // clear separation of up to 64 bits
- else
- for (uint32_t i = 0; i < getNumWords(); ++i)
- hash += pVal[i] << 6; // clear sepration of up to 64 bits
- return hash;
-}
-
-/// HiBits - This function returns the high "numBits" bits of this APInt.
-APInt APInt::getHiBits(uint32_t numBits) const {
- return APIntOps::lshr(*this, BitWidth - numBits);
-}
-
-/// LoBits - This function returns the low "numBits" bits of this APInt.
-APInt APInt::getLoBits(uint32_t numBits) const {
- return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
- BitWidth - numBits);
-}
-
-bool APInt::isPowerOf2() const {
- return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
-}
-
-uint32_t APInt::countLeadingZeros() const {
- uint32_t Count = 0;
- if (isSingleWord())
- Count = CountLeadingZeros_64(VAL);
- else {
- for (uint32_t i = getNumWords(); i > 0u; --i) {
- if (pVal[i-1] == 0)
- Count += APINT_BITS_PER_WORD;
- else {
- Count += CountLeadingZeros_64(pVal[i-1]);
- break;
- }
- }
- }
- uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
- if (remainder)
- Count -= APINT_BITS_PER_WORD - remainder;
- return std::min(Count, BitWidth);
-}
-
-static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
- uint32_t Count = 0;
- if (skip)
- V <<= skip;
- while (V && (V & (1ULL << 63))) {
- Count++;
- V <<= 1;
- }
- return Count;
-}
-
-uint32_t APInt::countLeadingOnes() const {
- if (isSingleWord())
- return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
-
- uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
- uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
- int i = getNumWords() - 1;
- uint32_t Count = countLeadingOnes_64(pVal[i], shift);
- if (Count == highWordBits) {
- for (i--; i >= 0; --i) {
- if (pVal[i] == -1ULL)
- Count += APINT_BITS_PER_WORD;
- else {
- Count += countLeadingOnes_64(pVal[i], 0);
- break;
- }
- }
- }
- return Count;
-}
-
-uint32_t APInt::countTrailingZeros() const {
- if (isSingleWord())
- return std::min(CountTrailingZeros_64(VAL), BitWidth);
- uint32_t Count = 0;
- uint32_t i = 0;
- for (; i < getNumWords() && pVal[i] == 0; ++i)
- Count += APINT_BITS_PER_WORD;
- if (i < getNumWords())
- Count += CountTrailingZeros_64(pVal[i]);
- return std::min(Count, BitWidth);
-}
-
-uint32_t APInt::countPopulation() const {
- if (isSingleWord())
- return CountPopulation_64(VAL);
- uint32_t Count = 0;
- for (uint32_t i = 0; i < getNumWords(); ++i)
- Count += CountPopulation_64(pVal[i]);
- return Count;
-}
-
-APInt APInt::byteSwap() const {
- assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
- if (BitWidth == 16)
- return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
- else if (BitWidth == 32)
- return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
- else if (BitWidth == 48) {
- uint32_t Tmp1 = uint32_t(VAL >> 16);
- Tmp1 = ByteSwap_32(Tmp1);
- uint16_t Tmp2 = uint16_t(VAL);
- Tmp2 = ByteSwap_16(Tmp2);
- return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
- } else if (BitWidth == 64)
- return APInt(BitWidth, ByteSwap_64(VAL));
- else {
- APInt Result(BitWidth, 0);
- char *pByte = (char*)Result.pVal;
- for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
- char Tmp = pByte[i];
- pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
- pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
- }
- return Result;
- }
-}
-
-APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
- const APInt& API2) {
- APInt A = API1, B = API2;
- while (!!B) {
- APInt T = B;
- B = APIntOps::urem(A, B);
- A = T;
- }
- return A;
-}
-
-APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
- union {
- double D;
- uint64_t I;
- } T;
- T.D = Double;
-
- // Get the sign bit from the highest order bit
- bool isNeg = T.I >> 63;
-
- // Get the 11-bit exponent and adjust for the 1023 bit bias
- int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
-
- // If the exponent is negative, the value is < 0 so just return 0.
- if (exp < 0)
- return APInt(width, 0u);
-
- // Extract the mantissa by clearing the top 12 bits (sign + exponent).
- uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
-
- // If the exponent doesn't shift all bits out of the mantissa
- if (exp < 52)
- return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
- APInt(width, mantissa >> (52 - exp));
-
- // If the client didn't provide enough bits for us to shift the mantissa into
- // then the result is undefined, just return 0
- if (width <= exp - 52)
- return APInt(width, 0);
-
- // Otherwise, we have to shift the mantissa bits up to the right location
- APInt Tmp(width, mantissa);
- Tmp = Tmp.shl(exp - 52);
- return isNeg ? -Tmp : Tmp;
-}
-
-/// RoundToDouble - This function convert this APInt to a double.
-/// The layout for double is as following (IEEE Standard 754):
-/// --------------------------------------
-/// | Sign Exponent Fraction Bias |
-/// |-------------------------------------- |
-/// | 1[63] 11[62-52] 52[51-00] 1023 |
-/// --------------------------------------
-double APInt::roundToDouble(bool isSigned) const {
-
- // Handle the simple case where the value is contained in one uint64_t.
- if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
- if (isSigned) {
- int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
- return double(sext);
- } else
- return double(VAL);
- }
-
- // Determine if the value is negative.
- bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
-
- // Construct the absolute value if we're negative.
- APInt Tmp(isNeg ? -(*this) : (*this));
-
- // Figure out how many bits we're using.
- uint32_t n = Tmp.getActiveBits();
-
- // The exponent (without bias normalization) is just the number of bits
- // we are using. Note that the sign bit is gone since we constructed the
- // absolute value.
- uint64_t exp = n;
-
- // Return infinity for exponent overflow
- if (exp > 1023) {
- if (!isSigned || !isNeg)
- return std::numeric_limits<double>::infinity();
- else
- return -std::numeric_limits<double>::infinity();
- }
- exp += 1023; // Increment for 1023 bias
-
- // Number of bits in mantissa is 52. To obtain the mantissa value, we must
- // extract the high 52 bits from the correct words in pVal.
- uint64_t mantissa;
- unsigned hiWord = whichWord(n-1);
- if (hiWord == 0) {
- mantissa = Tmp.pVal[0];
- if (n > 52)
- mantissa >>= n - 52; // shift down, we want the top 52 bits.
- } else {
- assert(hiWord > 0 && "huh?");
- uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
- uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
- mantissa = hibits | lobits;
- }
-
- // The leading bit of mantissa is implicit, so get rid of it.
- uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
- union {
- double D;
- uint64_t I;
- } T;
- T.I = sign | (exp << 52) | mantissa;
- return T.D;
-}
-
-// Truncate to new width.
-APInt &APInt::trunc(uint32_t width) {
- assert(width < BitWidth && "Invalid APInt Truncate request");
- assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
- uint32_t wordsBefore = getNumWords();
- BitWidth = width;
- uint32_t wordsAfter = getNumWords();
- if (wordsBefore != wordsAfter) {
- if (wordsAfter == 1) {
- uint64_t *tmp = pVal;
- VAL = pVal[0];
- delete [] tmp;
- } else {
- uint64_t *newVal = getClearedMemory(wordsAfter);
- for (uint32_t i = 0; i < wordsAfter; ++i)
- newVal[i] = pVal[i];
- delete [] pVal;
- pVal = newVal;
- }
- }
- return clearUnusedBits();
-}
-
-// Sign extend to a new width.
-APInt &APInt::sext(uint32_t width) {
- assert(width > BitWidth && "Invalid APInt SignExtend request");
- assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
- // If the sign bit isn't set, this is the same as zext.
- if (!isNegative()) {
- zext(width);
- return *this;
- }
-
- // The sign bit is set. First, get some facts
- uint32_t wordsBefore = getNumWords();
- uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
- BitWidth = width;
- uint32_t wordsAfter = getNumWords();
-
- // Mask the high order word appropriately
- if (wordsBefore == wordsAfter) {
- uint32_t newWordBits = width % APINT_BITS_PER_WORD;
- // The extension is contained to the wordsBefore-1th word.
- uint64_t mask = ~0ULL;
- if (newWordBits)
- mask >>= APINT_BITS_PER_WORD - newWordBits;
- mask <<= wordBits;
- if (wordsBefore == 1)
- VAL |= mask;
- else
- pVal[wordsBefore-1] |= mask;
- return clearUnusedBits();
- }
-
- uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
- uint64_t *newVal = getMemory(wordsAfter);
- if (wordsBefore == 1)
- newVal[0] = VAL | mask;
- else {
- for (uint32_t i = 0; i < wordsBefore; ++i)
- newVal[i] = pVal[i];
- newVal[wordsBefore-1] |= mask;
- }
- for (uint32_t i = wordsBefore; i < wordsAfter; i++)
- newVal[i] = -1ULL;
- if (wordsBefore != 1)
- delete [] pVal;
- pVal = newVal;
- return clearUnusedBits();
-}
-
-// Zero extend to a new width.
-APInt &APInt::zext(uint32_t width) {
- assert(width > BitWidth && "Invalid APInt ZeroExtend request");
- assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
- uint32_t wordsBefore = getNumWords();
- BitWidth = width;
- uint32_t wordsAfter = getNumWords();
- if (wordsBefore != wordsAfter) {
- uint64_t *newVal = getClearedMemory(wordsAfter);
- if (wordsBefore == 1)
- newVal[0] = VAL;
- else
- for (uint32_t i = 0; i < wordsBefore; ++i)
- newVal[i] = pVal[i];
- if (wordsBefore != 1)
- delete [] pVal;
- pVal = newVal;
- }
- return *this;
-}
-
-APInt &APInt::zextOrTrunc(uint32_t width) {
- if (BitWidth < width)
- return zext(width);
- if (BitWidth > width)
- return trunc(width);
- return *this;
-}
-
-APInt &APInt::sextOrTrunc(uint32_t width) {
- if (BitWidth < width)
- return sext(width);
- if (BitWidth > width)
- return trunc(width);
- return *this;
-}
-
-/// Arithmetic right-shift this APInt by shiftAmt.
-/// @brief Arithmetic right-shift function.
-APInt APInt::ashr(uint32_t shiftAmt) const {
- assert(shiftAmt <= BitWidth && "Invalid shift amount");
- // Handle a degenerate case
- if (shiftAmt == 0)
- return *this;
-
- // Handle single word shifts with built-in ashr
- if (isSingleWord()) {
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0); // undefined
- else {
- uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
- return APInt(BitWidth,
- (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
- }
- }
-
- // If all the bits were shifted out, the result is, technically, undefined.
- // We return -1 if it was negative, 0 otherwise. We check this early to avoid
- // issues in the algorithm below.
- if (shiftAmt == BitWidth) {
- if (isNegative())
- return APInt(BitWidth, -1ULL);
- else
- return APInt(BitWidth, 0);
- }
-
- // Create some space for the result.
- uint64_t * val = new uint64_t[getNumWords()];
-
- // Compute some values needed by the following shift algorithms
- uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
- uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
- uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
- uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
- if (bitsInWord == 0)
- bitsInWord = APINT_BITS_PER_WORD;
-
- // If we are shifting whole words, just move whole words
- if (wordShift == 0) {
- // Move the words containing significant bits
- for (uint32_t i = 0; i <= breakWord; ++i)
- val[i] = pVal[i+offset]; // move whole word
-
- // Adjust the top significant word for sign bit fill, if negative
- if (isNegative())
- if (bitsInWord < APINT_BITS_PER_WORD)
- val[breakWord] |= ~0ULL << bitsInWord; // set high bits
- } else {
- // Shift the low order words
- for (uint32_t i = 0; i < breakWord; ++i) {
- // This combines the shifted corresponding word with the low bits from
- // the next word (shifted into this word's high bits).
- val[i] = (pVal[i+offset] >> wordShift) |
- (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
- }
-
- // Shift the break word. In this case there are no bits from the next word
- // to include in this word.
- val[breakWord] = pVal[breakWord+offset] >> wordShift;
-
- // Deal with sign extenstion in the break word, and possibly the word before
- // it.
- if (isNegative()) {
- if (wordShift > bitsInWord) {
- if (breakWord > 0)
- val[breakWord-1] |=
- ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
- val[breakWord] |= ~0ULL;
- } else
- val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
- }
- }
-
- // Remaining words are 0 or -1, just assign them.
- uint64_t fillValue = (isNegative() ? -1ULL : 0);
- for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
- val[i] = fillValue;
- return APInt(val, BitWidth).clearUnusedBits();
-}
-
-/// Logical right-shift this APInt by shiftAmt.
-/// @brief Logical right-shift function.
-APInt APInt::lshr(uint32_t shiftAmt) const {
- if (isSingleWord()) {
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0);
- else
- return APInt(BitWidth, this->VAL >> shiftAmt);
- }
-
- // If all the bits were shifted out, the result is 0. This avoids issues
- // with shifting by the size of the integer type, which produces undefined
- // results. We define these "undefined results" to always be 0.
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0);
-
- // If none of the bits are shifted out, the result is *this. This avoids
- // issues with shifting byt he size of the integer type, which produces
- // undefined results in the code below. This is also an optimization.
- if (shiftAmt == 0)
- return *this;
-
- // Create some space for the result.
- uint64_t * val = new uint64_t[getNumWords()];
-
- // If we are shifting less than a word, compute the shift with a simple carry
- if (shiftAmt < APINT_BITS_PER_WORD) {
- uint64_t carry = 0;
- for (int i = getNumWords()-1; i >= 0; --i) {
- val[i] = (pVal[i] >> shiftAmt) | carry;
- carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
- }
- return APInt(val, BitWidth).clearUnusedBits();
- }
-
- // Compute some values needed by the remaining shift algorithms
- uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
- uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
-
- // If we are shifting whole words, just move whole words
- if (wordShift == 0) {
- for (uint32_t i = 0; i < getNumWords() - offset; ++i)
- val[i] = pVal[i+offset];
- for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
- val[i] = 0;
- return APInt(val,BitWidth).clearUnusedBits();
- }
-
- // Shift the low order words
- uint32_t breakWord = getNumWords() - offset -1;
- for (uint32_t i = 0; i < breakWord; ++i)
- val[i] = (pVal[i+offset] >> wordShift) |
- (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
- // Shift the break word.
- val[breakWord] = pVal[breakWord+offset] >> wordShift;
-
- // Remaining words are 0
- for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
- val[i] = 0;
- return APInt(val, BitWidth).clearUnusedBits();
-}
-
-/// Left-shift this APInt by shiftAmt.
-/// @brief Left-shift function.
-APInt APInt::shl(uint32_t shiftAmt) const {
- assert(shiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0); // avoid undefined shift results
- return APInt(BitWidth, VAL << shiftAmt);
- }
-
- // If all the bits were shifted out, the result is 0. This avoids issues
- // with shifting by the size of the integer type, which produces undefined
- // results. We define these "undefined results" to always be 0.
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0);
-
- // If none of the bits are shifted out, the result is *this. This avoids a
- // lshr by the words size in the loop below which can produce incorrect
- // results. It also avoids the expensive computation below for a common case.
- if (shiftAmt == 0)
- return *this;
-
- // Create some space for the result.
- uint64_t * val = new uint64_t[getNumWords()];
-
- // If we are shifting less than a word, do it the easy way
- if (shiftAmt < APINT_BITS_PER_WORD) {
- uint64_t carry = 0;
- for (uint32_t i = 0; i < getNumWords(); i++) {
- val[i] = pVal[i] << shiftAmt | carry;
- carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
- }
- return APInt(val, BitWidth).clearUnusedBits();
- }
-
- // Compute some values needed by the remaining shift algorithms
- uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
- uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
-
- // If we are shifting whole words, just move whole words
- if (wordShift == 0) {
- for (uint32_t i = 0; i < offset; i++)
- val[i] = 0;
- for (uint32_t i = offset; i < getNumWords(); i++)
- val[i] = pVal[i-offset];
- return APInt(val,BitWidth).clearUnusedBits();
- }
-
- // Copy whole words from this to Result.
- uint32_t i = getNumWords() - 1;
- for (; i > offset; --i)
- val[i] = pVal[i-offset] << wordShift |
- pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
- val[offset] = pVal[0] << wordShift;
- for (i = 0; i < offset; ++i)
- val[i] = 0;
- return APInt(val, BitWidth).clearUnusedBits();
-}
-
-APInt APInt::rotl(uint32_t rotateAmt) const {
- if (rotateAmt == 0)
- return *this;
- // Don't get too fancy, just use existing shift/or facilities
- APInt hi(*this);
- APInt lo(*this);
- hi.shl(rotateAmt);
- lo.lshr(BitWidth - rotateAmt);
- return hi | lo;
-}
-
-APInt APInt::rotr(uint32_t rotateAmt) const {
- if (rotateAmt == 0)
- return *this;
- // Don't get too fancy, just use existing shift/or facilities
- APInt hi(*this);
- APInt lo(*this);
- lo.lshr(rotateAmt);
- hi.shl(BitWidth - rotateAmt);
- return hi | lo;
-}
-
-// Square Root - this method computes and returns the square root of "this".
-// Three mechanisms are used for computation. For small values (<= 5 bits),
-// a table lookup is done. This gets some performance for common cases. For
-// values using less than 52 bits, the value is converted to double and then
-// the libc sqrt function is called. The result is rounded and then converted
-// back to a uint64_t which is then used to construct the result. Finally,
-// the Babylonian method for computing square roots is used.
-APInt APInt::sqrt() const {
-
- // Determine the magnitude of the value.
- uint32_t magnitude = getActiveBits();
-
- // Use a fast table for some small values. This also gets rid of some
- // rounding errors in libc sqrt for small values.
- if (magnitude <= 5) {
- static const uint8_t results[32] = {
- /* 0 */ 0,
- /* 1- 2 */ 1, 1,
- /* 3- 6 */ 2, 2, 2, 2,
- /* 7-12 */ 3, 3, 3, 3, 3, 3,
- /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
- /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- /* 31 */ 6
- };
- return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
- }
-
- // If the magnitude of the value fits in less than 52 bits (the precision of
- // an IEEE double precision floating point value), then we can use the
- // libc sqrt function which will probably use a hardware sqrt computation.
- // This should be faster than the algorithm below.
- if (magnitude < 52) {
-#ifdef _MSC_VER
- // Amazingly, VC++ doesn't have round().
- return APInt(BitWidth,
- uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
-#else
- return APInt(BitWidth,
- uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
-#endif
- }
-
- // Okay, all the short cuts are exhausted. We must compute it. The following
- // is a classical Babylonian method for computing the square root. This code
- // was adapted to APINt from a wikipedia article on such computations.
- // See http://www.wikipedia.org/ and go to the page named
- // Calculate_an_integer_square_root.
- uint32_t nbits = BitWidth, i = 4;
- APInt testy(BitWidth, 16);
- APInt x_old(BitWidth, 1);
- APInt x_new(BitWidth, 0);
- APInt two(BitWidth, 2);
-
- // Select a good starting value using binary logarithms.
- for (;; i += 2, testy = testy.shl(2))
- if (i >= nbits || this->ule(testy)) {
- x_old = x_old.shl(i / 2);
- break;
- }
-
- // Use the Babylonian method to arrive at the integer square root:
- for (;;) {
- x_new = (this->udiv(x_old) + x_old).udiv(two);
- if (x_old.ule(x_new))
- break;
- x_old = x_new;
- }
-
- // Make sure we return the closest approximation
- // NOTE: The rounding calculation below is correct. It will produce an
- // off-by-one discrepancy with results from pari/gp. That discrepancy has been
- // determined to be a rounding issue with pari/gp as it begins to use a
- // floating point representation after 192 bits. There are no discrepancies
- // between this algorithm and pari/gp for bit widths < 192 bits.
- APInt square(x_old * x_old);
- APInt nextSquare((x_old + 1) * (x_old +1));
- if (this->ult(square))
- return x_old;
- else if (this->ule(nextSquare)) {
- APInt midpoint((nextSquare - square).udiv(two));
- APInt offset(*this - square);
- if (offset.ult(midpoint))
- return x_old;
- else
- return x_old + 1;
- } else
- assert(0 && "Error in APInt::sqrt computation");
- return x_old + 1;
-}
-
-/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
-/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
-/// variables here have the same names as in the algorithm. Comments explain
-/// the algorithm and any deviation from it.
-static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
- uint32_t m, uint32_t n) {
- assert(u && "Must provide dividend");
- assert(v && "Must provide divisor");
- assert(q && "Must provide quotient");
- assert(u != v && u != q && v != q && "Must us different memory");
- assert(n>1 && "n must be > 1");
-
- // Knuth uses the value b as the base of the number system. In our case b
- // is 2^31 so we just set it to -1u.
- uint64_t b = uint64_t(1) << 32;
-
- DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
- DEBUG(cerr << "KnuthDiv: original:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
- DEBUG(cerr << " by");
- DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
- DEBUG(cerr << '\n');
- // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
- // u and v by d. Note that we have taken Knuth's advice here to use a power
- // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
- // 2 allows us to shift instead of multiply and it is easy to determine the
- // shift amount from the leading zeros. We are basically normalizing the u
- // and v so that its high bits are shifted to the top of v's range without
- // overflow. Note that this can require an extra word in u so that u must
- // be of length m+n+1.
- uint32_t shift = CountLeadingZeros_32(v[n-1]);
- uint32_t v_carry = 0;
- uint32_t u_carry = 0;
- if (shift) {
- for (uint32_t i = 0; i < m+n; ++i) {
- uint32_t u_tmp = u[i] >> (32 - shift);
- u[i] = (u[i] << shift) | u_carry;
- u_carry = u_tmp;
- }
- for (uint32_t i = 0; i < n; ++i) {
- uint32_t v_tmp = v[i] >> (32 - shift);
- v[i] = (v[i] << shift) | v_carry;
- v_carry = v_tmp;
- }
- }
- u[m+n] = u_carry;
- DEBUG(cerr << "KnuthDiv: normal:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
- DEBUG(cerr << " by");
- DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
- DEBUG(cerr << '\n');
-
- // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
- int j = m;
- do {
- DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
- // D3. [Calculate q'.].
- // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
- // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
- // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
- // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
- // on v[n-2] determines at high speed most of the cases in which the trial
- // value qp is one too large, and it eliminates all cases where qp is two
- // too large.
- uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
- DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
- uint64_t qp = dividend / v[n-1];
- uint64_t rp = dividend % v[n-1];
- if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
- qp--;
- rp += v[n-1];
- if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
- qp--;
- }
- DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
-
- // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
- // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
- // consists of a simple multiplication by a one-place number, combined with
- // a subtraction.
- bool isNeg = false;
- for (uint32_t i = 0; i < n; ++i) {
- uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
- uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
- bool borrow = subtrahend > u_tmp;
- DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
- << ", subtrahend == " << subtrahend
- << ", borrow = " << borrow << '\n');
-
- uint64_t result = u_tmp - subtrahend;
- uint32_t k = j + i;
- u[k++] = result & (b-1); // subtract low word
- u[k++] = result >> 32; // subtract high word
- while (borrow && k <= m+n) { // deal with borrow to the left
- borrow = u[k] == 0;
- u[k]--;
- k++;
- }
- isNeg |= borrow;
- DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
- u[j+i+1] << '\n');
- }
- DEBUG(cerr << "KnuthDiv: after subtraction:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
- DEBUG(cerr << '\n');
- // The digits (u[j+n]...u[j]) should be kept positive; if the result of
- // this step is actually negative, (u[j+n]...u[j]) should be left as the
- // true value plus b**(n+1), namely as the b's complement of
- // the true value, and a "borrow" to the left should be remembered.
- //
- if (isNeg) {
- bool carry = true; // true because b's complement is "complement + 1"
- for (uint32_t i = 0; i <= m+n; ++i) {
- u[i] = ~u[i] + carry; // b's complement
- carry = carry && u[i] == 0;
- }
- }
- DEBUG(cerr << "KnuthDiv: after complement:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
- DEBUG(cerr << '\n');
-
- // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
- // negative, go to step D6; otherwise go on to step D7.
- q[j] = qp;
- if (isNeg) {
- // D6. [Add back]. The probability that this step is necessary is very
- // small, on the order of only 2/b. Make sure that test data accounts for
- // this possibility. Decrease q[j] by 1
- q[j]--;
- // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
- // A carry will occur to the left of u[j+n], and it should be ignored
- // since it cancels with the borrow that occurred in D4.
- bool carry = false;
- for (uint32_t i = 0; i < n; i++) {
- uint32_t limit = std::min(u[j+i],v[i]);
- u[j+i] += v[i] + carry;
- carry = u[j+i] < limit || (carry && u[j+i] == limit);
- }
- u[j+n] += carry;
- }
- DEBUG(cerr << "KnuthDiv: after correction:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
- DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
-
- // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
- } while (--j >= 0);
-
- DEBUG(cerr << "KnuthDiv: quotient:");
- DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
- DEBUG(cerr << '\n');
-
- // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
- // remainder may be obtained by dividing u[...] by d. If r is non-null we
- // compute the remainder (urem uses this).
- if (r) {
- // The value d is expressed by the "shift" value above since we avoided
- // multiplication by d by using a shift left. So, all we have to do is
- // shift right here. In order to mak
- if (shift) {
- uint32_t carry = 0;
- DEBUG(cerr << "KnuthDiv: remainder:");
- for (int i = n-1; i >= 0; i--) {
- r[i] = (u[i] >> shift) | carry;
- carry = u[i] << (32 - shift);
- DEBUG(cerr << " " << r[i]);
- }
- } else {
- for (int i = n-1; i >= 0; i--) {
- r[i] = u[i];
- DEBUG(cerr << " " << r[i]);
- }
- }
- DEBUG(cerr << '\n');
- }
- DEBUG(cerr << std::setbase(10) << '\n');
-}
-
-void APInt::divide(const APInt LHS, uint32_t lhsWords,
- const APInt &RHS, uint32_t rhsWords,
- APInt *Quotient, APInt *Remainder)
-{
- assert(lhsWords >= rhsWords && "Fractional result");
-
- // First, compose the values into an array of 32-bit words instead of
- // 64-bit words. This is a necessity of both the "short division" algorithm
- // and the the Knuth "classical algorithm" which requires there to be native
- // operations for +, -, and * on an m bit value with an m*2 bit result. We
- // can't use 64-bit operands here because we don't have native results of
- // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
- // work on large-endian machines.
- uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
- uint32_t n = rhsWords * 2;
- uint32_t m = (lhsWords * 2) - n;
-
- // Allocate space for the temporary values we need either on the stack, if
- // it will fit, or on the heap if it won't.
- uint32_t SPACE[128];
- uint32_t *U = 0;
- uint32_t *V = 0;
- uint32_t *Q = 0;
- uint32_t *R = 0;
- if ((Remainder?4:3)*n+2*m+1 <= 128) {
- U = &SPACE[0];
- V = &SPACE[m+n+1];
- Q = &SPACE[(m+n+1) + n];
- if (Remainder)
- R = &SPACE[(m+n+1) + n + (m+n)];
- } else {
- U = new uint32_t[m + n + 1];
- V = new uint32_t[n];
- Q = new uint32_t[m+n];
- if (Remainder)
- R = new uint32_t[n];
- }
-
- // Initialize the dividend
- memset(U, 0, (m+n+1)*sizeof(uint32_t));
- for (unsigned i = 0; i < lhsWords; ++i) {
- uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
- U[i * 2] = tmp & mask;
- U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
- }
- U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
-
- // Initialize the divisor
- memset(V, 0, (n)*sizeof(uint32_t));
- for (unsigned i = 0; i < rhsWords; ++i) {
- uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
- V[i * 2] = tmp & mask;
- V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
- }
-
- // initialize the quotient and remainder
- memset(Q, 0, (m+n) * sizeof(uint32_t));
- if (Remainder)
- memset(R, 0, n * sizeof(uint32_t));
-
- // Now, adjust m and n for the Knuth division. n is the number of words in
- // the divisor. m is the number of words by which the dividend exceeds the
- // divisor (i.e. m+n is the length of the dividend). These sizes must not
- // contain any zero words or the Knuth algorithm fails.
- for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
- n--;
- m++;
- }
- for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
- m--;
-
- // If we're left with only a single word for the divisor, Knuth doesn't work
- // so we implement the short division algorithm here. This is much simpler
- // and faster because we are certain that we can divide a 64-bit quantity
- // by a 32-bit quantity at hardware speed and short division is simply a
- // series of such operations. This is just like doing short division but we
- // are using base 2^32 instead of base 10.
- assert(n != 0 && "Divide by zero?");
- if (n == 1) {
- uint32_t divisor = V[0];
- uint32_t remainder = 0;
- for (int i = m+n-1; i >= 0; i--) {
- uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
- if (partial_dividend == 0) {
- Q[i] = 0;
- remainder = 0;
- } else if (partial_dividend < divisor) {
- Q[i] = 0;
- remainder = partial_dividend;
- } else if (partial_dividend == divisor) {
- Q[i] = 1;
- remainder = 0;
- } else {
- Q[i] = partial_dividend / divisor;
- remainder = partial_dividend - (Q[i] * divisor);
- }
- }
- if (R)
- R[0] = remainder;
- } else {
- // Now we're ready to invoke the Knuth classical divide algorithm. In this
- // case n > 1.
- KnuthDiv(U, V, Q, R, m, n);
- }
-
- // If the caller wants the quotient
- if (Quotient) {
- // Set up the Quotient value's memory.
- if (Quotient->BitWidth != LHS.BitWidth) {
- if (Quotient->isSingleWord())
- Quotient->VAL = 0;
- else
- delete [] Quotient->pVal;
- Quotient->BitWidth = LHS.BitWidth;
- if (!Quotient->isSingleWord())
- Quotient->pVal = getClearedMemory(Quotient->getNumWords());
- } else
- Quotient->clear();
-
- // The quotient is in Q. Reconstitute the quotient into Quotient's low
- // order words.
- if (lhsWords == 1) {
- uint64_t tmp =
- uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
- if (Quotient->isSingleWord())
- Quotient->VAL = tmp;
- else
- Quotient->pVal[0] = tmp;
- } else {
- assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
- for (unsigned i = 0; i < lhsWords; ++i)
- Quotient->pVal[i] =
- uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
- }
- }
-
- // If the caller wants the remainder
- if (Remainder) {
- // Set up the Remainder value's memory.
- if (Remainder->BitWidth != RHS.BitWidth) {
- if (Remainder->isSingleWord())
- Remainder->VAL = 0;
- else
- delete [] Remainder->pVal;
- Remainder->BitWidth = RHS.BitWidth;
- if (!Remainder->isSingleWord())
- Remainder->pVal = getClearedMemory(Remainder->getNumWords());
- } else
- Remainder->clear();
-
- // The remainder is in R. Reconstitute the remainder into Remainder's low
- // order words.
- if (rhsWords == 1) {
- uint64_t tmp =
- uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
- if (Remainder->isSingleWord())
- Remainder->VAL = tmp;
- else
- Remainder->pVal[0] = tmp;
- } else {
- assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
- for (unsigned i = 0; i < rhsWords; ++i)
- Remainder->pVal[i] =
- uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
- }
- }
-
- // Clean up the memory we allocated.
- if (U != &SPACE[0]) {
- delete [] U;
- delete [] V;
- delete [] Q;
- delete [] R;
- }
-}
-
-APInt APInt::udiv(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-
- // First, deal with the easy case
- if (isSingleWord()) {
- assert(RHS.VAL != 0 && "Divide by zero?");
- return APInt(BitWidth, VAL / RHS.VAL);
- }
-
- // Get some facts about the LHS and RHS number of bits and words
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
- assert(rhsWords && "Divided by zero???");
- uint32_t lhsBits = this->getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
-
- // Deal with some degenerate cases
- if (!lhsWords)
- // 0 / X ===> 0
- return APInt(BitWidth, 0);
- else if (lhsWords < rhsWords || this->ult(RHS)) {
- // X / Y ===> 0, iff X < Y
- return APInt(BitWidth, 0);
- } else if (*this == RHS) {
- // X / X ===> 1
- return APInt(BitWidth, 1);
- } else if (lhsWords == 1 && rhsWords == 1) {
- // All high words are zero, just use native divide
- return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
- }
-
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Quotient(1,0); // to hold result.
- divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
- return Quotient;
-}
-
-APInt APInt::urem(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- assert(RHS.VAL != 0 && "Remainder by zero?");
- return APInt(BitWidth, VAL % RHS.VAL);
- }
-
- // Get some facts about the LHS
- uint32_t lhsBits = getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
-
- // Get some facts about the RHS
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
- assert(rhsWords && "Performing remainder operation by zero ???");
-
- // Check the degenerate cases
- if (lhsWords == 0) {
- // 0 % Y ===> 0
- return APInt(BitWidth, 0);
- } else if (lhsWords < rhsWords || this->ult(RHS)) {
- // X % Y ===> X, iff X < Y
- return *this;
- } else if (*this == RHS) {
- // X % X == 0;
- return APInt(BitWidth, 0);
- } else if (lhsWords == 1) {
- // All high words are zero, just use native remainder
- return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
- }
-
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Remainder(1,0);
- divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
- return Remainder;
-}
-
-void APInt::udivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder) {
- // Get some size facts about the dividend and divisor
- uint32_t lhsBits = LHS.getActiveBits();
- uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
- uint32_t rhsBits = RHS.getActiveBits();
- uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
-
- // Check the degenerate cases
- if (lhsWords == 0) {
- Quotient = 0; // 0 / Y ===> 0
- Remainder = 0; // 0 % Y ===> 0
- return;
- }
-
- if (lhsWords < rhsWords || LHS.ult(RHS)) {
- Quotient = 0; // X / Y ===> 0, iff X < Y
- Remainder = LHS; // X % Y ===> X, iff X < Y
- return;
- }
-
- if (LHS == RHS) {
- Quotient = 1; // X / X ===> 1
- Remainder = 0; // X % X ===> 0;
- return;
- }
-
- if (lhsWords == 1 && rhsWords == 1) {
- // There is only one word to consider so use the native versions.
- if (LHS.isSingleWord()) {
- Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
- Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
- } else {
- Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
- Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
- }
- return;
- }
-
- // Okay, lets do it the long way
- divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
-}
-
-void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
- uint8_t radix) {
- // Check our assumptions here
- assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
- "Radix should be 2, 8, 10, or 16!");
- assert(str && "String is null?");
- bool isNeg = str[0] == '-';
- if (isNeg)
- str++, slen--;
- assert((slen <= numbits || radix != 2) && "Insufficient bit width");
- assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
- assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
- assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
-
- // Allocate memory
- if (!isSingleWord())
- pVal = getClearedMemory(getNumWords());
-
- // Figure out if we can shift instead of multiply
- uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
-
- // Set up an APInt for the digit to add outside the loop so we don't
- // constantly construct/destruct it.
- APInt apdigit(getBitWidth(), 0);
- APInt apradix(getBitWidth(), radix);
-
- // Enter digit traversal loop
- for (unsigned i = 0; i < slen; i++) {
- // Get a digit
- uint32_t digit = 0;
- char cdigit = str[i];
- if (radix == 16) {
- if (!isxdigit(cdigit))
- assert(0 && "Invalid hex digit in string");
- if (isdigit(cdigit))
- digit = cdigit - '0';
- else if (cdigit >= 'a')
- digit = cdigit - 'a' + 10;
- else if (cdigit >= 'A')
- digit = cdigit - 'A' + 10;
- else
- assert(0 && "huh? we shouldn't get here");
- } else if (isdigit(cdigit)) {
- digit = cdigit - '0';
- } else {
- assert(0 && "Invalid character in digit string");
- }
-
- // Shift or multiply the value by the radix
- if (shift)
- *this <<= shift;
- else
- *this *= apradix;
-
- // Add in the digit we just interpreted
- if (apdigit.isSingleWord())
- apdigit.VAL = digit;
- else
- apdigit.pVal[0] = digit;
- *this += apdigit;
- }
- // If its negative, put it in two's complement form
- if (isNeg) {
- (*this)--;
- this->flip();
- }
-}
-
-std::string APInt::toString(uint8_t radix, bool wantSigned) const {
- assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
- "Radix should be 2, 8, 10, or 16!");
- static const char *digits[] = {
- "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
- };
- std::string result;
- uint32_t bits_used = getActiveBits();
- if (isSingleWord()) {
- char buf[65];
- const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
- (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
- if (format) {
- if (wantSigned) {
- int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
- (APINT_BITS_PER_WORD-BitWidth);
- sprintf(buf, format, sextVal);
- } else
- sprintf(buf, format, VAL);
- } else {
- memset(buf, 0, 65);
- uint64_t v = VAL;
- while (bits_used) {
- uint32_t bit = v & 1;
- bits_used--;
- buf[bits_used] = digits[bit][0];
- v >>=1;
- }
- }
- result = buf;
- return result;
- }
-
- if (radix != 10) {
- // For the 2, 8 and 16 bit cases, we can just shift instead of divide
- // because the number of bits per digit (1,3 and 4 respectively) divides
- // equaly. We just shift until there value is zero.
-
- // First, check for a zero value and just short circuit the logic below.
- if (*this == 0)
- result = "0";
- else {
- APInt tmp(*this);
- size_t insert_at = 0;
- if (wantSigned && this->isNegative()) {
- // They want to print the signed version and it is a negative value
- // Flip the bits and add one to turn it into the equivalent positive
- // value and put a '-' in the result.
- tmp.flip();
- tmp++;
- result = "-";
- insert_at = 1;
- }
- // Just shift tmp right for each digit width until it becomes zero
- uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
- uint64_t mask = radix - 1;
- APInt zero(tmp.getBitWidth(), 0);
- while (tmp.ne(zero)) {
- unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
- result.insert(insert_at, digits[digit]);
- tmp = tmp.lshr(shift);
- }
- }
- return result;
- }
-
- APInt tmp(*this);
- APInt divisor(4, radix);
- APInt zero(tmp.getBitWidth(), 0);
- size_t insert_at = 0;
- if (wantSigned && tmp[BitWidth-1]) {
- // They want to print the signed version and it is a negative value
- // Flip the bits and add one to turn it into the equivalent positive
- // value and put a '-' in the result.
- tmp.flip();
- tmp++;
- result = "-";
- insert_at = 1;
- }
- if (tmp == APInt(tmp.getBitWidth(), 0))
- result = "0";
- else while (tmp.ne(zero)) {
- APInt APdigit(1,0);
- APInt tmp2(tmp.getBitWidth(), 0);
- divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
- &APdigit);
- uint32_t digit = APdigit.getZExtValue();
- assert(digit < radix && "divide failed");
- result.insert(insert_at,digits[digit]);
- tmp = tmp2;
- }
-
- return result;
-}
-
-void APInt::dump() const
-{
- cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
- if (isSingleWord())
- cerr << VAL;
- else for (unsigned i = getNumWords(); i > 0; i--) {
- cerr << pVal[i-1] << " ";
- }
- cerr << " U(" << this->toStringUnsigned(10) << ") S("
- << this->toStringSigned(10) << ")" << std::setbase(10);
-}
-
-// This implements a variety of operations on a representation of
-// arbitrary precision, two's-complement, bignum integer values.
-
-/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
- and unrestricting assumption. */
-COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
-
-/* Some handy functions local to this file. */
-namespace {
-
- /* Returns the integer part with the least significant BITS set.
- BITS cannot be zero. */
- inline integerPart
- lowBitMask(unsigned int bits)
- {
- assert (bits != 0 && bits <= integerPartWidth);
-
- return ~(integerPart) 0 >> (integerPartWidth - bits);
- }
-
- /* Returns the value of the lower half of PART. */
- inline integerPart
- lowHalf(integerPart part)
- {
- return part & lowBitMask(integerPartWidth / 2);
- }
-
- /* Returns the value of the upper half of PART. */
- inline integerPart
- highHalf(integerPart part)
- {
- return part >> (integerPartWidth / 2);
- }
-
- /* Returns the bit number of the most significant set bit of a part.
- If the input number has no bits set -1U is returned. */
- unsigned int
- partMSB(integerPart value)
- {
- unsigned int n, msb;
-
- if (value == 0)
- return -1U;
-
- n = integerPartWidth / 2;
-
- msb = 0;
- do {
- if (value >> n) {
- value >>= n;
- msb += n;
- }
-
- n >>= 1;
- } while (n);
-
- return msb;
- }
-
- /* Returns the bit number of the least significant set bit of a
- part. If the input number has no bits set -1U is returned. */
- unsigned int
- partLSB(integerPart value)
- {
- unsigned int n, lsb;
-
- if (value == 0)
- return -1U;
-
- lsb = integerPartWidth - 1;
- n = integerPartWidth / 2;
-
- do {
- if (value << n) {
- value <<= n;
- lsb -= n;
- }
-
- n >>= 1;
- } while (n);
-
- return lsb;
- }
-}
-
-/* Sets the least significant part of a bignum to the input value, and
- zeroes out higher parts. */
-void
-APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
-{
- unsigned int i;
-
- assert (parts > 0);
-
- dst[0] = part;
- for(i = 1; i < parts; i++)
- dst[i] = 0;
-}
-
-/* Assign one bignum to another. */
-void
-APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- dst[i] = src[i];
-}
-
-/* Returns true if a bignum is zero, false otherwise. */
-bool
-APInt::tcIsZero(const integerPart *src, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- if (src[i])
- return false;
-
- return true;
-}
-
-/* Extract the given bit of a bignum; returns 0 or 1. */
-int
-APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
-{
- return(parts[bit / integerPartWidth]
- & ((integerPart) 1 << bit % integerPartWidth)) != 0;
-}
-
-/* Set the given bit of a bignum. */
-void
-APInt::tcSetBit(integerPart *parts, unsigned int bit)
-{
- parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
-}
-
-/* Returns the bit number of the least significant set bit of a
- number. If the input number has no bits set -1U is returned. */
-unsigned int
-APInt::tcLSB(const integerPart *parts, unsigned int n)
-{
- unsigned int i, lsb;
-
- for(i = 0; i < n; i++) {
- if (parts[i] != 0) {
- lsb = partLSB(parts[i]);
-
- return lsb + i * integerPartWidth;
- }
- }
-
- return -1U;
-}
-
-/* Returns the bit number of the most significant set bit of a number.
- If the input number has no bits set -1U is returned. */
-unsigned int
-APInt::tcMSB(const integerPart *parts, unsigned int n)
-{
- unsigned int msb;
-
- do {
- --n;
-
- if (parts[n] != 0) {
- msb = partMSB(parts[n]);
-
- return msb + n * integerPartWidth;
- }
- } while (n);
-
- return -1U;
-}
-
-/* Copy the bit vector of width srcBITS from SRC, starting at bit
- srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
- the least significant bit of DST. All high bits above srcBITS in
- DST are zero-filled. */
-void
-APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
- unsigned int srcBits, unsigned int srcLSB)
-{
- unsigned int firstSrcPart, dstParts, shift, n;
-
- dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
- assert (dstParts <= dstCount);
-
- firstSrcPart = srcLSB / integerPartWidth;
- tcAssign (dst, src + firstSrcPart, dstParts);
-
- shift = srcLSB % integerPartWidth;
- tcShiftRight (dst, dstParts, shift);
-
- /* We now have (dstParts * integerPartWidth - shift) bits from SRC
- in DST. If this is less that srcBits, append the rest, else
- clear the high bits. */
- n = dstParts * integerPartWidth - shift;
- if (n < srcBits) {
- integerPart mask = lowBitMask (srcBits - n);
- dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
- << n % integerPartWidth);
- } else if (n > srcBits) {
- if (srcBits % integerPartWidth)
- dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
- }
-
- /* Clear high parts. */
- while (dstParts < dstCount)
- dst[dstParts++] = 0;
-}
-
-/* DST += RHS + C where C is zero or one. Returns the carry flag. */
-integerPart
-APInt::tcAdd(integerPart *dst, const integerPart *rhs,
- integerPart c, unsigned int parts)
-{
- unsigned int i;
-
- assert(c <= 1);
-
- for(i = 0; i < parts; i++) {
- integerPart l;
-
- l = dst[i];
- if (c) {
- dst[i] += rhs[i] + 1;
- c = (dst[i] <= l);
- } else {
- dst[i] += rhs[i];
- c = (dst[i] < l);
- }
- }
-
- return c;
-}
-
-/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
-integerPart
-APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
- integerPart c, unsigned int parts)
-{
- unsigned int i;
-
- assert(c <= 1);
-
- for(i = 0; i < parts; i++) {
- integerPart l;
-
- l = dst[i];
- if (c) {
- dst[i] -= rhs[i] + 1;
- c = (dst[i] >= l);
- } else {
- dst[i] -= rhs[i];
- c = (dst[i] > l);
- }
- }
-
- return c;
-}
-
-/* Negate a bignum in-place. */
-void
-APInt::tcNegate(integerPart *dst, unsigned int parts)
-{
- tcComplement(dst, parts);
- tcIncrement(dst, parts);
-}
-
-/* DST += SRC * MULTIPLIER + CARRY if add is true
- DST = SRC * MULTIPLIER + CARRY if add is false
-
- Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
- they must start at the same point, i.e. DST == SRC.
-
- If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
- returned. Otherwise DST is filled with the least significant
- DSTPARTS parts of the result, and if all of the omitted higher
- parts were zero return zero, otherwise overflow occurred and
- return one. */
-int
-APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
- integerPart multiplier, integerPart carry,
- unsigned int srcParts, unsigned int dstParts,
- bool add)
-{
- unsigned int i, n;
-
- /* Otherwise our writes of DST kill our later reads of SRC. */
- assert(dst <= src || dst >= src + srcParts);
- assert(dstParts <= srcParts + 1);
-
- /* N loops; minimum of dstParts and srcParts. */
- n = dstParts < srcParts ? dstParts: srcParts;
-
- for(i = 0; i < n; i++) {
- integerPart low, mid, high, srcPart;
-
- /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
-
- This cannot overflow, because
-
- (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
-
- which is less than n^2. */
-
- srcPart = src[i];
-
- if (multiplier == 0 || srcPart == 0) {
- low = carry;
- high = 0;
- } else {
- low = lowHalf(srcPart) * lowHalf(multiplier);
- high = highHalf(srcPart) * highHalf(multiplier);
-
- mid = lowHalf(srcPart) * highHalf(multiplier);
- high += highHalf(mid);
- mid <<= integerPartWidth / 2;
- if (low + mid < low)
- high++;
- low += mid;
-
- mid = highHalf(srcPart) * lowHalf(multiplier);
- high += highHalf(mid);
- mid <<= integerPartWidth / 2;
- if (low + mid < low)
- high++;
- low += mid;
-
- /* Now add carry. */
- if (low + carry < low)
- high++;
- low += carry;
- }
-
- if (add) {
- /* And now DST[i], and store the new low part there. */
- if (low + dst[i] < low)
- high++;
- dst[i] += low;
- } else
- dst[i] = low;
-
- carry = high;
- }
-
- if (i < dstParts) {
- /* Full multiplication, there is no overflow. */
- assert(i + 1 == dstParts);
- dst[i] = carry;
- return 0;
- } else {
- /* We overflowed if there is carry. */
- if (carry)
- return 1;
-
- /* We would overflow if any significant unwritten parts would be
- non-zero. This is true if any remaining src parts are non-zero
- and the multiplier is non-zero. */
- if (multiplier)
- for(; i < srcParts; i++)
- if (src[i])
- return 1;
-
- /* We fitted in the narrow destination. */
- return 0;
- }
-}
-
-/* DST = LHS * RHS, where DST has the same width as the operands and
- is filled with the least significant parts of the result. Returns
- one if overflow occurred, otherwise zero. DST must be disjoint
- from both operands. */
-int
-APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
- const integerPart *rhs, unsigned int parts)
-{
- unsigned int i;
- int overflow;
-
- assert(dst != lhs && dst != rhs);
-
- overflow = 0;
- tcSet(dst, 0, parts);
-
- for(i = 0; i < parts; i++)
- overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
- parts - i, true);
-
- return overflow;
-}
-
-/* DST = LHS * RHS, where DST has width the sum of the widths of the
- operands. No overflow occurs. DST must be disjoint from both
- operands. Returns the number of parts required to hold the
- result. */
-unsigned int
-APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
- const integerPart *rhs, unsigned int lhsParts,
- unsigned int rhsParts)
-{
- /* Put the narrower number on the LHS for less loops below. */
- if (lhsParts > rhsParts) {
- return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
- } else {
- unsigned int n;
-
- assert(dst != lhs && dst != rhs);
-
- tcSet(dst, 0, rhsParts);
-
- for(n = 0; n < lhsParts; n++)
- tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
-
- n = lhsParts + rhsParts;
-
- return n - (dst[n - 1] == 0);
- }
-}
-
-/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
- Otherwise set LHS to LHS / RHS with the fractional part discarded,
- set REMAINDER to the remainder, return zero. i.e.
-
- OLD_LHS = RHS * LHS + REMAINDER
-
- SCRATCH is a bignum of the same size as the operands and result for
- use by the routine; its contents need not be initialized and are
- destroyed. LHS, REMAINDER and SCRATCH must be distinct.
-*/
-int
-APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
- integerPart *remainder, integerPart *srhs,
- unsigned int parts)
-{
- unsigned int n, shiftCount;
- integerPart mask;
-
- assert(lhs != remainder && lhs != srhs && remainder != srhs);
-
- shiftCount = tcMSB(rhs, parts) + 1;
- if (shiftCount == 0)
- return true;
-
- shiftCount = parts * integerPartWidth - shiftCount;
- n = shiftCount / integerPartWidth;
- mask = (integerPart) 1 << (shiftCount % integerPartWidth);
-
- tcAssign(srhs, rhs, parts);
- tcShiftLeft(srhs, parts, shiftCount);
- tcAssign(remainder, lhs, parts);
- tcSet(lhs, 0, parts);
-
- /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
- the total. */
- for(;;) {
- int compare;
-
- compare = tcCompare(remainder, srhs, parts);
- if (compare >= 0) {
- tcSubtract(remainder, srhs, 0, parts);
- lhs[n] |= mask;
- }
-
- if (shiftCount == 0)
- break;
- shiftCount--;
- tcShiftRight(srhs, parts, 1);
- if ((mask >>= 1) == 0)
- mask = (integerPart) 1 << (integerPartWidth - 1), n--;
- }
-
- return false;
-}
-
-/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
- There are no restrictions on COUNT. */
-void
-APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
-{
- if (count) {
- unsigned int jump, shift;
-
- /* Jump is the inter-part jump; shift is is intra-part shift. */
- jump = count / integerPartWidth;
- shift = count % integerPartWidth;
-
- while (parts > jump) {
- integerPart part;
-
- parts--;
-
- /* dst[i] comes from the two parts src[i - jump] and, if we have
- an intra-part shift, src[i - jump - 1]. */
- part = dst[parts - jump];
- if (shift) {
- part <<= shift;
- if (parts >= jump + 1)
- part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
- }
-
- dst[parts] = part;
- }
-
- while (parts > 0)
- dst[--parts] = 0;
- }
-}
-
-/* Shift a bignum right COUNT bits in-place. Shifted in bits are
- zero. There are no restrictions on COUNT. */
-void
-APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
-{
- if (count) {
- unsigned int i, jump, shift;
-
- /* Jump is the inter-part jump; shift is is intra-part shift. */
- jump = count / integerPartWidth;
- shift = count % integerPartWidth;
-
- /* Perform the shift. This leaves the most significant COUNT bits
- of the result at zero. */
- for(i = 0; i < parts; i++) {
- integerPart part;
-
- if (i + jump >= parts) {
- part = 0;
- } else {
- part = dst[i + jump];
- if (shift) {
- part >>= shift;
- if (i + jump + 1 < parts)
- part |= dst[i + jump + 1] << (integerPartWidth - shift);
- }
- }
-
- dst[i] = part;
- }
- }
-}
-
-/* Bitwise and of two bignums. */
-void
-APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- dst[i] &= rhs[i];
-}
-
-/* Bitwise inclusive or of two bignums. */
-void
-APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- dst[i] |= rhs[i];
-}
-
-/* Bitwise exclusive or of two bignums. */
-void
-APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- dst[i] ^= rhs[i];
-}
-
-/* Complement a bignum in-place. */
-void
-APInt::tcComplement(integerPart *dst, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- dst[i] = ~dst[i];
-}
-
-/* Comparison (unsigned) of two bignums. */
-int
-APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
- unsigned int parts)
-{
- while (parts) {
- parts--;
- if (lhs[parts] == rhs[parts])
- continue;
-
- if (lhs[parts] > rhs[parts])
- return 1;
- else
- return -1;
- }
-
- return 0;
-}
-
-/* Increment a bignum in-place, return the carry flag. */
-integerPart
-APInt::tcIncrement(integerPart *dst, unsigned int parts)
-{
- unsigned int i;
-
- for(i = 0; i < parts; i++)
- if (++dst[i] != 0)
- break;
-
- return i == parts;
-}
-
-/* Set the least significant BITS bits of a bignum, clear the
- rest. */
-void
-APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
- unsigned int bits)
-{
- unsigned int i;
-
- i = 0;
- while (bits > integerPartWidth) {
- dst[i++] = ~(integerPart) 0;
- bits -= integerPartWidth;
- }
-
- if (bits)
- dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
-
- while (i < parts)
- dst[i++] = 0;
-}
More information about the llvm-commits
mailing list