[llvm-commits] CVS: llvm/lib/Support/APInt.cpp
Chris Lattner
clattner at apple.com
Mon Feb 5 21:40:51 PST 2007
> + #include "llvm/ADT/APInt.h"
> + #include "llvm/DerivedTypes.h"
> + #include "llvm/Support/MathExtras.h"
> + #include <strings.h>
strings.h is not portable. Please use <cstring>, and memcpy/memset/
etc instead of bzero and friends. I've #ifdef'd this file out
temporarily until this is resolved.
> + #include <iostream>
You are not allowed to include this header:
http://llvm.org/docs/CodingStandards.html#ll_iostream
> + #include <sstream>
> + #include <iomanip>
Please eliminate your single use of ostringstream. It is definitely
overkill for what you're using it for.
Thanks,
-Chris
> + #include <cstdlib>
> + using namespace llvm;
> +
> + APInt::APInt(uint64_t val, unsigned numBits, bool sign)
> + : bitsnum(numBits), isSigned(sign) {
> + assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too
> small");
> + assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too
> large");
> + if (isSingleWord())
> + VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD -
> bitsnum));
> + else {
> + // Memory allocation and check if successful.
> + assert((pVal = new uint64_t[numWords()]) &&
> + "APInt memory allocation fails!");
> + bzero(pVal, numWords() * 8);
> + pVal[0] = val;
> + }
> + }
> +
> + APInt::APInt(unsigned numBits, uint64_t bigVal[], bool sign)
> + : bitsnum(numBits), isSigned(sign) {
> + assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too
> small");
> + assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too
> large");
> + assert(bigVal && "Null pointer detected!");
> + if (isSingleWord())
> + VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD -
> bitsnum));
> + else {
> + // Memory allocation and check if successful.
> + assert((pVal = new uint64_t[numWords()]) &&
> + "APInt memory allocation fails!");
> + // Calculate the actual length of bigVal[].
> + unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
> + unsigned maxN = std::max<unsigned>(n, numWords());
> + unsigned minN = std::min<unsigned>(n, numWords());
> + memcpy(pVal, bigVal, (minN - 1) * 8);
> + pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 -
> bitsnum % 64));
> + if (maxN == numWords())
> + bzero(pVal+n, (numWords() - n) * 8);
> + }
> + }
> +
> + APInt::APInt(std::string& Val, uint8_t radix, bool sign)
> + : isSigned(sign) {
> + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
> + "Radix should be 2, 8, 10, or 16!");
> + assert(!Val.empty() && "String empty?");
> + unsigned slen = Val.size();
> + unsigned size = 0;
> + // If the radix is a power of 2, read the input
> + // from most significant to least significant.
> + if ((radix & (radix - 1)) == 0) {
> + unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
> + uint64_t resDigit = 0;
> + bitsnum = slen * bits_per_digit;
> + if (numWords() > 1)
> + assert((pVal = new uint64_t[numWords()]) &&
> + "APInt memory allocation fails!");
> + for (int i = slen - 1; i >= 0; --i) {
> + uint64_t digit = Val[i] - 48; // '0' == 48.
> + resDigit |= digit << nextBitPos;
> + nextBitPos += bits_per_digit;
> + if (nextBitPos >= 64) {
> + if (isSingleWord()) {
> + VAL = resDigit;
> + break;
> + }
> + pVal[size++] = resDigit;
> + nextBitPos -= 64;
> + resDigit = digit >> (bits_per_digit - nextBitPos);
> + }
> + }
> + if (!isSingleWord() && size <= numWords())
> + pVal[size] = resDigit;
> + } else { // General case. The radix is not a power of 2.
> + // For 10-radix, the max value of 64-bit integer is
> 18446744073709551615,
> + // and its digits number is 14.
> + const unsigned chars_per_word = 20;
> + if (slen < chars_per_word ||
> + (Val <= "18446744073709551615" &&
> + slen == chars_per_word)) { // In case Val <= 2^64 - 1
> + bitsnum = 64;
> + VAL = strtoull(Val.c_str(), 0, 10);
> + } else { // In case Val > 2^64 - 1
> + bitsnum = (slen / chars_per_word + 1) * 64;
> + assert((pVal = new uint64_t[numWords()]) &&
> + "APInt memory allocation fails!");
> + bzero(pVal, numWords() * 8);
> + unsigned str_pos = 0;
> + while (str_pos < slen) {
> + unsigned chunk = slen - str_pos;
> + if (chunk > chars_per_word - 1)
> + chunk = chars_per_word - 1;
> + uint64_t resDigit = Val[str_pos++] - 48; // 48 == '0'.
> + uint64_t big_base = radix;
> + while (--chunk > 0) {
> + resDigit = resDigit * radix + Val[str_pos++] - 48;
> + big_base *= radix;
> + }
> +
> + uint64_t carry;
> + if (!size)
> + carry = resDigit;
> + else {
> + carry = mul_1(pVal, pVal, size, big_base);
> + carry += add_1(pVal, pVal, size, resDigit);
> + }
> +
> + if (carry) pVal[size++] = carry;
> + }
> + }
> + }
> + }
> +
> + APInt::APInt(const APInt& APIVal)
> + : bitsnum(APIVal.bitsnum), isSigned(APIVal.isSigned) {
> + if (isSingleWord()) VAL = APIVal.VAL;
> + else {
> + // Memory allocation and check if successful.
> + assert((pVal = new uint64_t[numWords()]) &&
> + "APInt memory allocation fails!");
> + memcpy(pVal, APIVal.pVal, numWords() * 8);
> + }
> + }
> +
> + APInt::~APInt() {
> + if (!isSingleWord() && pVal) delete[] pVal;
> + }
> +
> + /// whichByte - This function returns the word position
> + /// for the specified bit position.
> + inline unsigned APInt::whichByte(unsigned bitPosition)
> + { return (bitPosition % APINT_BITS_PER_WORD) / 8; }
> +
> + /// getWord - returns the corresponding word for the specified
> bit position.
> + inline uint64_t& APInt::getWord(unsigned bitPosition)
> + { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; }
> +
> + /// getWord - returns the corresponding word for the specified
> bit position.
> + /// This is a constant version.
> + inline uint64_t APInt::getWord(unsigned bitPosition) const
> + { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; }
> +
> + /// mul_1 - This function multiplies the integer array x[] by a
> integer y and
> + /// returns the carry.
> + uint64_t APInt::mul_1(uint64_t dest[], uint64_t x[],
> + unsigned len, uint64_t y) {
> + // Split y into high 32-bit part and low 32-bit part.
> + uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
> + uint64_t carry = 0, lx, hx;
> + for (unsigned i = 0; i < len; ++i) {
> + lx = x[i] & 0xffffffffULL;
> + hx = x[i] >> 32;
> + // hasCarry - A flag to indicate if has carry.
> + // hasCarry == 0, no carry
> + // hasCarry == 1, has carry
> + // hasCarry == 2, no carry and the calculation result == 0.
> + uint8_t hasCarry = 0;
> + dest[i] = carry + lx * ly;
> + // Determine if the add above introduces carry.
> + hasCarry = (dest[i] < carry) ? 1 : 0;
> + carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL <<
> 32) : 0);
> + // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
> + // (2^32 - 1) + 2^32 = 2^64.
> + hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
> +
> + carry += (lx * hy) & 0xffffffffULL;
> + dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
> + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL
> << 32) : 0) +
> + (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
> + }
> +
> + return carry;
> + }
> +
> + /// mul - This function multiplies integer array x[] by integer
> array y[] and
> + /// stores the result into integer array dest[].
> + /// Note the array dest[]'s size should no less than xlen + ylen.
> + void APInt::mul(uint64_t dest[], uint64_t x[], unsigned xlen,
> + uint64_t y[], unsigned ylen) {
> + dest[xlen] = mul_1(dest, x, xlen, y[0]);
> +
> + for (unsigned i = 1; i < ylen; ++i) {
> + uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
> + uint64_t carry = 0, lx, hx;
> + for (unsigned j = 0; j < xlen; ++j) {
> + lx = x[j] & 0xffffffffULL;
> + hx = x[j] >> 32;
> + // hasCarry - A flag to indicate if has carry.
> + // hasCarry == 0, no carry
> + // hasCarry == 1, has carry
> + // hasCarry == 2, no carry and the calculation result == 0.
> + uint8_t hasCarry = 0;
> + uint64_t resul = carry + lx * ly;
> + hasCarry = (resul < carry) ? 1 : 0;
> + carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >>
> 32);
> + hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
> +
> + carry += (lx * hy) & 0xffffffffULL;
> + resul = (carry << 32) | (resul & 0xffffffffULL);
> + dest[i+j] += resul;
> + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ?
> (1ULL << 32) : 0)+
> + (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
> + ((lx * hy) >> 32) + hx * hy;
> + }
> + dest[i+xlen] = carry;
> + }
> + }
> +
> + /// add_1 - This function adds the integer array x[] by integer y
> and
> + /// returns the carry.
> + uint64_t APInt::add_1(uint64_t dest[], uint64_t x[],
> + unsigned len, uint64_t y) {
> + uint64_t carry = y;
> +
> + for (unsigned i = 0; i < len; ++i) {
> + dest[i] = carry + x[i];
> + carry = (dest[i] < carry) ? 1 : 0;
> + }
> + return carry;
> + }
> +
> + /// add - This function adds the integer array x[] by integer array
> + /// y[] and returns the carry.
> + uint64_t APInt::add(uint64_t dest[], uint64_t x[],
> + uint64_t y[], unsigned len) {
> + unsigned carry = 0;
> +
> + for (unsigned i = 0; i< len; ++i) {
> + carry += x[i];
> + dest[i] = carry + y[i];
> + carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
> + }
> + return carry;
> + }
> +
> + /// sub_1 - This function subtracts the integer array x[] by
> + /// integer y and returns the borrow-out carry.
> + uint64_t APInt::sub_1(uint64_t x[], unsigned len, uint64_t y) {
> + uint64_t cy = y;
> +
> + for (unsigned i = 0; i < len; ++i) {
> + uint64_t X = x[i];
> + x[i] -= cy;
> + if (cy > X)
> + cy = 1;
> + else {
> + cy = 0;
> + break;
> + }
> + }
> +
> + return cy;
> + }
> +
> + /// sub - This function subtracts the integer array x[] by
> + /// integer array y[], and returns the borrow-out carry.
> + uint64_t APInt::sub(uint64_t dest[], uint64_t x[],
> + uint64_t y[], unsigned len) {
> + // Carry indicator.
> + uint64_t cy = 0;
> +
> + for (unsigned i = 0; i < len; ++i) {
> + uint64_t Y = y[i], X = x[i];
> + Y += cy;
> +
> + cy = Y < cy ? 1 : 0;
> + Y = X - Y;
> + cy += Y > X ? 1 : 0;
> + dest[i] = Y;
> + }
> + return cy;
> + }
> +
> + /// UnitDiv - This function divides N by D,
> + /// and returns (remainder << 32) | quotient.
> + /// Assumes (N >> 32) < D.
> + uint64_t APInt::unitDiv(uint64_t N, unsigned D) {
> + uint64_t q, r; // q: quotient, r: remainder.
> + uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
> + uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
> + if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
> + q = N / D;
> + r = N % D;
> + }
> + else {
> + // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
> + uint64_t c = N - ((uint64_t) D << 31);
> + // Divide (c1*2^32 + c0) by d
> + q = c / D;
> + r = c % D;
> + // Add 2^31 to quotient
> + q += 1 << 31;
> + }
> +
> + return (r << 32) | (q & 0xFFFFFFFFl);
> + }
> +
> + /// subMul - This function substracts x[len-1:0] * y from
> + /// dest[offset+len-1:offset], and returns the most significant
> + /// word of the product, minus the borrow-out from the subtraction.
> + unsigned APInt::subMul(unsigned dest[], unsigned offset,
> + unsigned x[], unsigned len, unsigned y) {
> + uint64_t yl = (uint64_t) y & 0xffffffffL;
> + unsigned carry = 0;
> + unsigned j = 0;
> + do {
> + uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
> + unsigned prod_low = (unsigned) prod;
> + unsigned prod_high = (unsigned) (prod >> 32);
> + prod_low += carry;
> + carry = (prod_low < carry ? 1 : 0) + prod_high;
> + unsigned x_j = dest[offset+j];
> + prod_low = x_j - prod_low;
> + if (prod_low > x_j) ++carry;
> + dest[offset+j] = prod_low;
> + } while (++j < len);
> + return carry;
> + }
> +
> + /// div - This is basically Knuth's formulation of the classical
> algorithm.
> + /// Correspondance with Knuth's notation:
> + /// Knuth's u[0:m+n] == zds[nx:0].
> + /// Knuth's v[1:n] == y[ny-1:0]
> + /// Knuth's n == ny.
> + /// Knuth's m == nx-ny.
> + /// Our nx == Knuth's m+n.
> + /// Could be re-implemented using gmp's mpn_divrem:
> + /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
> + void APInt::div(unsigned zds[], unsigned nx, unsigned y[],
> unsigned ny) {
> + unsigned j = nx;
> + do { // loop over digits of quotient
> + // Knuth's j == our nx-j.
> + // Knuth's u[j:j+n] == our zds[j:j-ny].
> + unsigned qhat; // treated as unsigned
> + if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff
> + else {
> + uint64_t w = (((uint64_t)(zds[j])) << 32) +
> + ((uint64_t)zds[j-1] & 0xffffffffL);
> + qhat = (unsigned) unitDiv(w, y[ny-1]);
> + }
> + if (qhat) {
> + unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
> + unsigned save = zds[j];
> + uint64_t num = ((uint64_t)save&0xffffffffL) -
> + ((uint64_t)borrow&0xffffffffL);
> + while (num) {
> + qhat--;
> + uint64_t carry = 0;
> + for (unsigned i = 0; i < ny; i++) {
> + carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
> + + ((uint64_t) y[i] & 0xffffffffL);
> + zds[j-ny+i] = (unsigned) carry;
> + carry >>= 32;
> + }
> + zds[j] += carry;
> + num = carry - 1;
> + }
> + }
> + zds[j] = qhat;
> + } while (--j >= ny);
> + }
> +
> + /// lshift - This function shift x[0:len-1] left by shiftAmt
> bits, and
> + /// store the len least significant words of the result in
> + /// dest[d_offset:d_offset+len-1]. It returns the bits shifted
> out from
> + /// the most significant digit.
> + uint64_t APInt::lshift(uint64_t dest[], unsigned d_offset,
> + uint64_t x[], unsigned len, unsigned
> shiftAmt) {
> + unsigned count = 64 - shiftAmt;
> + int i = len - 1;
> + uint64_t high_word = x[i], retVal = high_word >> count;
> + ++d_offset;
> + while (--i >= 0) {
> + uint64_t low_word = x[i];
> + dest[d_offset+i] = (high_word << shiftAmt) | (low_word >>
> count);
> + high_word = low_word;
> + }
> + dest[d_offset+i] = high_word << shiftAmt;
> + return retVal;
> + }
> +
> + /// @brief Copy assignment operator. Create a new object from the
> given
> + /// APInt one by initialization.
> + APInt& APInt::operator=(const APInt& RHS) {
> + if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL :
> RHS.pVal[0];
> + else {
> + unsigned minN = std::min(numWords(), RHS.numWords());
> + memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN *
> 8);
> + if (numWords() != minN)
> + bzero(pVal + minN, (numWords() - minN) * 8);
> + }
> + return *this;
> + }
> +
> + /// @brief Assignment operator. Assigns a common case integer
> value to
> + /// the APInt.
> + APInt& APInt::operator=(uint64_t RHS) {
> + if (isSingleWord()) VAL = RHS;
> + else {
> + pVal[0] = RHS;
> + bzero(pVal, (numWords() - 1) * 8);
> + }
> + return *this;
> + }
> +
> + /// @brief Postfix increment operator. Increments the APInt by one.
> + const APInt APInt::operator++(int) {
> + APInt API(*this);
> + if (isSingleWord()) ++VAL;
> + else
> + add_1(pVal, pVal, numWords(), 1);
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Prefix increment operator. Increments the APInt by one.
> + APInt& APInt::operator++() {
> + if (isSingleWord()) ++VAL;
> + else
> + add_1(pVal, pVal, numWords(), 1);
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Postfix decrement operator. Decrements the APInt by one.
> + const APInt APInt::operator--(int) {
> + APInt API(*this);
> + if (isSingleWord()) --VAL;
> + else
> + sub_1(API.pVal, API.numWords(), 1);
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Prefix decrement operator. Decrements the APInt by one.
> + APInt& APInt::operator--() {
> + if (isSingleWord()) --VAL;
> + else
> + sub_1(pVal, numWords(), 1);
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Addition assignment operator. Adds this APInt by the
> given APInt&
> + /// RHS and assigns the result to this APInt.
> + APInt& APInt::operator+=(const APInt& RHS) {
> + if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL :
> RHS.pVal[0];
> + else {
> + if (RHS.isSingleWord()) add_1(pVal, pVal, numWords(), RHS.VAL);
> + else {
> + if (numWords() <= RHS.numWords())
> + add(pVal, pVal, RHS.pVal, numWords());
> + else {
> + uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.numWords());
> + add_1(pVal + RHS.numWords(), pVal + RHS.numWords(),
> + numWords() - RHS.numWords(), carry);
> + }
> + }
> + }
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Subtraction assignment operator. Subtracts this APInt
> by the given
> + /// APInt &RHS and assigns the result to this APInt.
> + APInt& APInt::operator-=(const APInt& RHS) {
> + if (isSingleWord())
> + VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
> + else {
> + if (RHS.isSingleWord())
> + sub_1(pVal, numWords(), RHS.VAL);
> + else {
> + if (RHS.numWords() < numWords()) {
> + uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.numWords());
> + sub_1(pVal + RHS.numWords(), numWords() - RHS.numWords(),
> carry);
> + }
> + else
> + sub(pVal, pVal, RHS.pVal, numWords());
> + }
> + }
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Multiplication assignment operator. Multiplies this
> APInt by the
> + /// given APInt& RHS and assigns the result to this APInt.
> + APInt& APInt::operator*=(const APInt& RHS) {
> + if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL :
> RHS.pVal[0];
> + else {
> + // one-based first non-zero bit position.
> + unsigned first = numWords() * APINT_BITS_PER_WORD -
> CountLeadingZeros();
> + unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
> + if (!xlen)
> + return *this;
> + else if (RHS.isSingleWord())
> + mul_1(pVal, pVal, xlen, RHS.VAL);
> + else {
> + first = RHS.numWords() * APINT_BITS_PER_WORD -
> RHS.CountLeadingZeros();
> + unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
> + if (!ylen) {
> + bzero(pVal, numWords() * 8);
> + return *this;
> + }
> + uint64_t *dest = new uint64_t[xlen+ylen];
> + assert(dest && "Memory Allocation Failed!");
> + mul(dest, pVal, xlen, RHS.pVal, ylen);
> + memcpy(pVal, dest, ((xlen + ylen >= numWords()) ? numWords
> () : xlen + ylen) * 8);
> + delete[] dest;
> + }
> + }
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Division assignment operator. Divides this APInt by
> the given APInt
> + /// &RHS and assigns the result to this APInt.
> + APInt& APInt::operator/=(const APInt& RHS) {
> + unsigned first = RHS.numWords() * APINT_BITS_PER_WORD -
> + RHS.CountLeadingZeros();
> + unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
> + assert(ylen && "Divided by zero???");
> + if (isSingleWord()) {
> + if (isSigned && RHS.isSigned)
> + VAL = RHS.isSingleWord() ? (int64_t(VAL) / int64_t(RHS.VAL)) :
> + (ylen > 1 ? 0 : int64_t(VAL) / int64_t(RHS.pVal[0]));
> + else
> + VAL = RHS.isSingleWord() ? (VAL / RHS.VAL) :
> + (ylen > 1 ? 0 : VAL / RHS.pVal[0]);
> + } else {
> + unsigned first2 = numWords() * APINT_BITS_PER_WORD -
> CountLeadingZeros();
> + unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1;
> + if (!xlen)
> + return *this;
> + else if ((*this) < RHS)
> + bzero(pVal, numWords() * 8);
> + else if ((*this) == RHS) {
> + bzero(pVal, numWords() * 8);
> + pVal[0] = 1;
> + } else if (xlen == 1)
> + pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
> + else {
> + uint64_t *xwords = new uint64_t[xlen+1], *ywords = new
> uint64_t[ylen];
> + assert(xwords && ywords && "Memory Allocation Failed!");
> + memcpy(xwords, pVal, xlen * 8);
> + xwords[xlen] = 0;
> + memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal,
> ylen * 8);
> + if (unsigned nshift = 63 - (first - 1) % 64) {
> + lshift(ywords, 0, ywords, ylen, nshift);
> + unsigned xlentmp = xlen;
> + xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
> + }
> + div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
> + bzero(pVal, numWords() * 8);
> + memcpy(pVal, xwords + ylen, (xlen - ylen) * 8);
> + delete[] xwords;
> + delete[] ywords;
> + }
> + }
> + return *this;
> + }
> +
> + /// @brief Remainder assignment operator. Yields the remainder
> from the
> + /// division of this APInt by the given APInt& RHS and assigns
> the remainder
> + /// to this APInt.
> + APInt& APInt::operator%=(const APInt& RHS) {
> + unsigned first = RHS.numWords() * APINT_BITS_PER_WORD -
> + RHS.CountLeadingZeros();
> + unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
> + assert(ylen && "Performing remainder operation by zero ???");
> + if (isSingleWord()) {
> + if (isSigned && RHS.isSigned)
> + VAL = RHS.isSingleWord() ? (int64_t(VAL) % int64_t(RHS.VAL)) :
> + (ylen > 1 ? VAL : int64_t(VAL) % int64_t(RHS.pVal[0]));
> + else
> + VAL = RHS.isSingleWord() ? (VAL % RHS.VAL) :
> + (ylen > 1 ? VAL : VAL % RHS.pVal[0]);
> + } else {
> + unsigned first2 = numWords() * APINT_BITS_PER_WORD -
> CountLeadingZeros();
> + unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1;
> + if (!xlen || (*this) < RHS)
> + return *this;
> + else if ((*this) == RHS)
> + bzero(pVal, numWords() * 8);
> + else if (xlen == 1)
> + pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
> + else {
> + uint64_t *xwords = new uint64_t[xlen+1], *ywords = new
> uint64_t[ylen];
> + assert(xwords && ywords && "Memory Allocation Failed!");
> + memcpy(xwords, pVal, xlen * 8);
> + xwords[xlen] = 0;
> + memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal,
> ylen * 8);
> + unsigned nshift = 63 - (first - 1) % 64;
> + if (nshift) {
> + lshift(ywords, 0, ywords, ylen, nshift);
> + unsigned xlentmp = xlen;
> + xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
> + }
> + div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
> + bzero(pVal, numWords() * 8);
> + for (unsigned i = 0; i < ylen-1; ++i)
> + pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 -
> nshift));
> + pVal[ylen-1] = xwords[ylen-1] >> nshift;
> + delete[] xwords;
> + delete[] ywords;
> + }
> + }
> + return *this;
> + }
> +
> + /// @brief Bitwise AND assignment operator. Performs bitwise AND
> operation on
> + /// this APInt and the given APInt& RHS, assigns the result to
> this APInt.
> + APInt& APInt::operator&=(const APInt& RHS) {
> + if (isSingleWord()) {
> + if (RHS.isSingleWord()) VAL &= RHS.VAL;
> + else VAL &= RHS.pVal[0];
> + } else {
> + if (RHS.isSingleWord()) {
> + bzero(pVal, (numWords() - 1) * 8);
> + pVal[0] &= RHS.VAL;
> + } else {
> + unsigned minwords = numWords() < RHS.numWords() ? numWords
> () : RHS.numWords();
> + for (unsigned i = 0; i < minwords; ++i)
> + pVal[i] &= RHS.pVal[i];
> + if (numWords() > minwords) bzero(pVal+minwords, (numWords()
> - minwords) * 8);
> + }
> + }
> + return *this;
> + }
> +
> + /// @brief Bitwise OR assignment operator. Performs bitwise OR
> operation on
> + /// this APInt and the given APInt& RHS, assigns the result to
> this APInt.
> + APInt& APInt::operator|=(const APInt& RHS) {
> + if (isSingleWord()) {
> + if (RHS.isSingleWord()) VAL |= RHS.VAL;
> + else VAL |= RHS.pVal[0];
> + } else {
> + if (RHS.isSingleWord()) {
> + pVal[0] |= RHS.VAL;
> + } else {
> + unsigned minwords = numWords() < RHS.numWords() ? numWords
> () : RHS.numWords();
> + for (unsigned i = 0; i < minwords; ++i)
> + pVal[i] |= RHS.pVal[i];
> + }
> + }
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Bitwise XOR assignment operator. Performs bitwise XOR
> operation on
> + /// this APInt and the given APInt& RHS, assigns the result to
> this APInt.
> + APInt& APInt::operator^=(const APInt& RHS) {
> + if (isSingleWord()) {
> + if (RHS.isSingleWord()) VAL ^= RHS.VAL;
> + else VAL ^= RHS.pVal[0];
> + } else {
> + if (RHS.isSingleWord()) {
> + for (unsigned i = 0; i < numWords(); ++i)
> + pVal[i] ^= RHS.VAL;
> + } else {
> + unsigned minwords = numWords() < RHS.numWords() ? numWords
> () : RHS.numWords();
> + for (unsigned i = 0; i < minwords; ++i)
> + pVal[i] ^= RHS.pVal[i];
> + if (numWords() > minwords)
> + for (unsigned i = minwords; i < numWords(); ++i)
> + pVal[i] ^= 0;
> + }
> + }
> + TruncToBits();
> + return *this;
> + }
> +
> + /// @brief Bitwise AND operator. Performs bitwise AND operation
> on this APInt
> + /// and the given APInt& RHS.
> + APInt APInt::operator&(const APInt& RHS) const {
> + APInt API(RHS);
> + return API &= *this;
> + }
> +
> + /// @brief Bitwise OR operator. Performs bitwise OR operation on
> this APInt
> + /// and the given APInt& RHS.
> + APInt APInt::operator|(const APInt& RHS) const {
> + APInt API(RHS);
> + API |= *this;
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Bitwise XOR operator. Performs bitwise XOR operation
> on this APInt
> + /// and the given APInt& RHS.
> + APInt APInt::operator^(const APInt& RHS) const {
> + APInt API(RHS);
> + API ^= *this;
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Logical AND operator. Performs logical AND operation
> on this APInt
> + /// and the given APInt& RHS.
> + bool APInt::operator&&(const APInt& RHS) const {
> + if (isSingleWord())
> + return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
> + else if (RHS.isSingleWord())
> + return RHS.VAL && pVal[0];
> + else {
> + unsigned minN = std::min(numWords(), RHS.numWords());
> + for (unsigned i = 0; i < minN; ++i)
> + if (pVal[i] && RHS.pVal[i])
> + return true;
> + }
> + return false;
> + }
> +
> + /// @brief Logical OR operator. Performs logical OR operation on
> this APInt
> + /// and the given APInt& RHS.
> + bool APInt::operator||(const APInt& RHS) const {
> + if (isSingleWord())
> + return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
> + else if (RHS.isSingleWord())
> + return RHS.VAL || pVal[0];
> + else {
> + unsigned minN = std::min(numWords(), RHS.numWords());
> + for (unsigned i = 0; i < minN; ++i)
> + if (pVal[i] || RHS.pVal[i])
> + return true;
> + }
> + return false;
> + }
> +
> + /// @brief Logical negation operator. Performs logical negation
> operation on
> + /// this APInt.
> + bool APInt::operator !() const {
> + if (isSingleWord())
> + return !VAL;
> + else
> + for (unsigned i = 0; i < numWords(); ++i)
> + if (pVal[i])
> + return false;
> + return true;
> + }
> +
> + /// @brief Multiplication operator. Multiplies this APInt by the
> given APInt&
> + /// RHS.
> + APInt APInt::operator*(const APInt& RHS) const {
> + APInt API(RHS);
> + API *= *this;
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Division operator. Divides this APInt by the given
> APInt& RHS.
> + APInt APInt::operator/(const APInt& RHS) const {
> + APInt API(*this);
> + return API /= RHS;
> + }
> +
> + /// @brief Remainder operator. Yields the remainder from the
> division of this
> + /// APInt and the given APInt& RHS.
> + APInt APInt::operator%(const APInt& RHS) const {
> + APInt API(*this);
> + return API %= RHS;
> + }
> +
> + /// @brief Addition operator. Adds this APInt by the given APInt&
> RHS.
> + APInt APInt::operator+(const APInt& RHS) const {
> + APInt API(*this);
> + API += RHS;
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Subtraction operator. Subtracts this APInt by the
> given APInt& RHS
> + APInt APInt::operator-(const APInt& RHS) const {
> + APInt API(*this);
> + API -= RHS;
> + API.TruncToBits();
> + return API;
> + }
> +
> + /// @brief Array-indexing support.
> + bool APInt::operator[](unsigned bitPosition) const {
> + return maskBit(bitPosition) & (isSingleWord() ?
> + VAL : pVal[whichWord(bitPosition)]) != 0;
> + }
> +
> + /// @brief Equality operator. Compare this APInt with the given
> APInt& RHS
> + /// for the validity of the equality relationship.
> + bool APInt::operator==(const APInt& RHS) const {
> + unsigned n1 = numWords() * APINT_BITS_PER_WORD -
> CountLeadingZeros(),
> + n2 = RHS.numWords() * APINT_BITS_PER_WORD -
> RHS.CountLeadingZeros();
> + if (n1 != n2) return false;
> + else if (isSingleWord())
> + return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
> + else {
> + if (n1 <= 64)
> + return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal
> [0]);
> + for (int i = whichWord(n1 - 1); i >= 0; --i)
> + if (pVal[i] != RHS.pVal[i]) return false;
> + }
> + return true;
> + }
> +
> + /// @brief Inequality operator. Compare this APInt with the given
> APInt& RHS
> + /// for the validity of the inequality relationship.
> + bool APInt::operator!=(const APInt& RHS) const {
> + return !((*this) == RHS);
> + }
> +
> + /// @brief Less-than operator. Compare this APInt with the given
> APInt& RHS
> + /// for the validity of the less-than relationship.
> + bool APInt::operator <(const APInt& RHS) const {
> + if (isSigned && RHS.isSigned) {
> + if ((*this)[bitsnum-1] > RHS[RHS.bitsnum-1])
> + return false;
> + else if ((*this)[bitsnum-1] < RHS[RHS.bitsnum-1])
> + return true;
> + }
> + unsigned n1 = numWords() * 64 - CountLeadingZeros(),
> + n2 = RHS.numWords() * 64 - RHS.CountLeadingZeros();
> + if (n1 < n2) return true;
> + else if (n1 > n2) return false;
> + else if (isSingleWord())
> + return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
> + else {
> + if (n1 <= 64)
> + return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
> + for (int i = whichWord(n1 - 1); i >= 0; --i) {
> + if (pVal[i] > RHS.pVal[i]) return false;
> + else if (pVal[i] < RHS.pVal[i]) return true;
> + }
> + }
> + return false;
> + }
> +
> + /// @brief Less-than-or-equal operator. Compare this APInt with
> the given
> + /// APInt& RHS for the validity of the less-than-or-equal
> relationship.
> + bool APInt::operator<=(const APInt& RHS) const {
> + return (*this) == RHS || (*this) < RHS;
> + }
> +
> + /// @brief Greater-than operator. Compare this APInt with the
> given APInt& RHS
> + /// for the validity of the greater-than relationship.
> + bool APInt::operator >(const APInt& RHS) const {
> + return !((*this) <= RHS);
> + }
> +
> + /// @brief Greater-than-or-equal operator. Compare this APInt
> with the given
> + /// APInt& RHS for the validity of the greater-than-or-equal
> relationship.
> + bool APInt::operator>=(const APInt& RHS) const {
> + return !((*this) < RHS);
> + }
> +
> + /// Set the given bit to 1 whose poition is given as "bitPosition".
> + /// @brief Set a given bit to 1.
> + APInt& APInt::set(unsigned bitPosition) {
> + if (isSingleWord()) VAL |= maskBit(bitPosition);
> + else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
> + return *this;
> + }
> +
> + /// @brief Set every bit to 1.
> + APInt& APInt::set() {
> + if (isSingleWord()) VAL = -1ULL;
> + else
> + for (unsigned i = 0; i < numWords(); ++i)
> + pVal[i] = -1ULL;
> + return *this;
> + }
> +
> + /// Set the given bit to 0 whose position is given as "bitPosition".
> + /// @brief Set a given bit to 0.
> + APInt& APInt::clear(unsigned bitPosition) {
> + if (isSingleWord()) VAL &= ~maskBit(bitPosition);
> + else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
> + return *this;
> + }
> +
> + /// @brief Set every bit to 0.
> + APInt& APInt::clear() {
> + if (isSingleWord()) VAL = 0;
> + else bzero(pVal, numWords() * 8);
> + return *this;
> + }
> +
> + /// @brief Left-shift assignment operator. Left-shift the APInt
> by shiftAmt
> + /// and assigns the result to this APInt.
> + APInt& APInt::operator<<=(unsigned shiftAmt) {
> + if (shiftAmt >= bitsnum) {
> + if (isSingleWord()) VAL = 0;
> + else bzero(pVal, numWords() * 8);
> + } else {
> + for (unsigned i = 0; i < shiftAmt; ++i) clear(i);
> + for (unsigned i = shiftAmt; i < bitsnum; ++i) {
> + if ((*this)[i-shiftAmt]) set(i);
> + else clear(i);
> + }
> + }
> + return *this;
> + }
> +
> + /// @brief Left-shift operator. Left-shift the APInt by shiftAmt.
> + APInt APInt::operator<<(unsigned shiftAmt) const {
> + APInt API(*this);
> + API <<= shiftAmt;
> + return API;
> + }
> +
> + /// @brief Right-shift assignment operator. Right-shift the APInt
> by shiftAmt
> + /// and assigns the result to this APInt.
> + APInt& APInt::operator>>=(unsigned shiftAmt) {
> + bool isAShr = isSigned && (*this)[bitsnum-1];
> + if (isSingleWord())
> + VAL = isAShr ? (int64_t(VAL) >> shiftAmt) : (VAL >> shiftAmt);
> + else {
> + unsigned i = 0;
> + for (i = 0; i < bitsnum - shiftAmt; ++i)
> + if ((*this)[i+shiftAmt]) set(i);
> + else clear(i);
> + for (; i < bitsnum; ++i)
> + isAShr ? set(i) : clear(i);
> + }
> + return *this;
> + }
> +
> + /// @brief Right-shift operator. Right-shift the APInt by shiftAmt.
> + APInt APInt::operator>>(unsigned shiftAmt) const {
> + APInt API(*this);
> + API >>= shiftAmt;
> + return API;
> + }
> +
> + /// @brief Bitwise NOT operator. Performs a bitwise logical NOT
> operation on
> + /// this APInt.
> + APInt APInt::operator~() const {
> + APInt API(*this);
> + API.flip();
> + return API;
> + }
> +
> + /// @brief Toggle every bit to its opposite value.
> + APInt& APInt::flip() {
> + if (isSingleWord()) VAL = (~(VAL << (64 - bitsnum))) >> (64 -
> bitsnum);
> + else {
> + unsigned i = 0;
> + for (; i < numWords() - 1; ++i)
> + pVal[i] = ~pVal[i];
> + unsigned offset = 64 - (bitsnum - 64 * (i - 1));
> + pVal[i] = (~(pVal[i] << offset)) >> offset;
> + }
> + return *this;
> + }
> +
> + /// Toggle a given bit to its opposite value whose position is given
> + /// as "bitPosition".
> + /// @brief Toggles a given bit to its opposite value.
> + APInt& APInt::flip(unsigned bitPosition) {
> + assert(bitPosition < bitsnum && "Out of the bit-width range!");
> + if ((*this)[bitPosition]) clear(bitPosition);
> + else set(bitPosition);
> + return *this;
> + }
> +
> + /// to_string - This function translates the APInt into a string.
> + std::string APInt::to_string(uint8_t radix) const {
> + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
> + "Radix should be 2, 8, 10, or 16!");
> + std::ostringstream buf;
> + buf << std::setbase(radix);
> + // If the radix is a power of 2, set the format of ostringstream,
> + // and output the value into buf.
> + if ((radix & (radix - 1)) == 0) {
> + if (isSingleWord()) buf << VAL;
> + else {
> + buf << pVal[numWords()-1];
> + buf << std::setw(64 / (radix / 8 + 2)) << std::setfill('0');
> + for (int i = numWords() - 2; i >= 0; --i)
> + buf << pVal[i];
> + }
> + }
> + else { // If the radix = 10, need to translate the value into a
> + // string.
> + if (isSingleWord()) buf << VAL;
> + else {
> + // FIXME: To be supported.
> + }
> + }
> + return buf.str();
> + }
> +
> + /// getMaxValue - This function returns the largest value
> + /// for an APInt of the specified bit-width and if isSign == true,
> + /// it should be largest signed value, otherwise unsigned value.
> + APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
> + APInt APIVal(numBits, 1);
> + APIVal.set();
> + return isSign ? APIVal.clear(numBits) : APIVal;
> + }
> +
> + /// getMinValue - This function returns the smallest value for
> + /// an APInt of the given bit-width and if isSign == true,
> + /// it should be smallest signed value, otherwise zero.
> + APInt APInt::getMinValue(unsigned numBits, bool isSign) {
> + APInt APIVal(0, numBits);
> + return isSign ? APIVal : APIVal.set(numBits);
> + }
> +
> + /// getAllOnesValue - This function returns an all-ones value for
> + /// an APInt of the specified bit-width.
> + APInt APInt::getAllOnesValue(unsigned numBits) {
> + return getMaxValue(numBits, false);
> + }
> +
> + /// getNullValue - This function creates an '0' value for an
> + /// APInt of the specified bit-width.
> + APInt APInt::getNullValue(unsigned numBits) {
> + return getMinValue(numBits, true);
> + }
> +
> + /// HiBits - This function returns the high "numBits" bits of
> this APInt.
> + APInt APInt::HiBits(unsigned numBits) const {
> + return (*this) >> (bitsnum - numBits);
> + }
> +
> + /// LoBits - This function returns the low "numBits" bits of this
> APInt.
> + APInt APInt::LoBits(unsigned numBits) const {
> + return ((*this) << (bitsnum - numBits)) >> (bitsnum - numBits);
> + }
> +
> + /// CountLeadingZeros - This function is a APInt version
> corresponding to
> + /// llvm/include/llvm/Support/MathExtras.h's function
> + /// CountLeadingZeros_{32, 64}. It performs platform optimal form
> of counting
> + /// the number of zeros from the most significant bit to the
> first one bit.
> + /// @returns numWord() * 64 if the value is zero.
> + unsigned APInt::CountLeadingZeros() const {
> + if (isSingleWord())
> + return CountLeadingZeros_64(VAL);
> + unsigned Count = 0;
> + for (int i = numWords() - 1; i >= 0; --i) {
> + unsigned tmp = CountLeadingZeros_64(pVal[i]);
> + Count += tmp;
> + if (tmp != 64)
> + break;
> + }
> + return Count;
> + }
> +
> + /// CountTrailingZero - This function is a APInt version
> corresponding to
> + /// llvm/include/llvm/Support/MathExtras.h's function
> + /// CountTrailingZeros_{32, 64}. It performs platform optimal
> form of counting
> + /// the number of zeros from the least significant bit to the
> first one bit.
> + /// @returns numWord() * 64 if the value is zero.
> + unsigned APInt::CountTrailingZeros() const {
> + if (isSingleWord())
> + return CountTrailingZeros_64(~VAL & (VAL - 1));
> + APInt Tmp = ~(*this) & ((*this) - 1);
> + return numWords() * 64 - Tmp.CountLeadingZeros();
> + }
> +
> + /// CountPopulation - This function is a APInt version
> corresponding to
> + /// llvm/include/llvm/Support/MathExtras.h's function
> + /// CountPopulation_{32, 64}. It counts the number of set bits in
> a value.
> + /// @returns 0 if the value is zero.
> + unsigned APInt::CountPopulation() const {
> + if (isSingleWord())
> + return CountPopulation_64(VAL);
> + unsigned Count = 0;
> + for (unsigned i = 0; i < numWords(); ++i)
> + Count += CountPopulation_64(pVal[i]);
> + return Count;
> + }
> +
> +
> + /// ByteSwap - This function returns a byte-swapped
> representation of the
> + /// APInt argument, APIVal.
> + APInt llvm::ByteSwap(const APInt& APIVal) {
> + if (APIVal.bitsnum <= 32)
> + return APInt(APIVal.bitsnum, ByteSwap_32(unsigned(APIVal.VAL)));
> + else if (APIVal.bitsnum <= 64)
> + return APInt(APIVal.bitsnum, ByteSwap_64(APIVal.VAL));
> + else
> + return APIVal;
> + }
> +
> + /// GreatestCommonDivisor - This function returns the greatest
> common
> + /// divisor of the two APInt values using Enclid's algorithm.
> + APInt llvm::GreatestCommonDivisor(const APInt& API1, const APInt&
> API2) {
> + APInt A = API1, B = API2;
> + while (!!B) {
> + APInt T = B;
> + B = A % B;
> + A = T;
> + }
> + return A;
> + }
>
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
More information about the llvm-commits
mailing list