[llvm-commits] [llvm] r41060 - in /llvm/trunk: include/llvm/CodeGen/LiveInterval.h include/llvm/CodeGen/LiveIntervalAnalysis.h lib/CodeGen/LiveIntervalAnalysis.cpp lib/CodeGen/RegAllocLinearScan.cpp lib/CodeGen/SimpleRegisterCoalescing.cpp lib/CodeGen/VirtRegMap.cpp lib/CodeGen/VirtRegMap.h

Evan Cheng evan.cheng at apple.com
Mon Aug 13 16:45:18 PDT 2007


Author: evancheng
Date: Mon Aug 13 18:45:17 2007
New Revision: 41060

URL: http://llvm.org/viewvc/llvm-project?rev=41060&view=rev
Log:
Re-implement trivial rematerialization. This allows def MIs whose live intervals that are coalesced to be rematerialized.

Modified:
    llvm/trunk/include/llvm/CodeGen/LiveInterval.h
    llvm/trunk/include/llvm/CodeGen/LiveIntervalAnalysis.h
    llvm/trunk/lib/CodeGen/LiveIntervalAnalysis.cpp
    llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp
    llvm/trunk/lib/CodeGen/SimpleRegisterCoalescing.cpp
    llvm/trunk/lib/CodeGen/VirtRegMap.cpp
    llvm/trunk/lib/CodeGen/VirtRegMap.h

Modified: llvm/trunk/include/llvm/CodeGen/LiveInterval.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/LiveInterval.h?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/include/llvm/CodeGen/LiveInterval.h (original)
+++ llvm/trunk/include/llvm/CodeGen/LiveInterval.h Mon Aug 13 18:45:17 2007
@@ -83,7 +83,6 @@
     unsigned reg;        // the register of this interval
     unsigned preference; // preferred register to allocate for this interval
     float weight;        // weight of this interval
-    MachineInstr* remat; // definition if the definition rematerializable
     Ranges ranges;       // the ranges in which this register is live
 
     /// ValueNumberInfo - If the value number definition is undefined (e.g. phi
@@ -101,7 +100,7 @@
   public:
 
     LiveInterval(unsigned Reg, float Weight)
-      : reg(Reg), preference(0), weight(Weight), remat(NULL) {
+      : reg(Reg), preference(0), weight(Weight) {
     }
 
     typedef Ranges::iterator iterator;
@@ -128,7 +127,6 @@
     void swap(LiveInterval& other) {
       std::swap(reg, other.reg);
       std::swap(weight, other.weight);
-      std::swap(remat, other.remat);
       std::swap(ranges, other.ranges);
       std::swap(ValueNumberInfo, other.ValueNumberInfo);
     }

Modified: llvm/trunk/include/llvm/CodeGen/LiveIntervalAnalysis.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/LiveIntervalAnalysis.h?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/include/llvm/CodeGen/LiveIntervalAnalysis.h (original)
+++ llvm/trunk/include/llvm/CodeGen/LiveIntervalAnalysis.h Mon Aug 13 18:45:17 2007
@@ -25,6 +25,8 @@
 #include "llvm/ADT/BitVector.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
 
 namespace llvm {
 
@@ -41,9 +43,9 @@
     const TargetInstrInfo* tii_;
     LiveVariables* lv_;
 
-    /// MBB2IdxMap - The index of the first instruction in the specified basic
-    /// block.
-    std::vector<unsigned> MBB2IdxMap;
+    /// MBB2IdxMap - The indexes of the first and last instructions in the
+    /// specified basic block.
+    std::vector<std::pair<unsigned, unsigned> > MBB2IdxMap;
 
     typedef std::map<MachineInstr*, unsigned> Mi2IndexMap;
     Mi2IndexMap mi2iMap_;
@@ -56,6 +58,8 @@
 
     BitVector allocatableRegs_;
 
+    std::vector<MachineInstr*> ClonedMIs;
+
   public:
     static char ID; // Pass identification, replacement for typeid
     LiveIntervals() : MachineFunctionPass((intptr_t)&ID) {}
@@ -118,10 +122,19 @@
     unsigned getMBBStartIdx(MachineBasicBlock *MBB) const {
       return getMBBStartIdx(MBB->getNumber());
     }
-    
     unsigned getMBBStartIdx(unsigned MBBNo) const {
       assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!");
-      return MBB2IdxMap[MBBNo];
+      return MBB2IdxMap[MBBNo].first;
+    }
+
+    /// getMBBEndIdx - Return the store index of the last instruction in the
+    /// specified MachineBasicBlock.
+    unsigned getMBBEndIdx(MachineBasicBlock *MBB) const {
+      return getMBBEndIdx(MBB->getNumber());
+    }
+    unsigned getMBBEndIdx(unsigned MBBNo) const {
+      assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!");
+      return MBB2IdxMap[MBBNo].second;
     }
 
     /// getInstructionIndex - returns the base index of instr
@@ -155,8 +168,7 @@
                                         const std::vector<LiveRange> &LRs);
 
     std::vector<LiveInterval*> addIntervalsForSpills(const LiveInterval& i,
-                                                     VirtRegMap& vrm,
-                                                     int slot);
+                                                 VirtRegMap& vrm, unsigned reg);
 
     // Interval removal
 
@@ -225,6 +237,17 @@
                               unsigned MIIdx,
                               LiveInterval &interval, bool isAlias = false);
 
+    /// isReMaterializable - Returns true if the definition MI of the specified
+    /// val# of the specified interval is re-materializable.
+    bool isReMaterializable(const LiveInterval &li, unsigned ValNum,
+                            MachineInstr *MI);
+
+    /// tryFoldMemoryOperand - Attempts to fold a spill / restore from slot
+    /// to reg into ith operand of specified MI. If it is successul, MI is
+    /// updated with the newly created MI and returns true.
+    bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm, unsigned index,
+                              unsigned i, int slot, unsigned reg);
+
     static LiveInterval createInterval(unsigned Reg);
 
     void printRegName(unsigned reg) const;

Modified: llvm/trunk/lib/CodeGen/LiveIntervalAnalysis.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/LiveIntervalAnalysis.cpp?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/LiveIntervalAnalysis.cpp (original)
+++ llvm/trunk/lib/CodeGen/LiveIntervalAnalysis.cpp Mon Aug 13 18:45:17 2007
@@ -30,7 +30,6 @@
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
-#include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/STLExtras.h"
 #include <algorithm>
@@ -60,6 +59,8 @@
   mi2iMap_.clear();
   i2miMap_.clear();
   r2iMap_.clear();
+  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
+    delete ClonedMIs[i];
 }
 
 /// runOnMachineFunction - Register allocate the whole function
@@ -74,13 +75,12 @@
 
   // Number MachineInstrs and MachineBasicBlocks.
   // Initialize MBB indexes to a sentinal.
-  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
+  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
   
   unsigned MIIndex = 0;
   for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
        MBB != E; ++MBB) {
-    // Set the MBB2IdxMap entry for this MBB.
-    MBB2IdxMap[MBB->getNumber()] = MIIndex;
+    unsigned StartIdx = MIIndex;
 
     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
          I != E; ++I) {
@@ -89,6 +89,9 @@
       i2miMap_.push_back(I);
       MIIndex += InstrSlots::NUM;
     }
+
+    // Set the MBB2IdxMap entry for this MBB.
+    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
   }
 
   computeIntervals();
@@ -175,8 +178,76 @@
   return NewLI;
 }
 
+/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
+/// two addr elimination.
+static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
+                                const TargetInstrInfo *TII) {
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO1 = MI->getOperand(i);
+    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
+      for (unsigned j = i+1; j < e; ++j) {
+        MachineOperand &MO2 = MI->getOperand(j);
+        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
+            MI->getInstrDescriptor()->
+            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
+          return true;
+      }
+    }
+  }
+  return false;
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li, unsigned ValNum,
+                                       MachineInstr *MI) {
+  if (tii_->isTriviallyReMaterializable(MI))
+    return true;
+
+  int FrameIdx = 0;
+  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
+      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
+    return false;
+
+  // This is a load from fixed stack slot. It can be rematerialized unless it's
+  // re-defined by a two-address instruction.
+  for (unsigned i = 0, e = li.getNumValNums(); i != e; ++i) {
+    if (i == ValNum)
+      continue;
+    unsigned DefIdx = li.getDefForValNum(i);
+    if (DefIdx == ~1U)
+      continue; // Dead val#.
+    MachineInstr *DefMI = (DefIdx == ~0u)
+      ? NULL : getInstructionFromIndex(DefIdx);
+    if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
+      return false;
+  }
+  return true;
+}
+
+bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
+                                         unsigned index, unsigned i,
+                                         int slot, unsigned reg) {
+  MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot);
+  if (fmi) {
+    // Attempt to fold the memory reference into the instruction. If
+    // we can do this, we don't need to insert spill code.
+    if (lv_)
+      lv_->instructionChanged(MI, fmi);
+    MachineBasicBlock &MBB = *MI->getParent();
+    vrm.virtFolded(reg, MI, i, fmi);
+    mi2iMap_.erase(MI);
+    i2miMap_[index/InstrSlots::NUM] = fmi;
+    mi2iMap_[fmi] = index;
+    MI = MBB.insert(MBB.erase(MI), fmi);
+    ++numFolded;
+    return true;
+  }
+  return false;
+}
+
 std::vector<LiveInterval*> LiveIntervals::
-addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
+addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
   // since this is called after the analysis is done we don't know if
   // LiveVariables is available
   lv_ = getAnalysisToUpdate<LiveVariables>();
@@ -192,10 +263,72 @@
 
   const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
 
+  unsigned NumValNums = li.getNumValNums();
+  SmallVector<MachineInstr*, 4> ReMatDefs;
+  ReMatDefs.resize(NumValNums, NULL);
+  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
+  ReMatOrigDefs.resize(NumValNums, NULL);
+  SmallVector<int, 4> ReMatIds;
+  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
+  BitVector ReMatDelete(NumValNums);
+  unsigned slot = VirtRegMap::MAX_STACK_SLOT;
+
+  bool NeedStackSlot = false;
+  for (unsigned i = 0; i != NumValNums; ++i) {
+    unsigned DefIdx = li.getDefForValNum(i);
+    if (DefIdx == ~1U)
+      continue; // Dead val#.
+    // Is the def for the val# rematerializable?
+    MachineInstr *DefMI = (DefIdx == ~0u)
+      ? NULL : getInstructionFromIndex(DefIdx);
+    if (DefMI && isReMaterializable(li, i, DefMI)) {
+      // Remember how to remat the def of this val#.
+      ReMatOrigDefs[i] = DefMI;
+      // Original def may be modified so we have to make a copy here. vrm must
+      // delete these!
+      ReMatDefs[i] = DefMI = DefMI->clone();
+      vrm.setVirtIsReMaterialized(reg, DefMI);
+
+      bool CanDelete = true;
+      const SmallVector<unsigned, 4> &kills = li.getKillsForValNum(i);
+      for (unsigned j = 0, ee = kills.size(); j != ee; ++j) {
+        unsigned KillIdx = kills[j];
+        MachineInstr *KillMI = (KillIdx & 1)
+          ? NULL : getInstructionFromIndex(KillIdx);
+        // Kill is a phi node, not all of its uses can be rematerialized.
+        // It must not be deleted.
+        if (!KillMI) {
+          CanDelete = false;
+          // Need a stack slot if there is any live range where uses cannot be
+          // rematerialized.
+          NeedStackSlot = true;
+          break;
+        }
+      }
+
+      if (CanDelete)
+        ReMatDelete.set(i);
+    } else {
+      // Need a stack slot if there is any live range where uses cannot be
+      // rematerialized.
+      NeedStackSlot = true;
+    }
+  }
+
+  // One stack slot per live interval.
+  if (NeedStackSlot)
+    slot = vrm.assignVirt2StackSlot(reg);
+
   for (LiveInterval::Ranges::const_iterator
-         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
-    unsigned index = getBaseIndex(i->start);
-    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
+         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+    MachineInstr *DefMI = ReMatDefs[I->ValId];
+    MachineInstr *OrigDefMI = ReMatOrigDefs[I->ValId];
+    bool DefIsReMat = DefMI != NULL;
+    bool CanDelete = ReMatDelete[I->ValId];
+    int LdSlot = 0;
+    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
+    unsigned index = getBaseIndex(I->start);
+    unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
     for (; index != end; index += InstrSlots::NUM) {
       // skip deleted instructions
       while (index != end && !getInstructionFromIndex(index))
@@ -208,87 +341,109 @@
       for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
         MachineOperand& mop = MI->getOperand(i);
         if (mop.isRegister() && mop.getReg() == li.reg) {
-          MachineInstr *fmi = li.remat ? NULL
-            : mri_->foldMemoryOperand(MI, i, slot);
-          if (fmi) {
-            // Attempt to fold the memory reference into the instruction.  If we
-            // can do this, we don't need to insert spill code.
-            if (lv_)
-              lv_->instructionChanged(MI, fmi);
-            MachineBasicBlock &MBB = *MI->getParent();
-            vrm.virtFolded(li.reg, MI, i, fmi);
-            mi2iMap_.erase(MI);
-            i2miMap_[index/InstrSlots::NUM] = fmi;
-            mi2iMap_[fmi] = index;
-            MI = MBB.insert(MBB.erase(MI), fmi);
-            ++numFolded;
-            // Folding the load/store can completely change the instruction in
-            // unpredictable ways, rescan it from the beginning.
-            goto RestartInstruction;
+          if (DefIsReMat) {
+            // If this is the rematerializable definition MI itself and
+            // all of its uses are rematerialized, simply delete it.
+            if (MI == OrigDefMI) {
+              if (CanDelete) {
+                RemoveMachineInstrFromMaps(MI);
+                MI->eraseFromParent();
+                break;
+              } else if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
+                // Folding the load/store can completely change the instruction
+                // in unpredictable ways, rescan it from the beginning.
+                goto RestartInstruction;
+            } else if (isLoadSS &&
+                       tryFoldMemoryOperand(MI, vrm, index, i, LdSlot, li.reg)){
+              // FIXME: Other rematerializable loads can be folded as well.
+              // Folding the load/store can completely change the
+              // instruction in unpredictable ways, rescan it from
+              // the beginning.
+              goto RestartInstruction;
+            }
           } else {
-            // Create a new virtual register for the spill interval.
-            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
+            if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
+              // Folding the load/store can completely change the instruction in
+              // unpredictable ways, rescan it from the beginning.
+              goto RestartInstruction;
+          }
+
+          // Create a new virtual register for the spill interval.
+          unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
             
-            // Scan all of the operands of this instruction rewriting operands
-            // to use NewVReg instead of li.reg as appropriate.  We do this for
-            // two reasons:
-            //
-            //   1. If the instr reads the same spilled vreg multiple times, we
-            //      want to reuse the NewVReg.
-            //   2. If the instr is a two-addr instruction, we are required to
-            //      keep the src/dst regs pinned.
-            //
-            // Keep track of whether we replace a use and/or def so that we can
-            // create the spill interval with the appropriate range. 
-            mop.setReg(NewVReg);
+          // Scan all of the operands of this instruction rewriting operands
+          // to use NewVReg instead of li.reg as appropriate.  We do this for
+          // two reasons:
+          //
+          //   1. If the instr reads the same spilled vreg multiple times, we
+          //      want to reuse the NewVReg.
+          //   2. If the instr is a two-addr instruction, we are required to
+          //      keep the src/dst regs pinned.
+          //
+          // Keep track of whether we replace a use and/or def so that we can
+          // create the spill interval with the appropriate range. 
+          mop.setReg(NewVReg);
             
-            bool HasUse = mop.isUse();
-            bool HasDef = mop.isDef();
-            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
-              if (MI->getOperand(j).isReg() &&
-                  MI->getOperand(j).getReg() == li.reg) {
-                MI->getOperand(j).setReg(NewVReg);
-                HasUse |= MI->getOperand(j).isUse();
-                HasDef |= MI->getOperand(j).isDef();
-              }
+          bool HasUse = mop.isUse();
+          bool HasDef = mop.isDef();
+          for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
+            if (MI->getOperand(j).isReg() &&
+                MI->getOperand(j).getReg() == li.reg) {
+              MI->getOperand(j).setReg(NewVReg);
+              HasUse |= MI->getOperand(j).isUse();
+              HasDef |= MI->getOperand(j).isDef();
             }
+          }
 
-            // create a new register for this spill
-            vrm.grow();
-            if (li.remat)
-              vrm.setVirtIsReMaterialized(NewVReg, li.remat);
-            vrm.assignVirt2StackSlot(NewVReg, slot);
-            LiveInterval &nI = getOrCreateInterval(NewVReg);
-            nI.remat = li.remat;
-            assert(nI.empty());
-
-            // the spill weight is now infinity as it
-            // cannot be spilled again
-            nI.weight = HUGE_VALF;
-
-            if (HasUse) {
-              LiveRange LR(getLoadIndex(index), getUseIndex(index),
-                           nI.getNextValue(~0U, 0));
-              DOUT << " +" << LR;
-              nI.addRange(LR);
+          vrm.grow();
+          if (DefIsReMat) {
+            vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
+            if (ReMatIds[I->ValId] == VirtRegMap::MAX_STACK_SLOT) {
+              // Each valnum may have its own remat id.
+              ReMatIds[I->ValId] = vrm.assignVirtReMatId(NewVReg);
+            } else {
+              vrm.assignVirtReMatId(NewVReg, ReMatIds[I->ValId]);
             }
-            if (HasDef) {
-              LiveRange LR(getDefIndex(index), getStoreIndex(index),
-                           nI.getNextValue(~0U, 0));
-              DOUT << " +" << LR;
-              nI.addRange(LR);
+            if (!CanDelete || (HasUse && HasDef)) {
+              // If this is a two-addr instruction then its use operands are
+              // rematerializable but its def is not. It should be assigned a
+              // stack slot.
+              vrm.assignVirt2StackSlot(NewVReg, slot);
             }
+          } else {
+            vrm.assignVirt2StackSlot(NewVReg, slot);
+          }
+
+          // create a new register interval for this spill / remat.
+          LiveInterval &nI = getOrCreateInterval(NewVReg);
+          assert(nI.empty());
+
+          // the spill weight is now infinity as it
+          // cannot be spilled again
+          nI.weight = HUGE_VALF;
+
+          if (HasUse) {
+            LiveRange LR(getLoadIndex(index), getUseIndex(index),
+                         nI.getNextValue(~0U, 0));
+            DOUT << " +" << LR;
+            nI.addRange(LR);
+          }
+          if (HasDef) {
+            LiveRange LR(getDefIndex(index), getStoreIndex(index),
+                         nI.getNextValue(~0U, 0));
+            DOUT << " +" << LR;
+            nI.addRange(LR);
+          }
             
-            added.push_back(&nI);
+          added.push_back(&nI);
 
-            // update live variables if it is available
-            if (lv_)
-              lv_->addVirtualRegisterKilled(NewVReg, MI);
+          // update live variables if it is available
+          if (lv_)
+            lv_->addVirtualRegisterKilled(NewVReg, MI);
             
-            DOUT << "\t\t\t\tadded new interval: ";
-            nI.print(DOUT, mri_);
-            DOUT << '\n';
-          }
+          DOUT << "\t\t\t\tadded new interval: ";
+          nI.print(DOUT, mri_);
+          DOUT << '\n';
         }
       }
     }
@@ -304,25 +459,6 @@
     cerr << "%reg" << reg;
 }
 
-/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
-/// two addr elimination.
-static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
-                                const TargetInstrInfo *TII) {
-  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-    MachineOperand &MO1 = MI->getOperand(i);
-    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
-      for (unsigned j = i+1; j < e; ++j) {
-        MachineOperand &MO2 = MI->getOperand(j);
-        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
-            MI->getInstrDescriptor()->
-            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
-          return true;
-      }
-    }
-  }
-  return false;
-}
-
 void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
                                              MachineBasicBlock::iterator mi,
                                              unsigned MIIdx,
@@ -335,16 +471,6 @@
   // done once for the vreg.  We use an empty interval to detect the first
   // time we see a vreg.
   if (interval.empty()) {
-    // Remember if the definition can be rematerialized. All load's from fixed
-    // stack slots are re-materializable. The target may permit other
-    // instructions to be re-materialized as well.
-    int FrameIdx = 0;
-    if (vi.DefInst &&
-        (tii_->isTriviallyReMaterializable(vi.DefInst) ||
-         (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) &&
-          mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))))
-      interval.remat = vi.DefInst;
-
     // Get the Idx of the defining instructions.
     unsigned defIndex = getDefIndex(MIIdx);
     unsigned ValNum;
@@ -421,9 +547,6 @@
     }
 
   } else {
-    // Can no longer safely assume definition is rematerializable.
-    interval.remat = NULL;
-
     // If this is the second time we see a virtual register definition, it
     // must be due to phi elimination or two addr elimination.  If this is
     // the result of two address elimination, then the vreg is one of the
@@ -487,7 +610,7 @@
         DOUT << " Removing [" << Start << "," << End << "] from: ";
         interval.print(DOUT, mri_); DOUT << "\n";
         interval.removeRange(Start, End);
-        interval.addKillForValNum(0, Start);
+        interval.addKillForValNum(0, Start-1); // odd # means phi node
         DOUT << " RESULT: "; interval.print(DOUT, mri_);
 
         // Replace the interval with one of a NEW value number.  Note that this
@@ -514,7 +637,7 @@
       unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
       LiveRange LR(defIndex, killIndex, ValNum);
       interval.addRange(LR);
-      interval.addKillForValNum(ValNum, killIndex);
+      interval.addKillForValNum(ValNum, killIndex-1); // odd # means phi node
       DOUT << " +" << LR;
     }
   }

Modified: llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp (original)
+++ llvm/trunk/lib/CodeGen/RegAllocLinearScan.cpp Mon Aug 13 18:45:17 2007
@@ -305,7 +305,7 @@
     for (unsigned i = 0, e = handled_.size(); i != e; ++i) { 
       LiveInterval *HI = handled_[i];
       unsigned Reg = HI->reg;
-      if (!vrm_->hasStackSlot(Reg) && HI->liveAt(StartIdx)) {
+      if (vrm_->isAssignedReg(Reg) && HI->liveAt(StartIdx)) {
         assert(MRegisterInfo::isVirtualRegister(Reg));
         Reg = vrm_->getPhys(Reg);
         MBB->addLiveIn(Reg);
@@ -605,14 +605,8 @@
   // linearscan.
   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
     DOUT << "\t\t\tspilling(c): " << *cur << '\n';
-    // if the current interval is re-materializable, remember so and don't
-    // assign it a spill slot.
-    if (cur->remat)
-      vrm_->setVirtIsReMaterialized(cur->reg, cur->remat);
-    int slot = cur->remat ? vrm_->assignVirtReMatId(cur->reg)
-      : vrm_->assignVirt2StackSlot(cur->reg);
     std::vector<LiveInterval*> added =
-      li_->addIntervalsForSpills(*cur, *vrm_, slot);
+      li_->addIntervalsForSpills(*cur, *vrm_, cur->reg);
     if (added.empty())
       return;  // Early exit if all spills were folded.
 
@@ -663,12 +657,8 @@
         cur->overlapsFrom(*i->first, i->second)) {
       DOUT << "\t\t\tspilling(a): " << *i->first << '\n';
       earliestStart = std::min(earliestStart, i->first->beginNumber());
-      if (i->first->remat)
-        vrm_->setVirtIsReMaterialized(reg, i->first->remat);
-      int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
-        : vrm_->assignVirt2StackSlot(reg);
       std::vector<LiveInterval*> newIs =
-        li_->addIntervalsForSpills(*i->first, *vrm_, slot);
+        li_->addIntervalsForSpills(*i->first, *vrm_, reg);
       std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
       spilled.insert(reg);
     }
@@ -680,12 +670,8 @@
         cur->overlapsFrom(*i->first, i->second-1)) {
       DOUT << "\t\t\tspilling(i): " << *i->first << '\n';
       earliestStart = std::min(earliestStart, i->first->beginNumber());
-      if (i->first->remat)
-        vrm_->setVirtIsReMaterialized(reg, i->first->remat);
-      int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
-        : vrm_->assignVirt2StackSlot(reg);
       std::vector<LiveInterval*> newIs =
-        li_->addIntervalsForSpills(*i->first, *vrm_, slot);
+        li_->addIntervalsForSpills(*i->first, *vrm_, reg);
       std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
       spilled.insert(reg);
     }

Modified: llvm/trunk/lib/CodeGen/SimpleRegisterCoalescing.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SimpleRegisterCoalescing.cpp?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SimpleRegisterCoalescing.cpp (original)
+++ llvm/trunk/lib/CodeGen/SimpleRegisterCoalescing.cpp Mon Aug 13 18:45:17 2007
@@ -1123,12 +1123,6 @@
               continue;
             LiveInterval &RegInt = li_->getInterval(reg);
             float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
-            // If the definition instruction is re-materializable, its spill
-            // weight is half of what it would have been normally unless it's
-            // a load from fixed stack slot.
-            int Dummy;
-            if (RegInt.remat && !tii_->isLoadFromStackSlot(RegInt.remat, Dummy))
-              w /= 2;
             RegInt.weight += w;
             UniqueUses.insert(reg);
           }

Modified: llvm/trunk/lib/CodeGen/VirtRegMap.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/VirtRegMap.cpp?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/VirtRegMap.cpp (original)
+++ llvm/trunk/lib/CodeGen/VirtRegMap.cpp Mon Aug 13 18:45:17 2007
@@ -62,13 +62,17 @@
 VirtRegMap::VirtRegMap(MachineFunction &mf)
   : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
     Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
+    Virt2ReMatIdMap(NO_STACK_SLOT), ReMatMap(NULL),
     ReMatId(MAX_STACK_SLOT+1) {
   grow();
 }
 
 void VirtRegMap::grow() {
-  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
-  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
+  unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
+  Virt2PhysMap.grow(LastVirtReg);
+  Virt2StackSlotMap.grow(LastVirtReg);
+  Virt2ReMatIdMap.grow(LastVirtReg);
+  ReMatMap.grow(LastVirtReg);
 }
 
 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
@@ -95,19 +99,19 @@
 
 int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
   assert(MRegisterInfo::isVirtualRegister(virtReg));
-  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
+  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
          "attempt to assign re-mat id to already spilled register");
-  const MachineInstr *DefMI = getReMaterializedMI(virtReg);
-  int FrameIdx;
-  if (TII.isLoadFromStackSlot((MachineInstr*)DefMI, FrameIdx)) {
-    // Load from stack slot is re-materialize as reload from the stack slot!
-    Virt2StackSlotMap[virtReg] = FrameIdx;
-    return FrameIdx;
-  }
-  Virt2StackSlotMap[virtReg] = ReMatId;
+  Virt2ReMatIdMap[virtReg] = ReMatId;
   return ReMatId++;
 }
 
+void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
+  assert(MRegisterInfo::isVirtualRegister(virtReg));
+  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
+         "attempt to assign re-mat id to already spilled register");
+  Virt2ReMatIdMap[virtReg] = id;
+}
+
 void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
                             unsigned OpNo, MachineInstr *NewMI) {
   // Move previous memory references folded to new instruction.
@@ -194,7 +198,7 @@
           if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
             unsigned VirtReg = MO.getReg();
             unsigned PhysReg = VRM.getPhys(VirtReg);
-            if (VRM.hasStackSlot(VirtReg)) {
+            if (!VRM.isAssignedReg(VirtReg)) {
               int StackSlot = VRM.getStackSlot(VirtReg);
               const TargetRegisterClass* RC =
                 MF.getSSARegMap()->getRegClass(VirtReg);
@@ -246,43 +250,41 @@
       DOUT << "\n**** Local spiller rewriting function '"
            << MF.getFunction()->getName() << "':\n";
 
-      std::vector<MachineInstr *> ReMatedMIs;
       for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
            MBB != E; ++MBB)
-        RewriteMBB(*MBB, VRM, ReMatedMIs);
-      for (unsigned i = 0, e = ReMatedMIs.size(); i != e; ++i)
-        delete ReMatedMIs[i];
+        RewriteMBB(*MBB, VRM);
       return true;
     }
   private:
-    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
-                    std::vector<MachineInstr*> &ReMatedMIs);
+    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
   };
 }
 
 /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
-/// top down, keep track of which spills slots are available in each register.
+/// top down, keep track of which spills slots or remat are available in each
+/// register.
 ///
 /// Note that not all physregs are created equal here.  In particular, some
 /// physregs are reloads that we are allowed to clobber or ignore at any time.
 /// Other physregs are values that the register allocated program is using that
 /// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
-/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
-/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
-/// addAvailable sets it if.
+/// per-stack-slot / remat id basis as the low bit in the value of the
+/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
+/// this bit and addAvailable sets it if.
 namespace {
 class VISIBILITY_HIDDEN AvailableSpills {
   const MRegisterInfo *MRI;
   const TargetInstrInfo *TII;
 
-  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
-  // register values that are still available, due to being loaded or stored to,
-  // but not invalidated yet.
-  std::map<int, unsigned> SpillSlotsAvailable;
+  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
+  // or remat'ed virtual register values that are still available, due to being
+  // loaded or stored to, but not invalidated yet.
+  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
     
-  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
-  // which stack slot values are currently held by a physreg.  This is used to
-  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
+  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
+  // indicating which stack slot values are currently held by a physreg.  This
+  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
+  // physreg is modified.
   std::multimap<unsigned, int> PhysRegsAvailable;
   
   void disallowClobberPhysRegOnly(unsigned PhysReg);
@@ -295,41 +297,43 @@
   
   const MRegisterInfo *getRegInfo() const { return MRI; }
 
-  /// getSpillSlotPhysReg - If the specified stack slot is available in a 
-  /// physical register, return that PhysReg, otherwise return 0.
-  unsigned getSpillSlotPhysReg(int Slot) const {
-    std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
-    if (I != SpillSlotsAvailable.end()) {
+  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
+  /// available in a  physical register, return that PhysReg, otherwise
+  /// return 0.
+  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
+    std::map<int, unsigned>::const_iterator I =
+      SpillSlotsOrReMatsAvailable.find(Slot);
+    if (I != SpillSlotsOrReMatsAvailable.end()) {
       return I->second >> 1;  // Remove the CanClobber bit.
     }
     return 0;
   }
 
-  /// addAvailable - Mark that the specified stack slot is available in the
-  /// specified physreg.  If CanClobber is true, the physreg can be modified at
-  /// any time without changing the semantics of the program.
-  void addAvailable(int Slot, MachineInstr *MI, unsigned Reg,
+  /// addAvailable - Mark that the specified stack slot / remat is available in
+  /// the specified physreg.  If CanClobber is true, the physreg can be modified
+  /// at any time without changing the semantics of the program.
+  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
                     bool CanClobber = true) {
     // If this stack slot is thought to be available in some other physreg, 
     // remove its record.
-    ModifyStackSlot(Slot);
+    ModifyStackSlotOrReMat(SlotOrReMat);
     
-    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
-    SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
+    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
+    SpillSlotsOrReMatsAvailable[SlotOrReMat] = (Reg << 1) | (unsigned)CanClobber;
   
-    if (Slot > VirtRegMap::MAX_STACK_SLOT)
-      DOUT << "Remembering RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1;
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
     else
-      DOUT << "Remembering SS#" << Slot;
+      DOUT << "Remembering SS#" << SlotOrReMat;
     DOUT << " in physreg " << MRI->getName(Reg) << "\n";
   }
 
   /// canClobberPhysReg - Return true if the spiller is allowed to change the 
   /// value of the specified stackslot register if it desires.  The specified
   /// stack slot must be available in a physreg for this query to make sense.
-  bool canClobberPhysReg(int Slot) const {
-    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
-    return SpillSlotsAvailable.find(Slot)->second & 1;
+  bool canClobberPhysReg(int SlotOrReMat) const {
+    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && "Value not available!");
+    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
   }
   
   /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
@@ -342,10 +346,10 @@
   /// it and any of its aliases.
   void ClobberPhysReg(unsigned PhysReg);
 
-  /// ModifyStackSlot - This method is called when the value in a stack slot
+  /// ModifyStackSlotOrReMat - This method is called when the value in a stack slot
   /// changes.  This removes information about which register the previous value
   /// for this slot lives in (as the previous value is dead now).
-  void ModifyStackSlot(int Slot);
+  void ModifyStackSlotOrReMat(int SlotOrReMat);
 };
 }
 
@@ -356,11 +360,11 @@
   std::multimap<unsigned, int>::iterator I =
     PhysRegsAvailable.lower_bound(PhysReg);
   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
-    int Slot = I->second;
+    int SlotOrReMat = I->second;
     I++;
-    assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
            "Bidirectional map mismatch!");
-    SpillSlotsAvailable[Slot] &= ~1;
+    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
     DOUT << "PhysReg " << MRI->getName(PhysReg)
          << " copied, it is available for use but can no longer be modified\n";
   }
@@ -381,17 +385,17 @@
   std::multimap<unsigned, int>::iterator I =
     PhysRegsAvailable.lower_bound(PhysReg);
   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
-    int Slot = I->second;
+    int SlotOrReMat = I->second;
     PhysRegsAvailable.erase(I++);
-    assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
            "Bidirectional map mismatch!");
-    SpillSlotsAvailable.erase(Slot);
+    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
     DOUT << "PhysReg " << MRI->getName(PhysReg)
          << " clobbered, invalidating ";
-    if (Slot > VirtRegMap::MAX_STACK_SLOT)
-      DOUT << "RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
     else
-      DOUT << "SS#" << Slot << "\n";
+      DOUT << "SS#" << SlotOrReMat << "\n";
   }
 }
 
@@ -404,14 +408,14 @@
   ClobberPhysRegOnly(PhysReg);
 }
 
-/// ModifyStackSlot - This method is called when the value in a stack slot
+/// ModifyStackSlotOrReMat - This method is called when the value in a stack slot
 /// changes.  This removes information about which register the previous value
 /// for this slot lives in (as the previous value is dead now).
-void AvailableSpills::ModifyStackSlot(int Slot) {
-  std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
-  if (It == SpillSlotsAvailable.end()) return;
+void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
+  std::map<int, unsigned>::iterator It = SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
+  if (It == SpillSlotsOrReMatsAvailable.end()) return;
   unsigned Reg = It->second >> 1;
-  SpillSlotsAvailable.erase(It);
+  SpillSlotsOrReMatsAvailable.erase(It);
   
   // This register may hold the value of multiple stack slots, only remove this
   // stack slot from the set of values the register contains.
@@ -419,7 +423,7 @@
   for (; ; ++I) {
     assert(I != PhysRegsAvailable.end() && I->first == Reg &&
            "Map inverse broken!");
-    if (I->second == Slot) break;
+    if (I->second == SlotOrReMat) break;
   }
   PhysRegsAvailable.erase(I);
 }
@@ -490,8 +494,8 @@
     // The MachineInstr operand that reused an available value.
     unsigned Operand;
 
-    // StackSlot - The spill slot of the value being reused.
-    unsigned StackSlot;
+    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
+    unsigned StackSlotOrReMat;
 
     // PhysRegReused - The physical register the value was available in.
     unsigned PhysRegReused;
@@ -504,7 +508,7 @@
 
     ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
              unsigned vreg)
-      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
+      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), AssignedPhysReg(apr),
       VirtReg(vreg) {}
   };
   
@@ -525,7 +529,7 @@
     
     /// addReuse - If we choose to reuse a virtual register that is already
     /// available instead of reloading it, remember that we did so.
-    void addReuse(unsigned OpNo, unsigned StackSlot,
+    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
                   unsigned PhysRegReused, unsigned AssignedPhysReg,
                   unsigned VirtReg) {
       // If the reload is to the assigned register anyway, no undo will be
@@ -533,7 +537,7 @@
       if (PhysRegReused == AssignedPhysReg) return;
       
       // Otherwise, remember this.
-      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused, 
+      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
                                 AssignedPhysReg, VirtReg));
     }
 
@@ -553,7 +557,8 @@
                              std::map<int, MachineInstr*> &MaybeDeadStores,
                              SmallSet<unsigned, 8> &Rejected,
                              BitVector &RegKills,
-                             std::vector<MachineOperand*> &KillOps) {
+                             std::vector<MachineOperand*> &KillOps,
+                             VirtRegMap &VRM) {
       if (Reuses.empty()) return PhysReg;  // This is most often empty.
 
       for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
@@ -569,7 +574,7 @@
           unsigned NewReg = Op.AssignedPhysReg;
           Rejected.insert(PhysReg);
           return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
-                                 RegKills, KillOps);
+                                 RegKills, KillOps, VRM);
         } else {
           // Otherwise, we might also have a problem if a previously reused
           // value aliases the new register.  If so, codegen the previous reload
@@ -595,20 +600,26 @@
             // would prefer us to use a different register.
             unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
                                                   MI, Spills, MaybeDeadStores,
-                                                  Rejected, RegKills, KillOps);
+                                              Rejected, RegKills, KillOps, VRM);
             
-            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
-                                      NewOp.StackSlot, AliasRC);
+            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
+              MRI->reMaterialize(*MBB, MI, NewPhysReg,
+                                 VRM.getReMaterializedMI(NewOp.VirtReg));
+              ++NumReMats;
+            } else {
+              MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
+                                        NewOp.StackSlotOrReMat, AliasRC);
+              ++NumLoads;
+            }
             Spills.ClobberPhysReg(NewPhysReg);
             Spills.ClobberPhysReg(NewOp.PhysRegReused);
             
             // Any stores to this stack slot are not dead anymore.
-            MaybeDeadStores.erase(NewOp.StackSlot);
+            MaybeDeadStores.erase(NewOp.StackSlotOrReMat);
             
             MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
             
-            Spills.addAvailable(NewOp.StackSlot, MI, NewPhysReg);
-            ++NumLoads;
+            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
             MachineBasicBlock::iterator MII = MI;
             --MII;
             UpdateKills(*MII, RegKills, KillOps);
@@ -640,10 +651,11 @@
                              AvailableSpills &Spills,
                              std::map<int, MachineInstr*> &MaybeDeadStores,
                              BitVector &RegKills,
-                             std::vector<MachineOperand*> &KillOps) {
+                             std::vector<MachineOperand*> &KillOps,
+                             VirtRegMap &VRM) {
       SmallSet<unsigned, 8> Rejected;
       return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
-                             RegKills, KillOps);
+                             RegKills, KillOps, VRM);
     }
   };
 }
@@ -651,8 +663,7 @@
 
 /// rewriteMBB - Keep track of which spills are available even after the
 /// register allocator is done with them.  If possible, avoid reloading vregs.
-void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
-                              std::vector<MachineInstr*> &ReMatedMIs) {
+void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
   DOUT << MBB.getBasicBlock()->getName() << ":\n";
 
   // Spills - Keep track of which spilled values are available in physregs so
@@ -689,28 +700,6 @@
     // Loop over all of the implicit defs, clearing them from our available
     // sets.
     const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
-
-    // If this instruction is being rematerialized, just remove it!
-    int FrameIdx;
-    if (TII->isTriviallyReMaterializable(&MI) ||
-        TII->isLoadFromStackSlot(&MI, FrameIdx)) {
-      Erased = true;
-      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-        MachineOperand &MO = MI.getOperand(i);
-        if (!MO.isRegister() || MO.getReg() == 0)
-          continue;   // Ignore non-register operands.
-        if (MO.isDef() && !VRM.isReMaterialized(MO.getReg())) {
-          Erased = false;
-          break;
-        }
-      }
-      if (Erased) {
-        VRM.RemoveFromFoldedVirtMap(&MI);
-        ReMatedMIs.push_back(MI.removeFromParent());
-        goto ProcessNextInst;
-      }
-    }
-
     if (TID->ImplicitDefs) {
       const unsigned *ImpDef = TID->ImplicitDefs;
       for ( ; *ImpDef; ++ImpDef) {
@@ -738,7 +727,7 @@
              "Not a virtual or a physical register?");
       
       unsigned VirtReg = MO.getReg();
-      if (!VRM.hasStackSlot(VirtReg)) {
+      if (VRM.isAssignedReg(VirtReg)) {
         // This virtual register was assigned a physreg!
         unsigned Phys = VRM.getPhys(VirtReg);
         MF.setPhysRegUsed(Phys);
@@ -752,12 +741,13 @@
       if (!MO.isUse())
         continue;  // Handle defs in the loop below (handle use&def here though)
 
-      bool doReMat = VRM.isReMaterialized(VirtReg);
-      int StackSlot = VRM.getStackSlot(VirtReg);
+      bool DoReMat = VRM.isReMaterialized(VirtReg);
+      int SSorRMId = DoReMat
+        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
       unsigned PhysReg;
 
       // Check to see if this stack slot is available.
-      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
+      if ((PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId))) {
         // This spilled operand might be part of a two-address operand.  If this
         // is the case, then changing it will necessarily require changing the 
         // def part of the instruction as well.  However, in some cases, we
@@ -771,16 +761,16 @@
           // Okay, we have a two address operand.  We can reuse this physreg as
           // long as we are allowed to clobber the value and there isn't an
           // earlier def that has already clobbered the physreg.
-          CanReuse = Spills.canClobberPhysReg(StackSlot) &&
+          CanReuse = Spills.canClobberPhysReg(SSorRMId) &&
             !ReusedOperands.isClobbered(PhysReg);
         }
         
         if (CanReuse) {
           // If this stack slot value is already available, reuse it!
-          if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
-            DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
+          if (SSorRMId > VirtRegMap::MAX_STACK_SLOT)
+            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
           else
-            DOUT << "Reusing SS#" << StackSlot;
+            DOUT << "Reusing SS#" << SSorRMId;
           DOUT << " from physreg "
                << MRI->getName(PhysReg) << " for vreg"
                << VirtReg <<" instead of reloading into physreg "
@@ -801,7 +791,7 @@
           // or R0 and R1 might not be compatible with each other.  In this
           // case, we actually insert a reload for V1 in R1, ensuring that
           // we can get at R0 or its alias.
-          ReusedOperands.addReuse(i, StackSlot, PhysReg,
+          ReusedOperands.addReuse(i, SSorRMId, PhysReg,
                                   VRM.getPhys(VirtReg), VirtReg);
           if (ti != -1)
             // Only mark it clobbered if this is a use&def operand.
@@ -829,16 +819,16 @@
         // reuser.
         if (ReusedOperands.hasReuses())
           DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
-                                    Spills, MaybeDeadStores, RegKills, KillOps);
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
         
         // If the mapped designated register is actually the physreg we have
         // incoming, we don't need to inserted a dead copy.
         if (DesignatedReg == PhysReg) {
           // If this stack slot value is already available, reuse it!
-          if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
-            DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
+          if (SSorRMId > VirtRegMap::MAX_STACK_SLOT)
+            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
           else
-            DOUT << "Reusing SS#" << StackSlot;
+            DOUT << "Reusing SS#" << SSorRMId;
           DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
                << VirtReg
                << " instead of reloading into same physreg.\n";
@@ -859,7 +849,7 @@
         // This invalidates DesignatedReg.
         Spills.ClobberPhysReg(DesignatedReg);
         
-        Spills.addAvailable(StackSlot, &MI, DesignatedReg);
+        Spills.addAvailable(SSorRMId, &MI, DesignatedReg);
         MI.getOperand(i).setReg(DesignatedReg);
         DOUT << '\t' << *prior(MII);
         ++NumReused;
@@ -877,24 +867,24 @@
       // reuser.
       if (ReusedOperands.hasReuses())
         PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
-                                    Spills, MaybeDeadStores, RegKills, KillOps);
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
       
       MF.setPhysRegUsed(PhysReg);
       ReusedOperands.markClobbered(PhysReg);
-      if (doReMat) {
+      if (DoReMat) {
         MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
         ++NumReMats;
       } else {
-        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
+        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
         ++NumLoads;
       }
       // This invalidates PhysReg.
       Spills.ClobberPhysReg(PhysReg);
 
       // Any stores to this stack slot are not dead anymore.
-      if (!doReMat)
-        MaybeDeadStores.erase(StackSlot);
-      Spills.addAvailable(StackSlot, &MI, PhysReg);
+      if (!DoReMat)
+        MaybeDeadStores.erase(SSorRMId);
+      Spills.addAvailable(SSorRMId, &MI, PhysReg);
       // Assumes this is the last use. IsKill will be unset if reg is reused
       // unless it's a two-address operand.
       if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
@@ -914,7 +904,7 @@
            << I->second.second;
       unsigned VirtReg = I->second.first;
       VirtRegMap::ModRef MR = I->second.second;
-      if (!VRM.hasStackSlot(VirtReg)) {
+      if (VRM.isAssignedReg(VirtReg)) {
         DOUT << ": No stack slot!\n";
         continue;
       }
@@ -929,7 +919,7 @@
           if (FrameIdx == SS) {
             // If this spill slot is available, turn it into a copy (or nothing)
             // instead of leaving it as a load!
-            if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) {
+            if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
               DOUT << "Promoted Load To Copy: " << MI;
               if (DestReg != InReg) {
                 MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
@@ -974,7 +964,7 @@
       // the value, the value is not available anymore.
       if (MR & VirtRegMap::isMod) {
         // Notice that the value in this stack slot has been modified.
-        Spills.ModifyStackSlot(SS);
+        Spills.ModifyStackSlotOrReMat(SS);
         
         // If this is *just* a mod of the value, check to see if this is just a
         // store to the spill slot (i.e. the spill got merged into the copy). If
@@ -1053,7 +1043,7 @@
             // Another def has taken the assigned physreg. It must have been a
             // use&def which got it due to reuse. Undo the reuse!
             PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
-                                    Spills, MaybeDeadStores, RegKills, KillOps);
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
           }
         }
 
@@ -1077,7 +1067,7 @@
         // If the stack slot value was previously available in some other
         // register, change it now.  Otherwise, make the register available,
         // in PhysReg.
-        Spills.ModifyStackSlot(StackSlot);
+        Spills.ModifyStackSlotOrReMat(StackSlot);
         Spills.ClobberPhysReg(PhysReg);
         Spills.addAvailable(StackSlot, LastStore, PhysReg);
         ++NumStores;

Modified: llvm/trunk/lib/CodeGen/VirtRegMap.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/VirtRegMap.h?rev=41060&r1=41059&r2=41060&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/VirtRegMap.h (original)
+++ llvm/trunk/lib/CodeGen/VirtRegMap.h Mon Aug 13 18:45:17 2007
@@ -55,6 +55,7 @@
     /// which corresponds to the stack slot this register is spilled
     /// at.
     IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
+    IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
     /// MI2VirtMap - This is MachineInstr to virtual register
     /// mapping. In the case of memory spill code being folded into
     /// instructions, we need to know which virtual register was
@@ -64,7 +65,7 @@
     /// ReMatMap - This is virtual register to re-materialized instruction
     /// mapping. Each virtual register whose definition is going to be
     /// re-materialized has an entry in it.
-    std::map<unsigned, const MachineInstr*> ReMatMap;
+    IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
 
     /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
     /// virtual register, an unique id is being assigned. This keeps track of
@@ -119,10 +120,11 @@
       grow();
     }
 
-    /// @brief returns true is the specified virtual register is
-    /// mapped to a stack slot
-    bool hasStackSlot(unsigned virtReg) const {
-      return getStackSlot(virtReg) != NO_STACK_SLOT;
+    /// @brief returns true is the specified virtual register is not
+    /// mapped to a stack slot or rematerialized.
+    bool isAssignedReg(unsigned virtReg) const {
+      return getStackSlot(virtReg) == NO_STACK_SLOT &&
+        getReMatId(virtReg) == NO_STACK_SLOT;
     }
 
     /// @brief returns the stack slot mapped to the specified virtual
@@ -132,6 +134,13 @@
       return Virt2StackSlotMap[virtReg];
     }
 
+    /// @brief returns the rematerialization id mapped to the specified virtual
+    /// register
+    int getReMatId(unsigned virtReg) const {
+      assert(MRegisterInfo::isVirtualRegister(virtReg));
+      return Virt2ReMatIdMap[virtReg];
+    }
+
     /// @brief create a mapping for the specifed virtual register to
     /// the next available stack slot
     int assignVirt2StackSlot(unsigned virtReg);
@@ -142,22 +151,26 @@
     /// @brief assign an unique re-materialization id to the specified
     /// virtual register.
     int assignVirtReMatId(unsigned virtReg);
+    /// @brief assign an unique re-materialization id to the specified
+    /// virtual register.
+    void assignVirtReMatId(unsigned virtReg, int id);
 
     /// @brief returns true if the specified virtual register is being
     /// re-materialized.
     bool isReMaterialized(unsigned virtReg) const {
-      return ReMatMap.count(virtReg) != 0;
+      return ReMatMap[virtReg] != NULL;
     }
 
     /// @brief returns the original machine instruction being re-issued
     /// to re-materialize the specified virtual register.
-    const MachineInstr *getReMaterializedMI(unsigned virtReg) {
+    MachineInstr *getReMaterializedMI(unsigned virtReg) const {
       return ReMatMap[virtReg];
     }
 
     /// @brief records the specified virtual register will be
     /// re-materialized and the original instruction which will be re-issed
-    /// for this purpose.
+    /// for this purpose.  If parameter all is true, then all uses of the
+    /// registers are rematerialized and it's safe to delete the definition.
     void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
       ReMatMap[virtReg] = def;
     }





More information about the llvm-commits mailing list