[llvm-commits] CVS: llvm/lib/CodeGen/RegAllocBigBlock.cpp
Reid Spencer
rspencer at reidspencer.com
Fri Jun 22 03:22:09 PDT 2007
Hi Duraid ..
This looks nifty. Thanks for adding it. Some minor comments ...
Reid.
Duraid Madina wrote:
>Changes in directory llvm/lib/CodeGen:
>
>RegAllocBigBlock.cpp added (r1.1)
>---
>Log message:
>
>check in the BigBlock local register allocator
>
>
>
>---
>Diffs of the changes: (+852 -0)
>
> RegAllocBigBlock.cpp | 852 +++++++++++++++++++++++++++++++++++++++++++++++++++
> 1 files changed, 852 insertions(+)
>
>
>Index: llvm/lib/CodeGen/RegAllocBigBlock.cpp
>diff -c /dev/null llvm/lib/CodeGen/RegAllocBigBlock.cpp:1.1
>*** /dev/null Fri Jun 22 03:27:22 2007
>--- llvm/lib/CodeGen/RegAllocBigBlock.cpp Fri Jun 22 03:27:12 2007
>***************
>*** 0 ****
>--- 1,852 ----
>+ //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
>+ //
>+ // The LLVM Compiler Infrastructure
>+ //
>+ // This file was developed by the LLVM research group and is distributed under
>
>
Really? Wasn't the author Duraid?
>+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
>+ //
>+ //===----------------------------------------------------------------------===//
>+ //
>+ // This register allocator is derived from RegAllocLocal.cpp. Like it, this
>+ // allocator works on one basic block at a time, oblivious to others.
>+ // However, the algorithm used here is suited for long blocks of
>+ // instructions - registers are spilled by greedily choosing those holding
>+ // values that will not be needed for the longest amount of time. This works
>+ // particularly well for blocks with 10 or more times as many instructions
>+ // as machine registers, but can be used for general code.
>+ //
>+ //===----------------------------------------------------------------------===//
>+ //
>+ // TODO: - automagically invoke linearscan for (groups of) small BBs?
>+ // - break ties when picking regs? (probably not worth it in a
>+ // JIT context)
>+ //
>+ //===----------------------------------------------------------------------===//
>
>
This entire comment block belongs above the RABigBlock class and should
be a doxygen comment (3 /). At this file level the comment should just
say "This file implements the RABigBlock class".
>+
>+ #define DEBUG_TYPE "regalloc"
>
>
>+ #include "llvm/BasicBlock.h"
>+ #include "llvm/CodeGen/Passes.h"
>+ #include "llvm/CodeGen/MachineFunctionPass.h"
>+ #include "llvm/CodeGen/MachineInstr.h"
>+ #include "llvm/CodeGen/SSARegMap.h"
>+ #include "llvm/CodeGen/MachineFrameInfo.h"
>+ #include "llvm/CodeGen/LiveVariables.h"
>+ #include "llvm/CodeGen/RegAllocRegistry.h"
>+ #include "llvm/Target/TargetInstrInfo.h"
>+ #include "llvm/Target/TargetMachine.h"
>+ #include "llvm/Support/CommandLine.h"
>+ #include "llvm/Support/Debug.h"
>+ #include "llvm/Support/Compiler.h"
>+ #include "llvm/ADT/IndexedMap.h"
>+ #include "llvm/ADT/DenseMap.h"
>+ #include "llvm/ADT/SmallVector.h"
>+ #include "llvm/ADT/Statistic.h"
>+ #include <algorithm>
>+ using namespace llvm;
>+
>+ STATISTIC(NumStores, "Number of stores added");
>+ STATISTIC(NumLoads , "Number of loads added");
>+ STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
>
>
>+
>+ namespace {
>+ static RegisterRegAlloc
>+ bigBlockRegAlloc("bigblock", " Big-block register allocator",
>+ createBigBlockRegisterAllocator);
>+
>+ struct VRegKeyInfo {
>+ static inline unsigned getEmptyKey() { return -1U; }
>+ static inline unsigned getTombstoneKey() { return -2U; }
>+ static unsigned getHashValue(const unsigned &Key) { return Key; }
>+ };
>
>
This struct needs a doxygen comment
>+
>+ class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
>
>
This is where you need to move the big comment at the start of the file to.
>+ public:
>+ static char ID;
>
>
Please add a doxygen comment for this variable.
>+ RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
>+ private:
>+ const TargetMachine *TM;
>+ MachineFunction *MF;
>+ const MRegisterInfo *RegInfo;
>+ LiveVariables *LV;
>
>
Please use a ///< comment to describe each of these member variables
like you do for the ones that follow.
>+
>+ // InsnTimes - maps machine instructions to their "execute times"
>+ std::map<MachineInstr *, unsigned> InsnTimes;
>+
>+ // VRegReadTable - maps VRegs in a BB to the set of times they are read
>+ DenseMap<unsigned, SmallVector<unsigned, 2>*, VRegKeyInfo> VRegReadTable;
>+
>+ // StackSlotForVirtReg - Maps virtual regs to the frame index where these
>+ // values are spilled.
>+ std::map<unsigned, int> StackSlotForVirtReg;
>+
>+ // Virt2PhysRegMap - This map contains entries for each virtual register
>+ // that is currently available in a physical register.
>+ IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
>
>
Please make the above comments into doxygen comments by using ///
>+
>+ unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
>+ return Virt2PhysRegMap[VirtReg];
>+ }
>
>
This is mis-placed. Please move this function down to where the other
functions are located.
>+
>+ // PhysRegsUsed - This array is effectively a map, containing entries for
>+ // each physical register that currently has a value (ie, it is in
>+ // Virt2PhysRegMap). The value mapped to is the virtual register
>+ // corresponding to the physical register (the inverse of the
>+ // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
>+ // because it is used by a future instruction, and to -2 if it is not
>+ // allocatable. If the entry for a physical register is -1, then the
>+ // physical register is "not in the map".
>+ //
>+ std::vector<int> PhysRegsUsed;
>+
>+ // PhysRegsUseOrder - This contains a list of the physical registers that
>+ // currently have a virtual register value in them. This list provides an
>+ // ordering of registers, imposing a reallocation order. This list is only
>+ // used if all registers are allocated and we have to spill one, in which
>+ // case we spill the least recently used register. Entries at the front of
>+ // the list are the least recently used registers, entries at the back are
>+ // the most recently used.
>+ //
>+ std::vector<unsigned> PhysRegsUseOrder;
>+
>+ // VirtRegModified - This bitset contains information about which virtual
>+ // registers need to be spilled back to memory when their registers are
>+ // scavenged. If a virtual register has simply been rematerialized, there
>+ // is no reason to spill it to memory when we need the register back.
>+ //
>+ std::vector<bool> VirtRegModified;
>
>
Again, these member vars need to use /// insead of // in order for these
comments to be picked up by doxygen.
>+
>+ void markVirtRegModified(unsigned Reg, bool Val = true) {
>
>
This function needs a doxygen comment.
>+ assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
>+ Reg -= MRegisterInfo::FirstVirtualRegister;
>+ if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
>
>
It helps readability and debugging if you put the body of the if on a
separate line from the condition.
>+ VirtRegModified[Reg] = Val;
>+ }
>+
>+ bool isVirtRegModified(unsigned Reg) const {
>
>
This function needs a doxygen comment
>+ assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
>+ assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
>+ && "Illegal virtual register!");
>+ return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
>+ }
>+
>+ void MarkPhysRegRecentlyUsed(unsigned Reg) {
>
>
This function needs a doxygen comment.
>+ if (PhysRegsUseOrder.empty() ||
>+ PhysRegsUseOrder.back() == Reg) return; // Already most recently used
>+
>+ for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
>+ if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
>+ unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
>+ PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
>+ // Add it to the end of the list
>+ PhysRegsUseOrder.push_back(RegMatch);
>+ if (RegMatch == Reg)
>+ return; // Found an exact match, exit early
>+ }
>+ }
>+
>+ public:
>+ virtual const char *getPassName() const {
>
>
Doxygen comment.
>+ return "BigBlock Register Allocator";
>+ }
>+
>+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
>
>
Doxygen comment.
>+ AU.addRequired<LiveVariables>();
>+ AU.addRequiredID(PHIEliminationID);
>+ AU.addRequiredID(TwoAddressInstructionPassID);
>+ MachineFunctionPass::getAnalysisUsage(AU);
>+ }
>+
>+ private:
>+ /// runOnMachineFunction - Register allocate the whole function
>
>
This won't get picked up by doxygen. Either it needs to be 2 lines long
or you need to use @brief
>+ bool runOnMachineFunction(MachineFunction &Fn);
>+
>+ /// AllocateBasicBlock - Register allocate the specified basic block.
>
>
Same.
>+ void AllocateBasicBlock(MachineBasicBlock &MBB);
>+
>+ /// FillVRegReadTable - Fill out the table of vreg read times given a BB
>
>
Same.
>+ void FillVRegReadTable(MachineBasicBlock &MBB);
>+
>+ /// areRegsEqual - This method returns true if the specified registers are
>+ /// related to each other. To do this, it checks to see if they are equal
>+ /// or if the first register is in the alias set of the second register.
>+ ///
>+ bool areRegsEqual(unsigned R1, unsigned R2) const {
>+ if (R1 == R2) return true;
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
>+ *AliasSet; ++AliasSet) {
>+ if (*AliasSet == R1) return true;
>+ }
>+ return false;
>+ }
>+
>+ /// getStackSpaceFor - This returns the frame index of the specified virtual
>+ /// register on the stack, allocating space if necessary.
>+ int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
>+
>+ /// removePhysReg - This method marks the specified physical register as no
>+ /// longer being in use.
>+ ///
>+ void removePhysReg(unsigned PhysReg);
>+
>+ /// spillVirtReg - This method spills the value specified by PhysReg into
>+ /// the virtual register slot specified by VirtReg. It then updates the RA
>+ /// data structures to indicate the fact that PhysReg is now available.
>+ ///
>+ void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
>+ unsigned VirtReg, unsigned PhysReg);
>+
>+ /// spillPhysReg - This method spills the specified physical register into
>+ /// the virtual register slot associated with it. If OnlyVirtRegs is set to
>+ /// true, then the request is ignored if the physical register does not
>+ /// contain a virtual register.
>+ ///
>+ void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
>+ unsigned PhysReg, bool OnlyVirtRegs = false);
>+
>+ /// assignVirtToPhysReg - This method updates local state so that we know
>+ /// that PhysReg is the proper container for VirtReg now. The physical
>+ /// register must not be used for anything else when this is called.
>+ ///
>+ void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
>+
>+ /// liberatePhysReg - Make sure the specified physical register is available
>+ /// for use. If there is currently a value in it, it is either moved out of
>+ /// the way or spilled to memory.
>+ ///
>+ void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
>+ unsigned PhysReg);
>+
>+ /// isPhysRegAvailable - Return true if the specified physical register is
>+ /// free and available for use. This also includes checking to see if
>+ /// aliased registers are all free...
>+ ///
>+ bool isPhysRegAvailable(unsigned PhysReg) const;
>+
>+ /// getFreeReg - Look to see if there is a free register available in the
>+ /// specified register class. If not, return 0.
>+ ///
>+ unsigned getFreeReg(const TargetRegisterClass *RC);
>+
>+ /// chooseReg - Pick a physical register to hold the specified
>+ /// virtual register by choosing the one which will be read furthest
>+ /// in the future.
>+ ///
>+ unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
>+ unsigned VirtReg);
>+
>+ /// reloadVirtReg - This method transforms the specified specified virtual
>+ /// register use to refer to a physical register. This method may do this
>+ /// in one of several ways: if the register is available in a physical
>+ /// register already, it uses that physical register. If the value is not
>+ /// in a physical register, and if there are physical registers available,
>+ /// it loads it into a register. If register pressure is high, and it is
>+ /// possible, it tries to fold the load of the virtual register into the
>+ /// instruction itself. It avoids doing this if register pressure is low to
>+ /// improve the chance that subsequent instructions can use the reloaded
>+ /// value. This method returns the modified instruction.
>+ ///
>+ MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
>+ unsigned OpNum);
>+
>+ };
>+ char RABigBlock::ID = 0;
>+ }
>+
>+ /// getStackSpaceFor - This allocates space for the specified virtual register
>+ /// to be held on the stack.
>+ int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
>+ // Find the location Reg would belong...
>+ std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
>+
>+ if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
>+ return I->second; // Already has space allocated?
>+
>+ // Allocate a new stack object for this spill location...
>+ int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
>+ RC->getAlignment());
>+
>+ // Assign the slot...
>+ StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
>+ return FrameIdx;
>+ }
>+
>+
>+ /// removePhysReg - This method marks the specified physical register as no
>+ /// longer being in use.
>+ ///
>+ void RABigBlock::removePhysReg(unsigned PhysReg) {
>+ PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
>+
>+ std::vector<unsigned>::iterator It =
>+ std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
>+ if (It != PhysRegsUseOrder.end())
>+ PhysRegsUseOrder.erase(It);
>+ }
>+
>+
>+ /// spillVirtReg - This method spills the value specified by PhysReg into the
>+ /// virtual register slot specified by VirtReg. It then updates the RA data
>+ /// structures to indicate the fact that PhysReg is now available.
>+ ///
>+ void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
>+ MachineBasicBlock::iterator I,
>+ unsigned VirtReg, unsigned PhysReg) {
>+ assert(VirtReg && "Spilling a physical register is illegal!"
>+ " Must not have appropriate kill for the register or use exists beyond"
>+ " the intended one.");
>+ DOUT << " Spilling register " << RegInfo->getName(PhysReg)
>+ << " containing %reg" << VirtReg;
>+ if (!isVirtRegModified(VirtReg))
>+ DOUT << " which has not been modified, so no store necessary!";
>+
>+ // Otherwise, there is a virtual register corresponding to this physical
>+ // register. We only need to spill it into its stack slot if it has been
>+ // modified.
>+ if (isVirtRegModified(VirtReg)) {
>+ const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
>+ int FrameIndex = getStackSpaceFor(VirtReg, RC);
>+ DOUT << " to stack slot #" << FrameIndex;
>+ RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
>+ ++NumStores; // Update statistics
>+ }
>+
>+ getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
>+
>+ DOUT << "\n";
>+ removePhysReg(PhysReg);
>+ }
>+
>+
>+ /// spillPhysReg - This method spills the specified physical register into the
>+ /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
>+ /// then the request is ignored if the physical register does not contain a
>+ /// virtual register.
>+ ///
>+ void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
>+ unsigned PhysReg, bool OnlyVirtRegs) {
>+ if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
>+ assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
>+ if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
>+ spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
>+ } else {
>+ // If the selected register aliases any other registers, we must make
>+ // sure that one of the aliases isn't alive.
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+ *AliasSet; ++AliasSet)
>+ if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
>+ PhysRegsUsed[*AliasSet] != -2) // If allocatable.
>+ if (PhysRegsUsed[*AliasSet] == 0) {
>+ // This must have been a dead def due to something like this:
>+ // %EAX :=
>+ // := op %AL
>+ // No more use of %EAX, %AH, etc.
>+ // %EAX isn't dead upon definition, but %AH is. However %AH isn't
>+ // an operand of definition MI so it's not marked as such.
>+ DOUT << " Register " << RegInfo->getName(*AliasSet)
>+ << " [%reg" << *AliasSet
>+ << "] is never used, removing it frame live list\n";
>+ removePhysReg(*AliasSet);
>+ } else
>+ spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
>+ }
>+ }
>+
>+
>+ /// assignVirtToPhysReg - This method updates local state so that we know
>+ /// that PhysReg is the proper container for VirtReg now. The physical
>+ /// register must not be used for anything else when this is called.
>+ ///
>+ void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
>+ assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
>+ // Update information to note the fact that this register was just used, and
>+ // it holds VirtReg.
>+ PhysRegsUsed[PhysReg] = VirtReg;
>+ getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
>+ PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
>+ }
>+
>+
>+ /// isPhysRegAvailable - Return true if the specified physical register is free
>+ /// and available for use. This also includes checking to see if aliased
>+ /// registers are all free...
>+ ///
>+ bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
>+ if (PhysRegsUsed[PhysReg] != -1) return false;
>+
>+ // If the selected register aliases any other allocated registers, it is
>+ // not free!
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+ *AliasSet; ++AliasSet)
>+ if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
>+ return false; // Can't use this reg then.
>+ return true;
>+ }
>+
>+
>+ //////// FIX THIS:
>
>
/// is sufficient.
Also, please use "FIXME" or "TODO" as they are more standard for
searches and IDE highlighting.
>+ /// getFreeReg - Look to see if there is a free register available in the
>+ /// specified register class. If not, return 0.
>+ ///
>+ unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
>+ // Get iterators defining the range of registers that are valid to allocate in
>+ // this class, which also specifies the preferred allocation order.
>+ TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
>+ TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
>+
>+ for (; RI != RE; ++RI)
>+ if (isPhysRegAvailable(*RI)) { // Is reg unused?
>+ assert(*RI != 0 && "Cannot use register!");
>+ return *RI; // Found an unused register!
>+ }
>+ return 0;
>+ }
>+
>+
>+ /// liberatePhysReg - Make sure the specified physical register is available for
>+ /// use. If there is currently a value in it, it is either moved out of the way
>+ /// or spilled to memory.
>+ ///
>+ void RABigBlock::liberatePhysReg(MachineBasicBlock &MBB,
>+ MachineBasicBlock::iterator &I,
>+ unsigned PhysReg) {
>+ spillPhysReg(MBB, I, PhysReg);
>+ }
>+
>+ /// chooseReg - Pick a physical register to hold the specified
>+ /// virtual register by choosing the one whose value will be read
>+ /// furthest in the future.
>+ ///
>+ unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
>+ unsigned VirtReg) {
>+ const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
>+ // First check to see if we have a free register of the requested type...
>+ unsigned PhysReg = getFreeReg(RC);
>+
>+ // If we didn't find an unused register, find the one which will be
>+ // read at the most distant point in time.
>+ if (PhysReg == 0) {
>+ unsigned delay=0, longest_delay=0;
>+ SmallVector<unsigned, 2> *ReadTimes;
>+
>+ unsigned curTime = InsnTimes[I];
>+
>+ // for all physical regs in the RC,
>+ for(TargetRegisterClass::iterator pReg = RC->begin();
>+ pReg != RC->end(); ++pReg) {
>+ // how long until they're read?
>+ if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
>+ ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
>+ SmallVector<unsigned, 2>::iterator pt =
>+ std::lower_bound(ReadTimes->begin(),
>+ ReadTimes->end(),
>+ curTime);
>
>
>+ delay = *pt - curTime;
>+
>+ if(delay > longest_delay) {
>+ longest_delay = delay;
>+ PhysReg = *pReg;
>+ }
>+ }
>+ }
>+
>+ assert(PhysReg && "couldn't grab a register from the table?");
>+ // TODO: assert that RC->contains(PhysReg) / handle aliased registers
>+
>+ // since we needed to look in the table we need to spill this register.
>+ spillPhysReg(MBB, I, PhysReg);
>+ }
>+
>+ // assign the vreg to our chosen physical register
>+ assignVirtToPhysReg(VirtReg, PhysReg);
>+ return PhysReg; // and return it
>+ }
>+
>+
>+ /// reloadVirtReg - This method transforms an instruction with a virtual
>+ /// register use to one that references a physical register. It does this as
>+ /// follows:
>+ ///
>+ /// 1) If the register is already in a physical register, it uses it.
>+ /// 2) Otherwise, if there is a free physical register, it uses that.
>+ /// 3) Otherwise, it calls chooseReg() to get the physical register
>+ /// holding the most distantly needed value, generating a spill in
>+ /// the process.
>+ ///
>+ /// This method returns the modified instruction.
>+ MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
>+ unsigned OpNum) {
>+ unsigned VirtReg = MI->getOperand(OpNum).getReg();
>+
>+ // If the virtual register is already available in a physical register,
>+ // just update the instruction and return.
>+ if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
>+ MI->getOperand(OpNum).setReg(PR);
>+ return MI;
>+ }
>+
>+ // Otherwise, if we have free physical registers available to hold the
>+ // value, use them.
>+ const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
>+ unsigned PhysReg = getFreeReg(RC);
>+ int FrameIndex = getStackSpaceFor(VirtReg, RC);
>+
>+ if (PhysReg) { // we have a free register, so use it.
>+ assignVirtToPhysReg(VirtReg, PhysReg);
>+ } else { // no free registers available.
>+ // try to fold the spill into the instruction
>+ if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) {
>+ ++NumFolded;
>+ // Since we changed the address of MI, make sure to update live variables
>+ // to know that the new instruction has the properties of the old one.
>+ LV->instructionChanged(MI, FMI);
>+ return MBB.insert(MBB.erase(MI), FMI);
>+ }
>+
>+ // determine which of the physical registers we'll kill off, since we
>+ // couldn't fold.
>+ PhysReg = chooseReg(MBB, MI, VirtReg);
>+ }
>+
>+ // this virtual register is now unmodified (since we just reloaded it)
>+ markVirtRegModified(VirtReg, false);
>+
>+ DOUT << " Reloading %reg" << VirtReg << " into "
>+ << RegInfo->getName(PhysReg) << "\n";
>+
>+ // Add move instruction(s)
>+ RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
>+ ++NumLoads; // Update statistics
>+
>+ MF->setPhysRegUsed(PhysReg);
>+ MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
>+ return MI;
>+ }
>+
>+ /// Fill out the vreg read timetable. Since ReadTime increases
>+ /// monotonically, the individual readtime sets will be sorted
>+ /// in ascending order.
>+ void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
>+ // loop over each instruction
>+ MachineBasicBlock::iterator MII;
>+ unsigned ReadTime;
>+
>+ for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
>+ MachineInstr *MI = MII;
>+
>+ InsnTimes[MI] = ReadTime;
>+
>+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
>+ MachineOperand& MO = MI->getOperand(i);
>+ // look for vreg reads..
>+ if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
>+ MRegisterInfo::isVirtualRegister(MO.getReg())) {
>+ // ..and add them to the read table.
>+ if(!VRegReadTable[MO.getReg()])
>+ VRegReadTable[MO.getReg()] = new SmallVector<unsigned, 2>;
>+
>+ VRegReadTable[MO.getReg()]->push_back(ReadTime);
>+ }
>+ }
>+
>+ }
>+
>+ }
>+
>+ void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
>+ // loop over each instruction
>+ MachineBasicBlock::iterator MII = MBB.begin();
>+ const TargetInstrInfo &TII = *TM->getInstrInfo();
>+
>+ DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
>+ if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
>+
>+ // If this is the first basic block in the machine function, add live-in
>+ // registers as active.
>+ if (&MBB == &*MF->begin()) {
>+ for (MachineFunction::livein_iterator I = MF->livein_begin(),
>+ E = MF->livein_end(); I != E; ++I) {
>+ unsigned Reg = I->first;
>+ MF->setPhysRegUsed(Reg);
>+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
>+ PhysRegsUseOrder.push_back(Reg);
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
>+ *AliasSet; ++AliasSet) {
>+ if (PhysRegsUsed[*AliasSet] != -2) {
>+ PhysRegsUseOrder.push_back(*AliasSet);
>+ PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
>+ MF->setPhysRegUsed(*AliasSet);
>+ }
>+ }
>+ }
>+ }
>+
>+ // Otherwise, sequentially allocate each instruction in the MBB.
>+ while (MII != MBB.end()) {
>+ MachineInstr *MI = MII++;
>+ const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
>+ DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
>+ DOUT << " Regs have values: ";
>+ for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
>+ if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
>+ DOUT << "[" << RegInfo->getName(i)
>+ << ",%reg" << PhysRegsUsed[i] << "] ";
>+ DOUT << "\n");
>+
>+ // Loop over the implicit uses, making sure that they are at the head of the
>+ // use order list, so they don't get reallocated.
>+ if (TID.ImplicitUses) {
>+ for (const unsigned *ImplicitUses = TID.ImplicitUses;
>+ *ImplicitUses; ++ImplicitUses)
>+ MarkPhysRegRecentlyUsed(*ImplicitUses);
>+ }
>+
>+ SmallVector<unsigned, 8> Kills;
>+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+ MachineOperand& MO = MI->getOperand(i);
>+ if (MO.isRegister() && MO.isKill())
>+ Kills.push_back(MO.getReg());
>+ }
>+
>+ // Get the used operands into registers. This has the potential to spill
>+ // incoming values if we are out of registers. Note that we completely
>+ // ignore physical register uses here. We assume that if an explicit
>+ // physical register is referenced by the instruction, that it is guaranteed
>+ // to be live-in, or the input is badly hosed.
>+ //
>+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
>+ MachineOperand& MO = MI->getOperand(i);
>+ // here we are looking for only used operands (never def&use)
>+ if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
>+ MRegisterInfo::isVirtualRegister(MO.getReg()))
>+ MI = reloadVirtReg(MBB, MI, i);
>+ }
>+
>+ // If this instruction is the last user of this register, kill the
>+ // value, freeing the register being used, so it doesn't need to be
>+ // spilled to memory.
>+ //
>+ for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
>+ unsigned VirtReg = Kills[i];
>+ unsigned PhysReg = VirtReg;
>+ if (MRegisterInfo::isVirtualRegister(VirtReg)) {
>+ // If the virtual register was never materialized into a register, it
>+ // might not be in the map, but it won't hurt to zero it out anyway.
>+ unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
>+ PhysReg = PhysRegSlot;
>+ PhysRegSlot = 0;
>+ } else if (PhysRegsUsed[PhysReg] == -2) {
>+ // Unallocatable register dead, ignore.
>+ continue;
>+ }
>+
>+ if (PhysReg) {
>+ DOUT << " Last use of " << RegInfo->getName(PhysReg)
>+ << "[%reg" << VirtReg <<"], removing it from live set\n";
>+ removePhysReg(PhysReg);
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+ *AliasSet; ++AliasSet) {
>+ if (PhysRegsUsed[*AliasSet] != -2) {
>+ DOUT << " Last use of "
>+ << RegInfo->getName(*AliasSet)
>+ << "[%reg" << VirtReg <<"], removing it from live set\n";
>+ removePhysReg(*AliasSet);
>+ }
>+ }
>+ }
>+ }
>+
>+ // Loop over all of the operands of the instruction, spilling registers that
>+ // are defined, and marking explicit destinations in the PhysRegsUsed map.
>+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+ MachineOperand& MO = MI->getOperand(i);
>+ if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
>+ MRegisterInfo::isPhysicalRegister(MO.getReg())) {
>+ unsigned Reg = MO.getReg();
>+ if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
>+
>+ MF->setPhysRegUsed(Reg);
>+ spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
>+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
>+ PhysRegsUseOrder.push_back(Reg);
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
>+ *AliasSet; ++AliasSet) {
>+ if (PhysRegsUsed[*AliasSet] != -2) {
>+ PhysRegsUseOrder.push_back(*AliasSet);
>+ PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
>+ MF->setPhysRegUsed(*AliasSet);
>+ }
>+ }
>+ }
>+ }
>+
>+ // Loop over the implicit defs, spilling them as well.
>+ if (TID.ImplicitDefs) {
>+ for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
>+ *ImplicitDefs; ++ImplicitDefs) {
>+ unsigned Reg = *ImplicitDefs;
>+ bool IsNonAllocatable = PhysRegsUsed[Reg] == -2;
>+ if (!IsNonAllocatable) {
>+ spillPhysReg(MBB, MI, Reg, true);
>+ PhysRegsUseOrder.push_back(Reg);
>+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
>+ }
>+ MF->setPhysRegUsed(Reg);
>+
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
>+ *AliasSet; ++AliasSet) {
>+ if (PhysRegsUsed[*AliasSet] != -2) {
>+ if (!IsNonAllocatable) {
>+ PhysRegsUseOrder.push_back(*AliasSet);
>+ PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
>+ }
>+ MF->setPhysRegUsed(*AliasSet);
>+ }
>+ }
>+ }
>+ }
>+
>+ SmallVector<unsigned, 8> DeadDefs;
>+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+ MachineOperand& MO = MI->getOperand(i);
>+ if (MO.isRegister() && MO.isDead())
>+ DeadDefs.push_back(MO.getReg());
>+ }
>+
>+ // Okay, we have allocated all of the source operands and spilled any values
>+ // that would be destroyed by defs of this instruction. Loop over the
>+ // explicit defs and assign them to a register, spilling incoming values if
>+ // we need to scavenge a register.
>+ //
>+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
>+ MachineOperand& MO = MI->getOperand(i);
>+ if (MO.isRegister() && MO.isDef() && MO.getReg() &&
>+ MRegisterInfo::isVirtualRegister(MO.getReg())) {
>+ unsigned DestVirtReg = MO.getReg();
>+ unsigned DestPhysReg;
>+
>+ // If DestVirtReg already has a value, use it.
>+ if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
>+ DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
>+ MF->setPhysRegUsed(DestPhysReg);
>+ markVirtRegModified(DestVirtReg);
>+ MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
>+ }
>+ }
>+
>+ // If this instruction defines any registers that are immediately dead,
>+ // kill them now.
>+ //
>+ for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
>+ unsigned VirtReg = DeadDefs[i];
>+ unsigned PhysReg = VirtReg;
>+ if (MRegisterInfo::isVirtualRegister(VirtReg)) {
>+ unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
>+ PhysReg = PhysRegSlot;
>+ assert(PhysReg != 0);
>+ PhysRegSlot = 0;
>+ } else if (PhysRegsUsed[PhysReg] == -2) {
>+ // Unallocatable register dead, ignore.
>+ continue;
>+ }
>+
>+ if (PhysReg) {
>+ DOUT << " Register " << RegInfo->getName(PhysReg)
>+ << " [%reg" << VirtReg
>+ << "] is never used, removing it frame live list\n";
>+ removePhysReg(PhysReg);
>+ for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
>+ *AliasSet; ++AliasSet) {
>+ if (PhysRegsUsed[*AliasSet] != -2) {
>+ DOUT << " Register " << RegInfo->getName(*AliasSet)
>+ << " [%reg" << *AliasSet
>+ << "] is never used, removing it frame live list\n";
>+ removePhysReg(*AliasSet);
>+ }
>+ }
>+ }
>+ }
>+
>+ // Finally, if this is a noop copy instruction, zap it.
>+ unsigned SrcReg, DstReg;
>+ if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
>+ LV->removeVirtualRegistersKilled(MI);
>+ LV->removeVirtualRegistersDead(MI);
>+ MBB.erase(MI);
>+ }
>+ }
>+
>+ MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
>+
>+ // Spill all physical registers holding virtual registers now.
>+ for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
>+ if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
>+ if (unsigned VirtReg = PhysRegsUsed[i])
>+ spillVirtReg(MBB, MI, VirtReg, i);
>+ else
>+ removePhysReg(i);
>+
>+ #if 0
>+ // This checking code is very expensive.
>+ bool AllOk = true;
>+ for (unsigned i = MRegisterInfo::FirstVirtualRegister,
>+ e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
>+ if (unsigned PR = Virt2PhysRegMap[i]) {
>+ cerr << "Register still mapped: " << i << " -> " << PR << "\n";
>+ AllOk = false;
>+ }
>+ assert(AllOk && "Virtual registers still in phys regs?");
>+ #endif
>
>
Really need to keep this #if 0 section?
>+
>+ // Clear any physical register which appear live at the end of the basic
>+ // block, but which do not hold any virtual registers. e.g., the stack
>+ // pointer.
>+ PhysRegsUseOrder.clear();
>+ }
>+
>+ /// runOnMachineFunction - Register allocate the whole function
>+ ///
>+ bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
>+ DOUT << "Machine Function " << "\n";
>+ MF = &Fn;
>+ TM = &Fn.getTarget();
>+ RegInfo = TM->getRegisterInfo();
>+ LV = &getAnalysis<LiveVariables>();
>+
>+ PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
>+
>+ // At various places we want to efficiently check to see whether a register
>+ // is allocatable. To handle this, we mark all unallocatable registers as
>+ // being pinned down, permanently.
>+ {
>+ BitVector Allocable = RegInfo->getAllocatableSet(Fn);
>+ for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
>+ if (!Allocable[i])
>+ PhysRegsUsed[i] = -2; // Mark the reg unallocable.
>+ }
>+
>+ // initialize the virtual->physical register map to have a 'null'
>+ // mapping for all virtual registers
>+ Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
>+
>+ // Loop over all of the basic blocks, eliminating virtual register references
>+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
>+ MBB != MBBe; ++MBB) {
>+ // fill out the read timetable
>+ FillVRegReadTable(*MBB);
>+ // use it to allocate the BB
>+ AllocateBasicBlock(*MBB);
>+ // clear it
>+ VRegReadTable.clear();
>+ }
>+
>+ StackSlotForVirtReg.clear();
>+ PhysRegsUsed.clear();
>+ VirtRegModified.clear();
>+ Virt2PhysRegMap.clear();
>+ return true;
>+ }
>+
>+ FunctionPass *llvm::createBigBlockRegisterAllocator() {
>+ return new RABigBlock();
>+ }
>+
>
>
>
>_______________________________________________
>llvm-commits mailing list
>llvm-commits at cs.uiuc.edu
>http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>
>
>
More information about the llvm-commits
mailing list